JP2005274465A - Timepiece exterior component and its manufacturing method - Google Patents

Timepiece exterior component and its manufacturing method Download PDF

Info

Publication number
JP2005274465A
JP2005274465A JP2004090776A JP2004090776A JP2005274465A JP 2005274465 A JP2005274465 A JP 2005274465A JP 2004090776 A JP2004090776 A JP 2004090776A JP 2004090776 A JP2004090776 A JP 2004090776A JP 2005274465 A JP2005274465 A JP 2005274465A
Authority
JP
Japan
Prior art keywords
alloy
hardened layer
watch
mainly composed
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004090776A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Shibuya
義継 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Citizen Watch Co Ltd
Original Assignee
Citizen Watch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Citizen Watch Co Ltd filed Critical Citizen Watch Co Ltd
Priority to JP2004090776A priority Critical patent/JP2005274465A/en
Publication of JP2005274465A publication Critical patent/JP2005274465A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a timepiece exterior component having high hardness not generating a flaw caused by impact and generating no corrosion, and its manufacturing method, concerning the timepiece exterior component comprising a material such as stainless steel, Ti or a Ti alloy, or brass. <P>SOLUTION: In this method, a procedure for forming a hardened layer mainly composed of an amorphous alloy by evaporating an optional element in inert gas plasma, or a procedure for forming a hardened layer mainly composed of an amorphous alloy by evaporating an optional metal component element in gas plasma including inert gas and a semimetal component element is applied onto the surface of the timepiece exterior component. To put it concretely, the hardened layer mainly composed of an amorphous alloy including Au and at least either element of Si and Ge is formed, or the hardened layer mainly composed of an amorphous alloy including Au, at least either element of Si and Ge, and at least one or more kinds of elements among Ag, Cu, Ni, Pd and Pt is formed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ステンレス、TiまたはTi合金、黄銅などからなる材料表面に硬化層を形成した時計外装部品その製造方法に関するものである。   The present invention relates to a watch exterior part having a hardened layer formed on the surface of a material made of stainless steel, Ti or Ti alloy, brass or the like, and a method for producing the same.

時計バンド、時計ケース、時計ベゼルなどの時計外装部品には、部品加工が容易な材料であるステンレス、TiまたはTi合金、黄銅などが広く採用されている。しかしながらこれらの材料を加工した時計外装部品は使用中のキズ発生などによる外観品質の低下が大きな問題として指摘されている。これは主に材料自身の表面硬度がビッカース硬度でHv=200程度の低硬度であることに起因するものであり、解決を目指して種々の表面硬化処理が試みられている。   Stainless steel, Ti or Ti alloy, brass, etc., which are materials that can be easily processed, are widely used for watch exterior parts such as watch bands, watch cases, and watch bezels. However, it has been pointed out that deterioration of the appearance quality due to scratches during use of watch exterior parts processed from these materials is a major problem. This is mainly due to the fact that the surface hardness of the material itself is a Vickers hardness and a low hardness of about Hv = 200, and various surface hardening treatments have been attempted with the aim of solving the problem.

また上記、時計バンド、時計ケース、時計ベゼルなどの時計外装部品には高い装飾性能・外観品質が要求され、特に高級感のある金色色調を確保した表面硬化処理技術が種々試みられている。   In addition, high decorative performance and appearance quality are required for the watch exterior parts such as the watch band, the watch case, and the watch bezel, and various surface hardening treatment techniques that ensure a high-quality golden color tone have been tried.

ステンレス、TiまたはTi合金、黄銅などの材料からなる時計外装部品の表面に簡便に被膜を被覆形成する方法として湿式メッキが広く採用され。とくに時計外装部品に対してはNiメッキ、Ni−Pメッキ、Ni−Pdメッキ、Au−Pdメッキなどが広く行われているが、いずれのメッキ被膜も軟らかく使用中の傷が解消するまでには至っていない。またこれらメッキ被膜の色調は金色色調ではなく金属色調であるため高級質感に劣る欠点がある。   Wet plating is widely adopted as a method for easily forming a coating on the surface of a watch exterior part made of a material such as stainless steel, Ti or Ti alloy, or brass. In particular, Ni plating, Ni-P plating, Ni-Pd plating, Au-Pd plating, etc. are widely applied to watch exterior parts, but any plating film is soft so that scratches during use can be resolved. Not reached. Further, since the color tone of these plating films is not a gold color tone but a metal color tone, there is a disadvantage that it is inferior to a high quality texture.

希土類元素の内少なくとも1種を1〜12原子%、SiおよびGeの内少なくとも1種を8〜30原子%を含有し、残部がAuおよび不可避不純物からなる組成を有し、物質構造の中に少なくともアモルファス相を有することを特徴とする高硬度金合金が提案されている(例えば特許文献1参照)が、この合金の耐蝕性に関することについては一切言及されていない。筆者らが耐蝕性に関する追試験を行ったところ、CASS試験液に1時間浸漬後に腐食が発生してしまい。耐蝕性が劣る合金しか得ることができなかった。   It contains 1 to 12 atomic percent of at least one rare earth element, 8 to 30 atomic percent of at least one of Si and Ge, and the balance is composed of Au and inevitable impurities. A high-hardness gold alloy characterized by having at least an amorphous phase has been proposed (see, for example, Patent Document 1), but nothing is said about the corrosion resistance of this alloy. When the authors conducted a follow-up test on corrosion resistance, corrosion occurred after immersion in the CASS test solution for 1 hour. Only alloys with poor corrosion resistance could be obtained.

ステンレス、AlまたはAl合金、TiまたはTi合金、黄銅などの材料からなる時計バンド、時計ケース、時計ベゼルなどの時計外装部品を硬化する方法としてはイオン注入、イオン窒化、ガス窒化、浸炭などが知られているが、いずれの場合も硬化処理時間が長く生産性に難点があることや処理温度が高いため、時計外装部品の結晶粒が粗大化して表面粗れが発生し外観品質が大幅に低下する。特に表面粗れの問題は深刻で、鏡面研磨処理を施した時計外装部品に対してガス窒化処理や浸炭処理した場合、処理後の時計外装部品表面の結晶粒は粗大化し200〜300μmの表面粗れが発生し鏡面が消失してしまい、後研磨加工を施しても浸炭処理前の鏡面状態を回復することができなくなり、外観品質の顕著な低下、劣化を引き起こす。   Known methods for curing watch exterior parts such as watch bands, watch cases, watch bezels made of stainless steel, Al or Al alloys, Ti or Ti alloys, brass, etc. include ion implantation, ion nitriding, gas nitriding, and carburizing. In all cases, however, the curing time is long and the productivity is difficult, and the processing temperature is high, so the crystal grains of the watch exterior parts become coarse, resulting in surface roughness and a significant reduction in appearance quality. To do. In particular, the problem of surface roughness is serious. When a gas nitriding treatment or carburizing treatment is applied to a watch exterior part that has been subjected to mirror polishing, the crystal grains on the surface of the watch exterior part after the treatment become coarse and have a surface roughness of 200 to 300 μm. This occurs and the mirror surface disappears, and even if post-polishing is performed, the mirror surface state before the carburizing process cannot be recovered, and the appearance quality is significantly lowered and deteriorated.

特開平9−256121号公報(請求項1)JP-A-9-256121 (Claim 1)

本発明の目的は、ステンレス、TiまたはTi合金、黄銅などの材料からなる時計外装部品に対し、衝撃によるキズを発生せず高硬度で、腐蝕が発生しない時計外装部品とその
製造方法を提供することにある。
An object of the present invention is to provide a watch exterior part that does not generate scratches due to impact and does not cause corrosion, and a method for manufacturing the same, for a watch exterior part made of materials such as stainless steel, Ti or Ti alloy, and brass. There is.

