JP2005279173A - Odor material decomposing device, electrode used for the device, and electrostatic precipitator using the electrode - Google Patents

Odor material decomposing device, electrode used for the device, and electrostatic precipitator using the electrode Download PDF

Info

Publication number
JP2005279173A
JP2005279173A JP2004102030A JP2004102030A JP2005279173A JP 2005279173 A JP2005279173 A JP 2005279173A JP 2004102030 A JP2004102030 A JP 2004102030A JP 2004102030 A JP2004102030 A JP 2004102030A JP 2005279173 A JP2005279173 A JP 2005279173A
Authority
JP
Japan
Prior art keywords
electrode
odor
photocatalyst
voltage electrode
low voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004102030A
Other languages
Japanese (ja)
Inventor
Takashi Suzuki
崇 鈴木
Yukihiro Ishikuri
幸博 石栗
Eiko Akaishi
江位子 赤石
Shoji Takigami
昭治 滝上
Eiichi Tajiri
栄一 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINKOO GIKEN KK
Gunma University NUC
Gunma Prefecture
Original Assignee
SHINKOO GIKEN KK
Gunma University NUC
Gunma Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINKOO GIKEN KK, Gunma University NUC, Gunma Prefecture filed Critical SHINKOO GIKEN KK
Priority to JP2004102030A priority Critical patent/JP2005279173A/en
Publication of JP2005279173A publication Critical patent/JP2005279173A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To preliminarily decompose an odor material by electric discharge and ozone which is generated in discharging by combining a planar electrode with a needle shape electrode, and to substantially perfectly decompose the odor material by allowing UV rays generated in discharging and photocatalysts arranged near the electrodes to react. <P>SOLUTION: The photocatalysts are arranged on the front surface or in the neighborhood of the electrode for decomposing the odor material, or arranged on the front surface of the odor material decomposing electrode or an insulation body in the case of creeping discharge and perform deodorization with the use of the function of the photocatalysts. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、悪臭を分解する臭気物質分解装置とそれに用いる電極およびその電極を使用した電気集塵装置に関するものである。   The present invention relates to an odor substance decomposing apparatus that decomposes malodors, an electrode used therefor, and an electric dust collector using the electrode.

近年、悪臭に関する苦情件数が増加し、悪臭の発生源も食堂業等を含むサービス業、個人住宅、畜産業など多岐にわたっている。特にサービス業や個人住宅など、住宅地域が悪臭発生源になるケースが少なくなく、小型の悪臭対応装置の開発が望まれている。
悪臭分子(臭気物質)は主に揮発性の有機化合物や無機化合物であり、これらの揮発性分子を処理する技術として燃焼法、吸着法などが知られている。
In recent years, the number of complaints about bad odors has increased, and the sources of bad odors have been wide-ranging, including service industries including canteens, personal housing, and livestock industries. In particular, there are many cases where residential areas such as service industries and private houses become a source of bad odor, and development of a small odor countermeasure device is desired.
Malodorous molecules (odorous substances) are mainly volatile organic compounds and inorganic compounds. Combustion methods and adsorption methods are known as techniques for treating these volatile molecules.

また、悪臭除去技術として、従来より電気集塵装置を利用したもの等も提案されている(特許文献1)(特許文献2)。   In addition, as a malodor removal technique, a technique using an electric dust collector has been proposed (Patent Document 1) (Patent Document 2).

特開2002−126575JP 2002-126575 A 特開2000−5631JP 2000-5631 A

しかしながら、従来技術として公知の電気集塵装置は、脱臭効率が不十分であり、実用上で問題点があった。また、脱臭効率を改善するために電極に光触媒を設けたものなども提案されているが、気中放電の距離をある程度長くとる必要があることから、電極間の距離を所定値以上に短くすることができず、装置の小型化が困難である。さらに、悪臭分子分解装置の殆どは生産工場などへの設置を目的とした大型装置であり、中小サービス業者や個人住宅、集合住宅などにそのまま設置することは困難である。   However, the electrostatic precipitator known as the prior art has a problem in practical use because its deodorizing efficiency is insufficient. Moreover, in order to improve the deodorization efficiency, the thing which provided the photocatalyst to the electrode etc. is proposed, but since the distance of air discharge needs to be taken long to some extent, the distance between electrodes is shortened more than predetermined value. It is difficult to reduce the size of the apparatus. Furthermore, most of the malodor molecular decomposition devices are large-sized devices intended for installation in production factories and the like, and are difficult to install as they are in small and medium-sized service providers, private houses, apartment houses and the like.

そこで本発明者らは、小型、軽量かつランニングコストが低い臭気物質の分解方法を鋭意研究開発した結果、板状電極と針状電極を組み合わせ放電および放電時に発生するオゾンにより臭気物質を予備分解し、さらに、放電時に発生する紫外線と電極近傍に配置した光触媒を反応させることで臭気物質をほぼ完全に分解出来ることを見いだし、本発明を完成するに至った。
本発明は上記知見に基づいてなされたものであり、臭気物質分解用電極に光触媒を配置することにより、悪臭を効果的に除去できる臭気物質分解装置それに用いる電極およびその電極を使用した電気集塵装置を提供することを目的とする。
Therefore, as a result of diligent research and development of a method for decomposing odorous substances that is small, lightweight, and low in running cost, the present inventors preliminarily decomposed odorous substances with ozone generated during discharge and discharge by combining plate electrodes and needle electrodes. Furthermore, the inventors have found that the odorous substance can be almost completely decomposed by reacting the ultraviolet light generated during discharge with the photocatalyst disposed in the vicinity of the electrode, and the present invention has been completed.
The present invention has been made on the basis of the above knowledge, and by arranging a photocatalyst on the odor substance decomposing electrode, an odor substance decomposing apparatus that can effectively remove bad odors, and an electrode for collecting dust using the electrode. An object is to provide an apparatus.

