JP2005276785A - 同軸ケーブルおよびその製造方法 - Google Patents

同軸ケーブルおよびその製造方法 Download PDF

Info

Publication number
JP2005276785A
JP2005276785A JP2004092565A JP2004092565A JP2005276785A JP 2005276785 A JP2005276785 A JP 2005276785A JP 2004092565 A JP2004092565 A JP 2004092565A JP 2004092565 A JP2004092565 A JP 2004092565A JP 2005276785 A JP2005276785 A JP 2005276785A
Authority
JP
Japan
Prior art keywords
conductor
coating layer
coaxial cable
insulating coating
outer periphery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004092565A
Other languages
English (en)
Inventor
Seishi Tanaka
晴士 田中
Kazunori Watanabe
和憲 渡辺
Shigehiro Matsuno
繁宏 松野
Toshibumi Inagaki
俊文 稲垣
Mamoru Negita
守 祢宜田
Yoshiya Suzuki
與士弥 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Sanshu Densen KK
Original Assignee
Ube Nitto Kasei Co Ltd
Sanshu Densen KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Nitto Kasei Co Ltd, Sanshu Densen KK filed Critical Ube Nitto Kasei Co Ltd
Priority to JP2004092565A priority Critical patent/JP2005276785A/ja
Publication of JP2005276785A publication Critical patent/JP2005276785A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Communication Cables (AREA)

Abstract

【課題】 密着性に優れた同軸ケーブルの提供。
【解決手段】 同軸ケーブル10は、中心導体12と、絶縁被覆層14と、シールド導体16と、保護被覆層18とを備えている。被覆層14は、導体12の外周を覆うように形成され、導体12の外周を覆う環状部20と、環状部20aから径外方向に、放射状に延びる3個の柱状部22とを有している。シールド導体16は、中空状の圧縮撚り線により形成されている。圧縮撚り線は、複数本の素線26を一方向に撚り掛けながら圧縮ダイスを通過させることにより中空形状に形成される。この際に、素線26は、外周の一部同士が塑性変形され、撚りが加えられるので、石垣状に密接触して安定した構造(アーチ構造)になる。一方、絶縁被覆層14は、シールド導体16との接触部分が、当該シールド導体16の内面形状に沿って密着する変形部28となっている。
【選択図】 図1