本発明において上記課題を解決するために種々の表面処理を検討した結果、ステンレス鋼、TiおよびTi合金、黄銅などの材料からなる基材の表面にアモルファス合金を主体とする硬化層を形成させることにより、衝撃によるキズを発生させず、また腐蝕が発生しない高硬度で高耐蝕性の時計外装部品が達成される。   As a result of examining various surface treatments in order to solve the above-mentioned problems in the present invention, a hardened layer mainly composed of an amorphous alloy is formed on the surface of a base material made of a material such as stainless steel, Ti and Ti alloy, or brass. As a result, a high-hardness and high corrosion-resistant watch exterior part that does not generate scratches due to impact and does not generate corrosion is achieved.

アモルファス合金を主体とする硬化層の構造と製造方法を種々検討した結果、以下に記す2通りの手法を採用することにより、アモルファス合金を主体とする硬化層を効果的に形成させることを見出した。   As a result of various studies on the structure and manufacturing method of a hardened layer mainly composed of an amorphous alloy, it was found that a hardened layer mainly composed of an amorphous alloy can be effectively formed by adopting the following two methods. .

具体的には、ステンレス、TiまたはTi合金、黄銅などの材料からなる時計外装部品の表面に、AuにSiまたはGeのうちから少なくとも一方の元素を含有したアモルファス合金を主体とする硬化層あるいは、AuにSiまたはGeのうちから少なくとも一方の元素とAg、Cu、Ni、PdまたはPtのうちから少なくとも1種類以上の元素を含有したアモルファス合金を主体とする硬化層を形成させることである。   Specifically, on the surface of a watch exterior part made of a material such as stainless steel, Ti or Ti alloy, brass, a hardened layer mainly composed of an amorphous alloy containing at least one element of Si or Ge in Au, or It is to form a hardened layer mainly composed of an amorphous alloy containing at least one element of Si or Ge and at least one element of Ag, Cu, Ni, Pd, or Pt on Au.

アモルファス合金を主体とする硬化層を有する時計外装部品の製造方法は、任意の不活性ガスプラズマ雰囲気中で任意の元素を蒸発させてアモルファス合金を主体とする硬化層を形成させる手法、または任意の不活性ガスと任意の半金属成分元素を含むガスプラズマ中で任意の金属成分元素を蒸発させてアモルファス合金を主体とする硬化層を形成させる手法をとることである。   A method for manufacturing a watch exterior part having a hardened layer mainly composed of an amorphous alloy is a method of forming a hardened layer mainly composed of an amorphous alloy by evaporating an arbitrary element in an arbitrary inert gas plasma atmosphere, or an arbitrary method The method is to form a hardened layer mainly composed of an amorphous alloy by evaporating an arbitrary metal component element in a gas plasma containing an inert gas and an optional metalloid component element.

時計外装部品の表面にAu−Si合金、Au−Ni−Si合金、Au−Pd−Si合金、Au−Pt−Si合金、Au−Cu−Ni−Si合金、Au−Ag−Pt−Si合金、Au−Cu−Pt−Si合金、Au−Ag−Pd−Si合金、Au−Cu−Pd−Si合金、Au−Pd−Pt−Si合金、Au−Ni−Pd−Pt−Si合金、Au−Ni−Pd−Si合金、Au−Ni−Pt−Si合金、Au−Ge合金、Au−Ni−Ge合金、Au−Pd−Ge合金、Au−Pt−Ge合金、Au−Ag−Ni−Ge合金、Au−Cu−Ni−Ge合金、Au−Ag−Pt−Ge合金、Au−Cu−Pt−Ge合金、Au−Ag−Pd−Ge合金、Au−Cu−Pd−Ge合金、Au−Pd−Pt−Ge合金、Au−Ni−Pd−Pt−Ge合金、Au−Ni−Pd−Ge合金、Au−Ni−Pt−Ge合金を主成分とするアモルファス合金を主体とする硬化層を形成させることが好ましい。   Au-Si alloy, Au-Ni-Si alloy, Au-Pd-Si alloy, Au-Pt-Si alloy, Au-Cu-Ni-Si alloy, Au-Ag-Pt-Si alloy on the surface of the watch exterior part, Au-Cu-Pt-Si alloy, Au-Ag-Pd-Si alloy, Au-Cu-Pd-Si alloy, Au-Pd-Pt-Si alloy, Au-Ni-Pd-Pt-Si alloy, Au-Ni -Pd-Si alloy, Au-Ni-Pt-Si alloy, Au-Ge alloy, Au-Ni-Ge alloy, Au-Pd-Ge alloy, Au-Pt-Ge alloy, Au-Ag-Ni-Ge alloy, Au-Cu-Ni-Ge alloy, Au-Ag-Pt-Ge alloy, Au-Cu-Pt-Ge alloy, Au-Ag-Pd-Ge alloy, Au-Cu-Pd-Ge alloy, Au-Pd-Pt -Ge alloy, Au-Ni-Pd-Pt-Ge Gold, Au-Ni-Pd-Ge alloy, thereby forming a cured layer mainly composed of amorphous alloy mainly composed of Au-Ni-Pt-Ge alloy.

(作用)
アモルファス合金を主体とする硬化層は各種あるが、その特徴はいずれも酸やアルカリに対して長時間の浸漬でも腐蝕が全く発生せず、機械的強度が高いことである。さらに、アモルファス合金の持つ特徴として高鏡面性が挙げられ、下地である基材にあらかじめ研磨処理を施しておけばアモルファス合金を主体とする硬化層の形成後も高鏡面性が保持されるため装飾性が高められる。また材料とアモルファス合金を主体とする硬化層との間の密着は良好で剥離が発生することはない。本発明はこれらの特徴を活かして上記課題を解決させたものである。
(Function)
There are various types of hardened layers mainly composed of amorphous alloys, all of which are characterized in that no corrosion occurs even when immersed for a long time in acid or alkali, and mechanical strength is high. In addition, high specularity can be mentioned as a characteristic of amorphous alloys. If the base material that is the base is polished in advance, high specularity is maintained even after the hardened layer mainly composed of amorphous alloy is formed. Sexuality is enhanced. Further, the adhesion between the material and the hardened layer mainly composed of the amorphous alloy is good, and peeling does not occur. The present invention solves the above problems by utilizing these characteristics.

Niを含有したアモルファス合金を主体とする硬化層を時計ケースに形成した場合、Niは軟磁性を示すので磁化させなければ耐磁性構造が付加される。つまり時計ケースにアモルファス合金を主体とする硬化層を形成した場合、高硬度、高耐蝕性、高鏡面性に加えて新たな機能として耐磁性が付与されるため、従来は時計モジュ−ル内部に配設されていた耐磁板が不要となるというメリットがある。   When a hardened layer mainly composed of an amorphous alloy containing Ni is formed on the watch case, Ni exhibits soft magnetism, and therefore a magnetic resistance structure is added unless magnetized. In other words, when a hardened layer mainly composed of an amorphous alloy is formed on the watch case, magnetic resistance is added as a new function in addition to high hardness, high corrosion resistance, and high specularity. There is an advantage that the magnetic-resistant plate which was arrange | positioned becomes unnecessary.

