JP2005276516A - Secondary battery and its manufacturing method - Google Patents

Secondary battery and its manufacturing method Download PDF

Info

Publication number
JP2005276516A
JP2005276516A JP2004085373A JP2004085373A JP2005276516A JP 2005276516 A JP2005276516 A JP 2005276516A JP 2004085373 A JP2004085373 A JP 2004085373A JP 2004085373 A JP2004085373 A JP 2004085373A JP 2005276516 A JP2005276516 A JP 2005276516A
Authority
JP
Japan
Prior art keywords
cell
laminate
current collector
secondary battery
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004085373A
Other languages
Japanese (ja)
Inventor
Tetsuya Yoshinari
哲也 吉成
Tomoki Shinoda
知希 信田
Naoki Takahashi
直樹 高橋
Katsuya Mitani
勝哉 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2004085373A priority Critical patent/JP2005276516A/en
Publication of JP2005276516A publication Critical patent/JP2005276516A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a proton conductive battery having a light weight without impairing battery characteristics. <P>SOLUTION: The secondary battery comprises: a cell laminate laminated with a unit cell which is constructed of at least a positive electrode and a negative electrode containing a proton conductive compound as an electrode active material, an electrolytic solution impregnated in these electrodes, a separator interposed between these electrodes, a positive electrode current collector, and a negative electrode current collector; and a housing member to house this cell laminate. The inner wall spacing of this housing member in the thickness direction of the cell laminate between a first plane part facing one end face of the cell laminate and a second plane part facing the other end face of the cell laminate is set to be the thickness or more of the cell laminate before impregnation into the electrolytic solution in non-pressurized state and to be the thickness or less of the cell laminate after impregnation into the electrolytic solution in non-pressurized state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二次電池およびその製造方法に関し、特にプロトン伝導型化合物を電極活物質として含む複数の単位セルが加圧状態で積層された構造を有する二次電池およびその製造方法に関する。   The present invention relates to a secondary battery and a method for manufacturing the same, and more particularly, to a secondary battery having a structure in which a plurality of unit cells containing a proton conductive compound as an electrode active material are stacked in a pressurized state and a method for manufacturing the same.

従来、携帯電話に代表される携帯電子機器や電気自動車の蓄電装置として、ニッケル水素電池やリチウムイオン電池等の二次電池が用いられてきた。これらの二次電池は、エネルギー密度が高く、多くの携帯電子機器やハイブリッド自動車で実用化されている。しかし、携帯電子機器の発達に伴い、CPUの高性能化、無線LAN等の通信機のコードレス化により、ますます負荷電流が大きくなってきており、内部抵抗の小さな二次電池の開発が期待されている。   Conventionally, secondary batteries such as nickel metal hydride batteries and lithium ion batteries have been used as power storage devices for portable electronic devices such as mobile phones and electric vehicles. These secondary batteries have high energy density and are put into practical use in many portable electronic devices and hybrid vehicles. However, along with the development of portable electronic devices, the load current has been increasing due to the high performance of CPUs and the cordless communication devices such as wireless LAN, and the development of secondary batteries with low internal resistance is expected. ing.

近年、プロトン伝導型化合物を電極活物質として含有する電池(以下、適宜「プロトン伝導型電池」という)の開発が行われている。図7に、プロトン伝導型電池を構成するセルの断面構造を示す。プロトン伝導型化合物を電極活物質として含む正極71と負極72が、セパレータ74を介して対向配置され、プロトン源を含む電解液がこれらの電極およびセパレータに含浸されている。電解液は、容量の点から、専ら酸性水溶液が用いられるため、耐酸性をもつ集電体73が正極および負極の外側にそれぞれ配置され、耐酸性ガスケット75で封止される。集電体73は、カーボン等の添加により導電性を付与したブチルゴムやエラストマー等の軟質プラスチックで形成される。ガスケット75は、集電体間の短絡防止と、酸性電解液の封止を目的として用いられ、ブチルゴムや熱可塑性エラストマー等の軟質プラスチックで形成される。封止接着は、加硫接着または熱融着により行われる。セパレータ74は、電極間の短絡防止と、電解質イオンを通過させるためのものであり、多孔性のポリプロピレン、ポリテトラフルオロエチレン、ポリエチレンで形成される。電極71、72は、ドープ又は未ドープのプロトン伝導型化合物の粉末と導電補助剤、結着剤を含有する混合粉末を、所定サイズの金型へ入れ、熱プレスによって固体電極として作製される。   In recent years, a battery containing a proton conductive compound as an electrode active material (hereinafter, appropriately referred to as “proton conductive battery”) has been developed. FIG. 7 shows a cross-sectional structure of a cell constituting the proton conduction battery. A positive electrode 71 and a negative electrode 72 containing a proton conductive compound as an electrode active material are arranged to face each other via a separator 74, and an electrolyte containing a proton source is impregnated in these electrodes and separator. Since the electrolytic solution is exclusively an acidic aqueous solution from the viewpoint of capacity, the acid-resistant current collector 73 is disposed outside the positive electrode and the negative electrode, respectively, and sealed with an acid-resistant gasket 75. The current collector 73 is formed of a soft plastic such as butyl rubber or elastomer that has been given conductivity by adding carbon or the like. The gasket 75 is used for the purpose of preventing a short circuit between current collectors and sealing an acidic electrolyte, and is formed of a soft plastic such as butyl rubber or a thermoplastic elastomer. Sealing adhesion is performed by vulcanization adhesion or heat fusion. The separator 74 is for preventing a short circuit between electrodes and allowing electrolyte ions to pass therethrough, and is made of porous polypropylene, polytetrafluoroethylene, or polyethylene. The electrodes 71 and 72 are produced as solid electrodes by hot pressing a mixed powder containing a doped or undoped proton conductive compound powder, a conductive additive and a binder into a predetermined size mold.

この固体電極は、集電体とは別体であり、それ自身で形状を保持しているものであり、電極材料ペーストを集電体上に塗布して得られ、集電体と一体化されている電極(塗布型電極)とは区別される。プロトン伝導型電池の電極は、充放電時にプロトンのドープ・脱ドープが行われるため、その形状が変化する。この現象を考慮し、プロトン伝導型電池には一般に固体電極が用いられる。   This solid electrode is separate from the current collector and has its own shape, and is obtained by applying an electrode material paste onto the current collector and integrated with the current collector. It is distinguished from the electrode (coating electrode). The shape of the electrode of the proton conductive battery changes because protons are doped and undoped during charging and discharging. Considering this phenomenon, a solid electrode is generally used for proton conduction type batteries.

プロトン伝導型電池は、単セルの起電力が1V程度であるため、所要の起電力に応じて単セルが直列に積層された構造を有する。そして、単セル間の密着性、集電体とは別体の電極と集電体との密着性を高めるため、積層体の厚み方向に外部から圧力を加え、その圧力を保持する外装構造が設けられる。この圧力は、電極活物質や導電補助剤の種類、これらの粒子の大きさ、集電体の導電率などに依存するが、通常9.8×104〜4.9×105Pa(1〜5kgf/cm2)に設定される。このような圧力をかけるために、一般に図8に示す外装構造が採られる。この外装構造は、積層セル12の両側を端子板13と加圧板81で挟み、所定の圧力まで加圧した後、両側の加圧板81の四隅をボルト82とナット83で締め付けることで形成される。 The proton conduction battery has a structure in which single cells are stacked in series according to the required electromotive force because the electromotive force of the single cell is about 1V. And, in order to improve the adhesion between the single cell, the adhesion between the electrode separate from the current collector and the current collector, an exterior structure that applies pressure from the outside in the thickness direction of the laminate and maintains the pressure is provided. Provided. This pressure depends on the type of the electrode active material and the conductive auxiliary agent, the size of these particles, the electrical conductivity of the current collector, etc., but is usually 9.8 × 10 4 to 4.9 × 10 5 Pa (1 ˜5 kgf / cm 2 ). In order to apply such pressure, an exterior structure shown in FIG. 8 is generally adopted. This exterior structure is formed by sandwiching both sides of the laminated cell 12 between the terminal plate 13 and the pressure plate 81, pressurizing to a predetermined pressure, and then tightening the four corners of the pressure plate 81 on both sides with bolts 82 and nuts 83. .

このようなボルトとナットの締め付けにより圧力を付与し保持する構造は、局所的(ボルト82及びナット83付近)に高い圧力がかかるため、加圧板81には、剛性の高い、例えばステンレス板やアルマイト加工されたアルミ板等の剛板を用いる必要がある。しかし、このような剛板は比重が大きいため、外装重量が大きくなる欠点がある。また、ボルトとナットによる締め付けは、締め付け順や締め付け力のバラツキにより、セル圧縮率にバラツキが生じ易いため、仕上がり寸法の精度を高めることが困難であり、電池特性にバラツキが生じる場合もある。   Such a structure for applying and holding pressure by tightening bolts and nuts applies high pressure locally (in the vicinity of the bolts 82 and nuts 83). Therefore, the pressure plate 81 has a high rigidity, for example, a stainless plate or anodized. It is necessary to use a hard plate such as a processed aluminum plate. However, since such a rigid plate has a large specific gravity, there is a drawback that the exterior weight increases. In addition, tightening with bolts and nuts tends to cause variations in the cell compression ratio due to variations in the tightening order and tightening force, so it is difficult to increase the accuracy of the finished dimensions, and there may be variations in battery characteristics.

特開平10−144352号公報(特許文献1)には、軽量で、電極を十分に抑え付けることができる二次電池として、金属泊に高分子樹脂が被覆された積層フィルムよりなる電池ケース内に電極積層体が収容され、電池ケース内が減圧され密閉されている非水電解液二次電池が開示されている。しかし、この構造では、減圧による加圧力を利用するものであるため、十分な加圧力がえられず内部抵抗を十分に下げることができない。また、電池ケース内の内圧がガス発生により上昇し、加圧力が低下する場合がある。特に、集電体と別体の電極を用いた場合は信頼性が大きく低下する。   In JP-A-10-144352 (Patent Document 1), as a secondary battery that is lightweight and can sufficiently suppress an electrode, a battery case made of a laminated film in which a polymer resin is coated on a metal stay is provided. A non-aqueous electrolyte secondary battery in which an electrode stack is accommodated and the inside of the battery case is decompressed and sealed is disclosed. However, in this structure, since the pressurizing force due to the reduced pressure is used, a sufficient pressurizing force cannot be obtained and the internal resistance cannot be lowered sufficiently. In addition, the internal pressure in the battery case may increase due to gas generation, and the applied pressure may decrease. In particular, when an electrode separate from the current collector is used, the reliability is greatly reduced.