Description

本発明は、良好かつ安定した電気特性、高周波特性を有する同軸ケーブルおよびその製造方法に関するものである。
情報量の増大化や高速伝送化の流れを受けて、携帯情報端末のアンテナ配線や、LCDとCPUを結ぶ配線等に、最近同軸ケーブルが使われつつある。また、情報端末やノートパソコンの小型化、薄型化により、同軸ケーブルにも高性能化、細径化、低コスト化が要求されている。
一般に良好な高周波特性(伝送損失が小さく、遅延時間が小さい)を持つ同軸ケーブルを得るためには、中心導体と外部シールド層の間に形成される電気絶縁性の被覆層の誘電率をできるだけ小さくすることが重要である。
誘電率を小さくすることにより、特性インピーダンスが、例えば、50Ω(一定値)とすると、中心導体径が同一であれば、シールド層の内径(ケーブルの外径)を小さくできることになり、シールド層の内径(ケーブルの外径)を一定にすれば、中心導体径を大きくし、電送損失を下げることが可能になる。
そのために、絶縁被覆層には、弗素樹脂やポリオレフィン樹脂などの低誘電率樹脂が用いられることが多く、また見掛けの誘電率を下げるために発泡化する場合も多い。
また、同軸ケーブルにおいては、シールド特性も重要であり、外部環境への影響を小さくするだけでなく、シールド効果を向上することにより伝送損失を小さくできるが、これを、単に、撚り線で構成すると、曲げた時に撚り線が開いてシールド特性が悪化する場合がある。
また、絶縁被覆層の誘電率を低くするため、多孔質度、発泡度を高めて、これらを高(50%以上)くすると、絶縁被覆層の強度が低下し、撚り線や編組線で構成したシールド導体を被覆した時、簡単に変形して、その結果、特性インピーダンスが変動する。
このような不具合を解消する方法としては、例えば、特許文献1には、絶縁被覆層を、絶縁層とスキン層との2層構造として、絶縁層だけを発泡形の樹脂で構成した同軸ケーブルが提案されている。
しかしながら、この特許文献1に開示されている同軸ケーブルには、以下に説明する技術的な課題があった。
特開2000−48653号公報
すなわち、特許文献1に開示されている同軸ケーブルでは、絶縁被覆層が二層構造となるため製造装置が複雑化して、コストアップを招く。また編組構造のシールド導体があるが、この構造のシールド導体は、編組加工速度が遅くコストアップになる、また、充分なシールド効果が得られないという問題があった。
そこで、本発明者らは、このような問題を解決するための同軸ケーブルを新たに開発し、特願2003−350376号で既に提案している。この出願にかかる同軸ケーブルは、中心導体と、前記中心導体の外周を覆う絶縁被覆層と、前記絶縁被覆層の外周を覆うシールド導体とを備えた同軸ケーブルにおいて、前記シールド導体は、複数の素線を前記絶縁被覆層の外周に沿って配置して、相互に接触する前記素線の外周の一部同士を塑性変形させて中空状に形成した圧縮撚り線で構成したことが要旨となっている。
ところが、その後の検討によると、この提案にかかる同軸ケーブルには、以下に説明する技術的な課題があることが判った。先に提案した同軸ケーブルには、絶縁被覆層として、中心導体を環状に被覆する円環状部と、円環状部から径外方向に延びる3本の柱状部とを備え、圧縮撚り線との間に、柱状部で区分された中空部が形成される構造のものが含まれている。
このような構造の同軸ケーブルでは、特に、圧縮撚り線が、その内部に挿入されるコア(円環状部と柱状部とからなる絶縁被覆層で中心導体を被覆したもの)の寸法の影響を受け易く、例えば、3本の柱状部の外寸法が、圧縮撚り線の内径よりも大きいと、圧縮撚り線の形状が円形にならず、三角形に近くなって、特性インピーダンスが不安定になるし、極端な場合には、中空状に撚り線を形成することができない場合もある。
また、3本の柱状部の外寸法が、圧縮撚り線の内径よりも小さくなると、圧縮撚り線の形状は、良好に維持されるが、コアと圧縮撚り線との間の密着性を殆ど保つことができず、同軸ケーブルを端末加工するときに、コアが圧縮撚り線から抜け出して、端末加工を行うことができなかったり、又は目標寸法通りにならなかったり、あるいは、ケーブルを曲げたときに、カットした端面から、コアが飛び出すこともある。
このような不都合に対して、例えば、コアの外寸法を圧縮撚り線の内径との関係で、微妙にコントロールすることは、製造工程上非常に難しく、コアと圧縮撚り線との間の密着性を良好に保つことが困難な状況になっていた。
さらに、コアが、中心導体と、その外周に被覆形成される円形被覆層(中空でなく中実、また、発泡,多孔質でもない)とで形成されている場合には、コアの外径が圧縮撚り線の内径よりも小さいと、これらの間に隙間ができて、コアの位置が変動して高周波特性の悪化を招くし、コアの外径が圧縮撚り線の内径よりも大きいと、圧縮撚り線の圧縮率が小さくなり、圧縮撚り線でコアの外周を完全に閉塞することができず、十分なシールド効果が得られない。
この場合、円形被覆層が多孔質ないしは発泡形態の場合には、圧縮撚り線をコアの外周に配置する際に、被覆層を変形させることができるので、密着性をある程度改善することができるが、十分とはいえない。
本発明は、このような従来の問題点に鑑みてなされたものであって、その目的とするところは、良好な密着性を備えた同軸ケーブルおよびその製造方法を提供することにある。
上記目的を達成するために、本発明は、中心導体と、前記中心導体の外周を覆う絶縁被覆層と、前記絶縁被覆層の外周を覆うシールド導体とを備えた同軸ケーブルにおいて、前記シールド導体は、複数の素線を前記絶縁被覆層の外周に沿って配置して、相互に接触する前記素線の外周の一部同士を塑性変形させて中空状に形成した圧縮撚り線で構成され、前記絶縁被覆層は、前記シールド導体との接触部分を、当該シールド導体の内面形状に沿って密着、変形させるようにした。
このように構成した同軸ケーブルによれば、圧縮撚り線は、相互に接触する素線の外周の一部同士を塑性変形させて中空状に形成しており、撚り線の素線同士が石垣状に密接に接触した安定した構造(アーチ構造)を取っているため、撚り線の内部が中空になっている。
このような圧縮撚り線中に、その中空の内径とほぼ同一の外寸を有する中心導体を絶縁被覆層で外周を覆った絶縁被覆導体を設けることで同軸ケーブルが得られ、このような構造の同軸ケーブルは、素線同士が密に接しているため、良好なシールド特性を有すると共に、素線同士が接合しているものの一体となっていないので良好な可撓性を有する。
また、本発明では、絶縁被覆層は、シールド導体との接触部分を、当該シールド導体の内面形状に沿って密着、変形させているので、絶縁被覆層とシールド導体との間の密着強度が大きくなる。
圧縮撚り線で構成した前記シール導体の外周には、保護被覆層を設けることができ、この保護被覆層には、電気絶縁性の熱可塑性樹脂を用いることができる。
本発明の同軸ケーブルでは、圧縮撚り線のみで安定した中空部を形成できるため、内部に設ける絶縁被覆導体の形状は、必ずしも圧縮撚り線の素線にすべて接触する円形である必要はなく、中心導体を圧縮撚り線の中央部に位置させることができれば、その形状は任意に選択することができる。