以上述べてきたように本発明によれば、ステンレス、TiおよびTi合金、黄銅などの材料からなる時計外装部品の表面にアモルファス合金を主体とする硬化層を形成させることにより、衝撃によるキズを発生させず、また腐蝕が発生しない高硬度で高耐蝕性の時計外装部品が得られる。また本発明によって得られた時計外装部品は予め鏡面研磨加工処理を施してあればアモルファス合金を主体とする硬化層の被覆形成後も鏡面が維持されるので装飾性能が高く、またアモルファス合金組成によっては耐磁性が付加されるため実用域の時計外装部品の提供が可能となるなど、時計外装部品として格別の効果がある。   As described above, according to the present invention, scratches due to impact are generated by forming a hardened layer mainly composed of an amorphous alloy on the surface of a watch exterior part made of materials such as stainless steel, Ti and Ti alloy, and brass. Thus, it is possible to obtain a high-hardness and high corrosion-resistant watch exterior part that does not cause corrosion and does not occur. Moreover, the watch exterior parts obtained by the present invention have high decorative performance because the mirror surface is maintained even after the coating of the hardened layer mainly composed of an amorphous alloy if the mirror polishing process is performed in advance. Has an extraordinary effect as a watch exterior part.

ステンレス、TiまたはTi合金、黄銅などからなる基材を各種の部品形状に加工した後、任意の不活性ガスプラズマ雰囲気中で任意の元素を蒸発させてアモルファス合金を主体とする硬化層を形成させる手法、または任意の不活性ガスと任意の半金属成分元素を含むガスプラズマ中で任意の金属成分元素を蒸発させてアモルファス合金を主体とする硬化層を形成させる工程を経る手法で、アモルファス合金を主体とする硬化層を形成させた。本発明の詳細を以下の実施例で説明する。   After processing a base material made of stainless steel, Ti or Ti alloy, brass or the like into various component shapes, an arbitrary element is evaporated in an arbitrary inert gas plasma atmosphere to form a hardened layer mainly composed of an amorphous alloy. An amorphous alloy is formed by a method or a method of forming a hardened layer mainly composed of an amorphous alloy by evaporating an arbitrary metal component element in a gas plasma containing an arbitrary inert gas and an optional metalloid component element. A main hardened layer was formed. Details of the invention are illustrated in the following examples.

(第1の実施形態)
本実施形態は任意の不活性ガスプラズマ雰囲気中で任意の元素を蒸発させて、基材表面に任意の組成のアモルファス合金を主体とする硬化層を形成させる手法を採用した。
(First embodiment)
The present embodiment employs a technique of evaporating an arbitrary element in an arbitrary inert gas plasma atmosphere to form a hardened layer mainly composed of an amorphous alloy having an arbitrary composition on the surface of the substrate.

(実施例1−10)
図面を参照して本発明の第1の実施形態を説明する。図1は時計外装部品である時計ケース2の断面模式図である。時計ケース2を真空装置内に配置し、真空装置内を真空排気した後にArガスを導入してArガスプラズマを発生させ圧力を0.35Paに保ったArガスプラズマ雰囲気中で、Auタ−ゲットにSi、Ni、Pd、Ptなどのチップを載せ任意の合金組成としたタ−ゲットを使用し、DCスパッタ法により時計ケースの表面にアモルファス合金を主体とする硬化層4を形成させた。またこの他にも、時計ケース以外の時計外装部品として時計ケースを使用した。時計外装部品の基材材質にはTi、Ti合金、黄銅、ステンレスとしてSUS304およびSUS316Lを使用した。
(Example 1-10)
A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic sectional view of a watch case 2 which is a watch exterior part. The watch case 2 is placed in a vacuum device, and after evacuating the vacuum device, Ar gas is introduced to generate Ar gas plasma, and the pressure is maintained at 0.35 Pa. A hard layer 4 mainly composed of an amorphous alloy was formed on the surface of the watch case by a DC sputtering method using a target having an alloy composition with a chip of Si, Ni, Pd, Pt or the like. In addition, a watch case was used as a watch exterior part other than the watch case. SUS304 and SUS316L were used as the base material of the watch exterior part as Ti, Ti alloy, brass, and stainless steel.

(比較例1−3)
本発明の実施形態の比較例1−3としてTi合金、黄銅、SUS304の基材材質からなる時計ケースの表面にNi−P膜を湿式メッキ法により形成させた。
(Comparative Example 1-3)
As Comparative Example 1-3 of the embodiment of the present invention, a Ni—P film was formed on the surface of a watch case made of a base material of Ti alloy, brass, and SUS304 by a wet plating method.

第1の実施形態の実施例1−10、比較例1−3で得られたTi、Ti合金、黄銅、SUS304、SUS316Lの基材材質からなる時計バンド、時計ケースの結晶性試験、硬度試験、密着性試験、耐蝕性試験の結果および総合評価結果を表1に示す。   A watch band made of the base material of Ti, Ti alloy, brass, SUS304, SUS316L obtained in Examples 1-10 and Comparative Example 1-3 of the first embodiment, a crystallinity test of a watch case, a hardness test, Table 1 shows the results of the adhesion test, the corrosion resistance test, and the comprehensive evaluation results.

アモルファス合金を主体とする硬化層の組成はEPMA(X線マイクロアナリシス)分析を行い特定した。結晶性試験はX線回折(θ−2θ法)により測定を行いアモルファス合金特有のブロードなピークを示したものをアモルファス合金として合格とし、結晶ピークが観察されたものは結晶質と判定し不合格とした。硬度試験はマイクロビッカース硬度計により測定し、荷重5mNでビッカース硬度Hv=500以上を合格とした。密着性試験は引っかき試験を行い、剥離開始荷重を測定し剥離開始荷重400gf以上を合格とした。耐蝕性試験はCASS試験溶液に48時間浸漬を行い腐蝕が全く発生しないものを合格とした。これら4項目を全てに合格したものを総合評価結果で合格とした。   The composition of the hardened layer mainly composed of an amorphous alloy was specified by EPMA (X-ray microanalysis) analysis. The crystallinity test is measured by X-ray diffraction (θ-2θ method), and the one showing a broad peak peculiar to the amorphous alloy is accepted as an amorphous alloy, and the one where the crystal peak is observed is judged as crystalline and rejected. It was. The hardness test was measured with a micro Vickers hardness meter, and a Vickers hardness Hv = 500 or more was accepted at a load of 5 mN. In the adhesion test, a scratch test was performed, the peel start load was measured, and a peel start load of 400 gf or more was accepted. In the corrosion resistance test, the sample was dipped in a CASS test solution for 48 hours, and no corrosion occurred at all. Those that passed all these four items were regarded as acceptable in the comprehensive evaluation results.

Figure 2005274465
Figure 2005274465

表1に示すように、Ti、Ti合金、黄銅、SUS304、SUS316Lの基材材質からなる時計外装部品の表面にはAu−Si合金、Au−Ni−Si合金、Au−Pd−Si合金、Au−Pt−Si合金からなる10組成の硬化層を形成した。EPMA分析により硬化層組成を特定した。これら実施例1−10の全てが、X線回折の結果から結晶性はアモルファス特有のブロードなピークを示し(X線回折のピ−クは図示しない)アモルファス相で合格であった。硬度試験ではビッカ−ス硬度がHv=560以上で合格、密着
性試験では引っかき試験による剥離開始荷重が430gf以上で合格、耐蝕性試験でもCASS試験後に腐蝕は発生せず合格、従って総合評価結果では実施例1−10の全てが合格であった。
As shown in Table 1, on the surface of a watch exterior part made of a base material of Ti, Ti alloy, brass, SUS304, SUS316L, Au—Si alloy, Au—Ni—Si alloy, Au—Pd—Si alloy, Au A 10-composition cured layer made of a -Pt-Si alloy was formed. The cured layer composition was identified by EPMA analysis. As a result of X-ray diffraction, all of Examples 1-10 showed a broad peak peculiar to amorphous from the result of X-ray diffraction (the peak of X-ray diffraction was not shown) and passed the amorphous phase. Hardness test passed with Vickers hardness of Hv = 560 or higher, adhesion test passed with peeling start load by scratch test of 430 gf or higher, and corrosion resistance test passed with no corrosion after CASS test. All of Examples 1-10 passed.