特開平9−82363号公報には、少なくとも負極、セパレータ、正極、電解質、集電電極、電池ケースから形成され、この電池ケース内に正極と負極を加圧する高分子ゲルを有するリチウム二次電池が開示されている。溶媒濃度により膨潤収縮する高分子ゲルを利用して電池ケース内で電極が加圧される。しかし、この構造では、電池ケース内に容量発現に寄与しない余分な高分子ゲルを収容しているため、電池の単位容積あるいは単位重量あたりの効率が低下するという問題があった。
特開平10−144352号公報 特開平9−82363号公報
Japanese Patent Application Laid-Open No. 9-82363 discloses a lithium secondary battery that is formed of at least a negative electrode, a separator, a positive electrode, an electrolyte, a collecting electrode, and a battery case, and has a polymer gel that pressurizes the positive electrode and the negative electrode in the battery case. It is disclosed. The electrode is pressurized in the battery case using a polymer gel that swells and shrinks depending on the solvent concentration. However, in this structure, there is a problem that the efficiency per unit volume or unit weight of the battery is lowered because an extra polymer gel that does not contribute to capacity development is accommodated in the battery case.
JP-A-10-144352 JP-A-9-82363

本発明の目的は、電池特性を損なうことなく軽量化されたプロトン伝導型電池を提供することにある。   An object of the present invention is to provide a proton conductive battery that is reduced in weight without impairing battery characteristics.

本発明は、以下の(1)項〜(9)項にそれぞれ記載した態様が含まれる。   The present invention includes embodiments described in the following items (1) to (9).

(1)プロトン伝導型化合物を電極活物質として含有する正極と、プロトン伝導型化合物を電極活物質として含有する負極と、これらの電極に含浸された電解液と、これらの電極に挟まれたセパレータと、正極集電体と、負極集電体とで少なくとも構成される単セルを含む積層体、及びこの積層体を収容する収容部材を有する二次電池であって、
前記収容部材の、前記積層体の一方の端面と対向する第1平面部と、当該積層体の他方の端面と対向する第2平面部との当該積層体の厚さ方向の内壁間隔が、電解液含浸前の非加圧状態での当該積層体の厚さ以上であり、電解液含浸後の非加圧状態での当該積層体の厚さより小さいことを特徴とする二次電池。
(1) A positive electrode containing a proton conductive compound as an electrode active material, a negative electrode containing a proton conductive compound as an electrode active material, an electrolytic solution impregnated in these electrodes, and a separator sandwiched between these electrodes And a secondary battery having a laminate including a single cell composed of at least a positive electrode current collector and a negative electrode current collector, and a housing member for housing the laminate,
The inner wall spacing in the thickness direction of the laminate between the first flat portion facing the one end face of the laminate and the second flat portion facing the other end face of the laminate is the electrolytic member. A secondary battery characterized in that it is equal to or greater than the thickness of the laminate in a non-pressurized state before liquid impregnation and smaller than the thickness of the laminate in a non-pressurized state after impregnation with an electrolytic solution.

(2)第1平面部と第2平面部との内壁間隔は、当該内壁間隔と電解液含浸前の非加圧状態での前記積層体の厚さとの差が、電解液含浸前の当該厚さと電解液含浸後の非加圧状態での当該積層体の厚さとの差の30%以下となる間隔である1項に記載の二次電池。   (2) The inner wall distance between the first plane part and the second plane part is such that the difference between the inner wall distance and the thickness of the laminate in the non-pressurized state before the electrolyte impregnation is the thickness before the electrolyte impregnation. The secondary battery according to 1, wherein the interval is 30% or less of the difference between the thickness of the laminate in a non-pressurized state after impregnation with the electrolytic solution.

(3)前記正極は前記正極集電体と別体であり、前記負極は前記負極集電体と別体である1項又は2項に記載の二次電池。   (3) The secondary battery according to item 1 or 2, wherein the positive electrode is separate from the positive electrode current collector, and the negative electrode is separate from the negative electrode current collector.

(4)前記収容部材は、硬質プラスチックで形成され、当該収容部材に収容された前記単セルへ電解液が注入できるように開口部を有している1項、2項又は3項に記載の二次電池。   (4) The said accommodating member is a hard plastic, and has an opening part so that electrolyte solution can be inject | poured into the said single cell accommodated in the said accommodating member. Secondary battery.

(5)第1及び第2平面部は前記収容部材の本体と一体に形成されている1〜4項のいずれか一項に記載の二次電池。   (5) The secondary battery according to any one of claims 1 to 4, wherein the first and second flat portions are formed integrally with the main body of the housing member.

(6)第1及び第2平面部の一方が前記収容部材の本体と一体に形成され、他方が当該収容部材の本体に接着されている4項に記載の二次電池。   (6) The secondary battery according to item 4, wherein one of the first and second flat portions is formed integrally with the main body of the housing member, and the other is bonded to the main body of the housing member.

(7)前記単セルは、さらにガスケットを有し、当該ガスケットと前記正極集電体と前記負極集電体とで封止されている1〜6項のいずれか1項に記載の二次電池。   (7) The secondary battery according to any one of 1 to 6, wherein the single cell further includes a gasket and is sealed with the gasket, the positive electrode current collector, and the negative electrode current collector. .

(8)前記単セルは、さらに硬質プラスチックからなるガスケットを有し、当該ガスケットと前記正極集電体と前記負極集電体とで封止され、当該ガスケット、硬質プラスチックからなる第1平面部および第2平面部で前記収容部材が構成されている1〜6項のいずれか1項に記載の二次電池。   (8) The single cell further includes a gasket made of hard plastic, and is sealed with the gasket, the positive electrode current collector, and the negative electrode current collector, and the gasket, the first flat portion made of hard plastic, and The secondary battery according to any one of 1 to 6, wherein the housing member is configured by a second flat portion.

(9)1〜8項のいずれか一項に記載の二次電池の製造方法であって、
電解液が含浸されてない前記単セルを含む積層体を形成する工程と
前記積層体が前記収容部材に収容され、当該収容部材において第1平面部と第2平面部の間隔が固定された状態において、前記積層体の一方の端面が第1平面部に圧接し、他方の端面が第2平面部に圧接するように、前記単セルに電解液を注入する工程を有する二次電池の製造方法。
(9) A method for manufacturing a secondary battery according to any one of items 1 to 8,
A step of forming a laminated body including the single cells not impregnated with an electrolyte; and the laminated body is accommodated in the accommodating member, and a distance between the first planar portion and the second planar portion is fixed in the accommodating member. The method of manufacturing a secondary battery comprising the step of injecting an electrolyte into the single cell so that one end face of the laminate is in pressure contact with the first plane portion and the other end face is in pressure contact with the second plane portion. .

なお、上記の積層体の厚さ方向とは、積層方向、すなわち電極平面に対して垂直方向を意味する。   In addition, the thickness direction of said laminated body means a lamination direction, ie, a direction perpendicular to the electrode plane.

本発明によれば、電池特性を損なうことなく軽量化されたプロトン伝導型電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the proton-conduction type battery reduced in weight without impairing a battery characteristic can be provided.

また本発明では、セルを含む積層体を外装ケースに収容してから電極を膨潤させて圧力を発生させるため、その積層体を外装ケースに容易に収容することができる。すなわち、積層体の外装ケースへの収容工程において、積層体に大きな圧力をかけながら収容するという操作を行う必要がなく、工程が簡略化でき、また収容の際に積層体と外装ケース内壁とが圧接して剪断応力が発生することもないため、積層体を構成する単セルの変形や損傷を防止できる。また、圧力を所定サイズの外装ケース内部から発生させるため、仕上がり寸法精度を高くすることができる。   Moreover, in this invention, since the electrode is swollen | swelled after accommodating the laminated body containing a cell in an exterior case, and the pressure is generated, the laminated body can be easily accommodated in an exterior case. That is, in the process of housing the laminate in the exterior case, there is no need to perform an operation of housing the laminate while applying a large pressure, the process can be simplified, and the laminate and the exterior case inner wall can be accommodated during housing. Since no shear stress is generated by pressure contact, deformation and damage of the single cells constituting the laminate can be prevented. Further, since the pressure is generated from the inside of the exterior case of a predetermined size, the finished dimensional accuracy can be increased.

本発明は、電極活物質として機能し得るプロトン伝導型化合物を含む電極が電解液を含浸させることにより膨潤することに着目し、鋭意検討した結果、完成したものである。   The present invention has been completed as a result of intensive investigations, focusing on the fact that an electrode containing a proton conductive compound that can function as an electrode active material swells when impregnated with an electrolytic solution.

本発明の主な特徴の一つは、電解液含浸前の単セルを含む積層体の両端を外装ケースにより固定し、その後、電極へ電解液を含浸し、電極の膨潤に伴う圧力で積層体を加圧することにある。   One of the main features of the present invention is that both ends of a laminate including a single cell before impregnation with an electrolyte solution are fixed by an exterior case, and then the electrolyte is impregnated into the electrode, and the laminate is subjected to pressure accompanying the swelling of the electrode. Is to pressurize.

積層体における単セルの積層数は、所要の起電力に応じて適宜設定することができるが、より十分な加圧力を得る点からは2個以上であることが好ましく、また、製造の観点からは例えば30個以下、あるいは20個以下の範囲から適宜設定することができる。   The number of single cells in the laminate can be appropriately set according to the required electromotive force, but is preferably 2 or more from the viewpoint of obtaining a sufficient pressurizing force, and from the viewpoint of production Can be appropriately set, for example, within a range of 30 or less, or 20 or less.

以下に、プロトン伝導型化合物を含む電極の膨潤特性、セル加圧時の内部抵抗およびセル厚み方向の圧縮量について説明する。   Below, the swelling characteristic of the electrode containing a proton conduction type compound, the internal resistance at the time of cell pressurization, and the amount of compression in the cell thickness direction will be described.

