JP2005276942A - 太陽光発電装置およびシステム、並びに、その制御方法 - Google Patents

太陽光発電装置およびシステム、並びに、その制御方法 Download PDF

Info

Publication number
JP2005276942A
JP2005276942A JP2004085236A JP2004085236A JP2005276942A JP 2005276942 A JP2005276942 A JP 2005276942A JP 2004085236 A JP2004085236 A JP 2004085236A JP 2004085236 A JP2004085236 A JP 2004085236A JP 2005276942 A JP2005276942 A JP 2005276942A
Authority
JP
Japan
Prior art keywords
voltage
solar
solar cell
power
power generation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004085236A
Other languages
English (en)
Inventor
Hiroshi Kondo
博志 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004085236A priority Critical patent/JP2005276942A/ja
Publication of JP2005276942A publication Critical patent/JP2005276942A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

【課題】 太陽電池ストリングを構成する太陽電池セルの直列数が少ないと、パーシャルシェイドが発生した場合の太陽電池ストリングの電圧降下が大きく、太陽電池ストリングの発電電力が大きく低下してしまう。そのため太陽電池セルに逆電圧が加わるのを防ぐバイパスダイオードは、太陽電池セルの破壊防止の意味しかなく、パーシャルシェイドが発生した場合の電流バイパスとしても、あまり発電に寄与していない。
【解決手段】 比較回路9は、最小セル電圧選択回路7が選択し出力する最小セル電圧Vcを入力し、規定電圧設定部8に設定された規定電圧Vsを入力し、Vs<Vcであればスイッチング制御回路10に停止信号14を出力する。スイッチング制御回路10は、比較回路9が停止信号14を出力するとゲート駆動信号を停止して、比較回路9が停止信号14の出力をやめるまでゲート駆動信号を停止する。
【選択図】 図4