このため、本発明が採用した技術解決手段は、
高電圧電極と低電圧電極とからなる臭気物質分解用電極と、前記高電圧電極と低電圧電極との間に配置する絶縁体と、前記臭気物質分解用電極に印加する電源と、前記臭気物質分解用電極および/または前記絶縁体に配置した光触媒と、前記臭気物質分解用電極に臭気ガスを導入するガス送風手段とからなることを特徴とする臭気物質分解装置である。
また、前記高電圧電極を針状電極またはワイヤー状電極とし、低電圧電極を板状、ハニカム状、円筒状等の面状電極としたことを特徴とする臭気物質分解装置である。
高電圧電極と低電圧電極とからなる臭気物質分解用電極と、前記高電圧電極と低電圧電極との間に配置する絶縁体と、前記臭気物質分解用電極および/または前記絶縁体に配置した光触媒とからなることを特徴とする臭気物質分解装置用の電極である。
また、前記高電圧電極を針状電極またはワイヤー状電極とし、低電圧電極を板状、ハニカム状、円筒状等の面状電極としたことを特徴とする臭気物質分解装置用の電極である。 また、前記光触媒は、少なくともアナターゼ型の酸化チタンを含有することを特徴とする臭気物質分解装置用の電極である。
また、前記光触媒は、少なくとも高電圧電極と低電圧電極の電極表面に塗布または取付けたことを特徴とする臭気物質分解装置用の電極である。
また、前記光触媒は、高電圧電極と低電圧電極の近傍に配置したことを特徴とする臭気物質分解装置用の電極である。
また、前記臭気物質分解用電極を集塵電極として使用したことを特徴とする電気集塵装置である。
For this reason, the technical solution means adopted by the present invention is:
Odor substance decomposition electrode comprising a high voltage electrode and a low voltage electrode, an insulator disposed between the high voltage electrode and the low voltage electrode, a power source applied to the odor substance decomposition electrode, and the odor substance An odor substance decomposing apparatus comprising a photocatalyst disposed on a decomposition electrode and / or the insulator, and a gas blowing means for introducing odor gas into the odor substance decomposition electrode.
The odorous substance decomposing apparatus is characterized in that the high voltage electrode is a needle electrode or a wire electrode, and the low voltage electrode is a planar electrode such as a plate, honeycomb, or cylinder.
An odor substance decomposing electrode composed of a high voltage electrode and a low voltage electrode, an insulator disposed between the high voltage electrode and the low voltage electrode, and an odor substance decomposing electrode and / or the insulator. An electrode for an odor substance decomposing apparatus comprising a photocatalyst.
Further, the high voltage electrode is a needle electrode or a wire electrode, and the low voltage electrode is a plate electrode, a honeycomb electrode, a planar electrode, or the like. The photocatalyst is an electrode for an odorous substance decomposition apparatus characterized by containing at least anatase type titanium oxide.
Further, the photocatalyst is an electrode for an odor substance decomposing apparatus characterized in that it is applied or attached to at least the electrode surfaces of the high voltage electrode and the low voltage electrode.
In addition, the photocatalyst is an electrode for an odor substance decomposition apparatus, which is disposed in the vicinity of a high voltage electrode and a low voltage electrode.
The odorous substance decomposing electrode may be used as a dust collecting electrode.

以上本発明によれば、臭気物質分解用電極でコロナ放電中に、臭気ガスを導入すると、コロナ放電によって発生するオゾンによって臭気物質が予備分解されるとともに、放電時に発生する紫外線と電極近傍に配置した光触媒が反応し臭気物質を分解する。この結果、悪臭を確実に除去することができる。また従来公知の電気集塵装置などでも電極近傍に光触媒を配置するだけで、従来装置を利用しながら効果の高い装置とすることができる。   As described above, according to the present invention, when the odor gas is introduced during the corona discharge with the odor substance decomposition electrode, the odor substance is preliminarily decomposed by the ozone generated by the corona discharge, and the ultraviolet rays generated at the time of the discharge are arranged in the vicinity of the electrode. The photocatalyst reacts to decompose odorous substances. As a result, malodor can be reliably removed. Also, a conventionally known electrostatic precipitator or the like can be made highly effective while using a conventional device by simply placing a photocatalyst in the vicinity of the electrode.

本発明は、光触媒を、臭気物質分解用電極表面若しくは近傍、また沿面放電においては臭気物質分解用電極または絶縁体表面に配置し、この光触媒の機能を利用して脱臭を行う臭気物質分解装置である。
またその装置に使用する臭気物質分解用電極であり、さらにその電極を使用した電気集塵装置である。
The present invention is an odorous substance decomposing apparatus in which a photocatalyst is disposed on or near the surface of an odorous substance decomposing electrode, or on the surface of an odorous substance decomposing electrode or insulator in creeping discharge, and deodorizes using the function of this photocatalyst. is there.
Moreover, it is an odor substance decomposition electrode used in the apparatus, and further, an electrostatic precipitator using the electrode.

以下、本発明の実施例を図面に基づいて説明すると、図1は本発明に係る臭気物質分解装置の構成図、図2は同装置に使用する電極の拡大図である。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an odor substance decomposing apparatus according to the present invention, and FIG. 2 is an enlarged view of electrodes used in the apparatus.