これらに対し比較例1−3のTi合金、黄銅、SUS304の基材材質からなる時計ケースの表面にNi−P膜を湿式メッキ法により被覆形成したものは、硬度試験ではビッカース硬度がHv=310以下で不合格、密着性試験では剥離開始荷重が210gf以下で不合格である。耐蝕性試験では黄銅の時計ケースの表面にNi−P膜を被覆形成したものがCASS試験後に腐蝕が発生した。結晶性試験は未実施であるが、全ての比較例で硬度試験、密着性試験が不合格あったので、総合評価結果は不合格であった。   On the other hand, the surface of the watch case made of the base material of Ti alloy, brass, and SUS304 of Comparative Example 1-3 is formed by coating the Ni-P film by a wet plating method, and the Vickers hardness is Hv = 310 in the hardness test. In the following, it is rejected, and in the adhesion test, the peeling start load is 210 gf or less, and it is rejected. In the corrosion resistance test, the surface of the brass watch case coated with a Ni-P film was corroded after the CASS test. Although the crystallinity test was not carried out, since the hardness test and the adhesion test were unacceptable in all the comparative examples, the comprehensive evaluation results were unacceptable.

(第2の実施形態)
本実施形態も第1の実施形態と同様に任意の不活性ガスプラズマ雰囲気中で任意の元素を蒸発させて、基材表面に任意の組成のアモルファス合金を主体とする硬化層を形成させる手法を採用した。
(Second Embodiment)
In the present embodiment, similarly to the first embodiment, a method of evaporating an arbitrary element in an arbitrary inert gas plasma atmosphere to form a hardened layer mainly composed of an amorphous alloy having an arbitrary composition on the surface of the substrate. Adopted.

(実施例11−30)
基材を真空装置内に配置し、真空装置内を真空排気した後にHeガスを導入してHeガスプラズマを発生させ圧力を0.35Paに保ったHeガスプラズマ雰囲気中で、Auタ−ゲットにSi、Ag、Cu、Ni、Pd、Ptなどのチップを載せ任意の合金組成としたタ−ゲットを使用し、DCスパッタ法により基材表面にアモルファス合金を主体とする硬化層を形成させた。基材材質にはTi、Ti合金、黄銅、SUS304およびSUS316Lを使用した。また時計外装部品として時計バンド、時計ケース、時計ベゼルを使用した。
(Example 11-30)
The substrate is placed in a vacuum device, and after evacuating the vacuum device, He gas is introduced to generate He gas plasma, and the pressure is maintained at 0.35 Pa. A target having an arbitrary alloy composition on which chips such as Si, Ag, Cu, Ni, Pd, and Pt were placed was used, and a hardened layer mainly composed of an amorphous alloy was formed on the surface of the substrate by DC sputtering. Ti, Ti alloy, brass, SUS304 and SUS316L were used as the base material. A watch band, watch case, and watch bezel were used as watch exterior parts.

第2の実施形態の実施例11−30で得られたTi、Ti合金、黄銅、SUS304、SUS316Lの基材材質からなる時計バンド、時計ケース、時計ベゼルの硬化層の組成、結晶性試験、硬度試験、密着性試験、耐蝕性試験の結果および総合評価結果を表2に示す。硬化層の組成、結晶性試験、硬度試験、密着性試験、耐蝕性試験および総合評価結果は全て第1の実施形態で評価した評価基準と全く同一の評価基準を採用した。   Composition, crystallinity test, hardness of hardened layer of watch band, watch case, watch bezel made of base material of Ti, Ti alloy, brass, SUS304, SUS316L obtained in Examples 11-30 of the second embodiment Table 2 shows the results of the test, the adhesion test, the corrosion resistance test, and the comprehensive evaluation results. The composition of the hardened layer, the crystallinity test, the hardness test, the adhesion test, the corrosion resistance test, and the comprehensive evaluation results were all the same evaluation criteria as the evaluation criteria evaluated in the first embodiment.

Figure 2005274465
Figure 2005274465

表2に示すようにTi、Ti合金、黄銅、SUS304、SUS316Lの基材材質からなる時計外装部品の表面にはAu−Cu−Ni−Si合金、Au−Cu−Pd−Si合金、Au−Cu−Pt−Si合金、Au−Ag−Pd−Si合金、Au−Ag−Pt−Si合金、Au−Ni−Pd−Pt−Si合金、Au−Pd−Pt−Si合金、Au−Ni−Pd−Si合金、Au−Ni−Pt−Si合金からなる20組成の硬化層を形成した。
EPMA分析により硬化層組成を特定した。これら実施例11−20の全てが、X線回折の結果から結晶性はアモルファス特有のブロードなピークを示し(X線回折のピ−クは図示しない)アモルファス相で合格であった。硬度試験ではビッカ−ス硬度がHv=550以上で合格、密着性試験では引っかき試験による剥離開始荷重が430gf以上で合格、耐蝕性試験でもCASS試験後に腐蝕は発生せず合格、従って総合評価結果では実施例11−30の全てが合格であった。
As shown in Table 2, the surface of a watch exterior part made of a base material of Ti, Ti alloy, brass, SUS304, SUS316L is Au-Cu-Ni-Si alloy, Au-Cu-Pd-Si alloy, Au-Cu. -Pt-Si alloy, Au-Ag-Pd-Si alloy, Au-Ag-Pt-Si alloy, Au-Ni-Pd-Pt-Si alloy, Au-Pd-Pt-Si alloy, Au-Ni-Pd- A 20-composition hardened layer made of a Si alloy or an Au—Ni—Pt—Si alloy was formed.
The cured layer composition was identified by EPMA analysis. As a result of X-ray diffraction, all of Examples 11-20 showed a broad peak peculiar to amorphous from the result of X-ray diffraction (X-ray diffraction peak not shown) and passed the amorphous phase. Hardness test passed with Vickers hardness of Hv = 550 or higher, adhesion test passed with peeling start load by scratch test of 430 gf or higher, and corrosion resistance test passed with no corrosion after CASS test. All of Examples 11-30 passed.

(第3の実施形態)
本実施形態は任意の不活性ガスと任意の半金属成分元素を含むガスプラズマ中で任意の金属成分元素を蒸発させてアモルファス合金を主体とする硬化層を形成させる工程を経る手法を採用した。
(Third embodiment)
In the present embodiment, a technique is adopted in which a step of evaporating an arbitrary metal component element in a gas plasma containing an arbitrary inert gas and an optional metalloid component element to form a hardened layer mainly composed of an amorphous alloy.

(実施例31−39)
基材を真空装置内に配置し、真空装置内を真空排気した後にArに対し5%のSiH4を添加した混合ガスを導入してArとSiH4の混合ガスプラズマを発生させ、圧力を0.4Paに保ったArとSiH4の混合ガスプラズマ雰囲気中で、Auタ−ゲットにNi、Pd、Ptなどのチップを載せ任意の合金組成としたタ−ゲットを使用し、DCスパッタ法により基材表面にアモルファス合金を主体とする硬化層を形成させた。基材材質にはTi、Ti合金、黄銅、SUS304およびSUS316Lを使用した。また時計外装部品として時計ケース、時計ベゼルを使用した。
(Examples 31-39)
The substrate is placed in a vacuum device, and after the vacuum device is evacuated, a mixed gas in which 5% SiH 4 is added to Ar is introduced to generate a mixed gas plasma of Ar and SiH 4 , and the pressure is set to 0. In a mixed gas plasma atmosphere of Ar and SiH 4 maintained at .4 Pa, a target having an arbitrary alloy composition by placing a chip such as Ni, Pd, Pt on an Au target is used, and a substrate is formed by DC sputtering. A hardened layer mainly composed of an amorphous alloy was formed on the material surface. Ti, Ti alloy, brass, SUS304 and SUS316L were used as the base material. A watch case and a watch bezel were used as watch exterior parts.