Description

本発明は太陽光発電装置およびシステム、並びに、その制御方法に関する。
一般に、太陽電池モジュールは多数の太陽電池セルを直列に接続して構成され、その太陽電池モジュールを直列接続してストリングを構成することで、インバータやDC/DCコンバータへ供給する直流発電電力を得ている。そして、インバータが出力する交流電力を商用電力系統へ連系したり、DC/DCコンバータが出力する直流電力を負荷に供給して、太陽電池モジュールの発電電力を有効利用する。
多数の太陽電池セルが直列接続されている太陽電池モジュールにおいては、その一部エリアの日射が陰る(以下「パーシャルシェイド」と呼ぶ)などして、その一部エリアの太陽電池セルが発電しなくなった(もしくは発電量が減少した)場合、その太陽電池セルには逆電圧が印加されることになる。太陽電池セルは、その構造上、耐えうる逆電圧には限界がある。そこで、図1に示す太陽電池モジュール101のように、各太陽電池セル102A-102Dに並列にバイパスダイオード103A-103Dを設けて、太陽電池セル102A-102Dに大きな逆電圧が加わることを防いでいる。
しかし、太陽電池セルに並列にバイパスダイオードを設ける技術は、以下の問題を有する。
(1)太陽電池セルの逆耐電圧がバイパスダイオードの順方向降下電圧より低ければ、バイパスダイオードの接続が逆電圧対策とはなりえず、そのような太陽電池セルは直列接続して使用することができない。
(2)バイパスダイオードは、太陽電池セルの最大出力電流Iscを流すのに充分な電流容量を必要とし、決して安価なものではない。さらに、バイパスダイオードでは、その順方向降下電圧とIscを乗じた電力損失が伴うが、この損失電力はバイパスダイオードの熱損失となるので、バイパスダイオードの放熱も考慮しなくてはならず、太陽電池モジュールのコストアップの要因になる。
特開平3-24768号公報
本発明は、上述の問題を個々にまたはまとめて解決するもので、太陽電池セルのバイパスダイオードを不要にすることを目的とする。
また、逆耐電圧が低い太陽電池セルの直列接続使用を可能にすることを他の目的とする。
本発明は、前記の目的を達成する一手段として、以下の構成を備える。
本発明の太陽光発電装置は、一つ以上の太陽電池セルからなる太陽電池ブロックが複数直列接続された太陽電池モジュールと、前記太陽電池ブロックそれぞれに設けられ、前記太陽電池ブロックの両端電圧を検出する複数の電圧検出手段と、前記太陽電池モジュールから出力される電力を変換する電力変換手段と、前記複数の電圧検出手段によって検出される両端電圧と所定電圧を比較した結果に基づき、前記電力変換手段を制御する制御手段とを有することを特徴とする。
本発明の太陽光発電システムは、上記の太陽光発電装置を複数有し、さらに、前記複数の太陽光発電装置から出力される電力を商用交流電力に変換するインバータを有することを特徴とする。
本発明にかかる制御方法は、一つ以上の太陽電池セルからなる太陽電池ブロックが複数直列接続された太陽電池モジュール、前記太陽電池ブロックそれぞれに設けられ、前記太陽電池ブロックの両端電圧を検出する複数の電圧検出手段、および、前記太陽電池モジュールから出力される電力を変換する電力変換手段を有する太陽光発電装置の制御方法であって、前記複数の電圧検出手段によって検出される両端電圧と所定電圧を比較した結果に基づき、前記電力変換手段を制御することを特徴とする。
本発明によれば、太陽電池セルのバイパスダイオードを不要にすることができる。そのため、バイパスダイオードの放熱対策に関する太陽電池モジュールのコストアップ要因をなくすことができる。また、バイパスダイオードは大きな熱損失を伴うために集積化が困難である一方、電圧検出部、電力変換部を制御する制御部等は集積化が可能であり、量産効果によりコストダウンが期待される。従って、例えば、後述する電圧検出部、最小セル電圧選択回路、規定電圧設定部、比較回路およびスイッチング制御回路は、熱損失をほとんど発生しない弱電力回路であるから、これらを一体化したICチップにすることで、コストダウンを図ることが望ましい。また、そして、例えば、セルに逆電圧が加わることを防止する制御回路を電力変換装置のスイッチング制御回路と一体化してICチップ化することにより、コストダウンを図ることができる。
また、逆耐電圧が低い太陽電池セルの直列接続使用を可能にすることができる。
以下、本発明にかかる実施例の太陽光発電装置およびシステムを、図面を参照して詳細に説明する。
[概要]
発明者らは、少ない太陽電池モジュールで太陽電池の直列体(以下「太陽電池ストリング」と呼ぶ)を構成した場合、バイパスダイオードの効果が小さいことに注目した。その理由は、太陽電池ストリングを構成する太陽電池セルの直列数が少ないが故に、パーシャルシェイドが発生した場合の太陽電池ストリングの電圧降下が大きく、太陽電池ストリングの発電電力が大きく低下してしまう。すなわち、バイパスダイオードは、太陽電池セルの破壊防止の意味しかなく、パーシャルシェイドが発生した場合の電流バイパスとしても、あまり発電に寄与していないといえる。
また、多くの太陽電池ストリングを並列接続して太陽光発電システムを構成する場合は、一つの太陽電池ストリングの出力を停止または減少させても、システム全体に与える影響が少ない。
太陽電池ストリングの出力をすべて停止または減少させれば、太陽電池モジュールに流れる電流が零になるか低下するので、各太陽電池セルに印加される逆電圧もなくなるか大幅に減少し、バイパスダイオードを削除しても太陽電池セルが破壊することはない。さらに、太陽光発電システムを構成する太陽光発電装置として、太陽電池モジュールごとに電力変換器を有する、ACモジュールやDC/DCコンバータ付き太陽電池モジュールを用いれば、太陽電池モジュールに出力をコントロールする手段が内蔵されたことになり、容易に太陽電池モジュールの出力をコントロールすることができる。