図1、図2において、臭気物質分解装置は図示のように、送風手段1と臭気物質分解用電極とから構成されており、臭気ガスを送風手段1によって臭気物質分解用電極2内に送風することで電極内で脱臭機能を奏するものである。なお、送風手段1は臭気物質分解用電極2に臭気を送気できる機能をもっておればよく、臭気物質分解用電極部の上流側または下流側いずれにも配置することができる。 1 and 2, the odor substance decomposing apparatus is constituted by a blowing means 1 and an odor substance decomposing electrode as shown in the figure, and odor gas is blown into the odor substance decomposing electrode 2 by the blowing means 1. Thus, the deodorizing function is achieved in the electrode. The air blowing means 1 only needs to have a function of sending odors to the odor substance decomposition electrode 2, and can be arranged either upstream or downstream of the odor substance decomposition electrode section.

前記臭気物質分解用電極2は本例では図1のように高電圧電極3と低電圧電極4とが交互に且つ平行に配設され、且、高電圧電極3と低電圧電極4の間に沿面放電をさせるための絶縁体12を配置し、それらを多数配置した板状電極群から構成されている。絶縁体12の厚さ、材質、さらには高電圧電極3と低電圧電極4に印加する電圧等は、設計時において適宜選択することができる。前記電極3、4は各々同極のみ互いに電気的に並列に接続され、絶縁機能を有する電極板支持用絶縁体9によって図示のようにケース6内に支持されている。また絶縁体12も同様に電極板支持用絶縁体9によって図示のように支持されている。高電圧電極3群の端子は給電線5を介して電源と接続されており、また低電圧電極4の端子は電線7を介してケース6に接続され、且つケース6は適宜接続手段を介してアース8されている。本例では最も外側に配置したケース6を低電圧電極と兼用にしている。   In the present example, the odorous substance decomposition electrode 2 includes high voltage electrodes 3 and low voltage electrodes 4 arranged alternately and in parallel as shown in FIG. 1, and between the high voltage electrode 3 and the low voltage electrode 4. An insulator 12 for causing creeping discharge is arranged, and a plate-like electrode group in which a large number of them are arranged. The thickness and material of the insulator 12 and the voltage applied to the high voltage electrode 3 and the low voltage electrode 4 can be selected as appropriate at the time of design. The electrodes 3 and 4 are electrically connected in parallel with each other only in the same polarity, and are supported in a case 6 as shown by an electrode plate supporting insulator 9 having an insulating function. Similarly, the insulator 12 is supported by an electrode plate supporting insulator 9 as shown in the figure. The terminals of the high voltage electrode 3 group are connected to the power source via the feeder 5, the terminals of the low voltage electrode 4 are connected to the case 6 via the electric wire 7, and the case 6 is appropriately connected via connecting means. It is grounded 8. In this example, the outermost case 6 is also used as a low voltage electrode.

臭気物質分解用電極2を図2を参照してさらに説明すると、図2に示すように給電線5と電極板支持用絶縁体9とが別体で構成されており、各電極板3、4、および絶縁体12は高、低電圧電極を共通の一本の電極板支持用絶縁体9と同絶縁体表面に形成したネジとナット10とにより所定の間隙で固定されている。そして、前記電極2それ自体、絶縁体12及び/または電極板支持用絶縁体9には図2に示すように光触媒を塗布または付着するか、電極の近傍に適宜光触媒の支持部材を介して光触媒を配置する。
なお、電極板支持用絶縁体9は必要に応じて従来の絶縁碍子のように表面に大きな凹凸面を形成することもできる。また、絶縁体と電極板との固定法は同様の効果を奏することができるものであれば、適宜別の固定法を採用することができる。
The odorous substance decomposition electrode 2 will be further described with reference to FIG. 2. As shown in FIG. 2, the feeder 5 and the electrode plate supporting insulator 9 are formed separately, and each electrode plate 3, 4 And the insulator 12 are fixed at a predetermined gap by a single electrode plate supporting insulator 9 having a common high and low voltage electrode, and a screw and a nut 10 formed on the surface of the insulator. Then, the electrode 2 itself, the insulator 12 and / or the electrode plate supporting insulator 9 is coated or attached with a photocatalyst as shown in FIG. 2, or a photocatalyst is appropriately provided near the electrode via a photocatalyst support member. Place.
Note that the electrode plate supporting insulator 9 can be formed with a large uneven surface on the surface as required by a conventional insulator. Moreover, as long as the fixing method of an insulator and an electrode plate can have the same effect, another fixing method can be employ | adopted suitably.

ところで、上記電極は、高、低電圧電極とも平板を組み合わせて構成したものを例示してあるが、図3に示すように針電極3Aと平板電極4Aを組み合わせたもの、図4に示すように円筒状(あるいはハニカム状)の電極の各円筒内にネジ電極、ワイヤ電極、棒状電極を配置したものなど、種々の形態の電極を使用することができる。この場合にも、各電極間には沿面放電をさせるための絶縁体が配置されている。なお各電極は図5に示すように絶縁体12に直接接触させるか、あるいは、効率的な沿面放電をさせることが可能なわずかに離した状態(数ミリ以内)で配置することも可能である。直接接触させた場合には、高、低電圧電極間に印加する電圧は従来のコロナ放電の場合に比較して低電圧ですみ、全体として消費電力を少なくすることができる。なお、高電圧側の電極としては図示のように、ネジ状、棒状、刃状など適宜形状のものを使用できる。また、平板電極、ハニカム電極、円筒電極の素材には、銅、真鍮、ステンレス等の材料を、また、針状電極、ワイヤ電極の素材は、ステンレス、タングステン、などを使用するとよい。また、図5に示すようにネジ状、棒状、刃状など適宜形状の高圧電極からは、刃状電極では刃先の部分から、またネジ状電極では図5(ハ)に示すようにネジのネジ山部分から絶縁体の表面にコロナが発生する。   By the way, although the said electrode has illustrated what comprised the flat plate combining both the high voltage electrode and the low voltage electrode, as shown in FIG. 4, what combined the needle electrode 3A and the flat plate electrode 4A as shown in FIG. Various types of electrodes can be used, such as those in which a screw electrode, a wire electrode, or a rod electrode is disposed in each cylinder of a cylindrical (or honeycomb) electrode. Also in this case, an insulator for causing creeping discharge is disposed between the electrodes. Each electrode can be placed in direct contact with the insulator 12 as shown in FIG. 5 or in a slightly separated state (within several millimeters) capable of efficient creeping discharge. . In the case of direct contact, the voltage applied between the high and low voltage electrodes is lower than that of the conventional corona discharge, and the power consumption can be reduced as a whole. As shown in the figure, a high voltage side electrode having an appropriate shape such as a screw shape, a rod shape, or a blade shape can be used. In addition, materials such as copper, brass, and stainless steel may be used for the material of the flat plate electrode, honeycomb electrode, and cylindrical electrode, and stainless steel, tungsten, and the like may be used as the material for the needle electrode and the wire electrode. Further, as shown in FIG. 5, from a high-voltage electrode having an appropriate shape such as a screw shape, a rod shape, or a blade shape, a blade-shaped electrode starts from a blade portion, and a screw-shaped electrode uses a screw screw as shown in FIG. Corona is generated on the surface of the insulator from the mountain portion.