第3の実施形態の実施例31−39で得られたTi、Ti合金、黄銅、SUS304、SUS316Lの基材材質からなる時計ケース、時計ベゼルの硬化層の組成、結晶性試験、硬度試験、密着性試験、耐蝕性試験の結果および総合評価結果を表3に示す。硬化層の組成、結晶性試験、硬度試験、密着性試験、耐蝕性試験および総合評価結果は全て第1の実施形態で評価した評価基準と全く同一の評価基準を採用した。   Watch case made of base material of Ti, Ti alloy, brass, SUS304, SUS316L obtained in Examples 31-39 of the third embodiment, composition of hardened layer of watch bezel, crystallinity test, hardness test, adhesion Table 3 shows the results of the corrosion test, the corrosion resistance test, and the comprehensive evaluation results. The composition of the hardened layer, the crystallinity test, the hardness test, the adhesion test, the corrosion resistance test, and the comprehensive evaluation results were all the same evaluation criteria as the evaluation criteria evaluated in the first embodiment.

Figure 2005274465
Figure 2005274465

表3に示すようにTi、Ti合金、黄銅、SUS304、SUS316Lの基材材質からなる時計外装部品の表面にはAu−Ni−Si合金、Au−Pd−Si合金、Au−P
t−Si合金からなる9組成の硬化層を形成した。EPMA分析により硬化層組成を特定した。これら実施例31−39の全てが、X線回折の結果から結晶性はアモルファス特有のブロードなピークを示し(X線回折のピ−クは図示しない)アモルファス相で合格であった。硬度試験ではビッカ−ス硬度がHv=580以上で合格、密着性試験では引っかき試験による剥離開始荷重が460gf以上で合格、耐蝕性試験でもCASS試験後に腐蝕は発生せず合格、従って総合評価結果では実施例31−39の全てが合格であった。
As shown in Table 3, the surface of a watch exterior part made of a base material of Ti, Ti alloy, brass, SUS304, SUS316L is Au—Ni—Si alloy, Au—Pd—Si alloy, Au—P.
A 9-component hardened layer made of a t-Si alloy was formed. The cured layer composition was identified by EPMA analysis. As a result of X-ray diffraction, all of Examples 31-39 showed a broad peak peculiar to amorphous from the result of X-ray diffraction (X-ray diffraction peak not shown) and passed the amorphous phase. Hardness test passes with Vickers hardness of Hv = 580 or higher, adhesion test passes with peeling start load of 460 gf or higher, and corrosion resistance test passes with no corrosion after CASS test. All of Examples 31-39 passed.

(第4の実施形態)
本実施形態は第1の実施形態および第2の実施形態と同様に任意の不活性ガスプラズマ雰囲気中で任意の元素を蒸発させて、基材表面に任意の組成のアモルファス合金を主体とする硬化層を形成させる手法を採用した。
(Fourth embodiment)
In the present embodiment, similar to the first embodiment and the second embodiment, an arbitrary element is evaporated in an arbitrary inert gas plasma atmosphere, and the substrate surface is hardened mainly with an amorphous alloy having an arbitrary composition. A method of forming a layer was adopted.

(実施例40−44)
基材を真空装置内に配置し、真空装置内を真空排気した後にArガスを導入してArガスプラズマを発生させ圧力を0.4Paに保ったArガスプラズマ雰囲気中で、Auタ−ゲットにSi、Ni、Pd、Ptなどのチップを載せ任意の合金組成としたタ−ゲットを使用し、DCスパッタ法により基材表面にアモルファス合金を主体とする硬化層を形成させた。基材材質にはTi、Ti合金、黄銅、SUS304およびSUS316Lを使用した。また時計外装部品として時計ケースを使用した。その後に、時計モジュ−ル部品を組み込んで時計の完成体とした。
(Examples 40-44)
The substrate was placed in a vacuum device, and after evacuating the vacuum device, Ar gas was introduced to generate Ar gas plasma, and the pressure was kept at 0.4 Pa. A target having an arbitrary alloy composition on which chips such as Si, Ni, Pd, and Pt were placed was used, and a hardened layer mainly composed of an amorphous alloy was formed on the surface of the substrate by a DC sputtering method. Ti, Ti alloy, brass, SUS304 and SUS316L were used as the base material. A watch case was used as a watch exterior part. After that, a timepiece module part was incorporated to obtain a finished timepiece.

第4の実施形態の実施例40−44で得られたTi、Ti合金、黄銅、SUS304、SUS316Lの基材材質からなる時計ケースの硬化層の組成、結晶性試験、硬度試験、密着性試験、耐蝕性試験、耐磁性試験の結果および総合評価結果を表4に示す。硬化層の組成、結晶性試験、硬度試験、密着性試験、耐蝕性試験は全て第1の実施形態で評価した評価基準と全く同一の評価基準を採用し、耐磁性試験は60ガウスの磁場中に時計を5分間置き、時計の時針、分針、秒針のいずれもが遅れたり停止したりしない場合を合格とした。これら5項目全てを合格したものを総合評価結果で合格とした。   Composition of hardened layer of watch case made of base material of Ti, Ti alloy, brass, SUS304, SUS316L obtained in Examples 40-44 of the fourth embodiment, crystallinity test, hardness test, adhesion test, Table 4 shows the results of the corrosion resistance test, the magnetic resistance test, and the comprehensive evaluation results. The composition of the hardened layer, the crystallinity test, the hardness test, the adhesion test, and the corrosion resistance test all employ the same evaluation standards as those evaluated in the first embodiment, and the magnetic resistance test is performed in a magnetic field of 60 gauss. A watch was placed for 5 minutes, and the case where none of the hour hand, minute hand and second hand of the watch was delayed or stopped was regarded as acceptable. What passed all these 5 items was set as the pass in the comprehensive evaluation result.

Figure 2005274465
Figure 2005274465

表4に示すようにTi、Ti合金、黄銅、SUS304、SUS316Lの基材材質か
らなる時計ケースの表面にはAu−Ni−Si合金、Au−Ni−Pd−Si合金、Au−Ni−Pt−Si合金、Au−Ni−Pd−Pt−Si合金からなる5組成の硬化層を形成した。EPMA分析により硬化層組成を特定した。これら実施例40−44の全てが、X線回折の結果から結晶性はアモルファス特有のブロードなピークを示し(X線回折のピ−クは図示しない)アモルファス相で合格であった。硬度試験ではビッカ−ス硬度がHv=670以上で合格、密着性試験では引っかき試験による剥離開始荷重が550gf以上で合格、耐蝕性試験でもCASS試験後に腐蝕は発生せず合格であった。また時計モジュ−ル部品組み込み後の時計での耐磁性試験では、時計の時針、分針、秒針のいずれもが60ガウスの磁場からの影響を受けず正常に動作し合格であった。従って、総合評価結果は実施例40−44の全てが合格であった。
As shown in Table 4, the surface of the watch case made of a base material of Ti, Ti alloy, brass, SUS304, SUS316L is Au-Ni-Si alloy, Au-Ni-Pd-Si alloy, Au-Ni-Pt- A five-component hardened layer made of a Si alloy and an Au—Ni—Pd—Pt—Si alloy was formed. The cured layer composition was identified by EPMA analysis. As a result of X-ray diffraction, all of Examples 40-44 showed a broad peak peculiar to amorphous from the result of X-ray diffraction (X-ray diffraction peak not shown) and passed the amorphous phase. The hardness test passed with a Vickers hardness of Hv = 670 or higher, the adhesion test passed with a peel start load of 550 gf or higher, and the corrosion resistance test passed with no corrosion after the CASS test. In addition, in the antimagnetic test with the timepiece after the timepiece module part was incorporated, all of the hour hand, minute hand and second hand of the timepiece were operated normally without being affected by the magnetic field of 60 gauss and passed. Therefore, as for the comprehensive evaluation result, all of Examples 40-44 passed.