さらには、一つのシステムに、小容量の電力変換器を多数設ける構成となるために、電力変換器の量産化が見込める。そこで、本発明の制御回路と、電力変換装置のスイッチング制御回路を一体化してICチップ化することにより安価に構成することが可能となる。その結果、大電流が流れ、大きく発熱するためにICチップ化が困難なバイパスダイオードを有しない安価な太陽光発電システムを構築することができる。
[構成]
図2は太陽光発電システムの概観図、図3は太陽光発電システムの構成例を示すブロック図である。
図2、3に示すように、実施例1の太陽光発電システムは、複数のDC/DCコンバータ付き太陽電池モジュール1で発電された直流電力を、インバータ2によって交流電力に変換し、商用電力系統3へ連系する。なお、図2、3には、三台の太陽電池モジュール1を並列接続した系統連系システムを例として示すが、太陽電池モジュール1の並列数は太陽電池モジュール1の設置面積や発電電力に応じて任意に設定可能である。
● 太陽電池モジュール1
太陽電池モジュール1aとDC/DCコンバータ1bから構成される太陽電池モジュール1は、太陽光が遮られることなく照射される屋根などの屋外に設置され、太陽電池セルの直列接続数を制限して比較的低い出力電圧になるように構成される。
太陽電池モジュール1aの近傍には、低電圧大電流の太陽電池モジュール1aの出力電力を昇圧して高電圧小電流の直流電力に変換するDC/DCコンバータ1bを設ける。これは、屋内にあるインバータ2までの比較的長い送電路の送電ロスを低減することを目的とする。
DC/DCコンバータ1bは、スイッチング動作のオンオフ比(デューティ比)を変えることで、出力電圧(例えば、約320V)を一定にしつつも、入力源である太陽電池モジュール1aの出力動作点を変えることができる。そのため、DC/DCコンバータ1bは、その入力電力もしくは出力電力を監視して太陽電池モジュール1aの動作点を変えることで、太陽電池モジュール1aの最大電力動作点追尾(MPPT)制御を行う。
なお、太陽電池モジュール1は、定格時(日射1kW/m2)に約60Wの出力電力を得られるものとする。
● インバータ2
インバータ2は、太陽電池モジュール1から出力される直流電力をブリッジ回路により高周波スイッチングして商用交流電力に変換する。インバータ2は、公知公用の出力電流制御や、出力電圧制御を行うことで、入力した直流電力を商用電力系統3に連系する。
なお、インバータ2は、三台の太陽電池モジュール1から入力される直流電力(最大60W、約320V)を単相三線式の商用交流電力(200V、約180W)に変換するものとする。
[太陽電池モジュールの構成]
図4は太陽電池モジュール1の詳細な構成例を示す図である。
太陽電池モジュール1aは、直列接続された複数の太陽電池セル4を有する。また、太陽電池モジュール1は、後述するセル電圧検出部6、セル電圧最小値選択回路7、規定電圧設定部8、比較回路9、スイッチング制御回路10、DC/DCコンバータ主回路11などを有する。
● 太陽電池セル4
太陽電池セル4の種類としては、光電変換部にアモルファスシリコン系を用いたものや、多結晶シリコン、結晶シリコンを用いたものなどがあるが、本実施例で使用する太陽電池セル4はどのような種類でもかまわない。一般的に、アモルファスシリコンを用いた太陽電池は薄膜で、結晶シリコンなどに比べて逆耐電圧が低い傾向がある。本実施例においては、アモルファスシリコンを三層に積層した、以下のような特性をもつ太陽電池セル4を使用することとする。
定格日射量:1kW/m2 周囲温度25℃
短絡電流Isc:12.0A
開放電圧Voc:2.0V
最大動作点電流Ipm:10.0A
最大動作点電圧Vpm:1.5V
最大出力Pmax:15W
逆耐電圧:-2.0V
● 太陽電池モジュール1a
太陽電池モジュール1aを構成する太陽電池セル4の直列数は、少なすぎるとDC/DCコンバータ1bの昇圧比が高くなり、DC/DCコンバータ1bの変換効率が低下する。一方、太陽電池セル4を直列接続する際、電位が異なる太陽電池セル4間に発電しない非発電領域を設ける必要があるため、直列数を増やすと太陽電池モジュール1aのアクティブエリア(発電領域)が減少し、太陽電池モジュール1aの変換効率が低下する。このような事情を鑑みて、本実施例においては、太陽電池セル4を四つ直列接続して太陽電池モジュール1aを構成することにする。太陽電池モジュール1aの定格時出力特性は以下のようになる。
定格日射量:1kW/m2 周囲温度25℃
短絡電流Isc:12.0A
開放電圧Voc:8.0V
最大動作点電流Ipm:10.0A
最大動作点電圧Vpm:6.0V
最大出力Pmax:60W
なお、本実施例では、この太陽電池モジュール1aのみで太陽電池ストリング(太陽電池モジュール直列体)を構成している。
● セル電圧検出部6
四つの太陽電池セル4A-4Dのそれぞれに設けられたセル電圧検出回路6は、各太陽電池セルの正極と負極の電位差を検出可能であればどのような構成でもよい。本実施例では、オペアンプを使用して増幅率一倍の差動増幅器を構成し、セル電圧検出回路6とする。
なお、オペアンプで構成されるセル電圧検出部6が負電圧を出力可能にするために、DC/DCコンバータ1bの入力端に小型のDC/DCコンバータ(不図示)を設けて、オペアンプに負電源を供給するなどが必要である。
● 最小セル電圧選択回路7