電極近傍に配置する(または直接電極に塗布する)光触媒について
光触媒は、電極近傍、電極自体、電極支持用絶縁体(碍子)に塗布、スプレー法、含浸法等によって設けるが、光触媒(無機酸化物触媒)としては、酸化チタン、酸化亜鉛、硫化カドミウムなどの半導体触媒(第1成分)を使用することができ、好ましくは酸化チタンおよび酸化亜鉛、最も好ましくは酸化チタンを使用することが望ましい。酸化チタンはアナターゼ型(anatase)とルチル型(rutile)の結晶構造を持つ。両者とも光触媒活性を示すが、調製温度が高いルチル型では比表面積等が小さい傾向が見られるため、使用に先立ち光触媒活性を確認するか、なるべくアナターゼ型を選択するのが望ましい。使用に当たって光触媒(第1成分)単独で使用しても良いし、アルミナ、シリカ−アルミナ、シリカ、ジルコニア、ジルコニア−アルミナ、ゼオライトなどの基材(第2成分)に担持、配合、または混合して使用しても良い。基材にジルコニアを使用する際には、硫酸イオンで処理し、硫酸根を存在させても良い。さらにまた、白金、パラジウム、ロジウム、ルテニウムからなる群から選ぱれる1種以上の金属(第3成分)を触媒または基材に担持、配合、または混合して使用することができる。触媒の形状は特に限定されないが、粉体状、円柱状、中空状、粒状、ハニカム状など工業触媒に利用できる形状を好ましく選択できる。また、触媒の調製に当たり、バインダーや離型剤などを添加するができる。第1成分の含有量は触媒基準で0.5質量%〜100質量%が好ましく、1.0〜95質量%がより好ましく、5.0〜90質量%が最も好ましい。
Photocatalysts placed near the electrode (or applied directly to the electrode) The photocatalyst is provided in the vicinity of the electrode, the electrode itself, or the electrode support insulator (insulator) by coating, spraying, impregnation, etc. As the catalyst), a semiconductor catalyst (first component) such as titanium oxide, zinc oxide or cadmium sulfide can be used, preferably titanium oxide and zinc oxide, most preferably titanium oxide. Titanium oxide has anatase and rutile crystal structures. Although both show photocatalytic activity, the rutile type having a high preparation temperature tends to have a small specific surface area and the like. Therefore, it is desirable to confirm the photocatalytic activity prior to use or select the anatase type as much as possible. In use, the photocatalyst (first component) may be used alone, or supported, blended, or mixed on a substrate (second component) such as alumina, silica-alumina, silica, zirconia, zirconia-alumina, zeolite, etc. May be used. When zirconia is used for the substrate, it may be treated with sulfate ions to allow sulfate radicals to exist. Furthermore, one or more metals (third component) selected from the group consisting of platinum, palladium, rhodium, and ruthenium can be used by being supported, blended, or mixed on a catalyst or a substrate. Although the shape of a catalyst is not specifically limited, The shape which can be utilized for industrial catalysts, such as a powder form, a column shape, a hollow shape, a granular form, and a honeycomb form, can be selected preferably. Moreover, a binder, a mold release agent, etc. can be added in preparation of a catalyst. The content of the first component is preferably 0.5% by mass to 100% by mass based on the catalyst, more preferably 1.0-95% by mass, and most preferably 5.0-90% by mass.

アルミナ、シリカ−アルミナ、シリカ、ジルコニア、ジルコニア−アルミナ、ゼオライトなどの基材(第2成分)量については特に制限は無いが0.5質量%未満では添加することに依る強度上昇、比表面積向上、反応活性向上効果などが不十分になる可能性がある。白金、パラジウム、ロジウム、ルテニウムからなる金属(第3成分)の添加量は0.01質量%以上が好ましい。これ未満では充分な反応活性向上効果が見られない可能性がある。上限は特に制限されないが、触媒製造コスト等の観点や活性向上効果が飽和してくることなどから10質量%以上添加しても技術的な意義は希薄となる。
そして、上述のような機能を有する光触媒を前述したように電極近傍に配置または電極に直接塗布または取り付ける。
There are no particular restrictions on the amount of the base material (second component) such as alumina, silica-alumina, silica, zirconia, zirconia-alumina, zeolite, etc. However, if it is less than 0.5% by mass, the strength is increased by adding it and the specific surface area is improved The reaction activity improving effect may be insufficient. The addition amount of the metal (third component) made of platinum, palladium, rhodium, and ruthenium is preferably 0.01% by mass or more. If it is less than this, sufficient reaction activity improvement effect may not be seen. The upper limit is not particularly limited, but the technical significance is diminished even if it is added in an amount of 10% by mass or more from the viewpoint of catalyst production cost and the like, and the activity improvement effect is saturated.
Then, as described above, the photocatalyst having the above-described function is arranged in the vicinity of the electrode, or directly applied or attached to the electrode.