図5は、電極への電解液含浸前後で生じるセルの厚みの変化量を示す。サンプルNo.1、No.2, No.3のセルのいずれも電解液の含浸により0.5〜0.7mm程度厚みが増大していることがわかる。なお、図5及び下記の図6に係る試験に用いたセルには、図7に示す構造を有するものを用い、電解液として20wt%硫酸水溶液を用いた。正極は、電極活物質と導電補助剤と結着剤を所定の配合比で混合し、熱プレス機で所定の形状に成形したものを用いた。負極は、電極活物質と導電補助剤を所定の配合比で混合し、熱プレス機で所定の形状に成形したものを用いた。   FIG. 5 shows the amount of change in cell thickness that occurs before and after the electrolyte is impregnated into the electrode. It can be seen that the thicknesses of all the cells of sample No. 1, No. 2, and No. 3 are increased by about 0.5 to 0.7 mm due to the impregnation with the electrolytic solution. In addition, the cell used for the test which concerns on FIG. 5 and the following FIG. 6 used what has the structure shown in FIG. 7, and used 20 wt% sulfuric acid aqueous solution as electrolyte solution. As the positive electrode, an electrode active material, a conductive auxiliary agent, and a binder were mixed at a predetermined blending ratio and formed into a predetermined shape with a hot press. As the negative electrode, an electrode active material and a conductive additive were mixed at a predetermined blending ratio and formed into a predetermined shape with a hot press.

図6は、セルを加圧した際の等価直列抵抗(ESR)と加圧時のセル厚み変化量(圧縮量)を示す図である。この図から、加圧力が増すごとにESRが低下し、1.96×105Pa(2kgf/cm2)程度からESRの変化が小さくなっていることがわかる。また、このときのセル厚み変化量(圧縮量)は0.6mm程度であることがわかる。 FIG. 6 is a diagram showing an equivalent series resistance (ESR) when a cell is pressurized and a cell thickness change amount (compression amount) when the cell is pressurized. From this figure, it can be seen that the ESR decreases as the applied pressure increases, and the change in ESR is reduced from about 1.96 × 10 5 Pa (2 kgf / cm 2 ). Moreover, it turns out that the cell thickness change amount (compression amount) at this time is about 0.6 mm.

以上の結果から、ESRが大きく低下したときの加圧によるセル圧縮量と、電解液の含浸によるセル厚み増加量がほぼ等しいことがわかる。このことは、電解液含浸前のセルの両端を固定し、その後、電解液の含浸を行えばESR低減に必要な十分な加圧力が得られることがわかる。すなわち、この加圧力は電極と集電体との密着性、あるいはさらに単セル間の密着性を向上させることができる。   From the above results, it can be seen that the amount of cell compression due to pressurization when the ESR greatly decreases and the amount of increase in cell thickness due to the impregnation of the electrolyte are substantially equal. This shows that sufficient pressure required for ESR reduction can be obtained by fixing both ends of the cell before impregnation with the electrolyte and then impregnating with the electrolyte. That is, this applied pressure can improve the adhesion between the electrode and the current collector, or the adhesion between the single cells.

以下、この原理を利用した本発明の好適な実施の形態について説明する。   Hereinafter, a preferred embodiment of the present invention using this principle will be described.

第一の実施形態
図1に、本実施形態の電池の概略構造を示す。図中の12は、黒鉛シート16を介して単セルが積層された積層セル、13は端子板、11は積層セル12を収容する箱形プラスチックケース、14は上蓋、15は電解液注入用突起穴を示す。なお、図面において積層セル12の一部の単セルを省略している。
First Embodiment FIG. 1 shows a schematic structure of a battery according to this embodiment. In the figure, 12 is a laminated cell in which single cells are laminated via a graphite sheet 16, 13 is a terminal plate, 11 is a box-shaped plastic case that accommodates the laminated cell 12, 14 is an upper lid, and 15 is a projection for electrolyte injection. Indicates a hole. In addition, some single cells of the laminated cell 12 are abbreviate | omitted in drawing.

積層セル12を構成する各単セルとしては、図7に示すように、正極71及び負極72がセパレータ74を介して対向配置され、これらが正極側及び負極側の集電体73とガスケット75で封止されたものを用いることができる。積層セル12を箱形プラスチックケースに収容するまでは、各単セルの電極には電解液を含浸させない。各単セルのガスケット75には、積層セル12を箱形プラスチックケースに収容した後に電解液を注入するための穴を設ける。   As shown in FIG. 7, each single cell constituting the stacked cell 12 is configured such that a positive electrode 71 and a negative electrode 72 are arranged to face each other via a separator 74, and these are a positive electrode side and negative electrode side current collector 73 and a gasket 75. What was sealed can be used. Until the laminated cell 12 is accommodated in the box-shaped plastic case, the electrode of each single cell is not impregnated with the electrolytic solution. The gasket 75 of each single cell is provided with a hole for injecting the electrolytic solution after the laminated cell 12 is accommodated in the box-shaped plastic case.

単セルの積層時の各単セルの固定は、単セル間に黒鉛シート16を介在させ、ブチルゴムからなる集電体73と常温で圧着させることにより行うことができる。このようにして得られた積層セル12の両側に黒鉛シートを介して端子板13を配置してセル積層体を構成する。   Each single cell can be fixed when the single cells are stacked by interposing the graphite sheet 16 between the single cells and pressing the current collector 73 made of butyl rubber at room temperature. A terminal laminate 13 is arranged on both sides of the thus obtained laminated cell 12 via a graphite sheet to constitute a cell laminate.

箱形プラスチックケース11には、セル積層体の各単セルの設置位置に対応する内側へ突起した穴15が設けられている。また、この箱形プラスチックケースは、電池の軽量化および保形性の点から、PPS樹脂やABS樹脂等の硬質プラスチック製のものが好ましい。   The box-shaped plastic case 11 is provided with a hole 15 protruding inward corresponding to the installation position of each single cell of the cell stack. The box-shaped plastic case is preferably made of a hard plastic such as PPS resin or ABS resin from the viewpoint of weight reduction and shape retention of the battery.

箱形プラスチックのセル積層方向、すなわちセル積層体の厚み方向(図1中の左右方向)の内壁間隔は、非加圧状態での電解液含浸前のセル積層体の厚み(積層セル12と両側の端子板13と黒鉛シートの厚みの合計)と同等以上であり、非加圧状態での電解液含浸後のセル積層体の厚みより小さい。この内壁間隔は、非加圧状態での電解液含浸前のセル積層体の厚みとの差が、当該厚みと非加圧状態での電解液含浸後のセル積層体の厚みとの差の30%以下となる間隔であることが好ましく、20%以下となる間隔であることがより好ましく、10%以下となる間隔であることがさらに好ましい。例えば、この内壁間隔は、単セルの積層数にもよるが、非加圧状態での電解液含浸前のセル積層体の厚みとの差が0.2mm以下となる間隔に設定することができる。   The inner wall spacing in the cell stacking direction of the box-shaped plastic, that is, the thickness direction of the cell stack (left and right direction in FIG. 1) is the thickness of the cell stack before impregnation with the electrolyte solution in the non-pressurized state The total thickness of the terminal plate 13 and the graphite sheet) is equal to or greater than the thickness of the cell laminate after impregnation with the electrolyte in a non-pressurized state. The inner wall spacing is 30 times the difference between the thickness of the cell laminate before impregnation with the electrolyte in the non-pressurized state and the thickness of the cell laminate after the impregnation with the electrolyte in the non-pressurized state. %, Preferably 20% or less, and more preferably 10% or less. For example, although this inner wall interval depends on the number of stacked single cells, it can be set to an interval at which the difference from the thickness of the cell laminate before impregnation with the electrolyte in the non-pressurized state is 0.2 mm or less. .

セル積層体は、各単セルのガスケットに設けた電解液注入用の穴に、プラスチックケース11の内側へ突起した穴15が嵌め合わされるように、プラスチックケースに収容される。そして、このプラスチックケース11に上蓋14を接着した後、電解液を穴15から注入し、各単セルの電極に減圧加圧含浸させる。その後、この穴を封止する。   The cell stack is accommodated in the plastic case so that the hole 15 projecting inward of the plastic case 11 is fitted into the hole for electrolyte injection provided in the gasket of each single cell. And after attaching the upper cover 14 to this plastic case 11, electrolyte solution is inject | poured from the hole 15, and the pressure-pressure pressurization impregnation is carried out to the electrode of each single cell. Then, this hole is sealed.

以上に説明したとおり、本発明によれば、電解液含浸前のセル積層体をケースに収容するため、特別な加圧を行うことなく簡便に、またセル積層体にダメージを与えることなくケースに収容することができる。また、プラスチックからなる外装ケースを用いているため、重量を軽くすることができる。さらに、電池の仕上がり寸法は、射出成形などの成形技術により得られるプラスチックケースの寸法で決まるため、寸法精度の高い電池を得ることができる。   As described above, according to the present invention, since the cell laminate before impregnation with the electrolyte solution is accommodated in the case, the case can be easily and without damaging the cell laminate without performing special pressurization. Can be accommodated. Moreover, since the outer case made of plastic is used, the weight can be reduced. Further, since the finished size of the battery is determined by the size of the plastic case obtained by a molding technique such as injection molding, a battery with high dimensional accuracy can be obtained.

図2に、第一の実施形態の他の例を示す。この図においても、積層セル12の一部の単セルを省略している。図1に示す実施形態では、プラスチックケースに収容されたセル積層体の各単セルへの電解液の注入を、各単セルの電解液注入用の穴に応じてケース側面に設けた穴15を介して行うのに対して、図2に示す実施形態では、セル積層体を挿入する側の面と対向する面が開放した角筒形のプラスチックケース21を用意し、各単セルの電解液注入用の穴がこの開放面から露出するようにセル積層体を収容し、この開放面から露出する穴から電解液を注入する。プラスチックケースのこの開放面側には、セル積層体がこの開放面からはみ出さないようにストッパを設けることが好ましい。この電解液を注入する側の開放面と、当該開放面に対向するセル積層体を挿入する側の開放面には、電解液の注入後、必要に応じてそれぞれ蓋を設けてもよい。   FIG. 2 shows another example of the first embodiment. Also in this figure, some single cells of the laminated cell 12 are omitted. In the embodiment shown in FIG. 1, the hole 15 provided on the side surface of the case for injecting the electrolyte into each single cell of the cell stack accommodated in the plastic case is formed according to the hole for injecting the electrolyte in each single cell. 2, in the embodiment shown in FIG. 2, a rectangular cylindrical plastic case 21 having an open surface facing the surface on which the cell stack is inserted is prepared, and electrolyte solution injection for each single cell is performed. The cell stack is accommodated so that the holes for use are exposed from the open surface, and the electrolytic solution is injected from the holes exposed from the open surface. It is preferable to provide a stopper on the open surface side of the plastic case so that the cell stack does not protrude from the open surface. A lid may be provided on the open surface on the side where the electrolytic solution is injected and on the open surface on the side where the cell stack opposite to the open surface is inserted, if necessary after the injection of the electrolytic solution.