それゆえ、前記絶縁被覆層は、前記中心導体を環状に被覆する円環状部と、前記円環状部から径外方向に延びる1以上の柱状部とを備え、前記圧縮撚り線との間に、前記柱状部で区分された中空部を形成することができる。
また、前記絶縁被覆層は、中心導体の外周を被覆する内環状部と、前記内環状部から外方に延設される複数の連結部と、前記連結部の外周縁を結合させる外環状部とを備え、前記連結部で前記内,外環状部で隔成された空隙部の周方向を区分するようにすることができる。
また、これ以外に、中心導体の周囲に中空パイプを撚り合わせる構造、絶縁性(多孔質)テープを巻く構造、絶縁性繊維を編み込む構造でも良い。
中空圧縮撚り線の素線の断面形状は、円形、矩形、台形などのものを用いることができる。円形の場合にはコスト的に有利であるが、本数が増えると中空構造を維持することが困難な場合があるが、このような場合には、矩形、台形のものを使用することが望ましい。
前記絶縁被覆層は、誘電率、耐熱性に優れた弗素樹脂、ポリオレフィン樹脂、PEN(ポリエチレンナフタレート)樹脂、APO(環状ポリオレフィン)樹脂等の低誘電率樹脂を用いることができる。
前記絶縁被覆層は、特に、損失特性を低減するためには、中空部を安定して設けることが好ましく、この場合には、前述した柱状部を設ける構造が好適となる。柱状部を設ける際には、その数が2〜4本で、中空率が50%以上であることが望ましい。
中空率が50%以下だと、中空の効果が低くなる。また、柱状部の数は、1本では偏芯する場合があり、5本以上としても、偏芯防止効果は変わらず、逆に中空率が低下する。
また、本発明は、中心導体と、絶縁被覆層と、シールド導体とで構成する同軸ケーブルの製造方法において、前記中心導体の外周に、合成樹脂を押出し成形して絶縁被覆層を被覆形成した絶縁被覆導体を得る工程と、前記絶縁被覆導体を、前方に設けられた整列ガイド板を介して、シングルツイスト機などの集合撚り線機の中央部に配置導入するとともに、複数本の素線を、前記整列ガイト板を介して、前記絶縁被覆導体の前記絶縁被覆層の外周に沿って同一円周上に均等配置した後に、前記集合撚り線機の集線口に取り付けた圧縮ダイスを通過させながら、前記圧縮ダイスを回転することにより、相互に接触する前記素線の外周の一部同士を塑性変形させて中空状に形成した圧縮撚り線を、前記絶縁被覆導体の外側に連続的に形成して前記シールド導体を形成する工程とを備え、前記絶縁被覆導体を集合撚り線機の中央部に配置導入する際に前記絶縁被覆層を加熱軟化させること、前記圧縮ダイスを所定温度に加熱すること、前記素線のそれぞれを所定温度に加熱すること、の少なくともいずれか1つから選択される加熱処理をするようにした。
この製造方法では、前記シールド導体の形成工程の後に、前記圧縮撚り線の外周に、電気絶縁性の合成樹脂にて保護被覆層を形成することができる。
一般に、撚り線は、シングルツイスト機、ダブルツイスト機にて製造される。本発明の同軸ケーブルに用いる圧縮撚り線も同様で、撚り工程中に圧縮ダイスを入れ、中空状の圧縮撚り線を製造する。
そこで、まず、ダブルツイスト機を使用し、絶縁被覆導体及び圧縮撚り線用の素線を導入して同軸ケーブルを製造してみたが、絶縁被覆導体は、圧縮撚り線と共に撚られ、絶縁被覆導体には、圧縮撚り線と同様の撚りが加ることが判明した。
この場合、絶縁被覆導体の中心導体に撚りが加わると、中心導体が単線の場合には、うねりが発生し偏芯する現象が発生した。中心導体が撚り線の場合には、偏芯、素線のうねりと共に、素線にバラケが発生した。これらの現象は、同軸ケーブルの電気特性、高周波特性の安定性に影響する。
ダブルツイスト機を用いる場合には、二段で撚りが加わるが、圧縮ダイスは一段目の撚り工程に入れる必要がある。これを二段目に入れると、圧縮撚り線の素線の長さのバラツキを吸収できない為である。
この場合も一段目の撚り工程で、絶縁被覆導体は、圧縮撚り線に把持され、更に二段目の撚りが加わることになり、二段目の撚りで圧縮撚り線の長手方向長さが縮まるが、絶縁被覆導体は、径が小さいため差程縮まず、長さの差が生じる。この圧縮長さの相違に基づいて、絶縁被覆導体にうねりが発生し、圧縮撚り線の素線に、バラケが生じると共に、切断時に絶縁被覆導体の飛び出しが生じることになる。従って実質的にはダブルツイスト機を用いる製造方法では、ロングランの製造が困難である。
また、絶縁被覆層が、中心導体を環状に被覆する円環状部と、円環状部から径外方向に延びる1以上の柱状部とを備え、圧縮撚り線との間に、柱状部で区分された中空部を形成する構造の場合には、ダブルツイスト機を用いた場合には、柱状部の撚りピッチと、圧縮撚り線のピッチが一致するため、圧縮撚り線の素線の一部が、柱状部間に落ち込むという不具合が発生した。
ところが、上記のように構成した本発明に係る同軸ケーブルの製造方法によれば、シングルツイスト機を使用して、一段で撚るため、絶縁被覆導体と圧縮撚り線の長さの差が生じない。このため中心導体は、バラケルことがなく、絶縁被覆導体の飛び出しもなくなる。
また、本発明にかかる製造方法では、絶縁被覆導体を集合撚り線機の中央部に配置導入する際に絶縁被覆層を加熱軟化させること、圧縮ダイスを所定温度に加熱すること、素線のそれぞれを所定温度に加熱すること、の少なくともいずれか1つから選択される加熱処理を行うので、絶縁被覆導体を集合撚り線機の中央部に配置導入する際に絶縁被覆層を加熱軟化させる場合には、複数の素線で圧縮撚り線を絶縁被覆層に接触させて中空状に形成すると、加熱軟化された部分が素線に当接する際に一部変形して、圧縮撚り線の形状に沿ったものとなる。
また、圧縮ダイスを所定温度に加熱する場合には、その内部に素線を通過させるので、この際に素線が加熱されて、温度が所定の値まで上昇し、所定の温度になった素線が、絶縁被覆層に当接するので、その際に、絶縁被覆層の接触部分が一部変形して、圧縮撚り線の形状に沿ったものとなる。
さらに、素線のそれぞれを所定温度に加熱する場合には、圧縮ダイスを加熱する場合と同様に、所定の温度になった素線が、絶縁被覆層に当接するので、その際に、絶縁被覆層の接触部分が一部変形して、圧縮撚り線の形状に沿ったものとなる。
以上のようにして、加熱処理を行うと、絶縁被覆層は、シールド導体との接触部分が、当該シールド導体の内面形状に沿って密着、変形させているので、これにより、絶縁被覆層とシールド導体との間の密着強度が大きくなる。
前記絶縁被覆導体は、前記圧縮ダイスの中央部に、当該集合撚り線機の回転方向と同方向に回転させつつ供給することができる。
この構成によれば、集合撚り線機の回転方向と同方向に回転させつつ供給するので、絶縁被覆導体に撚りが入らないようにすることができるし、あるいは、入っても影響しない程度まで押さえることにより、中心導体が安定して同軸ケーブルの中央に位置するようにし、特性の安定化と向上を図ることができる。
また、圧縮撚り線のピッチと絶縁被覆導体の撚りピッチが異なるので、柱状部を設ける絶縁被覆層の場合に、圧縮撚り線の素線が柱状部間に落ち込むことがなくなる。
前記絶縁被覆導体の供給は、前記集合撚り線機の回転と完全同期させることができる。