触媒を上記電極へ配置する方法
触媒を電極、絶縁体、電極支持用絶縁体表面若しくは沿面放電においては電極または絶縁体表面および碍子に配置するための方法としては刷毛塗法、スプレー法、含浸法などの公知方法を使用できる。例えば、触媒粉末を水や有機溶媒などの分散媒に分散させ、これを電極や絶縁体表面にスプレー法で吹き付けたあと、乾燥、加熱して触媒を配置することができる。また、触媒を適宜成型し直接電極や絶縁体上に配置しても良好な効果が得られる。なお、ここで言う触媒とは前述した(1)第1成分単独、(2)第1成分と第2成分、(3)第1成分と第3成分、(4)第1成分、第2成分、第3成分の組み合わせを指す。
Method for disposing the catalyst on the electrode In the surface of the electrode, insulator, electrode supporting insulator or creeping discharge, the method for disposing the catalyst on the electrode or insulator surface and the insulator is a brush coating method, a spray method, an impregnation method. Any known method can be used. For example, the catalyst powder can be dispersed in a dispersion medium such as water or an organic solvent, sprayed onto the electrode or insulator surface by a spray method, then dried and heated to dispose the catalyst. In addition, a good effect can be obtained even if the catalyst is appropriately molded and disposed directly on the electrode or insulator. In addition, the catalyst said here is (1) 1st component independent mentioned above, (2) 1st component and 2nd component, (3) 1st component and 3rd component, (4) 1st component, 2nd component , Refers to a combination of third components.

この他にも、光触媒金属成分のアルコキシド(アルコラート)のアルコール溶液などを用い電極や絶縁体に刷毛塗法、スプレー法、含浸法などの公知方法で塗布したあと、乾燥、加熱して触媒を配置することで好ましい効果が得られる。光触媒金属成分のアルコラートとしては、チタンイソプロポキシド〔(CH3 2 CHO〕4 Ti等の取扱が容易であり好ましく用いることが出来る。 In addition to this, an alcohol solution of the photocatalytic metal component alkoxide (alcolate) is applied to electrodes and insulators by a known method such as brush coating, spraying or impregnation, and then dried and heated to place the catalyst. By doing so, a preferable effect can be obtained. As the alcoholate of the photocatalytic metal component, titanium isopropoxide [(CH 3 ) 2 CHO] 4 Ti and the like are easy to handle and can be preferably used.

上記構成からなる臭気物質分解装置の作用を説明する。
所定のケース6内に上述した構成からなる臭気物質分解用電極2を収納し、このケース6内に分解すべきガス(臭気ガス)を送風手段(ファン等)1を使用して導入する。この時の送風量は臭気物質分解用電極の臭気分解処理能力に合わせて適宜設定する。ケース6内の電極3、4は直流電源(または交流電源)と接続されており、高電圧電極と低電圧電極との間の絶縁体表面においてコロナ放電を発生している。このコロナ放電中に、臭気ガスが導入されると、臭気ガスは先ずコロナ放電によって発生しているオゾンにより予備分解され、さらに放電時に発生する紫外線と光触媒が反応することにより臭気物質が分解される。こうして、光触媒の作用により臭気物質が確実に分解され臭いが除去される。
The operation of the odor substance decomposing apparatus having the above configuration will be described.
The odor substance decomposing electrode 2 having the above-described configuration is housed in a predetermined case 6, and a gas (odor gas) to be decomposed is introduced into the case 6 using a blowing means (fan or the like) 1. The blast volume at this time is set as appropriate in accordance with the odor decomposition ability of the odor substance decomposition electrode. The electrodes 3 and 4 in the case 6 are connected to a DC power supply (or AC power supply), and corona discharge is generated on the insulator surface between the high voltage electrode and the low voltage electrode. When odor gas is introduced during the corona discharge, the odor gas is first preliminarily decomposed by ozone generated by the corona discharge, and further, the odor substance is decomposed by the reaction between the ultraviolet light generated during the discharge and the photocatalyst. . Thus, the odorous substance is reliably decomposed and the odor is removed by the action of the photocatalyst.