第二の実施形態
図3に第二の実施形態の概略構造図を示す。積層セル12とその両側に配置される端子板13は第一の実施形態と同じである。なお、この図においても、積層セル12の一部の単セルを省略している。
Second Embodiment FIG. 3 shows a schematic structural diagram of the second embodiment. The laminated cell 12 and the terminal board 13 arrange | positioned at the both sides are the same as 1st embodiment. Also in this figure, some single cells of the stacked cell 12 are omitted.

第一実施形態では、積層セル12とその両端に配置された端子板13からなるセル積層体の一方の端面と対向する平面部と、他方の端面と対向する平面部がプラスチックケース本体11(又は12)と一体であるのに対して、第二の実施形態では、図3に示すように一方の平面部(蓋32)がプラスチックケース本体31と別体であり、セル積層体が収容された状態で本体に接着される。この接着は、加熱融着、超音波融着、接着剤等により行うことができる。   In the first embodiment, the plastic case main body 11 (or the planar portion opposed to one end surface and the planar portion opposed to the other end surface of the cell laminated body composed of the laminated cell 12 and the terminal plates 13 arranged at both ends thereof. 12), in the second embodiment, as shown in FIG. 3, one flat portion (lid 32) is separate from the plastic case body 31, and the cell stack is accommodated. Glued to the main body in a state. This adhesion can be performed by heat fusion, ultrasonic fusion, an adhesive, or the like.

プラスチックケース本体31は、当該本体と別体の蓋32が接着される面が開放されており、この開放面側からセル積層体を構成する部材(端子板、黒鉛シート、単セル)を一つずつ挿入することができる。また、一対の対向する側面が開放しており、この開放面の一方から端子板の端子を外部へ出し、他方の開放面から各単セルへ電解液を注入することができる。この一対の開放面には、電解液の注入後、必要に応じてそれぞれ蓋を設けてもよい。   The plastic case main body 31 has an open surface to which the lid 32 separate from the main body is bonded, and one member (terminal plate, graphite sheet, single cell) constituting the cell laminate is formed from the open surface side. Can be inserted one by one. Moreover, a pair of opposing side surfaces are open, and the terminal of the terminal plate can be taken out from one of the open surfaces and the electrolyte can be injected into each single cell from the other open surface. On the pair of open surfaces, a lid may be provided as necessary after the electrolyte solution is injected.

蓋32の内面とこの内面と対向する底面の間隔は、非加圧状態での電解液含浸前のセル積層体の厚み(積層セル12と両側の端子板13と黒鉛シートの厚みの合計)と同等以上であり、非加圧状態での電解液含浸後のセル積層体の厚みより小さい。これにより、セル積層体をあらかじめ加圧固定しておく必要がないため、製造工程を簡略化できる。また、セル積層体をケース外部から挿入する経路を持つ必要がないため、設計自由度を大きくすることができる。   The distance between the inner surface of the lid 32 and the bottom surface facing the inner surface is the thickness of the cell stack before impregnation with the electrolyte in a non-pressurized state (the total thickness of the stacked cell 12, the terminal plates 13 on both sides, and the graphite sheet). It is equal to or greater than the thickness of the cell laminate after impregnation with the electrolyte in a non-pressurized state. Thereby, since it is not necessary to pressurize and fix a cell laminated body beforehand, a manufacturing process can be simplified. Moreover, since it is not necessary to have a path for inserting the cell stack from the outside of the case, the degree of freedom in design can be increased.

第三の実施形態
図4に第三の実施形態の概略構成図を示す。図4(a)は、単セルを一つ有する場合の構造を示し、図4(b)は単セルを二つ有する場合の構造を示す。
Third Embodiment FIG. 4 shows a schematic configuration diagram of a third embodiment. 4A shows a structure in the case of having one single cell, and FIG. 4B shows a structure in the case of having two single cells.

本実施形態においては、単セルが、正極71と、負極72と、これら一対の電極に挟まれたセパレータ74と、このセパレータを介して一対の電極71、72が対向配置された電極積層体を取り囲むプラスチック製ガスケット42と、正極側および負極側の集電体73からなる。   In the present embodiment, a single cell includes a positive electrode 71, a negative electrode 72, a separator 74 sandwiched between the pair of electrodes, and an electrode stack in which the pair of electrodes 71 and 72 are arranged to face each other with the separator interposed therebetween. It consists of an enclosing plastic gasket 42 and current collectors 73 on the positive and negative electrode sides.

この電極積層体は、両側の集電体73と周囲のガスケット42で封止される。ガスケット42には電解液注入用の穴が設けられ、電解液注入後にこの穴は封止される。また、このガスケット42と、正極側および負極側集電体73とは、例えば2液混合タイプのエポキシ樹脂系接着剤を用いて接着される。   This electrode laminate is sealed with a current collector 73 on both sides and a surrounding gasket 42. The gasket 42 is provided with a hole for electrolyte injection, and the hole is sealed after the electrolyte injection. The gasket 42 and the positive electrode side and negative electrode side current collector 73 are bonded using, for example, a two-component mixed epoxy resin adhesive.

プラスチック製加圧板41、端子板13、黒鉛シート16、単セル、黒鉛シート16、端子板13及びプラスチック製加圧板41をこの記載順で積層し、単セルが複数の場合には単セル間に黒鉛シート16を介在させ、そして、ガスケット同士、ガスケットと加圧板とを熱融着等により接着する。このとき、各単セルのガスケット、上面側および下面側のプラスチック製加圧板とで外装ケースが形成される。   A plastic pressure plate 41, a terminal plate 13, a graphite sheet 16, a single cell, a graphite sheet 16, a terminal plate 13 and a plastic pressure plate 41 are stacked in this order. The graphite sheet 16 is interposed, and the gaskets and the gasket and the pressure plate are bonded together by heat fusion or the like. At this time, an exterior case is formed by the gasket of each single cell and the plastic pressure plates on the upper surface side and the lower surface side.

これらのガスケット及び加圧板は、最終的に形成される外装ケースの両端側の加圧板の内壁間隔が、非加圧状態での電解液含浸前のセル積層体の厚み(積層されたセル(電極、セパレータおよび集電体)の厚みと黒鉛シート16と両側の端子板13の厚みの合計)と同等以上であり、非加圧状態での電解液含浸後のセル積層体の厚みより小さくなるようにサイズが設定される。   In these gaskets and pressure plates, the inner wall spacing of the pressure plates on both ends of the outer case to be finally formed is the thickness of the cell laminate before impregnation with the electrolyte in the non-pressurized state (stacked cell (electrode The thickness of the separator and the current collector) and the total thickness of the graphite sheet 16 and the terminal plates 13 on both sides), and smaller than the thickness of the cell stack after impregnation with the electrolyte in the non-pressurized state. Is set to the size.

外装ケースが形成された後に、各単セルの穴から電解液を注入し、この穴を封止して目的とする電池を得ることができる。本実施形態では、ガスケットと加圧板で電池の寸法が決まるので仕上がり寸法精度を向上することができる。また、ガスケットが外装ケースを兼ねるため、第一及び第二の実施形態に比べてさらに軽量化を図ることができる。   After the outer case is formed, an electrolyte can be injected from the hole of each single cell, and the hole can be sealed to obtain the intended battery. In this embodiment, since the dimensions of the battery are determined by the gasket and the pressure plate, the finished dimensional accuracy can be improved. Further, since the gasket also serves as the outer case, the weight can be further reduced as compared with the first and second embodiments.

プロトン伝導型電池の好適な構成
プロトン導電型化合物を電極活物質として含有するセルとしては、充放電に伴う両極における酸化還元反応において電荷キャリアとして主にプロトンのみが作用するように動作し得るもの、より具体的には、プロトン源を含む電解液を含有し、充放電に伴う両極における酸化還元反応に伴う電子授受において、主に電極活物質のプロトンの吸脱着のみが関与するように動作し得るように電解質のプロトン濃度と動作電圧が制御されているものを好適に用いることができる。
Preferred structure of proton conduction type battery As a cell containing a proton conduction type compound as an electrode active material, one that can operate so that only protons mainly act as charge carriers in the oxidation-reduction reaction in both electrodes accompanying charge and discharge, More specifically, it contains an electrolyte containing a proton source and can operate so that only the adsorption / desorption of protons of the electrode active material is mainly involved in the electron transfer accompanying the oxidation-reduction reaction in both electrodes accompanying charging and discharging. As described above, those in which the proton concentration and the operating voltage of the electrolyte are controlled can be suitably used.

下記反応式は、プロトン伝導型化合物の一つであるポリインドールの反応を示す。1段目の反応は、ドーピングによる反応を示す。式中のX-はドーパントイオンを示し、例えば硫酸イオン、ハロゲン化物イオン等であり、プロトン伝導型化合物にドープし電気化学的活性を付与するものである。2段目の反応は、ドーピングされた化合物のプロトンの吸脱着を伴う電気化学反応(電極反応)を示す。このような電極反応を起こす電気化学セルは、酸化還元反応に伴う電子授受において主にプロトンの吸脱着のみが関与するため、充放電時の移動物質がプロトンであり、その結果、反応に伴う電極の体積変化が比較的小さくサイクル特性に優れ、また、プロトンの移動度が高く反応が速いため、ハイレート特性に優れる、すなわち急速充放電特性に優れる。 The following reaction formula shows the reaction of polyindole, which is one of proton conducting compounds. The first stage reaction shows a reaction by doping. X in the formula represents a dopant ion, for example, a sulfate ion, a halide ion or the like, which is doped with a proton conductive compound to impart electrochemical activity. The reaction in the second stage shows an electrochemical reaction (electrode reaction) involving adsorption and desorption of protons of the doped compound. In an electrochemical cell that causes such an electrode reaction, only the adsorption and desorption of protons is mainly involved in the electron transfer associated with the oxidation-reduction reaction, so the mobile substance during charge and discharge is protons. Is relatively small in volume, excellent in cycle characteristics, and has high proton mobility and fast reaction, so that it has excellent high rate characteristics, that is, rapid charge / discharge characteristics.