この構成によれば、絶縁被覆導体に撚りが全く入らないようにすることができる。絶縁被覆導体の中心導体が単線の場合には、特に、うねりが生じやすいので完全同期回転させる必要がある。
本発明にかかる同軸ケーブルおよびその製造方法によれば、絶縁層とシールドの密着力が上がることにより、引き抜き強力が向上し、これに伴い端末加工性(寸法精度など)が向上する。
また、絶縁被覆層に残存歪みがなくなり、端末加工時やコネクタ装着時の寸法精度が向上する。
発明を実施するための形態
以下に、本発明の好適な実施形態について、実施例に基づいて詳細に説明する。
図1は、本発明に係る同軸ケーブル10の第1実施例を示している。同図に示した同軸ケーブル10は、中心導体12と、絶縁被覆層14と、シールド導体16と、保護被覆層18とを備えている。
中心導体12は、例えば、円形断面の撚り線(銅線)から構成されている。なお、この撚り線は、単銅線であっても良い。絶縁被覆層14は、中心導体12の外周を覆うように形成された電気絶縁性のものであって、本実施例の場合には、中心導体12の外周を覆う環状部20と、環状部20から径外方向に、放射状に延びる3個の柱状部22とを有している。
この絶縁被覆層14は、例えば、PTFE、FEP、PFA等の弗素系樹脂、或いはAPO(アモルファスポリオレフィン)樹脂、PEN(ポリエチレンナフタレート)等の合成樹脂を、中心導体12の外周に押し出し成形して、環状部20と柱状部22とを同時に一体形成することができる。
本実施例の場合、絶縁被覆層14は、中心から外方に延びる3個の柱状部22を有していて、各柱状部22は、その横断面形状は、先端側が先細状になった略三角形状に形成されている。
各柱状部22は、横断面内において等角度間隔(120°)で放射状に伸びており、同軸ケーブル10の長手軸方向に沿って、この間隔を維持しながら、直線状に延設されている。
シールド導体16は、絶縁被覆層14の柱状部22の外周に接するようにして設けられていて、シールド導体16の内部には、柱状部22で周方向に区画され、同軸ケーブル10の長手方向に連続した3個の空隙部24が設けられている。
この場合、空隙部24は、中心導体12を中心として、3個が周方向に均等配置されており、横断面において、中心導体12とシールド導体16を除いた部分の面積に対し、面積比で50%以上を占めるようにすることが望ましい。
シールド導体16は、本実施例の場合、中空状の圧縮撚り線により形成されている。このような圧縮撚り線は、複数本の円形断面の素線26を同一円周上に配置し、各素線26を一方向に撚り掛けながら圧縮ダイスを通過させることにより中空形状に形成される。
この際に、素線26は、相互に接触している外周の一部同士が、塑性変形されて、撚りが加えられるので、石垣状に密接触して安定した構造(アーチ構造)になり、その形状が崩れることなく維持される。
本実施例の場合、絶縁被覆層14は、シールド導体16との接触部分が、当該シールド導体16の内面形状に沿って密着する変形部28となっている。この変形部28は、具体的には、絶縁被覆層14の柱状部22の先端に形成され、本実施例の場合には、シールド導体16の各素線26との接触部分が、素線26の内面に沿って変形して、面同士が密着した形態になっている。
このような変形部28は、後述する具体例に詳述されているように、絶縁被覆導体を集合撚り線機の中央部に配置導入する際に絶縁被覆層14を加熱軟化させること、圧縮ダイスを所定温度に加熱すること、素線26のそれぞれを所定温度に加熱すること、の少なくともいずれか1つから選択される加熱処理により実現される。
保護被覆層18は、シールド導体16の外周を覆うようにして設けられているが、この保護被覆層18は、必ずしも設ける必要はないが、これを設ける場合には、絶縁被覆層16と同様に、例えば、FEP、PFA等の弗素系樹脂、或いはアモルファスポリオレフィン樹脂、PEN(ポリエチレンナフタレート)等の合成樹脂を、シールド導体16の外周に押し出し成形して、形成することができる。なお、本実施例の同軸ケーブル10は、最外径を1mm以下とすることができる。
以上のように構成した同軸ケーブル10によれば、シールド導体16の内部に、長手方向に連続した3個の空隙部24を設けているので、中心導体12とシールド導体16の間の誘電率(等価誘電率)を小さくすることができる。
また、本実施例の同軸ケーブル10は、シールド導体16は、圧縮撚り線で構成しており、この撚り線は、素線26同士が密接に接しているため、良好なシールド特性を有すると共に、素線26同士は接合しているが一体となっていないので良好な可撓性を有している。
また、本実施例の場合には、絶縁被覆層14は、シールド導体16との接触部分を、当該シールド導体16の内面形状に沿って密着させる変形部28となっているので、絶縁被覆層14とシールド導体16との間の密着強度が大きくなる。
図2は、本発明にかかる同軸ケーブルの実施例2を示しており、上記実施例と同一若しくは相当する部分には、同一符号を付してその説明を省略するとともに、以下にその特徴点についてのみ説明する。
同図に示した同軸ケーブル10aは、実施例1と同様に、中心導体12aと、絶縁被覆層14aと、シールド導体16aとを備えている。本実施例の場合、中心導体12a、シールド導体16aは、実施例1と実質的に同一であって、特に、シールド導体16aは、実施例1と同様に、複数の素線26aからなる圧縮撚り線で構成され、各素線26aは、相互に接触している外周の一部同士が、塑性変形されて、撚りが加えられて、石垣状に密接触して安定した構造(アーチ構造)になっている。
絶縁被覆層14aは、中心導体12aの外周を覆うように形成された電気絶縁性のものであって、例えば、PTFE、FEP、PFA等の弗素系樹脂、或いはAPO(アモルファスポリオレフィン)樹脂、PEN(ポリエチレンナフタレート)等の合成樹脂を、中心導体12aの外周に、円環状に押し出し成形している。
本実施例の場合、絶縁被覆層14aは、シールド導体16aとの接触部分が、当該シールド導体16aの内面形状に沿って密着する変形部28aとなっている。この変形部28aは、具体的には、絶縁被覆層14aの外周縁に形成され、本実施例の場合には、シールド導体16aの各素線26aとの接触部分が、素線26aの内面に沿って凹状に変形して、面同士が密着した形態になっている。
このように構成した同軸ケーブル10aでも、シールド導体16aは、圧縮撚り線で構成しており、この撚り線は、素線26a同士が密接に接しているため、良好なシールド特性を有すると共に、素線26a同士は接合しているが一体となっていないので良好な可撓性を有している。また、上記実施例と同様に、絶縁被覆層14aとシールド導体16aとの間の密着強度が大きくなる。
図3は、本発明にかかる同軸ケーブルの実施例3を示しており、上記実施例と同一若しくは相当する部分には、同一符号を付してその説明を省略するとともに、以下にその特徴点についてのみ説明する。
同図に示した同軸ケーブル10bは、実施例1と同様に、中心導体12bと、絶縁被覆層14bと、シールド導体16bとを備えている。本実施例の場合、中心導体12b、シールド導体16bは、実施例1と実質的に同一であって、特に、シールド導体16bは、実施例1と同様に、複数の素線26bからなる圧縮撚り線で構成され、各素線26bは、相互に接触している外周の一部同士が、塑性変形されて、撚りが加えられて、石垣状に密接触して安定した構造(アーチ構造)になっている。