(第5の実施形態)
本実施形態も第1の実施形態と同様に任意の不活性ガスプラズマ雰囲気中で任意の元素を蒸発させて、基材表面に任意の組成のアモルファス合金を主体とする硬化層を形成させる手法を採用した。
(Fifth embodiment)
In the present embodiment, similarly to the first embodiment, a method of evaporating an arbitrary element in an arbitrary inert gas plasma atmosphere to form a hardened layer mainly composed of an amorphous alloy having an arbitrary composition on the surface of the substrate. Adopted.

(実施例45−57)
基材を真空装置内に配置し、真空装置内を真空排気した後にArガスを導入してArガスプラズマを発生させ圧力を0.35Paに保ったArガスプラズマ雰囲気中で、Auタ−ゲットにGe、Ag、Cu、Ni、Pd、Ptなどのチップを載せ任意の合金組成としたタ−ゲットを使用し、DCスパッタ法により基材表面にアモルファス合金を主体とする硬化層を形成させた。基材材質にはTi、Ti合金、黄銅、SUS304およびSUS316Lを使用した。また時計外装部品として時計バンド、時計ケース、時計ベゼルを使用した。
(Examples 45-57)
The substrate is placed in a vacuum device, and after evacuating the vacuum device, Ar gas is introduced to generate Ar gas plasma, and the pressure is maintained at 0.35 Pa. A target having an arbitrary alloy composition on which chips such as Ge, Ag, Cu, Ni, Pd, and Pt were placed was used, and a hardened layer mainly composed of an amorphous alloy was formed on the surface of the substrate by DC sputtering. Ti, Ti alloy, brass, SUS304 and SUS316L were used as the base material. A watch band, watch case, and watch bezel were used as watch exterior parts.

第5の実施形態の実施例45−57で得られたTi、Ti合金、黄銅、SUS304、SUS316Lの基材材質からなる時計バンド、時計ケース、時計ベゼルの硬化層の組成、結晶性試験、硬度試験、密着性試験、耐蝕性試験の結果および総合評価結果を表5に示す。硬化層の組成、結晶性試験、硬度試験、密着性試験、耐蝕性試験および総合評価結果は全て第1の実施形態で評価した評価基準と全く同一の評価基準を採用した。   Composition, crystallinity test, hardness of hardened layer of watch band, watch case, watch bezel made of base material of Ti, Ti alloy, brass, SUS304, SUS316L obtained in Examples 45-57 of the fifth embodiment Table 5 shows the results of the test, the adhesion test, the corrosion resistance test, and the comprehensive evaluation results. The composition of the hardened layer, the crystallinity test, the hardness test, the adhesion test, the corrosion resistance test, and the comprehensive evaluation results were all the same evaluation criteria as the evaluation criteria evaluated in the first embodiment.

Figure 2005274465
Figure 2005274465

表5に示すようにTi、Ti合金、黄銅、SUS304、SUS316Lの基材材質か
らなる時計外装部品の表面にはAu−Ag−Ni−Ge合金、Au−Cu−Ni−Ge合金、Au−Ag−Pd−Ge合金、Au−Cu−Pd−Ge合金、Au−Ag−Pt−Ge合金、Au−Cu−Pt−Ge合金、Au−Ni−Pd−Pt−Ge合金、Au−Pd−Pt−Ge合金、Au−Ni−Pd−Ge合金、Au−Ni−Pt−Ge合金からなる13組成の硬化層を形成した。EPMA分析により硬化層組成を特定した。これら実施例45−57の全てが、X線回折の結果から結晶性はアモルファス特有のブロードなピークを示し(X線回折のピ−クは図示しない)アモルファス相で合格であった。硬度試験ではビッカ−ス硬度がHv=570以上で合格、密着性試験では引っかき試験による剥離開始荷重が450gf以上で合格、耐蝕性試験でもCASS試験後に腐蝕は発生せず合格、従って総合評価結果では実施例45−57の全てが合格であった。
As shown in Table 5, the surface of a watch exterior part made of a base material of Ti, Ti alloy, brass, SUS304, SUS316L is Au-Ag-Ni-Ge alloy, Au-Cu-Ni-Ge alloy, Au-Ag. -Pd-Ge alloy, Au-Cu-Pd-Ge alloy, Au-Ag-Pt-Ge alloy, Au-Cu-Pt-Ge alloy, Au-Ni-Pd-Pt-Ge alloy, Au-Pd-Pt- A 13-composition hardened layer made of a Ge alloy, Au—Ni—Pd—Ge alloy, or Au—Ni—Pt—Ge alloy was formed. The cured layer composition was identified by EPMA analysis. As a result of X-ray diffraction, all of Examples 45-57 showed a broad peak peculiar to amorphous from the result of X-ray diffraction (X-ray diffraction peak was not shown) and passed the amorphous phase. Hardness test passes when Vickers hardness is Hv = 570 or more, adhesion test passes when the peeling start load by scratch test is 450 gf or more, and corrosion resistance test passes without any corrosion after CASS test. All of Examples 45-57 passed.

(第6の実施形態)
本実施形態は任意の不活性ガスと任意の半金属成分元素を含むガスプラズマ中で任意の金属成分元素を蒸発させてアモルファス合金を主体とする硬化層を形成させる工程を経る手法を採用した。
(Sixth embodiment)
In the present embodiment, a technique is adopted in which a step of evaporating an arbitrary metal component element in a gas plasma containing an arbitrary inert gas and an optional metalloid component element to form a hardened layer mainly composed of an amorphous alloy.

(実施例58−61)
基材を真空装置内に配置し、真空装置内を真空排気した後にArに対し5%のGeH4を添加した混合ガスを導入してArとGeH4の混合ガスプラズマを発生させ、圧力を0.4Paに保ったArとGeH4の混合ガスプラズマ雰囲気中で、Auタ−ゲットにNi、Pd、Ptなどのチップを載せ任意の合金組成としたタ−ゲットを使用し、DCスパッタ法により基材表面にアモルファス合金を主体とする硬化層を形成させた。基材材質にはTi合金およびSUS316Lを使用した。また時計外装部品として時計ケース、時計ベゼルを使用した。
(Examples 58-61)
The substrate is placed in a vacuum device, and after the vacuum device is evacuated, a mixed gas in which 5% GeH 4 is added to Ar is introduced to generate a mixed gas plasma of Ar and GeH 4 , and the pressure is reduced to 0. In a mixed gas plasma atmosphere of Ar and GeH 4 maintained at .4 Pa, a target having an arbitrary alloy composition by placing a chip such as Ni, Pd or Pt on an Au target is used, and a base is formed by DC sputtering. A hardened layer mainly composed of an amorphous alloy was formed on the material surface. Ti alloy and SUS316L were used as the base material. A watch case and a watch bezel were used as watch exterior parts.