Figure 2005276516
Figure 2005276516

本発明における電極活物質には上述のようにプロトン伝導型化合物が用いられ、このプロトン伝導型化合物は、電解質のイオンとの酸化還元反応により電気化学エネルギーを蓄積することができる有機化合物(高分子を含む)である。   As described above, a proton-conducting compound is used as the electrode active material in the present invention, and this proton-conducting compound is an organic compound (polymer) that can accumulate electrochemical energy by an oxidation-reduction reaction with an ion of an electrolyte. Included).

このようなプロトン伝導型化合物としては、例えば、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリ−p−フェニレン、ポリフェニレンビニレン、ポリペリナフタレン、ポリフラン、ポリフルラン、ポリチエニレン、ポリピリジンジイル、ポリイソチアナフテン、ポリキノキサリン、ポリピリジン、ポリピリミジン、ポリインドール、ポリアミノアントラキノン、ポリイミダゾール及びこれらの誘導体などのπ共役系高分子、インドール三量体化合物等のインドール系π共役化合物、ベンゾキノン、ナフトキノン、アントラキノン等のキノン系化合物、ポリアントラキノン、ポリナフトキノン、ポリベンゾキノン等のキノン系高分子(キノン酸素が共役によりヒドロキシル基になり得るもの)、前記高分子を与えるモノマーの2種以上の共重合で得られるプロトン伝導型高分子などが挙げられる。これらの化合物にドーピングを施すことによりレドックス対が形成され、導電性が発現する。これら化合物は、その酸化還元電位の差を適宜調整することによって正極及び負極活物質として選択使用される。   Examples of such proton conductive compounds include polyaniline, polythiophene, polypyrrole, polyacetylene, poly-p-phenylene, polyphenylene vinylene, polyperiphthalene, polyfuran, polyflurane, polythienylene, polypyridinediyl, polyisothianaphthene, polyquinoxaline. Π-conjugated polymers such as polypyridine, polypyrimidine, polyindole, polyaminoanthraquinone, polyimidazole and derivatives thereof, indole π-conjugated compounds such as indole trimer compounds, quinone compounds such as benzoquinone, naphthoquinone, anthraquinone, Quinone polymers such as polyanthraquinone, polynaphthoquinone, polybenzoquinone, etc. (things in which quinone oxygen can become a hydroxyl group by conjugation) And proton conductive polymers obtained by copolymerization of two or more of mer. By doping these compounds, a redox pair is formed and conductivity is exhibited. These compounds are selectively used as a positive electrode and a negative electrode active material by appropriately adjusting the difference in oxidation-reduction potential.

プロトン伝導型化合物としては、窒素原子を有するπ共役系化合物またはπ共役系高分子、キノン系化合物またはキノン系高分子を好適なものとして用いることができる。   As the proton-conducting compound, a π-conjugated compound or π-conjugated polymer having a nitrogen atom, a quinone compound or a quinone polymer can be preferably used.

プロトン源を含む(プロトンを与えることができる)電解質のプロトン源としては、無機酸または有機酸を用いることができ、例えば、無機酸として、硫酸、硝酸、塩酸、リン酸、テトラフルオロほう酸、六フッ化リン酸、六フッ化ケイ酸などが挙げられ、有機酸として、飽和モノカルボン酸、脂肪族カルボン酸、オキシカルボン酸、p−トルエンスルホン酸、ポリビニルスルホン酸、ラウリン酸などが挙げられる。これらのプロトン源を含む電解質の中でも酸含有水溶液が好ましく、硫酸水溶液が特に好ましい。   An inorganic acid or an organic acid can be used as a proton source of an electrolyte containing a proton source (which can give a proton). For example, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, tetrafluoroboric acid, hexafluoroboric acid can be used as the inorganic acid. Examples of the organic acid include saturated monocarboxylic acid, aliphatic carboxylic acid, oxycarboxylic acid, p-toluenesulfonic acid, polyvinylsulfonic acid, and lauric acid. Among the electrolytes containing these proton sources, an acid-containing aqueous solution is preferable, and a sulfuric acid aqueous solution is particularly preferable.

プロトン源を含む電解液中のプロトン濃度は、電極材料の反応性の点から10-3mol/l以上が好ましく、10-1mol/l以上がより好ましく、一方、電極材料の活性低下や溶出の防止の点から18mol/l以下が好ましく、7mol/l以下がより好ましい。 The proton concentration in the electrolyte solution containing the proton source is preferably 10 −3 mol / l or more, more preferably 10 −1 mol / l or more, from the viewpoint of the reactivity of the electrode material. 18 mol / l or less is preferable from the point of prevention of 7 mol / l or less.

電極の構成材料は、所望の特性に応じて適宜設定されるが、必要に応じてカーボンブラックや結晶性あるいは非晶性のカーボン等の導電性補助剤を添加することができる。また、必要に応じて電極材料の保形成の点から有機高分子等からなる結着剤を添加することができる。   The constituent material of the electrode is appropriately set according to the desired characteristics, but a conductive auxiliary such as carbon black or crystalline or amorphous carbon can be added as necessary. In addition, a binder made of an organic polymer or the like can be added as necessary from the viewpoint of preserving the electrode material.

電極材料の混合比も、所望の特性に応じて適宜設定されるが、膨潤性および電極反応の効率の点から、プロトン導電型化合物の含有量は30重量%以上が好ましく、40重量%以上がより好ましく、50重量%以上がさらに好ましい。また、電極の導電性確保の点から95重量%以下が好ましく、90重量%以下がより好ましい。導電性補助剤を添加する場合は、十分な添加効果を得る点からその含有量は5重量%以上が好ましく、膨潤性や電極反応の効率の点から50重量%以下が好ましい。結着剤を添加する場合は、十分な添加効果を得る点から、結着剤の含有量は、結着剤を除く電極材料100重量部に対して5重量部以上が好ましく、膨潤性や電極反応の効率、導電性の点から20重量部以下が好ましい。   The mixing ratio of the electrode material is also appropriately set according to the desired characteristics. From the viewpoint of swelling property and efficiency of the electrode reaction, the content of the proton conductive compound is preferably 30% by weight or more, and 40% by weight or more. More preferred is 50% by weight or more. Moreover, 95 weight% or less is preferable from the point of ensuring the electroconductivity of an electrode, and 90 weight% or less is more preferable. When a conductive auxiliary agent is added, the content is preferably 5% by weight or more from the viewpoint of obtaining a sufficient addition effect, and preferably 50% by weight or less from the viewpoint of swelling property and electrode reaction efficiency. When the binder is added, the content of the binder is preferably 5 parts by weight or more with respect to 100 parts by weight of the electrode material excluding the binder from the viewpoint of obtaining a sufficient addition effect. 20 parts by weight or less is preferable from the viewpoint of reaction efficiency and conductivity.

〔実施例1〕
本実施例の電池は、図1を用いて説明した第一の実施形態の構造を有し、予め箱形に成形されたプラスチックケース11に、積層セル12とその両側に配置された端子板13からなるセル積層体が収容され、上蓋14(プラスチック板)が設置されている。
[Example 1]
The battery of this example has the structure of the first embodiment described with reference to FIG. 1, a plastic case 11 molded in advance in a box shape, a laminated cell 12 and a terminal plate 13 disposed on both sides thereof. The cell laminated body which consists of is accommodated, and the upper cover 14 (plastic plate) is installed.

積層セル12を構成する各単セルとしては、図7に示すように、正極71及び負極72がセパレータ74を介して対向配置され、これらが正極側及び負極側の集電体73とガスケット75で加硫接着により封止されたものを用いた。ガスケット75、集電体73、セパレータ74及び端子板13には、それぞれブチルゴム(厚み2.5mm)、導電性を付与したブチルゴム(厚み100μm)、ポリテトラフルオロエチレン(厚み15μm)及び半田メッキしたアルミ板(厚み1.0mm)を用いた。また、ガスケット75に設けた電解液注入用の穴が端子板13の電極取り出し側と反対側(図1中において下部)に位置するように各単セルを配置した。   As shown in FIG. 7, each single cell constituting the stacked cell 12 is configured such that a positive electrode 71 and a negative electrode 72 are arranged to face each other via a separator 74, and these are a positive electrode side and negative electrode side current collector 73 and a gasket 75. What was sealed by vulcanization adhesion was used. The gasket 75, the current collector 73, the separator 74 and the terminal plate 13 are respectively butyl rubber (thickness 2.5 mm), butyl rubber (thickness 100 μm) with conductivity, polytetrafluoroethylene (thickness 15 μm), and solder plated aluminum. A plate (thickness 1.0 mm) was used. In addition, each single cell was arranged so that the electrolyte injection hole provided in the gasket 75 was located on the side opposite to the electrode extraction side of the terminal plate 13 (lower part in FIG. 1).

正極71は、正極活物質としてポリインドール72wt%、導電補助剤として気相成長カーボン20wt%、結着剤としてポリフッ化ビニリデン(平均分子量1100)8wt%を混合し、攪拌して、この混合物を熱プレス機を用いて所定の形状に成形した。負極72は、負極活物質としてポリフェニルキノキサリン75wt%と導電補助剤としてケッチェンブラック(ケッチェン・ブラック・インターナショナル(株)製、EC−600JD)25wt%とを混合し、攪拌し、この混合物を熱プレス機を用いて所定の形状に成形した。正極および負極の厚みは、それぞれ1mm及び1.4mmとした。   In the positive electrode 71, 72% by weight of polyindole as a positive electrode active material, 20% by weight of vapor-grown carbon as a conductive auxiliary agent, and 8% by weight of polyvinylidene fluoride (average molecular weight 1100) as a binder are mixed and stirred to heat the mixture. It was molded into a predetermined shape using a press. The negative electrode 72 was prepared by mixing 75 wt% of polyphenylquinoxaline as a negative electrode active material and 25 wt% of Ketjen black (Ketjen Black International Co., Ltd., EC-600JD) as a conductive auxiliary agent, and stirring the mixture. It was molded into a predetermined shape using a press. The thicknesses of the positive electrode and the negative electrode were 1 mm and 1.4 mm, respectively.