絶縁被覆層14bは、実施例1と同様に合成樹脂の押出し成形により形成され、中心導体12bの外周を被覆する内環状部140bと、内環状部140bから外方に延設される複数の連結部141bと、連結部141bの外周縁を結合させる外環状部142bとを備え、連結部142bで内,外環状部140b,142bで隔成された空隙部24bの周方向を区分するように構成している。
連結部141bは、本実施例の場合、3個から構成され、3個の連結部141bは、中心から等角度間隔で外方に向けて放射状に延設されている。
本実施例の場合、絶縁被覆層14bは、シールド導体16bとの接触部分が、当該シールド導体16bの内面形状に沿って密着する変形部28bとなっている。この変形部28bは、具体的には、絶縁被覆層14bの外環状部142bの外周縁に形成され、本実施例の場合には、シールド導体16bの各素線26bとの接触部分が、素線26bの内面に沿って凹状に変形して、面同士が密着した形態になっている。
このように構成された実施例3では、実施例1と同等の作用効果が得られる。
次に、本発明にかかる同軸ケーブルの製造方法に関して、具体的な実施例に基づいて説明する。
具体例1
図1に示した実施例1の同軸ケーブル10の製造方法
以下に説明する製造方法では、図1に示した断面形状の同軸ケーブル10を製造する際の具体例であり、この製造方法では、まず、図4に示す断面形状の絶縁被覆導体30が作製される。
この絶縁被覆導体30は、0.065mmの銀メッキ銅線を7本撚り合わせた撚り線を中心導体12とし、これを、クロスヘッドダイに導き、絶縁被覆導体30と相似形状の貫通孔を備えたノズルに通過させ、引き取り速度11m/minの速度で引き取りながら350℃の押出温度にて、四フッ化エチレン−パーフルオロビニルエーテル共重合体(以下、PFA樹脂と略す)(AP−201:商品名,ダイキン工業製、比誘電率2.1)を押出し被覆して、絶縁被覆層14を形成したものである。この場合、各柱状部22の先端を結ぶ仮想外接円の大きさは、0.485mmであった。この場合、この仮想外接円の大きさは、圧縮撚り線で形成するシールド導体16の内接円よりも若干大きくなるように設定することが望ましい。
次に、圧縮撚り線によるシールド導体16の形成加工を、シングルツイストタイプの集合撚り線機34と回転供給装置36を使用して行った。図5は、この際の加工の状態を示した説明図である。
集合撚り線機34は、先端の集線口に圧縮ダイス36が設けられた旋回部38と、巻取りボビン40と、巻取りボビン40のトラバース機構部42とを備え、圧縮ダイス36の前方には、整列ガイド板44が設けられている。
整列ガイド板44には、中心に絶縁被覆導体30の挿通孔44aが貫通形成され、その周辺に素線26の挿通孔44bが複数貫通形成されている。また、この整列ガイド板44の前方には、撚り戻し機46が設置され、この撚り戻し機46には、絶縁被覆導体30が捲回されたコアボビン32が装着されている。
圧縮撚り線を絶縁被覆導体30の外周に形成する際には、図5に示すように、コアボビン32から巻き戻した絶縁被覆導体30を、整列ガイド板44を介して、圧縮ダイス36の中心に挿通させて、先端を巻取りボビン40に固定する。
これとともに、複数の素線26を、整列ガイド板44を介して、圧縮ダイス36の外周に挿入する。そして、この状態で、集合撚り線機34を駆動させて、旋回部38を所定の方向に旋回させる。
この際に、絶縁被覆導体30は、700rpmの回転数で、旋回部38の旋回方向(撚り方向)と同一方向に、撚り戻し機46で回転させながら、整列ガイド板44の中央部に供給する。
また、絶縁被覆導体30は、整列ガイド板44の後方で、加熱装置50に挿通し、250℃の温度で加熱して、加熱軟化させる。図6は、この際に用いる加熱装置50の詳細図である。
同図に示した加熱装置50は、熱風式のものであって、絶縁被覆導体30が挿通される両端が開口した金属パイプ51と、金属パイプ51の一端側の外周を覆う円筒状の加熱筒52と、加熱筒52の一端に設けられた熱風発生器54とを備えている。
金属パイプ51は、加熱筒52の一端から、全長の概略半分が外方に突出していて、加熱筒52の先端側は、金属パイプ51の外周面に固設されている。加熱筒52の後端側は、平坦な面となっていて、その中心軸上に絶縁被覆導体30の挿入孔55が貫通形成されている。
この挿入孔55は、金属パイプ51の中心軸と同軸上にあって、金属パイプ51の後端側の開口が、挿通孔55の近傍に配置されている。このように構成した加熱装置50では、熱風発生器54から熱風Wを加熱筒52内に吐出させると、熱風Wは、金属パイプ51の後端側の開口からその内部に入り込んで、金属パイプ51の先端側の開口から外部に排出される。
この際に、金属パイプ51内には、挿通孔55を介して、絶縁被覆導体30が挿通されるので、導体30は、金属パイプ51内に熱風Wと共に所定速度で移動し、この移動の過程で所定温度、例えば、絶縁被覆層14の形成樹脂の融点未満で、かつ、軟化点以上の温度、例えば、250℃の温度で加熱され、圧縮ダイス36に供給される。
一方、素線26は、外径0.117mm銀メッキ銅線を17本使用し、これを整列ガイド板44の外周部に円環状に配列する。そして、これらを、φ0.701mmの圧縮ダイス36を通過させて圧縮させつつ、Pt6.2mm(700rpm)で撚りながら、外径0.70mm、内径0.480mmの圧縮撚り線でシールド導体16を形成した。巻取りボビン40の巻取り速度は、毎分4.4mとした。
圧縮ダイス36は、入り口から奥側にテーパーが設けられていて、その内部に挿入された素線26は、奥側に移動するに従って、周方向に配列された素線26同士が、密接して、徐々に塑性変形して、相互に密着するとともに、この状態で旋回部38を旋回させることで、撚りが加えられ、このような形態が連続して形成される。
次に、得られた中間体をクロスヘッドダイに導き、引き取り速度11m/minの速度で引き取りながら、直径が3φの丸ダイスにてPFE樹脂(AP−201:商品名,ダイキン工業製)を厚み0.05mmで被覆して保護被覆層18を形成し、図1に示す最終外径0.80mmの同軸ケーブル10を得た。
得られた同軸ケーブル10をカットして、その端面を観察した結果絶縁層の飛び出しはなく、更にシールドを除去し、コア(絶縁層14+中心導体12)の撚りピッチを調べたところ6.5mmと製造段階で設定したセットピッチと同一であり、残存歪みが残っていないことが分かった。
また、同ケーブル10を10cmにカットして、絶縁被覆層14のシールド導体16に対する引き抜き強力を測定した結果、506gであった。図6にこの際に用いた測定治具を示している。測定方法は、10cmのケーブル10の両端を端末加工して、片端をポリエチレン板製の把持部で固めて、試験用サンプルを作成し、把持板と中心導体12とを挟んで、ケーブル10の両端側に引張り、両者が分離するまでの力を測定した。