上記臭気物質分解用電極2を従来公知の電気集塵装置に使用した例
従来公知の電気集塵装置は、図6に示す概略構成を有している。この装置はケース23とケース23内に配置する荷電電極20、集塵電極21を備えている。前記集塵電極21に代えて前述した臭気物質分解電極2を配置することで、脱臭機能を有する電気集塵装置とすることができる。具体的には、図6に示すように臭気物質分解電極の上流側に電気集塵装置等で公知の荷電電極20を配置し、その下流側に臭気物質分解電極2を配置する。この装置では臭気ガスを送風手段22によって荷電電極に送気し、空気中の塵埃や臭気ガスを荷電粒子(イオン化)にし、さらにこの荷電粒子を臭気物質分解用電極2に送気し、臭気物質分解用電極2でイオン化物質を吸着する(集塵する)とともに光触媒の作用によって臭気物質を分解する。このように本発明の臭気物質分解用電極2を従来の電気集塵装置の集塵電極の代わりに使用することで、集塵、脱臭の機能を果たす電気集塵装置を提供することもできる。
Example in which the odor substance decomposition electrode 2 is used in a conventionally known electrostatic precipitator. The conventionally known electrostatic precipitator has a schematic configuration shown in FIG. This apparatus includes a case 23, a charging electrode 20 disposed in the case 23, and a dust collecting electrode 21. By disposing the above-described odorous substance decomposition electrode 2 in place of the dust collection electrode 21, an electric dust collector having a deodorizing function can be obtained. Specifically, as shown in FIG. 6, a known charged electrode 20 is arranged upstream of the odor substance decomposition electrode by an electric dust collector or the like, and the odor substance decomposition electrode 2 is arranged downstream thereof. In this apparatus, the odor gas is sent to the charged electrode by the air blowing means 22, dust or odor gas in the air is turned into charged particles (ionized), and the charged particles are further sent to the odor substance decomposition electrode 2, where the odor substance is sent. The decomposition electrode 2 adsorbs (collects) ionized substances and decomposes odorous substances by the action of the photocatalyst. Thus, by using the electrode 2 for odorous substance decomposition of the present invention in place of the dust collecting electrode of the conventional electric dust collecting device, it is also possible to provide an electric dust collecting device that functions to collect and deodorize.

上記臭気物質分解電極の実験例を示す。
(実験例)
図7−aに示すような、ポリカーボネート製の内容積約60cm3 の容器に、ステンレス製板状電極と、タングステン製針状電極を取り付けた反応器を作成した。ステンレス製板状電極上には光触媒の酸化チタン(TiO2 )を触媒基準で15質量%含有するアルミナ成型体(3mmφ×3mmH)を配置した。電極間距離13mmとし直流13kVを印加し常圧でコロナ放電させながら臭気成分のモデル物質としてn−酪酸20vol.ppmを含む空気を約180リットル/hで通気した。反応前の炭素基準の有機物濃度を予め水素炎イオン化検出器(Flame Ionization Detector)で測定し、反応器に通気後の炭素基準の有機物濃度を水素炎イオン化検出器で測定した。反応後の炭素基準の有機物濃度を反応前の炭素基準の有機物濃度で割った数値から転化率を求めた。
The experimental example of the said odor substance decomposition electrode is shown.
(Experimental example)
A reactor having a stainless steel plate electrode and a tungsten needle electrode attached to a container made of polycarbonate having an internal volume of about 60 cm 3 as shown in FIG. An alumina molded body (3 mmφ × 3 mmH) containing 15% by mass of photocatalyst titanium oxide (TiO 2 ) based on the catalyst was placed on the plate electrode made of stainless steel. N-butyric acid 20 vol. Was used as a model substance of odor component while applying a direct current 13 kV with a distance of 13 mm between electrodes and causing corona discharge at normal pressure. Air containing ppm was vented at about 180 liter / h. The carbon-based organic substance concentration before the reaction was measured in advance with a flame ionization detector, and the carbon-based organic substance concentration after venting into the reactor was measured with a flame ionization detector. The conversion rate was calculated from the value obtained by dividing the carbon-based organic matter concentration after the reaction by the carbon-based organic matter concentration before the reaction.

転化率(%)
=(反応後の炭素基準の有機物濃度/反応前の炭素基準の有機物濃度)×100
図8−aには分解反応時間とn−酪酸の転化率の関係を示す。図8−aから明らかなように、光触媒を配置した場合では、n−酪酸の転化率はほぼ100%を示した。
Conversion rate (%)
= (Carbon-based organic matter concentration after reaction / carbon-based organic matter concentration before reaction) × 100
FIG. 8A shows the relationship between the decomposition reaction time and the conversion rate of n-butyric acid. As is clear from FIG. 8A, when the photocatalyst was arranged, the conversion rate of n-butyric acid was almost 100%.

(比較例)
図7−bに示すように、光触媒を配置しなかった他は実験例と同じ条件でn−酪酸20vol.ppmを含む空気を通気し通気時間と転化率の関係を図8−bに示した。光触媒を配置しない場合のn−酪酸の転化率は約60%前後を示した。
以上の例からも分かるように光触媒を配置した電極を使用した場合には脱臭効果が大きいことがわかる。
(Comparative example)
As shown in FIG. 7-b, n-butyric acid 20 vol. FIG. 8B shows the relationship between the ventilation time and the conversion rate when air containing ppm was vented. The conversion rate of n-butyric acid without a photocatalyst was about 60%.
As can be seen from the above examples, it can be seen that the deodorizing effect is large when the electrode on which the photocatalyst is arranged is used.

以上のように、本実施形態によれば、臭気物質分解用電極に光触媒を配置(直接塗布または取り付けを含む)することで、従来脱臭が困難な臭気ガスも効果的に脱臭することができる。また、絶縁体の表面に沿面放電させることができるため、従来の気中放電の場合に比較して、電極間の距離を小さくでき、装置全体を小型化することが可能である。また 沿面放電が絶縁体の表面全面に広がるため、脱臭効率も向上する。また高圧、低圧の電極を絶縁体に直接接触させた場合には、低電圧での沿面放電が可能となり、消費電力を少なくすることができる。また、従来公知の集塵装置の集塵電極に前述の臭気物質分解用電極を用いることで、集塵と脱臭の機能を果たすことができる電気集塵装置を提供することができる。
また、本発明はその精神又は主要な特徴から逸脱することなく他の色々な形で実施することができ、また、前述の実施例はあらゆる点で単なる例示に過ぎず、限定的に解釈してはならない。
As described above, according to the present embodiment, the odor gas that has been difficult to deodorize can be effectively deodorized by arranging the photocatalyst on the odor substance decomposition electrode (including direct application or attachment). Further, since creeping discharge can be performed on the surface of the insulator, the distance between the electrodes can be reduced compared to the case of conventional air discharge, and the entire apparatus can be downsized. In addition, since the creeping discharge spreads over the entire surface of the insulator, the deodorizing efficiency is also improved. In addition, when the high-voltage and low-voltage electrodes are in direct contact with the insulator, creeping discharge at a low voltage is possible, and power consumption can be reduced. In addition, by using the above-mentioned electrode for decomposing odorous substances as a dust collecting electrode of a conventionally known dust collecting device, it is possible to provide an electric dust collecting device capable of performing dust collecting and deodorizing functions.
In addition, the present invention can be implemented in various other forms without departing from the spirit or main features thereof, and the above-described embodiments are merely examples in all respects, and are interpreted in a limited manner. Must not.