積層セルの単セル間に配置された固定用の黒鉛シート16には、厚み100μmのグラファイトシート(グラフテック社製)を用いた。   As the graphite sheet 16 for fixing disposed between the single cells of the stacked cells, a graphite sheet (made by Graphtec Co., Ltd.) having a thickness of 100 μm was used.

箱形プラスチックケース11と蓋部14は、ABS樹脂からなる成形体であり、ケース11の底面には、電解液を注入するための突起穴15を設けた。収容されたセル積層体の厚み方向の、プラスチックケース11の内壁間隔は、セル積層体の総厚みと同等以上で、長くてもその差が0.2mm以下となるように作製した。単セルを10個積層した本実施例では、この内壁間隔を29.25〜29.45mmに設定した。ここで、セル積層体の総厚みとは、単セルの総厚み(10個分)、黒鉛シートの総厚み(11枚分)、端子板の総厚み(2枚分)の合計を意味する。また単セル1個の厚みは、正極、負極、正極側集電体、負極側集電体およびセパレータの厚みの合計を意味する。   The box-shaped plastic case 11 and the lid portion 14 are molded bodies made of ABS resin, and a projection hole 15 for injecting an electrolytic solution is provided on the bottom surface of the case 11. The inner wall spacing of the plastic case 11 in the thickness direction of the accommodated cell stack was equal to or greater than the total thickness of the cell stack, and the difference was 0.2 mm or less at the longest. In this example in which 10 single cells were stacked, the inner wall interval was set to 29.25 to 29.45 mm. Here, the total thickness of the cell laminate means the total of the total thickness of single cells (for 10 pieces), the total thickness of graphite sheets (for 11 pieces), and the total thickness of terminal plates (for two pieces). Moreover, the thickness of one single cell means the sum total of the thickness of a positive electrode, a negative electrode, a positive electrode side collector, a negative electrode side collector, and a separator.

10個の単セルを黒鉛シート16を介して積層し、常温下1.96×106Pa(20kgf/cm2)で5分間加圧して、積層セル12を得た。 Ten single cells were laminated through the graphite sheet 16 and pressed at 1.96 × 10 6 Pa (20 kgf / cm 2 ) at room temperature for 5 minutes to obtain a laminated cell 12.

積層セル12の両側に黒鉛シート16を介して端子板13を配置し、このセル積層体をプラスチックケース11へ収容した。その際、各単セルの電解液注入用の穴をプラスチックケース11の突起穴15へ嵌め合わせた。そして、蓋部14を2液混合型エポキシ樹脂系接着剤により接着し、電解液含浸前の電池を得た。   The terminal plate 13 was disposed on both sides of the laminated cell 12 via the graphite sheet 16, and the cell laminated body was accommodated in the plastic case 11. At that time, the hole for injecting the electrolytic solution of each single cell was fitted into the protruding hole 15 of the plastic case 11. And the cover part 14 was adhere | attached with the 2 liquid mixture type epoxy resin-type adhesive agent, and the battery before electrolyte solution impregnation was obtained.

この電荷液含浸前の電池の各単セルへ、穴15から電解液として20wt%硫酸水溶液を注入した。そして、この穴15にABS樹脂製の栓を設け、260℃で局所的に熱融着を行って封止した。電解液の注入に際しては、10Torr(1.33kPa)以下の減圧状態で3分間、780Torr(103.99kPa)以上の加圧状態で1分間の減圧加圧含浸処理を1度行った。   A 20 wt% sulfuric acid aqueous solution was injected from the hole 15 as an electrolytic solution into each single cell of the battery before impregnation with the charge liquid. Then, a stopper made of ABS resin was provided in the hole 15 and sealed by locally heat-sealing at 260 ° C. In injecting the electrolytic solution, the pressure-impregnation treatment was performed once for 3 minutes in a reduced pressure state of 10 Torr (1.33 kPa) or less and for 1 minute in a pressurized state of 780 Torr (103.99 kPa) or more.

以上のようにして作製した電池について、電極中電解液量、外装重量、電池仕上がり寸法精度および等価直列抵抗を評価した。結果を表1に示す。   The batteries produced as described above were evaluated for the amount of electrolyte in the electrode, the outer weight, the finished dimensional accuracy, and the equivalent series resistance. The results are shown in Table 1.

ここで、電極中電解液量とは、電極の単位重量あたりの電解液の含有比率であり、電解液重量を電極重量(正極と負極の合計重量)で割った値である。   Here, the amount of electrolytic solution in the electrode is the content ratio of the electrolytic solution per unit weight of the electrode, and is a value obtained by dividing the weight of the electrolytic solution by the weight of the electrode (the total weight of the positive electrode and the negative electrode).

電池仕上がり寸法精度とは、セルの厚み方向の寸法バラツキであり、10個試作した際の寸法バラツキ(σ)を平均値で割り、それを百分率で表したものである。この値が小さいほど寸法精度が高い。   The battery finished dimensional accuracy is a dimensional variation in the thickness direction of the cell, and is obtained by dividing the dimensional variation (σ) of 10 prototypes by an average value and expressing it as a percentage. The smaller this value, the higher the dimensional accuracy.

等価直列抵抗は、電池に実効電圧10mV、周波数1kHzの交流を印加し、インピーダンスを測定した。このインピーダンスが小さいほど等価直列抵抗(内部抵抗)が小さいことを示す。前述したように、セル加圧力が増すほど等価直列抵抗が小さくなるため、この等価直列抵抗をセル加圧力の指標とすることができる。   For the equivalent series resistance, an alternating current having an effective voltage of 10 mV and a frequency of 1 kHz was applied to the battery, and the impedance was measured. The smaller this impedance, the smaller the equivalent series resistance (internal resistance). As described above, since the equivalent series resistance decreases as the cell pressing force increases, this equivalent series resistance can be used as an index of the cell pressing force.

〔実施例2〕
電解液の注入に際して減圧加圧含浸処理を5回行った以外は、実施例1と同様にして電池を作製した。得られた電池の評価結果を表1に示す。
[Example 2]
A battery was fabricated in the same manner as in Example 1, except that the pressure-impregnation impregnation treatment was performed five times when the electrolyte solution was injected. The evaluation results of the obtained battery are shown in Table 1.

〔実施例3〕
本実施例の電池は、図1に示すプラスチックケース11及び蓋部14に代えて図2に示す角筒形プラスチックケース21を用いて作製した。
Example 3
The battery of this example was fabricated using a rectangular cylindrical plastic case 21 shown in FIG. 2 instead of the plastic case 11 and the lid 14 shown in FIG.

各単セルおよびこれらを黒鉛シート16を介して積層した積層セル12は実施例1と同様にして作製した。また、プラスチックケース21は、ABS樹脂からなる成形体であり、セル積層体の挿入側の面に対向する面側に、各単セルのガスケットに設けた電解液含浸用の穴を塞がないように、セル積層体のストッパとしてかえしを設けた。   Each single cell and the laminated cell 12 in which these were laminated via the graphite sheet 16 were produced in the same manner as in Example 1. Further, the plastic case 21 is a molded body made of ABS resin, and does not block the electrolyte impregnation hole provided in the gasket of each single cell on the surface side facing the insertion side surface of the cell laminate. In addition, a barb was provided as a stopper for the cell stack.

積層セル12の両側に黒鉛シート16を介して端子板13を配置し、このセル積層体をプラスチックケース21へ収容し、電解液含浸前の電池を得た。   The terminal plate 13 was disposed on both sides of the laminated cell 12 via the graphite sheet 16, and the cell laminated body was accommodated in the plastic case 21 to obtain a battery before being impregnated with the electrolyte.

その後、実施例1と同様にして、各単セルへ電解液の注入を行い目的とする電池を得た。電解液の注入に際しては減圧加圧含浸処理を1回行った。得られた電池の評価結果を表1に示す。   Thereafter, in the same manner as in Example 1, an electrolytic solution was injected into each single cell to obtain a target battery. At the time of injection of the electrolytic solution, the pressure and pressure impregnation treatment was performed once. The evaluation results of the obtained battery are shown in Table 1.

〔実施例4〕
電解液の注入に際して減圧加圧含浸処理を5回行った以外は、実施例3と同様にして電池を作製した。得られた電池の評価結果を表1に示す。
Example 4
A battery was fabricated in the same manner as in Example 3 except that the pressure-impregnation impregnation treatment was performed five times when the electrolytic solution was injected. The evaluation results of the obtained battery are shown in Table 1.

〔実施例5〕
本実施形態の電池は、図3を用いて説明した第二の実施形態の構造を有し、予め射出成形により得られたコの字形のプラスチックケース31へ、積層セル12とその両側に配置された端子板13からなるセル積層体が収容され、蓋32(プラスチック板)が設置されている。
Example 5
The battery of this embodiment has the structure of the second embodiment described with reference to FIG. 3, and is disposed on the laminated cell 12 and both sides thereof in a U-shaped plastic case 31 obtained by injection molding in advance. A cell laminate composed of the terminal plate 13 is accommodated, and a lid 32 (plastic plate) is installed.

プラスチックケース31と蓋32は、ABS樹脂からなる成形体を用いた。プラスチックケース31は、セルの収容面が開放され、この面に蓋32が設置される。また、一対の対向する側面が開放しており、セル積層体を収容する際、この開放面の一方から端子板の端子を外部へ出し、他方の開放面に各単セルの電解液注入用の穴を露出させることができる。また、この一対の対向する側面側には、それぞれ、積層される単セルの位置ズレ防止用のガイドを設けた。   For the plastic case 31 and the lid 32, molded bodies made of ABS resin were used. The plastic case 31 has a cell accommodation surface open, and a lid 32 is provided on this surface. In addition, a pair of opposing side surfaces are open, and when the cell stack is accommodated, the terminal of the terminal plate is taken out from one of the open surfaces, and the electrolyte solution for each single cell is injected into the other open surface. The hole can be exposed. In addition, guides for preventing misalignment of the stacked single cells were provided on the pair of opposing side surfaces.

単セル、端子板13及び黒鉛シート16は、実施例1と同様なものを用いた。   The same unit cell, terminal plate 13 and graphite sheet 16 as those in Example 1 were used.