その際の引張速度は、5mm/minとした。また、絶縁被覆層14の柱状部22の先端には、銅線(素線26)を押しつけられたことによる、圧迫跡が存在していた。このケーブルを端末加工機(シュロニガー社製:型番MC252)にてシールド層、絶縁被覆層、中心導体、それぞれ設定1mmの長さで設定し加工を行った所、設定通りの寸法で加工を行うことが出来た。
具体例2
図1に示した実施例1の同軸ケーブル10の製造方法
具体例1と同様な方法により、柱状部22の先端を結ぶ仮想外接円の大きさが、0.485mmの絶縁被覆導体30を形成した。次いで、具体例1と同様に、図5に示した、シングルツイストタイプの集合撚り線機34と回転供給装置36を使用して、圧縮撚り線によるシールド導体16の形成加工を行った。
この際には、径が0.701mmの圧縮ダイス36を、550℃に加熱した上に、絶縁被覆導体30を、具体例1と同様に、250℃に温度設定した加熱装置50により加熱した。この際の引取速度は、4m/minとし、シールド導体16の加熱圧縮成型を圧縮率70%で行い、外径が0.70mm、内怪が0.480mmのシールド導体16を形成した。
次に得られた中間体をクロスヘッドダイスに導き、引き取り速度11m/minの速度で引き取りながらPFA樹脂(AP−201:ダイキン工業製)を樹脂厚み0.05mmで保護被覆層18を成形し、最終外径0.80mmの同軸ケーブル10を得た。
同ケーブル10をカットしてその端面を観察した結果絶縁層の飛び出しの発生はなかった。得られたケーブル10を10cmにカットして絶縁層の外部導体に対する引き抜き強力を測定した結果、510gであった。更にシールド導体16を除去し、コア(絶縁被覆層14+中心導体12)の撚りピッチを調べたところ6.5mmと製造段階で設定したセットピッチと同一であり、残存歪みが残っていないことが分かった。絶縁被覆層14の柱状部22の先端には、加熱された銅線(素線26)が押しつけられたことによる、圧迫跡(溶融へこみの跡)が存在していた。
このケーブルを端末加工機(シュロニガー社製:型番MC252)にてシールド層、絶縁被覆層、中心導体、それぞれ設定1mmの長さで設定し加工を行った所、設定通りの寸法で加工を行うことが出来た。
具体例3
図1に示した実施例1の同軸ケーブル10の製造方法
具体例2と同様な方法により、柱状部22の先端を結ぶ仮想外接円の大きさが、0.485mmの絶縁被覆導体30を形成した。次いで、具体例1と同様に、図5に示した、シングルツイストタイプの集合撚り線機34と回転供給装置36を使用して、圧縮撚り線によるシールド導体16の形成加工を行った。
この際には、17本の銀メッキ銅線(素線26)を、450℃に加熱した上に、径が0.701mmの圧縮ダイス36に供給した。なお、この場合、加熱装置50は、撤去した。この際の引取速度は、4m/minとし、シールド導体16の圧縮成型を圧縮率70%で行い、外径が0.70mm、内怪が0.480mmのシールド導体16を形成した。
次に得られた中間体をクロスヘッドダイスに導き、具体例2と同様な方法で保護被覆層18を成形し、最終外径0.80mmの同軸ケーブル10を得た。
同ケーブル10をカットしてその端面を観察した結果絶縁層の飛び出しの発生はなかった。得られたケーブル10を10cmにカットして絶縁層の外部導体に対する引き抜き強力を測定した結果、540gであった。更にシールド導体16を除去し、コア(絶縁被覆層14+中心導体12)の撚りピッチを調べたところ6.5mmと製造段階で設定したセットピッチと同一であり、残存歪みが残っていないことが分かった。絶縁被覆層14の柱状部22の先端には、加熱された銅線(素線26)が押しつけられたことによる、圧迫跡(溶融へこみの跡)が存在していた。
このケーブルを端末加工機(シュロニガー社製:型番MC252)にてシールド層、絶縁被覆層、中心導体、それぞれ設定1mmの長さで設定し加工を行った所、設定通りの寸法で加工を行うことが出来た。
比較例1
7/0.065mmの中心導体をクロスヘッドダイスに導き、具体例1と同様な形状のノズルに通過させ、引き取り速度11m/minの速度で引き取りながら350℃の押出温度にてPFA樹脂(AP−201)の押出絶縁層被覆を行い、図4に示すような絶縁被覆導体30を得た。この絶縁被覆導体30の各柱状部22の頂点を通る仮想外接円の大きさは0.470mmであった。
次に得られた絶縁被覆導体30に、図5に示した装置を用いて、0.117mmの錫メッキ銅線17本を絶縁被覆導体30の円周上に配置し、更に径0.701mmの圧縮ダイス36に引き取り速度4m/minで引き取りながら、シールド導体16の圧縮成型を圧縮率7.0%で行い、外部導体径0.70mm、外部導体内径0.480mmのケーブル中間体を得た。
次に得られたケーブル中間体をクロスヘッドダイスに導き、引き取り速度11m/minの速度で引き取りながらPFA樹脂(AP−201)を樹脂厚み0.05mmで保護被覆を成形し、最終外径0.80mmの同軸ケーブルを得た。
同ケーブルをカットしてその端面を観察した結果、絶縁被覆層は、シールド端面から0.5mm飛び出しが発生した。得られたケーブルを10cmにカットして絶縁被覆層のシールド導体に対する引き抜き強力を測定した結果、25gと低い値であった。更にシールド導体を除去し、コア(絶縁被覆層+中心導体)の撚りピッチを調べたところ7.2mmと製造段階で設定したセットピッチ6.5mmより長くなっており、残存歪みが残っていることが判明した。絶縁被覆層の柱状部の先端には、銅線(素線)を押しつけられた跡は存在しなかった。
このケーブルを端末加工機(シュロニガー社製:型番MC252)にてシールド層、絶縁被覆層、中心導体、それぞれ設定1mmの長さで設定し加工を行った所、絶縁被覆層部が1.8mmと、コアがシールドより引き抜かれ、大きく寸法がずれていた。
比較例2
具体例2と同じ製造方法で得た絶縁被覆導体に、具体例2と、圧縮ダイスによる加熱、加熱槽による加熱をしなかった以外は同じ条件にて外部導体(シールド)の圧縮成型を行った。この場合、絶縁被覆層の各柱状部の頂点を通る外接円が、シールド導体の内径(圧縮撚り線の仮想内接円)より大きくなっていたため、撚り行程直後に圧縮撚り線の形状が崩れるトラブルが発生し、ケーブルが得られなかった。
本発明にかかる同軸ケーブルおよびその製造方法は、密着性に優れた同軸ケーブルがコストアップを来たすことなく得られ、携帯用端末の配線などに有効に活用することができる。
本発明にかかる同軸ケーブルの実施例1を示す断面図である。 本発明にかかる同軸ケーブルの実施例2を示す断面図である。 本発明にかかる同軸ケーブルの実施例3を示す断面図である。 本発明にかかる同軸ケーブルの製造方法で用いる絶縁被覆導体の一例を示す断面図である。 本発明にかかる同軸ケーブルの製造方法で用いるシングルツイストタイプの集合撚り線機の説明図である。 図5に示した集合撚り線機に用いる加熱装置の一例を示す説明図である。 本発明にかかる同軸ケーブルの引き抜き強力の測定方法の説明図である。
符号の説明
10,10a,10b 同軸ケーブル
12,12a,12b 中心導体
14,14a,14b 絶縁被覆層
16,16a,16b シールド導体
18 保護被覆層
28 変形部