最小セル電圧選択回路7は、セル電圧検出回路6の出力をすべて入力し、それらの最小値を選択して出力する。セル電圧の最小値は、影などにより発電量が最も低下した太陽電池セル4のセル電圧を示し、陰りの程度によってセル電圧は負(逆電圧状態)にもなりうる。
● 規定電圧設定部8
規定電圧設定部8は、太陽電池セル4の逆耐電圧を考慮した規定電圧を設定するためのものである。本実施例の太陽電池セル4の逆耐電圧が-2.0Vに余裕をみて、例えば、規定電圧として-1.2Vを設定する。なお、規定電圧設定部8は、可変抵抗器などを使用して、規定電圧を任意に調整できるようにしてもよいし、固定抵抗器の分圧によって規定電圧を固定にしてもよい。
● 比較回路9
比較回路9には、最小セル電圧選択回路7から、影などにより発電量が最も低下した太陽電池セル4のセル電圧(最小セル電圧)と、規定電圧設定部8から規定電圧(本実施例では-1.2V)が入力される。比較回路9は、最小セル電圧が規定電圧を下回わる場合、DC/DCコンバータを停止する旨を示す停止信号14をスイッチング制御回路10に出力する。
なお、最小セル電圧選択回路7を用いずに、セル電圧検出回路6のすべての出力と、規定電圧設定部8の規定電圧を比較回路9に入力し、セル電圧の何れかが規定電圧を下回った場合に停止信号14を出力する構成にしてもよい。
これらのセル電圧検出部6、最小セル電圧選択回路7、規定電圧設定部8、比較回路9、スイッチング制御回路10は、熱損失をほとんど発生しない弱電力回路であるから、一体化してICチップ化する構成とし、コストダウンを図ることが望ましい。
[太陽電池モジュールの動作]
太陽電池モジュール1は、以下のように動作する。
● パーシャルシェイドが発生していない通常の動作
図5は定格日射(1kW/m2)時に、すべてのセルが蔭になっていない状態の太陽電池セル4のIVカーブを、図6は太陽電池モジュール1aのIVカーブを示す図である。
図6の特性をもつ太陽電池モジュール1aの出力電力を入力するDC/DCコンバータ1bのスイッチング制御回路10は、入力電力検出部12の検出値を監視しながらスイッチング素子13のデューティ比を調整することで、太陽電池モジュール1aが最大出力動作点(図6に示すA点)で動作するように太陽電池モジュール1aの動作点を制御する。このときの太陽電池モジュール1aの出力は図6に示すB点(6.0V、10A)であるから、すべての太陽電池セル4にも10Aの電流が流れ、太陽電池セル4の動作点は図5に示すC点(1.5V、10A)になる。
● パーシャルシェイド時の動作
次に、四つの太陽電池セル4のうち一つが蔭になった場合の動作を説明する。ただし、日射条件は、定格日射(1kW/m2)とする。図7は蔭になった太陽電池セル4のIVカーブを、図8は四つの太陽電池セル4の一つが蔭になった場合の太陽電池モジュール1aのIVカーブを示す図である。
通常の動作と同様に、DC/DCコンバータ1bのスイッチング制御回路10は、スイッチング素子13のデューティ比を調整することで、最大出力動作点(図8に示すD点、30.6W)で動作するように太陽電池モジュール1aがの動作点を制御する。このとき、太陽電池モジュール1aの出力は図8に示すE点(5.25V、5.83A)になり、すべての太陽電池セル4にも5.83Aの電流が流れ、蔭になっている太陽電池セル4の動作点は図7に示すF点(0.15V、5.83A)、蔭になっていない太陽電池セル4の動作点は図5に示すG点(1.71V、5.83A)になる。
このように、太陽電池モジュール1aを構成する太陽電池セル4の幾つかが蔭になるパーシャルシェイドの状態では、蔭になった太陽電池セル4の動作電圧が低くなる。
さらに影が大きくなると、蔭になった太陽電池セル4の動作電圧はより一層低くなり、いずれは規定電圧設定部8に設定した規定電圧(-1.2V)に達する。図9および図10は、その時点の、蔭になった太陽電池セル4のIVカーブ(図9)と、太陽電池モジュール1aのIVカーブ(図10)を示す図である。
太陽電池モジュール1aは、MPPT制御により、最大電力が得られる動作点(図10に示すH点、4.15V、4.6A)で動作し、蔭になった太陽電池セル4は図9に示すI点(-1.2V、4.6A)で動作する。このようなパーシャルシェイド状態、すなわち太陽電池セル4の何れかの動作電圧が規定電圧を下回わると、本実施例は、DC/DCコンバータ1bの電力変換動作を停止する。
[制御]
図11は比較回路9の動作例を示すフローチャート、図12はスイッチング制御回路10の動作例を示すフローチャートである。
比較回路9は、最小セル電圧選択回路7が選択し出力する最小セル電圧Vcを入力し(S1)、規定電圧設定部8に設定された規定電圧Vsを入力し(S2)、最小セル電圧Vcと規定電圧Vsを比較して(S3)、Vc≦VsであればステップS1に戻り、Vs<Vcであればスイッチング制御回路10に停止信号14を出力し(S4)、その後待機状態になる(S5)。なお、この停止後の再起動は、タイマ回路(不図示)を使用して所定間後に、停止信号14を解除して、DC/DCコンバータ1bの停止を解除するように構成すればよい。勿論、停止・再開を数回に亘り繰り返す場合は、太陽電池モジュール1の表面の汚れ、光遮蔽物の被着、継続的に影を形成する物体の存在などを意味するので、インバータ2に警告信号を送り、ユーザに警報を発するように構成することが望ましい。