セル積層体のプラスチックケース31への収容は、端子板13及び黒鉛シート16をこの記載順でガイドに沿ってケース31へ収容した後、単セル、黒鉛シート16、単セルの順で、単セル間に黒鉛シートが介在するようにガイドに沿って10個の単セルを積み上げた。最上部の単セル上に黒鉛シートを介して端子板13を積層した後に、蓋32の設置面を260℃で10分間加熱し、そこへ蓋32を配置し、常温で1時間冷却して蓋32を融着した。   The cell stack is accommodated in the plastic case 31 after the terminal plate 13 and the graphite sheet 16 are accommodated in the case 31 along the guide in this order, and then the single cell, the graphite sheet 16, and the single cell in this order. Ten single cells were stacked along the guide so that the graphite sheets were interposed therebetween. After laminating the terminal plate 13 on the uppermost unit cell via the graphite sheet, the installation surface of the lid 32 is heated at 260 ° C. for 10 minutes, the lid 32 is arranged there, and cooled at room temperature for 1 hour to cover the lid. 32 was fused.

その後、各単セルへ20wt%硫酸水溶液の注入を行い目的とする電池を得た。電解液の注入に際しては減圧加圧含浸処理を1回行った。得られた電池の評価結果を表1に示す。   Then, 20 wt% sulfuric acid aqueous solution was inject | poured into each single cell, and the target battery was obtained. At the time of injection of the electrolytic solution, the pressure and pressure impregnation treatment was performed once. The evaluation results of the obtained battery are shown in Table 1.

〔実施例6〕
電解液の注入に際して減圧加圧含浸処理を5回行った以外は、実施例5と同様にして電池を作製した。得られた電池の評価結果を表1に示す。
Example 6
A battery was fabricated in the same manner as in Example 5 except that the pressure-impregnation impregnation treatment was performed five times when the electrolyte solution was injected. The evaluation results of the obtained battery are shown in Table 1.

〔実施例7〕
本実施例の電池は、図4を用いて説明した第三の実施形態の構造を有し、40%ガラス入りPPS樹脂からなる加圧板41とABS樹脂からなる10個のガスケット42で外装が構成される。なお、本実施例においても単セルを10個積層した。
Example 7
The battery of this example has the structure of the third embodiment described with reference to FIG. 4, and the exterior is composed of a pressure plate 41 made of 40% glass-filled PPS resin and 10 gaskets made of ABS resin. Is done. In this example, ten single cells were stacked.

単セルを構成する正極、負極、正極側および負極側集電体、並びにセパレータは、実施例1と同様なものを用い、これらの厚みはそれぞれ、1mm、1.4mm、15μm、200μmとした。また、黒鉛シートも実施例と同様なのものを用い、その厚みは1mmとした。   The positive electrode, the negative electrode, the positive electrode side and the negative electrode side current collector, and the separator constituting the single cell were the same as those in Example 1, and the thicknesses thereof were 1 mm, 1.4 mm, 15 μm, and 200 μm, respectively. Moreover, the graphite sheet used the same thing as the Example, The thickness was 1 mm.

各単セルは、正極71と負極72がセパレータ74を介して対向配置された電極積層体を、プラスチック製ガスケット42と、正極側および負極側の集電体73とで封止した。ガスケット42と集電体73との接着は、耐熱性に優れる2液混合型エポキシ樹脂系接着剤を用いて行った。この接着面は、各集電体がガスケットの上側平面および下側平面より内側へそれぞれ収まるように、最外周部に対して段差状に窪んだ面とした。   In each single cell, an electrode laminate in which a positive electrode 71 and a negative electrode 72 were arranged to face each other with a separator 74 interposed between them was sealed with a plastic gasket 42 and current collectors 73 on the positive electrode side and the negative electrode side. Adhesion between the gasket 42 and the current collector 73 was performed using a two-component mixed epoxy resin adhesive having excellent heat resistance. This adhesive surface was a surface that was recessed in a stepped manner with respect to the outermost peripheral portion so that each current collector could be accommodated inside the upper and lower planes of the gasket.

各単セルのガスケット42の厚み方向のサイズは、10個のガスケットの融着後の総厚みが、正極71、負極72、セパレータ74、正極側および負極側集電体73の10セル分の総厚みと黒鉛シート16の厚みとの合計と同等以上で、長くともその差が0.2mm以下となるサイズとした。具体的には、各単セルのガスケットの厚みを3mmとし、さらにガスケットの上下両側に、それぞれ融着面に沿って連続した、ガスケットと同じ材料からなる厚み方向の長さが0.5mmの融着用の突起を設けた。   The size in the thickness direction of the gasket 42 of each single cell is such that the total thickness of the ten gaskets after fusion is the total of 10 cells of the positive electrode 71, the negative electrode 72, the separator 74, the positive electrode side and the negative electrode side current collector 73. The size is equal to or greater than the sum of the thickness and the thickness of the graphite sheet 16, and the difference is 0.2 mm or less at the longest. Specifically, the thickness of the gasket of each single cell is set to 3 mm, and the length in the thickness direction made of the same material as the gasket, which is continuous on the upper and lower sides of the gasket, respectively along the fusion surface, is 0.5 mm. A wearing protrusion was provided.

加圧板41には、外部端子取り出し用の端子穴と、端子板収納用の窪みを設けた。この窪みの深さは、端子板13の厚みと同じ1mmとした。   The pressure plate 41 is provided with a terminal hole for taking out an external terminal and a recess for storing the terminal plate. The depth of this recess was 1 mm, which is the same as the thickness of the terminal board 13.

接着面を260℃で10秒間加熱して、加圧板41とガスケット42、ガスケット同士を融着し、10個の単セルを積層・固定した。その際、端子板13と単セルの間、単セル間には黒鉛シート16を介在させた。   The adhesive surface was heated at 260 ° C. for 10 seconds, the pressure plate 41, the gasket 42, and the gaskets were fused together, and 10 single cells were laminated and fixed. At that time, a graphite sheet 16 was interposed between the terminal plate 13 and the single cell, and between the single cells.

その後、各単セルへ、ガスケットに設けた電解液注入用の穴から20wt%硫酸水溶液の注入を行い目的とする電池を得た。電解液の注入に際しては減圧加圧含浸処理を1回行った。得られた電池の評価結果を表1に示す。   Thereafter, a 20 wt% sulfuric acid aqueous solution was injected into each single cell from an electrolytic solution injection hole provided in the gasket to obtain a target battery. At the time of injection of the electrolytic solution, the pressure and pressure impregnation treatment was performed once. The evaluation results of the obtained battery are shown in Table 1.

〔実施例8〕
電解液の注入に際して減圧加圧含浸処理を5回行った以外は、実施例7と同様にして電池を作製した。得られた電池の評価結果を表1に示す。
Example 8
A battery was fabricated in the same manner as in Example 7 except that the pressure-impregnation impregnation treatment was performed five times when the electrolyte solution was injected. The evaluation results of the obtained battery are shown in Table 1.

〔比較例1〕
予め電解液を含浸させた以外は、実施例1と同様な構成を有する単セル10個を用意した。集電体とガスケットの加硫接着は、120℃、2.94×105Pa(3.0kgf/cm2)の圧力下で5秒間行った。
[Comparative Example 1]
Ten unit cells having the same configuration as in Example 1 were prepared except that the electrolyte solution was impregnated in advance. Vulcanization adhesion between the current collector and the gasket was performed at 120 ° C. and a pressure of 2.94 × 10 5 Pa (3.0 kgf / cm 2 ) for 5 seconds.

得られた単セルを10個積層した積層セル12を形成した。そして、図8に示すように、この積層セル12の両側を端子板13を介して、アルマイト処理したアルミ板からなる加圧板81で挟み、引っ張り圧縮試験機を用いて所定圧力まで加圧した後、4隅をボルト82とナット83で固定し、電池を得た。得られた電池の評価結果を表1に示す。   A laminated cell 12 in which 10 obtained single cells were laminated was formed. Then, as shown in FIG. 8, after sandwiching both sides of this laminated cell 12 with a pressure plate 81 made of an anodized aluminum plate via a terminal plate 13, and pressurizing to a predetermined pressure using a tensile compression tester The four corners were fixed with bolts 82 and nuts 83 to obtain a battery. The evaluation results of the obtained battery are shown in Table 1.

〔比較例2〕
比較例1と同様にして積層セル12を用意し、この積層セル12の両側を端子箔で挟み、この積層セルと端子箔をラミネートフィルムで覆い、減圧封止した。端子箔には、アルミ箔を用い、ラミネートフィルムには、ポリエチレン/アルミニウム/ポリプロピレンの三層構造の厚み100μmのフィルムを用いた。得られた電池の評価結果を表1に示す。
[Comparative Example 2]
A laminated cell 12 was prepared in the same manner as in Comparative Example 1, both sides of the laminated cell 12 were sandwiched between terminal foils, the laminated cell and the terminal foil were covered with a laminated film, and sealed under reduced pressure. An aluminum foil was used as the terminal foil, and a film having a thickness of 100 μm and a three-layer structure of polyethylene / aluminum / polypropylene was used as the laminate film. The evaluation results of the obtained battery are shown in Table 1.