Claims (10)

  1. 中心導体と、前記中心導体の外周を覆う絶縁被覆層と、前記絶縁被覆層の外周を覆うシールド導体とを備えた同軸ケーブルにおいて、
    前記シールド導体は、複数の素線を前記絶縁被覆層の外周に沿って配置して、相互に接触する前記素線の外周の一部同士を塑性変形させて中空状に形成した圧縮撚り線で構成され、
    前記絶縁被覆層は、前記シールド導体との接触部分を、当該シールド導体の内面形状に沿って密着、変形させることを特徴とする同軸ケーブル。
  2. 前記シール導体の外周に保護被覆層を設けたことを特徴とする請求項1記載の同軸ケーブル。
  3. 前記絶縁被覆層は、前記中心導体を環状に被覆する円環状部と、前記円環状部から径外方向に延びる1以上の柱状部とを備え、
    前記圧縮撚り線との間に、前記柱状部で区分された中空部が形成されることを特徴とする請求項1または2記載の同軸ケーブル。
  4. 前記絶縁被覆層は、中心導体の外周を被覆する内環状部と、前記内環状部から外方に延設される複数の連結部と、前記連結部の外周縁を結合させる外環状部とを備え、
    前記連結部で前記内,外環状部で隔成された空隙部の周方向を区分することを特徴とする請求項1または2記載の同軸ケーブル。
  5. 前記絶縁被覆層は、弗素樹脂、ポリオレフィン樹脂、PEN(ポリエチレンナフタレート)樹脂、APO(環状ポリオレフィン)樹脂等の低誘電率樹脂を用いることを特徴とする請求項1〜4のいずれか1項記載の同軸ケーブル。
  6. 前記絶縁被覆層は、前記柱状部の数が2〜4本で、中空率が50%以上であることを特徴とする請求項3記載の同軸ケーブル。
  7. 中心導体と、絶縁被覆層と、シールド導体とで構成する同軸ケーブルの製造方法において、
    前記中心導体の外周に、合成樹脂を押出し成形して絶縁被覆層を被覆形成した絶縁被覆導体を得る工程と、
    前記絶縁被覆導体を、前方に設けられた整列ガイド板を介して、シングルツイスト機などの集合撚り線機の中央部に配置導入するとともに、
    複数本の素線を、前記整列ガイト板を介して、前記絶縁被覆導体の前記絶縁被覆層の外周に沿って同一円周上に均等配置した後に、
    前記集合撚り線機の集線口に取り付けた圧縮ダイスを通過させながら、前記圧縮ダイスを回転することにより、相互に接触する前記素線の外周の一部同士を塑性変形させて中空状に形成した圧縮撚り線を、前記絶縁被覆導体の外側に連続的に形成して前記シールド導体を形成する工程とを備え、
    前記絶縁被覆導体を集合撚り線機の中央部に配置導入する際に前記絶縁被覆層を加熱軟化させること、前記圧縮ダイスを所定温度に加熱すること、前記素線のそれぞれを所定温度に加熱すること、
    の少なくともいずれか1つから選択される加熱処理をすることを特徴とする同軸ケーブルの製造方法。
  8. 前記シールド導体の形成工程の後に、前記圧縮撚り線の外周に、電気絶縁性の合成樹脂にて保護被覆層を形成することを特徴とする請求項7記載の同軸ケーブルの製造方法。
  9. 前記絶縁被覆導体は、前記圧縮ダイスの中央部に、当該集合撚り線機の回転方向と同方向に回転させつつ供給することを特徴とする請求項7または8記載の同軸ケーブルの製造方法。
  10. 前記絶縁被覆導体の供給は、前記集合撚り線機の回転と完全同期させることを特徴とする請求項9記載の同軸ケーブルの製造方法。
JP2004092565A 2004-03-26 2004-03-26 同軸ケーブルおよびその製造方法 Pending JP2005276785A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004092565A JP2005276785A (ja) 2004-03-26 2004-03-26 同軸ケーブルおよびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004092565A JP2005276785A (ja) 2004-03-26 2004-03-26 同軸ケーブルおよびその製造方法