一方、スイッチング制御回路10は、スイッチング素子13のゲート駆動信号を出力し(S11)、停止信号14を入力し(S12)、停止信号14がアクティブか否か(比較回路9が停止信号14を出力したか否か)を判定し(S13)、停止信号14がアクティブになるとゲート駆動信号を停止して(S14)、ステップS15の判定により、停止信号14が解除される(比較回路9が停止信号14の出力をやめる)までゲート駆動信号を停止する。停止信号14が解除された場合はステップS11に戻り、ゲート駆動信号を出力する。
このように、各太陽電池セル4のセル電圧をセル電圧検出回路6で検出し、太陽電池セル4の何れかのセル電圧が規定電圧を超える(規定電圧以下になる)とDC/DCコンバータ1bを停止する。DC/DCコンバータ1bの動作が停止された時点で、太陽電池モジュール1aの電流はほぼ零、各太陽電池セル4は開放状態になり、その電圧は開放電圧Vocになるため、蔭になった太陽電池セル4に逆電圧は加わらない(図9に示すJ点)。
このように、本実施例によれば太陽電池セル4の逆電圧対策を、バイパスダイオードを用いずに安価に実現することができる。また、規定電圧を0ボルト程度にすることで、逆耐電圧がバイパスダイオードの順方向降下電圧より低い太陽電池セルを直列接続して使用することも可能になる。
上記では、太陽電池モジュール1aとDC/DCコンバータ1bを一体にした構成を用いる例を説明したが、それらを分離した構成にすることも可能である。その場合、太陽電池モジュール1aにセル電圧検出部6および最小セル電圧選択部7を設け、DC/DCコンバータ1bに規定電圧設定部8および比較回路9を設けて、信号線を介して最小セル電圧を太陽電池モジュール1aからDC/DCコンバータ1bに送信する構成をとればよい。なお、その際、信号線に重畳するノイズが問題になるならば、信号を増幅して送信する、ディジタル化して送信するなどの方法や、太陽電池モジュール1aにセル電圧検出部6、最小セル電圧選択部7、規定電圧設定部8および比較回路9を設けてDC/DCコンバータ10に停止信号14を送信する構成を採用すればよい。
太陽電池ストリングを構成する太陽電池セルの直列数が少ない場合、パーシャルシェイドが発生した場合の太陽電池ストリングの電圧降下が大きく、太陽電池ストリングの発電電力が大きく低下する点を考慮すれば、パーシャルシェイドが発生している期間、太陽電池モジュール1の出力を停止しても全体の発電量には大きな影響はないといえる。その分、太陽電池セルの破壊防止の意味しかもたなず、大きな熱損失を伴うためにICチップ化が困難なバイパスダイオードを削減することができ、太陽電池モジュールのコストを低減することができる。
以下、本発明にかかる実施例2の太陽光発電装置およびシステムを説明するが、実施例1と略同様の構成については、同一符号を付して、その詳細説明を省略する。
実施例1においては、太陽電池セル4に規定電圧を超える逆電圧がかかった場合に、太陽電池セル4に流れる電流を遮断して逆電圧が加わるのを防いだ。すなわち、比較回路9の停止信号14によってDC/DCコンバータ1bの動作を停止するように構成した。
実施例2では、比較回路の信号により、スイッチング素子13をオンする時間の割り合いを減じて(「デューティ比を減じる」と呼ぶ)、太陽電池モジュール1aの出力電流を制限し、太陽電池モジュール1aを、その最適動作点(最大電力動作点)から外れた状態で運転することで、蔭になった太陽電池セル4に逆電圧が加わらない動作点にする。このようにすれば、パーシャルシェイドが発生した場合も太陽電池モジュール1の動作を完全に停止することなく、パーシャルシェイドが解消した場合は短時間に最適動作点に復帰する運転が可能になる。
図13は実施例2の太陽電池モジュール1の構成例を示すブロック図であるが、実施例1の太陽電池モジュール1の構成と異なるのは比較回路19およびスイッチング制御回路20である。
比較回路19は、最小セル電圧Vcと規定電圧Vs(例えば-1.2V)を比較して、Vs<Vcの場合に、DC/DCコンバータ1bの出力電流を抑制する旨を示す抑制信号21をスイッチング制御回路20に出力する。
なお、実施例1と同様に、最小セル電圧選択回路7を用いずに、セル電圧検出回路6のすべての出力と、規定電圧設定部8の規定電圧を比較回路9に入力し、セル電圧の何れかが規定電圧を下回った場合に抑制信号21を出力する構成にしてもよい。
次に、実施例2における太陽電池モジュール1の動作を説明するが、通常時(パーシャルシェイドが発生していない時)の動作、パーシャルシェイドが発生しても最小セル電圧が規定電圧(例えば-1.2V)以上である場合の動作は実施例1と同じである。実施例1と異なるのは、パーシャルシェイドの影響が大きく、最低セル電圧が規定電圧よりも低くなった場合に、DC/DCコンバータ1bの出力電流を制限して動作電圧を高くし、最小セル電圧が規定電圧未満にならないように運転を継続することである。
図14は比較回路19の動作例を示すフローチャート、図15はスイッチング制御回路20の動作例を示すフローチャートである。
比較回路19は、最小セル電圧Vcを入力し(S21)、規定電圧Vsを入力し(S22)、最小セル電圧Vcと規定電圧Vsを比較して(S23)、Vs<Vcであればスイッチング制御回路10に抑制信号21を出力し(S24)、Vc≦Vsであれば抑制信号21を解除(抑制信号21が出力されていなければ何もしないことと等価)(S25)、その後、ステップS21に戻る。
一方、スイッチング制御回路20は、抑制信号21を入力し(S31)、抑制信号21がアクティブか否か(比較回路19が抑制信号21を出力したか否か)を判定し(S32)、抑制信号21がアクティブであればMPPT制御用の電流指令値Dを例えば「1」減算(D=D-1)し(S33)、ステップS31へ戻る。従って、抑制信号21がアクティブである限り、電流指令値Dは例えば「1」ずつ減算され、Vc≦Vsになって抑制信号21が解除されるまで、DC/DCコンバータ1bの入力電流(太陽電池モジュール1aの出力電流)は減少する。