本発明は、食堂業等を含むサービス業、個人住宅、畜産業など多岐にわたっている悪臭の発生源で利用することにより、確実に悪臭公害を排除することができる。   The present invention can surely eliminate bad odor pollution by using it in a variety of sources of bad odor such as service industry including canteen business, personal housing, and livestock industry.

本発明の実施例に係る臭気物質分解装置の構成図である。It is a block diagram of the odor substance decomposition | disassembly apparatus based on the Example of this invention. 同装置内の臭気物質分解用電極の構造図である。It is a structural diagram of the electrode for odorous substance decomposition | disassembly in the apparatus. 電極構造の他の例を示す図である。It is a figure which shows the other example of an electrode structure. 電極構造の他の例(円筒状電極)を示す図である。It is a figure which shows the other example (cylindrical electrode) of an electrode structure. (イ)は電極構造の他の例(沿面放電用電極)の斜視図、(ロ)は側面図、(ハ)は沿面放電の説明図である。(A) is a perspective view of another example (electrode for creeping discharge) of the electrode structure, (B) is a side view, and (C) is an explanatory diagram of creeping discharge. 臭気物質分解用電極を電気集塵機に使用した例を示す図である。It is a figure which shows the example which used the electrode for odor substance decomposition | disassembly for an electric dust collector. 実験例を示す図であり、図7−aは光触媒を使用した例、図7−bは光触媒の無い例を示す。It is a figure which shows an experiment example, FIG. 7-a shows the example which uses a photocatalyst, FIG. 7-b shows the example without a photocatalyst. 図8−a、図8−bは、図7−a、図7−bに対応した転化率を示すグラフである。FIGS. 8-a and 8-b are graphs showing the conversion rates corresponding to FIGS. 7-a and 7-b.

符号の説明Explanation of symbols

1 送風手段
2 臭気物質分解用電極
3 高電圧電極
4 低電圧電極
5 給電線
6 ケース
7 電線
8 アース
9 電極板支持用絶縁体
DESCRIPTION OF SYMBOLS 1 Blowing means 2 Odor substance decomposition electrode 3 High voltage electrode 4 Low voltage electrode 5 Feed line 6 Case 7 Electric wire 8 Ground 9 Electrode plate support insulator

Claims (8)

高電圧電極と低電圧電極とからなる臭気物質分解用電極と、前記高電圧電極と低電圧電極との間に配置する絶縁体と、前記臭気物質分解用電極に印加する電源と、前記臭気物質分解用電極および/または前記絶縁体に配置した光触媒と、前記臭気物質分解用電極に臭気ガスを導入するガス送風手段とからなることを特徴とする臭気物質分解装置。 Odor substance decomposition electrode comprising a high voltage electrode and a low voltage electrode, an insulator disposed between the high voltage electrode and the low voltage electrode, a power source applied to the odor substance decomposition electrode, and the odor substance An odorous substance decomposing apparatus comprising: a decomposing electrode and / or a photocatalyst disposed on the insulator; and a gas blowing means for introducing odorous gas into the odorous substance decomposing electrode. 前記高電圧電極を針状電極またはワイヤー状電極とし、低電圧電極を板状、ハニカム状、円筒状等の面状電極としたことを特徴とする請求項1に記載の臭気物質分解装置。 2. The odor substance decomposing apparatus according to claim 1, wherein the high voltage electrode is a needle electrode or a wire electrode, and the low voltage electrode is a planar electrode such as a plate, honeycomb, or cylinder. 高電圧電極と低電圧電極とからなる臭気物質分解用電極と、前記高電圧電極と低電圧電極との間に配置する絶縁体と、前記臭気物質分解用電極および/または前記絶縁体に配置した光触媒とからなることを特徴とする臭気物質分解装置用の電極。 An odor substance decomposing electrode composed of a high voltage electrode and a low voltage electrode, an insulator disposed between the high voltage electrode and the low voltage electrode, and an odor substance decomposing electrode and / or the insulator. An electrode for an odor substance decomposing apparatus comprising a photocatalyst. 前記高電圧電極を針状電極またはワイヤー状電極とし、低電圧電極を板状、ハニカム状、円筒状等の面状電極としたことを特徴とする請求項4に記載の臭気物質分解装置用の電極。 The odorous substance decomposition apparatus according to claim 4, wherein the high voltage electrode is a needle electrode or a wire electrode, and the low voltage electrode is a planar electrode such as a plate, honeycomb, or cylinder. electrode. 前記光触媒は、少なくともアナターゼ型の酸化チタンを含有することを特徴とする請求項3または請求項4に記載の臭気物質分解装置用の電極。 The said photocatalyst contains anatase type titanium oxide at least, The electrode for odorous substance decomposition | disassembly apparatuses of Claim 3 or Claim 4 characterized by the above-mentioned. 前記光触媒は、少なくとも高電圧電極と低電圧電極の電極表面に塗布または取付けたことを特徴とする請求項3〜請求項5のいずれかに記載の臭気物質分解装置用の電極。 The odor substance decomposition apparatus electrode according to any one of claims 3 to 5, wherein the photocatalyst is applied or attached to at least electrode surfaces of a high voltage electrode and a low voltage electrode. 前記光触媒は、高電圧電極と低電圧電極の近傍に配置したことを特徴とする請求項3〜請求項6のいずれかに記載の臭気物質分解装置用の電極。 The said photocatalyst is arrange | positioned in the vicinity of the high voltage electrode and the low voltage electrode, The electrode for odorous substance decomposition | disassembly apparatuses in any one of Claims 3-6 characterized by the above-mentioned. 前記請求項3〜請求項7に記載の臭気物質分解用電極を集塵電極として使用したことを特徴とする電気集塵装置。
An electrostatic precipitator using the odor substance decomposing electrode according to any one of claims 3 to 7 as a dust collecting electrode.
JP2004102030A 2004-03-31 2004-03-31 Odor material decomposing device, electrode used for the device, and electrostatic precipitator using the electrode Pending JP2005279173A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004102030A JP2005279173A (en) 2004-03-31 2004-03-31 Odor material decomposing device, electrode used for the device, and electrostatic precipitator using the electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004102030A JP2005279173A (en) 2004-03-31 2004-03-31 Odor material decomposing device, electrode used for the device, and electrostatic precipitator using the electrode