第6の実施形態の実施例58−61で得られたTi合金、SUS316Lの基材材質からなる時計ケース、時計ベゼルの硬化層の組成、結晶性試験、硬度試験、密着性試験、耐蝕性試験の結果および総合評価結果を表6に示す。硬化層の組成、結晶性試験、硬度試験、密着性試験、耐蝕性試験および総合評価結果は全て第1の実施形態で評価した評価基準と全く同一の評価基準を採用した。   Watch case made of base material of SUS316L obtained in Examples 58-61 of the sixth embodiment, composition of watch bezel hardened layer, crystallinity test, hardness test, adhesion test, corrosion resistance test The results and the overall evaluation results are shown in Table 6. The composition of the hardened layer, the crystallinity test, the hardness test, the adhesion test, the corrosion resistance test, and the comprehensive evaluation results were all the same evaluation criteria as the evaluation criteria evaluated in the first embodiment.

Figure 2005274465
Figure 2005274465

表6に示すようにTi合金、SUS316Lの基材材質からなる時計外装部品の表面に
はAu−Ge合金、Au−Ni−Ge合金、Au−Pd−Ge合金、Au−Pt−Ge合金からなる4組成の硬化層を形成した。EPMA分析により硬化層組成を特定した。これら実施例58−61の全てが、X線回折の結果から結晶性はアモルファス特有のブロードなピークを示し(X線回折のピ−クは図示しない)アモルファス相で合格であった。硬度試験ではビッカ−ス硬度がHv=580以上で合格、密着性試験では引っかき試験による剥離開始荷重が450gf以上で合格、耐蝕性試験でもCASS試験後に腐蝕は発生せず合格、従って総合評価結果では実施例58−61の全てが合格であった。
As shown in Table 6, the surface of a watch exterior part made of a Ti alloy or SUS316L base material is made of an Au—Ge alloy, an Au—Ni—Ge alloy, an Au—Pd—Ge alloy, or an Au—Pt—Ge alloy. A cured layer of 4 compositions was formed. The cured layer composition was identified by EPMA analysis. As a result of X-ray diffraction, all of Examples 58 to 61 showed a broad peak peculiar to amorphous (the X-ray diffraction peak was not shown) and passed the amorphous phase. Hardness test passed with Vickers hardness of Hv = 580 or higher, adhesion test passed with peel start load of 450 gf or higher, and corrosion resistance test passed with no corrosion after CASS test. All of Examples 58-61 passed.

基材材質として各実施形態でTi、Ti合金、黄銅、SUS304およびSUS316Lを使用したが、基材材質はこれらに限らずAlおよび各種のAl合金、各種のステンレス鋼、各種のTi合金、銅合金などからなる材料に適用可能である。   In each embodiment, Ti, Ti alloy, brass, SUS304 and SUS316L were used as the base material. However, the base material is not limited to these, and Al and various Al alloys, various stainless steels, various Ti alloys, and copper alloys. It is applicable to the material which consists of etc.

半金属成分元素を含むガスプラズマとして、第3の実施形態では不活性ガスであるArにSiH4を添加したArとSiH4の混合ガスプラズマ、第6の実施形態ではArにGeを含有するGeH4を添加したArとGeH4の混合ガスプラズマを使用したが、不活性ガスであるArはプラズマを発生させるために使用したもので、Arに限らずHe、Xe、Krなどの他の不活性ガスに替えても構わない。またSi、Geを含むガスは上記ガスに限定されることはなくSi、Geを含有するガスであればいずれのガスでもよい。 As a gas plasma containing a metalloid component element, a mixed gas plasma of Ar and SiH 4 in which SiH 4 is added to Ar, which is an inert gas, in the third embodiment, GeH containing Ge in Ar in the sixth embodiment 4 but using a mixed gas plasma of the Ar and GeH 4 added, Ar is an inert gas which was used to generate the plasma, He is not limited to Ar, Xe, other inert, such as Kr You may change to gas. The gas containing Si and Ge is not limited to the above gas, and any gas may be used as long as it contains Si and Ge.

金属元素を蒸発させる手段として全ての実施形態でDCスパッタ法を採用したが、これは合金組成が簡便に制御できるために採用したのであって、DCスパッタ法に限定する必要はなく、DCマグネトロンスパッタ法、RFマグネトロンスパッタ法、RFスパッタ法、DCスパッタ法など任意のスパッタ法を用いてもよく。またスパッタ法に限らず、ドライプロセスであるならばイオンプレ−ティング法、イオンビ−ム蒸着法などの他のPVD手法を採用しても差し支えがない。同様にプラズマの発生手段もRF法、DC法のいずれの手法を採用してもよい。   As a means for evaporating the metal element, the DC sputtering method is adopted in all the embodiments, but this is adopted because the alloy composition can be easily controlled, and it is not necessary to be limited to the DC sputtering method. Any sputtering method such as a sputtering method, an RF magnetron sputtering method, an RF sputtering method, or a DC sputtering method may be used. In addition to the sputtering method, other PVD methods such as an ion plating method and an ion beam deposition method may be adopted as long as the process is a dry process. Similarly, the plasma generation means may employ either the RF method or the DC method.

アモルファス合金を主体とする硬化層を形成する圧力条件として実施形態1、2、5では雰囲気の圧力を0.35Pa、実施形態3、4、6では0.4Paとしているが、圧力は同条件に限定する必要はなくプラズマが発生可能であれば圧力は任意の数値でよい。   As pressure conditions for forming a hardened layer mainly composed of an amorphous alloy, the atmospheric pressure is 0.35 Pa in the first, second, and fifth embodiments, and 0.4 Pa in the third, fourth, and sixth embodiments. The pressure need not be limited, and the pressure may be any numerical value as long as plasma can be generated.

各実施形態で時計外装部品として時計ケース、時計バンド、時計ベゼルを具体例にあげて説明してきたが、時計外装部品はこれらに限らず裏蓋、中留、リューズ、尾錠などの時計外装に使用されるいずれの部品にもアモルファス合金を主体とする硬化層の形成が可能である。   In each embodiment, a watch case, a watch band, and a watch bezel have been described as specific examples of watch exterior parts. However, the watch exterior parts are not limited to these, and are used for the exterior of a watch such as a back cover, a clasp, a crown, and a buckle It is possible to form a hardened layer mainly composed of an amorphous alloy in any of these parts.

各実施形態では、各種基材材質からなる時計外装部品に直接アモルファス合金を主体とする硬化層を形成しているが、これに限らずさらなる密着性を得るためや厚みを調整するために、各種材質に中間層を形成した後にアモルファス合金を主体とする硬化層を形成してもよい。   In each embodiment, a hardened layer mainly composed of an amorphous alloy is directly formed on a watch exterior part made of various base materials. However, the present invention is not limited to this. A hardened layer mainly composed of an amorphous alloy may be formed after the intermediate layer is formed on the material.

本発明の時計外装部品の一実施形態である時計ケースの断面模式図である。It is a cross-sectional schematic diagram of the timepiece case which is one Embodiment of the timepiece exterior component of this invention.