Figure 2005276516
Figure 2005276516

本発明の第一実施形態の一例の説明図Explanatory drawing of an example of 1st embodiment of this invention 本発明の第一実施形態の他の例の説明図Explanatory drawing of the other example of 1st embodiment of this invention 本発明の第二実施形態の説明図Explanatory drawing of 2nd embodiment of this invention 本発明の第三実施形態の説明図Explanatory drawing of 3rd embodiment of this invention 電解液含浸前後のセルの厚みの変化量を示すグラフGraph showing the amount of change in cell thickness before and after impregnation with electrolyte 圧力と等価直列抵抗(ESR)及びセル圧縮変位量との関係を示すグラフGraph showing the relationship between pressure, equivalent series resistance (ESR), and cell compression displacement プロトン伝導型電池を構成する単セルの断面図Cross-sectional view of a single cell constituting a proton conducting battery 従来のプロトン伝導型電池の外装構造の説明図Explanatory drawing of the exterior structure of a conventional proton conducting battery

符号の説明Explanation of symbols

11 箱形プラスチックケース
12 積層セル
13 端子板
14 上蓋
15 電解液注入用突起穴
16 黒鉛シート
21 角筒形プラスチックケース
31 コの字形プラスチックケース
32 蓋
41 プラスチック製加圧板
42 プラスチック製ガスケット
71 正極
72 負極
73 集電体
74 セパレータ
81 加圧板
82 ボルト
83 ナット
DESCRIPTION OF SYMBOLS 11 Box-shaped plastic case 12 Stack cell 13 Terminal board 14 Upper cover 15 Protrusion hole 16 for electrolyte injection 16 Graphite sheet 21 Square cylindrical plastic case 31 U-shaped plastic case 32 Lid 41 Plastic pressure plate 42 Plastic gasket 71 Positive electrode 72 Negative electrode 73 Current collector 74 Separator 81 Pressure plate 82 Bolt 83 Nut

Claims (9)

プロトン伝導型化合物を電極活物質として含有する正極と、プロトン伝導型化合物を電極活物質として含有する負極と、これらの電極に含浸された電解液と、これらの電極に挟まれたセパレータと、正極集電体と、負極集電体とで少なくとも構成される単セルを含む積層体、及びこの積層体を収容する収容部材を有する二次電池であって、
前記収容部材の、前記積層体の一方の端面と対向する第1平面部と、当該積層体の他方の端面と対向する第2平面部との当該積層体の厚さ方向の内壁間隔が、電解液含浸前の非加圧状態での当該積層体の厚さ以上であり、電解液含浸後の非加圧状態での当該積層体の厚さより小さいことを特徴とする二次電池。
A positive electrode containing a proton conductive compound as an electrode active material, a negative electrode containing a proton conductive compound as an electrode active material, an electrolytic solution impregnated in these electrodes, a separator sandwiched between these electrodes, and a positive electrode A laminated body including a single cell composed of at least a current collector and a negative electrode current collector, and a secondary battery having a housing member for housing the laminated body,
The inner wall spacing in the thickness direction of the laminate between the first flat portion facing the one end face of the laminate and the second flat portion facing the other end face of the laminate is the electrolytic member. A secondary battery characterized in that it is equal to or greater than the thickness of the laminate in a non-pressurized state before liquid impregnation and smaller than the thickness of the laminate in a non-pressurized state after impregnation with an electrolytic solution.
第1平面部と第2平面部との内壁間隔は、当該内壁間隔と電解液含浸前の非加圧状態での前記積層体の厚さとの差が、電解液含浸前の当該厚さと電解液含浸後の非加圧状態での当該積層体の厚さとの差の30%以下となる間隔である請求項1に記載の二次電池。   The difference between the inner wall distance between the first plane part and the second plane part is the difference between the inner wall distance and the thickness of the laminate in the non-pressurized state before the electrolyte solution impregnation. The secondary battery according to claim 1, wherein the interval is 30% or less of the difference from the thickness of the laminate in the non-pressurized state after impregnation. 前記正極は前記正極集電体と別体であり、前記負極は前記負極集電体と別体である請求項1又は2に記載の二次電池。   The secondary battery according to claim 1, wherein the positive electrode is separate from the positive electrode current collector, and the negative electrode is separate from the negative electrode current collector. 前記収容部材は、硬質プラスチックで形成され、当該収容部材に収容された前記単セルへ電解液が注入できるように開口部を有している請求項1、2又は3に記載の二次電池。   The secondary battery according to claim 1, wherein the housing member is formed of a hard plastic and has an opening so that an electrolyte can be injected into the single cell housed in the housing member. 第1及び第2平面部は前記収容部材の本体と一体に形成されている請求項1〜4のいずれか一項に記載の二次電池。   The secondary battery according to claim 1, wherein the first and second flat portions are formed integrally with a main body of the housing member. 第1及び第2平面部の一方が前記収容部材の本体と一体に形成され、他方が当該収容部材の本体に接着されている請求項4に記載の二次電池。   The secondary battery according to claim 4, wherein one of the first and second flat portions is formed integrally with the main body of the housing member, and the other is bonded to the main body of the housing member. 前記単セルは、さらにガスケットを有し、当該ガスケットと前記正極集電体と前記負極集電体とで封止されている請求項1〜6のいずれか1項に記載の二次電池。   The secondary cell according to claim 1, wherein the single cell further includes a gasket and is sealed with the gasket, the positive electrode current collector, and the negative electrode current collector. 前記単セルは、さらに硬質プラスチックからなるガスケットを有し、当該ガスケットと前記正極集電体と前記負極集電体とで封止され、当該ガスケット、硬質プラスチックからなる第1平面部および第2平面部で前記収容部材が構成されている請求項1〜6のいずれか1項に記載の二次電池。   The single cell further includes a gasket made of hard plastic, which is sealed with the gasket, the positive electrode current collector, and the negative electrode current collector, and the gasket, the first flat portion and the second flat surface made of hard plastic. The secondary battery according to claim 1, wherein the housing member is configured by a portion. 請求項1〜8のいずれか一項に記載の二次電池の製造方法であって、
電解液が含浸されてない前記単セルを含む積層体を形成する工程と
前記積層体が前記収容部材に収容され、当該収容部材において第1平面部と第2平面部の間隔が固定された状態において、前記積層体の一方の端面が第1平面部に圧接し、他方の端面が第2平面部に圧接するように、前記単セルに電解液を注入する工程を有する二次電池の製造方法。


A method for producing a secondary battery according to any one of claims 1 to 8,
A step of forming a laminated body including the single cells not impregnated with an electrolyte; and the laminated body is accommodated in the accommodating member, and a distance between the first planar portion and the second planar portion is fixed in the accommodating member. The method of manufacturing a secondary battery comprising the step of injecting an electrolyte into the single cell so that one end face of the laminate is in pressure contact with the first plane portion and the other end face is in pressure contact with the second plane portion. .


JP2004085373A 2004-03-23 2004-03-23 Secondary battery and its manufacturing method Pending JP2005276516A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004085373A JP2005276516A (en) 2004-03-23 2004-03-23 Secondary battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004085373A JP2005276516A (en) 2004-03-23 2004-03-23 Secondary battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005276516A true JP2005276516A (en) 2005-10-06

Family

ID=35175964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004085373A Pending JP2005276516A (en) 2004-03-23 2004-03-23 Secondary battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005276516A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008159570A (en) * 2006-11-30 2008-07-10 Nissan Motor Co Ltd Bipolar battery and packed battery
JP2009529217A (en) * 2006-03-06 2009-08-13 エルジー・ケム・リミテッド Medium or large battery module

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134984A (en) * 1993-11-10 1995-05-23 Sony Corp Cylindrical nonaqueous electrolyte secondary battery
JPH11288739A (en) * 1998-03-31 1999-10-19 Toyota Motor Corp Manufacture for lithium ion secondary battery
JP2000164245A (en) * 1998-11-27 2000-06-16 Shin Kobe Electric Mach Co Ltd Lead storage battery and its manufacture
JP2002134162A (en) * 2000-10-25 2002-05-10 Nec Corp Polymer battery
JP2002141105A (en) * 2000-11-02 2002-05-17 Nec Corp Proton conductive polymer secondary battery
JP2002151141A (en) * 2000-11-13 2002-05-24 Nec Corp Proton conduction polymer secondary battery
JP2002373633A (en) * 2001-06-18 2002-12-26 Shin Kobe Electric Mach Co Ltd Battery pack
JP2003272710A (en) * 2002-03-18 2003-09-26 Osaka Gas Co Ltd Nonaqueous secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134984A (en) * 1993-11-10 1995-05-23 Sony Corp Cylindrical nonaqueous electrolyte secondary battery
JPH11288739A (en) * 1998-03-31 1999-10-19 Toyota Motor Corp Manufacture for lithium ion secondary battery
JP2000164245A (en) * 1998-11-27 2000-06-16 Shin Kobe Electric Mach Co Ltd Lead storage battery and its manufacture
JP2002134162A (en) * 2000-10-25 2002-05-10 Nec Corp Polymer battery
JP2002141105A (en) * 2000-11-02 2002-05-17 Nec Corp Proton conductive polymer secondary battery
JP2002151141A (en) * 2000-11-13 2002-05-24 Nec Corp Proton conduction polymer secondary battery
JP2002373633A (en) * 2001-06-18 2002-12-26 Shin Kobe Electric Mach Co Ltd Battery pack
JP2003272710A (en) * 2002-03-18 2003-09-26 Osaka Gas Co Ltd Nonaqueous secondary battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529217A (en) * 2006-03-06 2009-08-13 エルジー・ケム・リミテッド Medium or large battery module
JP2008159570A (en) * 2006-11-30 2008-07-10 Nissan Motor Co Ltd Bipolar battery and packed battery

Similar Documents

Publication Publication Date Title
US7468222B2 (en) Electrochemical device
KR100874199B1 (en) Power storage device and manufacturing method of power storage device
TWI496335B (en) Battery cell of stair-like structure
EP1744393B1 (en) Improvements in or relating to batteries
US8815426B2 (en) Prismatic sealed secondary cell and method of manufacturing the same
US8574736B2 (en) Hybrid-typed electrode assembly of capacitor-battery structure
JP5261029B2 (en) Square battery
WO1997041611A1 (en) Electrochemical cell having a multi-layered polymer electrolyte
KR100497560B1 (en) Battery and electric double layer capacitor
JP2004266091A (en) Film type storage device
KR20040098546A (en) Electrochemical Cell Stack
JP2008097991A (en) Electric storage device
US7198654B1 (en) Separator sheet and method for manufacturing electric double layer capacitor using the same
KR20180025805A (en) Pressing jig and method of fabricating secondary battery using the same
JP2001167744A (en) Lithium secondary battery and method for fabricating the same
JP2993069B2 (en) Sealed battery pack
JP2006236937A (en) Energy storage device
JP2003197474A (en) Energy device and manufacturing method therefor
US20110188169A1 (en) Electric double layer capacitor cell, electric double layer capacitor package having the same, and methods of manufacturing the same
JP2008244378A (en) Capacitor device
JP2005100926A (en) Electrochemical cell laminate
JP2005276516A (en) Secondary battery and its manufacturing method
JP2004319097A (en) Electrochemical cell
KR20100128102A (en) Supercapacitor and manufacture method of the same
JPH11121040A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080305