Publications (1)

Publication Number Publication Date
JP2005279173A true JP2005279173A (en) 2005-10-13

Family

ID=35178166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004102030A Pending JP2005279173A (en) 2004-03-31 2004-03-31 Odor material decomposing device, electrode used for the device, and electrostatic precipitator using the electrode

Country Status (1)

Country Link
JP (1) JP2005279173A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPN20090048A1 (en) * 2009-09-07 2011-03-08 Daniele Falcomer SELF-CLEANING ELECTROFILTER FOR EMISSION TREATMENT
KR101525848B1 (en) * 2009-05-12 2015-06-05 삼성전자 주식회사 Electric precipitator

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266854A (en) * 1995-03-31 1996-10-15 Matsushita Electric Works Ltd Deodorizing device
JPH10309493A (en) * 1997-05-08 1998-11-24 Daikin Ind Ltd Dust collection part of ionic wind type air cleaner
JP2000140624A (en) * 1998-11-16 2000-05-23 Toshiba Corp Photocatalytic reaction device and photocatalytic reaction method
JP2000300650A (en) * 1999-04-20 2000-10-31 Kumagai Gumi Co Ltd Photocatalyst type air purifying device
JP2003135582A (en) * 2001-11-06 2003-05-13 Denso Corp Air cleaner
JP2003153995A (en) * 2001-11-19 2003-05-27 Sharp Corp Sterilization/deodorization device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08266854A (en) * 1995-03-31 1996-10-15 Matsushita Electric Works Ltd Deodorizing device
JPH10309493A (en) * 1997-05-08 1998-11-24 Daikin Ind Ltd Dust collection part of ionic wind type air cleaner
JP2000140624A (en) * 1998-11-16 2000-05-23 Toshiba Corp Photocatalytic reaction device and photocatalytic reaction method
JP2000300650A (en) * 1999-04-20 2000-10-31 Kumagai Gumi Co Ltd Photocatalyst type air purifying device
JP2003135582A (en) * 2001-11-06 2003-05-13 Denso Corp Air cleaner
JP2003153995A (en) * 2001-11-19 2003-05-27 Sharp Corp Sterilization/deodorization device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101525848B1 (en) * 2009-05-12 2015-06-05 삼성전자 주식회사 Electric precipitator
ITPN20090048A1 (en) * 2009-09-07 2011-03-08 Daniele Falcomer SELF-CLEANING ELECTROFILTER FOR EMISSION TREATMENT

Similar Documents

Publication Publication Date Title
AU745172B2 (en) Electrostatic precipitator
JP2009202137A (en) Air treatment apparatus
WO2005021160A1 (en) Gas treating apparatus
KR101003729B1 (en) Plasma generating apparatus for air cleaning and sterilizing
KR100956844B1 (en) Odor removal device and method of removing odor
JPH08266854A (en) Deodorizing device
CN1698937A (en) Low-temperature plasma air purification catalytic reactor and its preparation process
CN108465354A (en) Low-temperature plasma synergistic is catalyzed reaction member and i.e. VOCs processing units and method based on the reaction member
JP2008034220A (en) Discharge electrode element and ionizer
CN101592383A (en) Horizontal plasma and photocatalytic indoor air purifier
CN102434920A (en) Wall-mounted indoor air purification device
KR101005516B1 (en) Odor removal device and method using corona discharge
JP2007144278A (en) Deodorizer, and air conditioner equipped with the same
JP2001179040A (en) Gas decomposer
CN210663141U (en) Indoor air purification device of low temperature plasma of normal position clearance
JP2005279173A (en) Odor material decomposing device, electrode used for the device, and electrostatic precipitator using the electrode
KR20010068436A (en) Apparatus for removing and deodorizing volatile organic compound by using corona plasma
Chaichanawong et al. High-temperature simultaneous removal of acetaldehyde and ammonia gases using corona discharge
JP2009233106A (en) Deodorizing apparatus
CN211487143U (en) Farm deodorization system
CN208911781U (en) Low-temperature plasma synergistic is catalyzed reaction member and the VOCs processing unit based on the reaction member
CN209772406U (en) Mechanical electrostatic composite all-in-one machine
JP2008055020A (en) Deodorizing apparatus for odor containing oil droplets and fine particles, and deodorizing method
CN202835560U (en) Air cleaner
KR100527209B1 (en) Concurrent reducing device of fine particles and hazardous gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100427