符号の説明Explanation of symbols

2 時計ケース
4 硬化層
2 Watch case 4 Hardened layer

Claims (7)

表面に硬化層を有する時計外装部品であって、前記硬化層がアモルファス合金を主体とする硬化層であり、前記硬化層はAuにSiまたはGeのうちから少なくとも一方の元素を含有する時計外装部品。 A watch exterior part having a hardened layer on a surface thereof, wherein the hardened layer is a hardened layer mainly composed of an amorphous alloy, and the hardened layer contains at least one element of Si or Ge in Au. . 前記硬化層がAg、Cu、Ni、PdまたはPtのうちから少なくとも1種類以上の元素を含有することを特徴とする請求項1に記載の時計外装部品。 The timepiece exterior component according to claim 1, wherein the hardened layer contains at least one element selected from Ag, Cu, Ni, Pd, and Pt. 前記硬化層がAu−Si合金、Au−Ni−Si合金、Au−Pd−Si合金、Au−Pt−Si合金、Au−Cu−Ni−Si合金、Au−Ag−Pt−Si合金、Au−Cu−Pt−Si合金、Au−Ag−Pd−Si合金、Au−Cu−Pd−Si合金、Au−Pd−Pt−Si合金、Au−Ni−Pd−Pt−Si合金、Au−Ni−Pd−Si合金、Au−Ni−Pt−Si合金、Au−Ge合金、Au−Ni−Ge合金、Au−Pd−Ge合金、Au−Pt−Ge合金、Au−Ag−Ni−Ge合金、Au−Cu−Ni−Ge合金、Au−Ag−Pt−Ge合金、Au−Cu−Pt−Ge合金、Au−Ag−Pd−Ge合金、Au−Cu−Pd−Ge合金、Au−Pd−Pt−Ge合金、Au−Ni−Pd−Pt−Ge合金、Au−Ni−Pd−Ge合金またはAu−Ni−Pt−Ge合金を主成分とすることを特徴とする請求項1または請求項2に記載の時計外装部品。 The hardened layer is made of Au-Si alloy, Au-Ni-Si alloy, Au-Pd-Si alloy, Au-Pt-Si alloy, Au-Cu-Ni-Si alloy, Au-Ag-Pt-Si alloy, Au- Cu-Pt-Si alloy, Au-Ag-Pd-Si alloy, Au-Cu-Pd-Si alloy, Au-Pd-Pt-Si alloy, Au-Ni-Pd-Pt-Si alloy, Au-Ni-Pd -Si alloy, Au-Ni-Pt-Si alloy, Au-Ge alloy, Au-Ni-Ge alloy, Au-Pd-Ge alloy, Au-Pt-Ge alloy, Au-Ag-Ni-Ge alloy, Au- Cu-Ni-Ge alloy, Au-Ag-Pt-Ge alloy, Au-Cu-Pt-Ge alloy, Au-Ag-Pd-Ge alloy, Au-Cu-Pd-Ge alloy, Au-Pd-Pt-Ge Alloy, Au-Ni-Pd-Pt-Ge alloy, A Timepiece exterior part according to claim 1 or claim 2, characterized in that the main component -Ni-Pd-Ge alloy or Au-Ni-Pt-Ge alloy. 前記硬化層を構成するアモルファス合金が軟磁性を示すことを特徴とする請求項2または請求項3に記載の時計外装部品。 The timepiece exterior component according to claim 2 or 3, wherein the amorphous alloy constituting the hardened layer exhibits soft magnetism. 表面に硬化層を有する時計外装部品の製造方法であって、ガス導入口とガス排気口とを備えた真空装置内に基材を配置する工程と、真空排気する工程と、任意の不活性ガスを前記真空装置に導入した減圧雰囲気中でプラズマを発生させる工程と、任意の元素を蒸発させてアモルファス合金を主体とする硬化層を形成させる工程とを有する時計外装部品の製造方法。 A method for manufacturing a watch exterior part having a hardened layer on its surface, the step of placing a base material in a vacuum apparatus having a gas inlet and a gas outlet, a step of evacuating, and an arbitrary inert gas A method for manufacturing a watch exterior part, comprising: a step of generating plasma in a reduced-pressure atmosphere introduced into the vacuum device; and a step of evaporating an arbitrary element to form a hardened layer mainly composed of an amorphous alloy. 表面に硬化層を有する時計外装部品の製造方法であって、ガス導入口とガス排気口とを備えた真空装置内に基材を配置する工程と、真空排気する工程と、任意の不活性ガスと任意の半金属成分元素を含むガスを前記真空装置に導入した減圧雰囲気中でプラズマを発生させる工程と、任意の金属成分元素を蒸発させてアモルファス合金を主体とする硬化層を形成させる工程とを有する時計外装部品の製造方法。 A method for manufacturing a watch exterior part having a hardened layer on its surface, the step of placing a base material in a vacuum apparatus having a gas inlet and a gas outlet, a step of evacuating, and an arbitrary inert gas And a step of generating a plasma in a reduced-pressure atmosphere in which a gas containing any metalloid component element is introduced into the vacuum apparatus, and a step of evaporating the metal component element to form a hardened layer mainly composed of an amorphous alloy. A method of manufacturing a watch exterior part having 前記半金属成分元素を含むガスはSiまたはGeを含有することを特徴とする請求項6に記載の時計外装部品の製造方法。 The method for manufacturing a watch exterior part according to claim 6, wherein the gas containing the metalloid component element contains Si or Ge.
JP2004090776A 2004-03-26 2004-03-26 Timepiece exterior component and its manufacturing method Pending JP2005274465A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004090776A JP2005274465A (en) 2004-03-26 2004-03-26 Timepiece exterior component and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004090776A JP2005274465A (en) 2004-03-26 2004-03-26 Timepiece exterior component and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005274465A true JP2005274465A (en) 2005-10-06

Family

ID=35174285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004090776A Pending JP2005274465A (en) 2004-03-26 2004-03-26 Timepiece exterior component and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005274465A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001618A (en) * 2009-06-19 2011-01-06 Tohoku Univ Au-BASED METAL GLASS ALLOY
EP2835698A1 (en) * 2013-08-07 2015-02-11 The Swatch Group Research and Development Ltd. Casing element with metallic glass cap

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001618A (en) * 2009-06-19 2011-01-06 Tohoku Univ Au-BASED METAL GLASS ALLOY
EP2835698A1 (en) * 2013-08-07 2015-02-11 The Swatch Group Research and Development Ltd. Casing element with metallic glass cap
WO2015018718A1 (en) * 2013-08-07 2015-02-12 The Swatch Group Research And Development Ltd Exterior casing element and a cap made of metallic glass

Similar Documents

Publication Publication Date Title
US4226082A (en) Ornamental part for watches and method of producing the same
WO2002016663A1 (en) Soft metal and method of manufacturing the soft metal, and decorative part and method of manufacturing the decorative part
JP4964892B2 (en) Decorative part and manufacturing method thereof
JP5822839B2 (en) White hard decorative member
JP4308656B2 (en) Soft metal and manufacturing method thereof, watch exterior part and manufacturing method thereof
JP2006283088A (en) Golden ornament and its manufacturing method
JP6909322B2 (en) Decorative members and their manufacturing methods
WO2014156897A1 (en) Rigid decorative member having gray-tone layer
JP2007084867A (en) Ornament
JP2005076085A (en) Ornament with multicolored coating film, and its production method
JP2005274465A (en) Timepiece exterior component and its manufacturing method
JP4994078B2 (en) Decorative parts
WO2006106981A1 (en) Golden ornament and process for producing the same
JP2019035133A (en) Black member, method for manufacturing the same, and clock including black member
JP5150311B2 (en) Decorative parts
JPS63125660A (en) External parts for timepiece
JPS5811783A (en) Armor parts for decoration
JP2008240062A (en) Decorative part
JP2001208866A (en) Timepiece exterior part
JP2007262483A (en) Ornamental component
JP2005274464A (en) Timepiece exterior component and its manufacturing method
JP7332446B2 (en) Golden ornament and method for producing golden ornament
CN110578113B (en) Hard decorative member and method for manufacturing same
JP2006274339A (en) Decorative part
JP6114414B2 (en) Underlayer-coated substrate used for Ni plating, Ni-plated layer-containing laminate, and magnetic recording medium