Publications (1)

Publication Number Publication Date
JP2005276785A true JP2005276785A (ja) 2005-10-06

Family

ID=35176195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004092565A Pending JP2005276785A (ja) 2004-03-26 2004-03-26 同軸ケーブルおよびその製造方法

Country Status (1)

Country Link
JP (1) JP2005276785A (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243720A (ja) * 2007-03-28 2008-10-09 Ube Nitto Kasei Co Ltd 同軸ケーブル用中空コア体の製造方法
WO2009119339A1 (ja) * 2008-03-25 2009-10-01 宇部日東化成株式会社 同軸ケーブル中空コア体の製造方法、同軸ケーブル中空コア体、並びに同軸ケーブル
JP2012119328A (ja) * 2012-02-01 2012-06-21 Ube Nitto Kasei Co Ltd 同軸ケーブル用中空コア体の製造装置
JP2012124172A (ja) * 2012-02-01 2012-06-28 Ube Nitto Kasei Co Ltd 同軸ケーブル用中空コア体の製造に用いる成形ダイス
JP2018101528A (ja) * 2016-12-20 2018-06-28 矢崎総業株式会社 端子圧着構造及びケーブル付きコネクタ
JP2022003613A (ja) * 2020-06-23 2022-01-11 日立金属株式会社 同軸ケーブル、同軸ケーブルの製造方法、及びケーブルアセンブリ
CN114927291A (zh) * 2022-05-24 2022-08-19 新亚特电缆股份有限公司 一种石油探测信号集采特种电缆用电缆绞线设备

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243720A (ja) * 2007-03-28 2008-10-09 Ube Nitto Kasei Co Ltd 同軸ケーブル用中空コア体の製造方法
WO2009119339A1 (ja) * 2008-03-25 2009-10-01 宇部日東化成株式会社 同軸ケーブル中空コア体の製造方法、同軸ケーブル中空コア体、並びに同軸ケーブル
JP2010010115A (ja) * 2008-03-25 2010-01-14 Ube Nitto Kasei Co Ltd 同軸ケーブル中空コア体の製造方法、同軸ケーブル中空コア体、並びに同軸ケーブル
JP2012119328A (ja) * 2012-02-01 2012-06-21 Ube Nitto Kasei Co Ltd 同軸ケーブル用中空コア体の製造装置
JP2012124172A (ja) * 2012-02-01 2012-06-28 Ube Nitto Kasei Co Ltd 同軸ケーブル用中空コア体の製造に用いる成形ダイス
JP2018101528A (ja) * 2016-12-20 2018-06-28 矢崎総業株式会社 端子圧着構造及びケーブル付きコネクタ
CN108288769A (zh) * 2016-12-20 2018-07-17 矢崎总业株式会社 端子压接构造以及带电缆的连接器
JP2022003613A (ja) * 2020-06-23 2022-01-11 日立金属株式会社 同軸ケーブル、同軸ケーブルの製造方法、及びケーブルアセンブリ
JP7424226B2 (ja) 2020-06-23 2024-01-30 株式会社プロテリアル 同軸ケーブル、同軸ケーブルの製造方法、及びケーブルアセンブリ
CN114927291A (zh) * 2022-05-24 2022-08-19 新亚特电缆股份有限公司 一种石油探测信号集采特种电缆用电缆绞线设备
CN114927291B (zh) * 2022-05-24 2023-09-01 新亚特电缆股份有限公司 一种石油探测信号集采特种电缆用电缆绞线设备

Similar Documents

Publication Publication Date Title
JP4757159B2 (ja) 同軸ケーブル用中空コア体の製造方法
CN101819832B (zh) 同轴电缆及其制造方法
US8455761B2 (en) Coaxial cable and multicoaxial cable
TW200405363A (en) Thin-diameter coaxial cable and method of producing the same
JP3678179B2 (ja) 2重横巻2心平行極細同軸ケーブル
JP4493595B2 (ja) 発泡同軸ケーブルおよびその製造方法
WO2009119339A1 (ja) 同軸ケーブル中空コア体の製造方法、同軸ケーブル中空コア体、並びに同軸ケーブル
WO2010123105A1 (ja) 電線及びその製造方法
JP3900864B2 (ja) 2心平行極細同軸ケーブル
CN105788748A (zh) 绝缘电线、同轴电缆及多芯电缆
JP2007250235A (ja) 同軸ケーブル用中空コア体,同コア体の製造方法,同コア体を用いる同軸ケーブル
JP2005276785A (ja) 同軸ケーブルおよびその製造方法
JP2003249129A (ja) 細径同軸ケーブルおよびその製造方法
JP2007280762A (ja) ノンハロゲン同軸ケーブル及びこれを用いた多芯ケーブル
JP2006221889A (ja) 熱可塑性樹脂製螺旋状物の製造方法および熱可塑性樹脂製螺旋状物
JP2011071095A (ja) 同軸ケーブルおよび多心同軸ケーブル
JP4111764B2 (ja) 細径同軸ケーブルおよびその製造方法
JP4262555B2 (ja) 細径同軸ケーブルおよびその製造方法
JP2005116380A (ja) 細径同軸ケーブルおよびその製造方法
JP5326775B2 (ja) 同軸電線及びその製造方法
JP3032624U (ja) 形状保持性を有する同軸ケーブル
JP2006049067A (ja) 同軸ケーブルおよびその製造方法
JP3749875B2 (ja) 高精度発泡同軸ケーブルの製造方法
JP3618809B2 (ja) シールド付き細径絶縁チューブおよびその製造方法
JP2006164878A (ja) 同軸ケーブルの設計方法