抑制信号21がアクティブでなければ、スイッチング制御回路20は、公知公用のMPPT制御を行う。図15に示すMPPT制御の概要は、電流指令値をD=D-1(初期値-1)とし(S34)、その時の太陽電池モジュール1aの出力電力を出力電力1として記録し(S35)、電流指令値をD=D+2(つまり初期値+1)とし(S36)、その時の太陽電池モジュール1aの出力電力を出力電力2として記録し(S37)、記録した出力電力値を比較して(S38)、出力電力値1≦出力電力値2ならば(初期値+1で)ステップS31に戻り、出力電力値1>出力電力値2ならば電流指令値をD=D-2(つまり初期値-1)とし(S39)、その後、ステップS31に戻る。この電流指令値の調節を繰り返すことで最大電力動作点を追尾する。
次に、比較回路19から抑制信号21が出力される場合の太陽電池セル4および太陽電池モジュール1aの動作点を説明する。
図16は蔭になった太陽電池セル4のIVカーブを、図17は四つの太陽電池セル4の一つが蔭になった場合の太陽電池モジュール1aのIVカーブを示す図である。
図17において、太陽電池モジュール1aの最大電力が得られる動作点はK点になる。その場合、蔭になった太陽電池セル4の動作点は図16に示すようにL点になり、規定電圧(例えば-1.2V)を大きく下回わる。しかし、このような場合、図15に示すように、最小セル電圧が規定電圧を上回るまで電流指令値は減じられ、スイッチング素子13のデューティ比が低減し、蔭になった太陽電池セル4の動作点はL点から電流小・電圧大の方向へシフトし、太陽電池セル4はM点で動作する。なお、図16には、規定電圧を超えて逆電圧が加わるような表記をするが、実際には、動作点がM点を超えないような逐次制御を行うので規定電圧(例えば-1.2V)以下に電圧が下がることはない。
このような制御の結果、太陽電池モジュール1aの動作点はN点になり、最大電力は得られないが、蔭になった太陽電池セル4に規定電圧を超える逆電圧が加わることなく、太陽光発電装置の運転を継続することができる。勿論、蔭になった太陽電池セル4の日射が回復すれば、図15に示したように、MPPT制御により、太陽電池モジュール1aの動作点は最適動作点に移行する。
このように、実施例2においても、太陽電池セル4の逆電圧対策をバイパスダイオードを用いずに安価に構成することができる。また、規定電圧を0V程度に設定することで、逆耐電圧がバイパスダイオードの順方向降下電圧より低いような太陽電池セルを直列接続して使用することが可能になる。
以下、本発明にかかる実施例3の太陽光発電装置およびシステムを説明するが、実施例1、2と略同様の構成については、同一符号を付して、その詳細説明を省略する。
太陽電池セル4の逆耐電圧に余裕がある場合、最小セル電圧を検出する手段を複数の太陽電池セル4に跨って配置することが可能である。例えば、太陽電池セル4の逆耐電圧が、太陽電池セル4の最大電圧(低温、高日射時の開放電圧)以上の場合、二直列された太陽電池セル4に一つのセル電圧検出部6を設ければ実施例1、2と同様の効果を得ることができる。この場合は、二直列された太陽電池セル4の出力電圧が、負になったら実施例1と同様にDC/DCコンバータ1bの電力変換動作を停止する、もしくは、負にならないように実施例2と同様に電流指令値を抑制すればよい。
図18は実施例3の太陽電池モジュール1の構成例を示すブロック図である。図18においては、太陽電池セル4A、4B、4C、4Dで構成される太陽電池モジュール1aを二つのブロックに分割し、太陽電池セル4Aおよび4Bで太陽電池ブロック22を、太陽電池セル4Cおよび4Dで太陽電池ブロック23を構成する。さらに、二つのセル電圧検出部6を太陽電池ブロック22、23それぞれの両端電位差を検出するように配置する。なお、ここでいう太陽電池ブロックとは、セル電圧検出部6の測定対象である太陽電池セル4の一つ以上の直列体をいう。また、その意味では、実施例1、2は太陽電池セル4の一つひとつが太陽電池ブロックである。
このような構成で、太陽電池ブロックの出力電圧が負になったら、実施例1のようにDC/DCコンバータ1bの電力変換動作を停止したり、実施例2のように電流指令値を抑制したりすれやればよい。
このように、複数の太陽電池セル4に跨ってセル電圧検出部6を設ければ、セル電圧検出部6の必要数を減じて、太陽電池モジュール1のコストダウンを図ることができる。
太陽電池モジュールの構成を示す図、 太陽光発電システムの概観図、 太陽光発電システムの構成例を示すブロック図、 太陽電池モジュール1の詳細な構成例を示す図、 定格日射(1kW/m2)時にで、すべてのセルが蔭になっていない状態の太陽電池セルのIVカーブを示す図、 太陽電池モジュール1aのIVカーブを示す図、 蔭になった太陽電池セルのIVカーブを示す図、 四つの太陽電池セルの一つが蔭になった場合の太陽電池モジュール1aのIVカーブを示す図、 蔭になった太陽電池セル4のIVカーブを示す図、 太陽電池モジュール1aのIVカーブを示す図、 比較回路の動作例を示すフローチャート、 スイッチング制御回路の動作例を示すフローチャート、 実施例2の太陽電池モジュールの構成例を示すブロック図、 比較回路の動作例を示すフローチャート、 スイッチング制御回路の動作例を示すフローチャート、 蔭になった太陽電池セルのIVカーブを示す図、 四つの太陽電池セルの一つが蔭になった場合の太陽電池モジュール1aのIVカーブを示す図、 実施例3の太陽電池モジュール1の構成例を示すブロック図である。

Claims (9)

  1. 一つ以上の太陽電池セルからなる太陽電池ブロックが複数直列接続された太陽電池モジュールと、
    前記太陽電池ブロックそれぞれに設けられ、前記太陽電池ブロックの両端電圧を検出する複数の電圧検出手段と、
    前記太陽電池モジュールから出力される電力を変換する電力変換手段と、
    前記複数の電圧検出手段によって検出される両端電圧と所定電圧を比較した結果に基づき、前記電力変換手段を制御する制御手段とを有することを特徴とする太陽光発電装置。
  2. 前記太陽電池ブロックは一つの太陽電池セルであることを特徴とする請求項1に記載された太陽光発電装置。
  3. 前記制御手段は、前記電圧検出手段の何れかが検出した両端電圧が前記所定電圧を超えた場合、前記電力変換手段の電力変換動作を停止することを特徴とする請求項1または請求項2に記載された太陽光発電装置。
  4. 前記制御手段は、前記複数の電圧検出手段が検出する両端電圧が前記所定電圧を超えないように、前記電力変換手段の電力変換動作を制御することを特徴とする請求項1または請求項2に記載された太陽光発電装置。
  5. 前記制御手段は、前記複数の電圧検出手段が検出する両端電圧が前記所定電圧を超えなければ前記電力変換手段を最大電力追従運転し、前記複数の電圧検出手段が検出する両端電圧が前記所定電圧を超える場合、その両端電圧が前記所定電圧を超えない範囲になるように前記電力変換手段を最大電力追従運転することを特徴とする請求項1または請求項2に記載された太陽光発電装置。
  6. 前記所定電圧は、前記太陽電池ブロックの逆耐電圧に基づき設定されることを特徴とする請求項1から請求項5の何れかに記載された太陽光発電装置。
  7. さらに、前記電力変換手段から出力される電力を商用交流電力に変換するインバータを有することを特徴とする請求項1から請求項6の何れかに記載された太陽光発電装置。
  8. 請求項1から請求項6の何れかに記載された太陽光発電装置を複数有し、
    さらに、前記複数の太陽光発電装置から出力される電力を商用交流電力に変換するインバータを有することを特徴とする太陽光発電システム。
  9. 一つ以上の太陽電池セルからなる太陽電池ブロックが複数直列接続された太陽電池モジュール、前記太陽電池ブロックそれぞれに設けられ、前記太陽電池ブロックの両端電圧を検出する複数の電圧検出手段、および、前記太陽電池モジュールから出力される電力を変換する電力変換手段を有する太陽光発電装置の制御方法であって、
    前記複数の電圧検出手段によって検出される両端電圧と所定電圧を比較した結果に基づき、前記電力変換手段を制御することを特徴とする制御方法。
JP2004085236A 2004-03-23 2004-03-23 太陽光発電装置およびシステム、並びに、その制御方法 Withdrawn JP2005276942A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085236A JP2005276942A (ja) 2004-03-23 2004-03-23 太陽光発電装置およびシステム、並びに、その制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085236A JP2005276942A (ja) 2004-03-23 2004-03-23 太陽光発電装置およびシステム、並びに、その制御方法

Publications (1)

Publication Number Publication Date
JP2005276942A true JP2005276942A (ja) 2005-10-06

Family

ID=35176304

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085236A Withdrawn JP2005276942A (ja) 2004-03-23 2004-03-23 太陽光発電装置およびシステム、並びに、その制御方法

Country Status (1)

Country Link
JP (1) JP2005276942A (ja)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2943852A1 (fr) * 2009-03-27 2010-10-01 Photowatt Internat Detecteur d'ombre
EP2359211A1 (en) * 2008-12-15 2011-08-24 Array Converter, Inc. Detection and prevention of hot spots in a solar panel
US8273979B2 (en) 2008-10-15 2012-09-25 Xandex, Inc. Time averaged modulated diode apparatus for photovoltaic application
US8781538B2 (en) 2007-05-30 2014-07-15 Kyocera Corporation Portable terminal, portable apparatus and supply power control method
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10910834B2 (en) 2003-05-28 2021-02-02 Solaredge Technologies Ltd. Power converter for a solar panel
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy

Cited By (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10910834B2 (en) 2003-05-28 2021-02-02 Solaredge Technologies Ltd. Power converter for a solar panel
US11824398B2 (en) 2003-05-28 2023-11-21 Solaredge Technologies Ltd. Power converter for a solar panel
US11817699B2 (en) 2003-05-28 2023-11-14 Solaredge Technologies Ltd. Power converter for a solar panel
US11658508B2 (en) 2003-05-28 2023-05-23 Solaredge Technologies Ltd. Power converter for a solar panel
US11476663B2 (en) 2003-05-28 2022-10-18 Solaredge Technologies Ltd. Power converter for a solar panel
US11075518B2 (en) 2003-05-28 2021-07-27 Solaredge Technologies Ltd. Power converter for a solar panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11658482B2 (en) 2006-12-06 2023-05-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11476799B2 (en) 2006-12-06 2022-10-18 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11962243B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US11961922B2 (en) 2006-12-06 2024-04-16 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11682918B2 (en) 2006-12-06 2023-06-20 Solaredge Technologies Ltd. Battery power delivery module
US11002774B2 (en) 2006-12-06 2021-05-11 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11598652B2 (en) 2006-12-06 2023-03-07 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11031861B2 (en) 2006-12-06 2021-06-08 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11043820B2 (en) 2006-12-06 2021-06-22 Solaredge Technologies Ltd. Battery power delivery module
US11569660B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594882B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11594880B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11073543B2 (en) 2006-12-06 2021-07-27 Solaredge Technologies Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11594881B2 (en) 2006-12-06 2023-02-28 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11579235B2 (en) 2006-12-06 2023-02-14 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US11183922B2 (en) 2006-12-06 2021-11-23 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575261B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11575260B2 (en) 2006-12-06 2023-02-07 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11063440B2 (en) 2006-12-06 2021-07-13 Solaredge Technologies Ltd. Method for distributed power harvesting using DC power sources
US10673253B2 (en) 2006-12-06 2020-06-02 Solaredge Technologies Ltd. Battery power delivery module
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8781538B2 (en) 2007-05-30 2014-07-15 Kyocera Corporation Portable terminal, portable apparatus and supply power control method
US11594968B2 (en) 2007-08-06 2023-02-28 Solaredge Technologies Ltd. Digital average input current control in power converter
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11894806B2 (en) 2007-12-05 2024-02-06 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11693080B2 (en) 2007-12-05 2023-07-04 Solaredge Technologies Ltd. Parallel connected inverters
US11183969B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11183923B2 (en) 2007-12-05 2021-11-23 Solaredge Technologies Ltd. Parallel connected inverters
US11424616B2 (en) 2008-05-05 2022-08-23 Solaredge Technologies Ltd. Direct current power combiner
US8273979B2 (en) 2008-10-15 2012-09-25 Xandex, Inc. Time averaged modulated diode apparatus for photovoltaic application
EP4283853A3 (en) * 2008-12-04 2024-02-28 Solaredge Technologies Ltd. System and method for protection in power installations
EP2359211A4 (en) * 2008-12-15 2012-07-04 Array Converter Inc DETECTION AND PREVENTION OF FIRE POINTS IN ONE SOLAR TABLE
JP2012512532A (ja) * 2008-12-15 2012-05-31 アレイ コンバーター,インコーポレイテッド 太陽光パネルにおけるホットスポットの検出および防止
EP2359211A1 (en) * 2008-12-15 2011-08-24 Array Converter, Inc. Detection and prevention of hot spots in a solar panel
FR2943852A1 (fr) * 2009-03-27 2010-10-01 Photowatt Internat Detecteur d'ombre
US11867729B2 (en) 2009-05-26 2024-01-09 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10969412B2 (en) 2009-05-26 2021-04-06 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US12003215B2 (en) 2010-11-09 2024-06-04 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11489330B2 (en) 2010-11-09 2022-11-01 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10931228B2 (en) 2010-11-09 2021-02-23 Solaredge Technologies Ftd. Arc detection and prevention in a power generation system
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11070051B2 (en) 2010-11-09 2021-07-20 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11349432B2 (en) 2010-11-09 2022-05-31 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US11205946B2 (en) 2011-01-12 2021-12-21 Solaredge Technologies Ltd. Serially connected inverters
US10666125B2 (en) 2011-01-12 2020-05-26 Solaredge Technologies Ltd. Serially connected inverters
US11979037B2 (en) 2012-01-11 2024-05-07 Solaredge Technologies Ltd. Photovoltaic module
US10931119B2 (en) 2012-01-11 2021-02-23 Solaredge Technologies Ltd. Photovoltaic module
US11183968B2 (en) 2012-01-30 2021-11-23 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US10992238B2 (en) 2012-01-30 2021-04-27 Solaredge Technologies Ltd. Maximizing power in a photovoltaic distributed power system
US11620885B2 (en) 2012-01-30 2023-04-04 Solaredge Technologies Ltd. Photovoltaic panel circuitry
US12003107B2 (en) 2013-03-14 2024-06-04 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
US11870250B2 (en) 2016-04-05 2024-01-09 Solaredge Technologies Ltd. Chain of power devices
US11201476B2 (en) 2016-04-05 2021-12-14 Solaredge Technologies Ltd. Photovoltaic power device and wiring
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems

Similar Documents

Publication Publication Date Title
JP2005276942A (ja) 太陽光発電装置およびシステム、並びに、その制御方法
KR101520981B1 (ko) 태양 전지 설비를 위한 국부화된 파워 포인트 옵티마이저
US8212409B2 (en) Method for activating a multi-string inverter for photovoltaic plants
US8576591B2 (en) Converters and inverters for photovoltaic power systems
JP4468372B2 (ja) 太陽光発電システムおよびその昇圧ユニット
KR102281878B1 (ko) Pv 스트링별 전압 부스팅 장치 및 이를 포함하는 태양광 발전 시스템
US20100288327A1 (en) System and method for over-Voltage protection of a photovoltaic string with distributed maximum power point tracking
US20120080943A1 (en) Photovoltaic Power Systems
US20090140715A1 (en) Safety mechanisms, wake up and shutdown methods in distributed power installations
JPH11103538A (ja) 光発電システム
KR101104097B1 (ko) 태양광 발전시스템의 출력전압 제어장치
KR101510986B1 (ko) 기동 조건 검출을 위한 보조발전장치를 갖는 태양광발전시스템
JP6330122B2 (ja) 太陽電池発電装置の電子的管理システムならびに太陽電池発電装置およびその製造方法
KR101135990B1 (ko) 가변 어레이를 이용한 태양광 발전 시스템
US20200144825A1 (en) Power convertor, power generation system, and power generation control method
JP4468371B2 (ja) 太陽光発電システムおよびその昇圧ユニット
CA2937802A1 (en) Method and apparatus for extracting electrical energy from photovoltaic module
US11081961B2 (en) Power convertor, power generation system, and power generation control method
JP2004295688A (ja) 太陽光発電装置
JPH07302130A (ja) 電力制御装置
JP2004364493A (ja) 電力変換装置およびその制御方法、並びに、太陽光発電装置
KR20210043401A (ko) 태양광 모듈 2장의 최대 전력 점을 추적하는 직·병렬컨버터 접속장치를 통신으로 제어하는 접속반
JP7424351B2 (ja) パワーコンディショナ
AU2013263823B2 (en) Localized power point optimizer for solar cell installations
JP2023013370A (ja) 太陽光発電装置用制御装置

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605