JP2005274179A - Honeycomb body inspection device - Google Patents

Honeycomb body inspection device Download PDF

Info

Publication number
JP2005274179A
JP2005274179A JP2004083987A JP2004083987A JP2005274179A JP 2005274179 A JP2005274179 A JP 2005274179A JP 2004083987 A JP2004083987 A JP 2004083987A JP 2004083987 A JP2004083987 A JP 2004083987A JP 2005274179 A JP2005274179 A JP 2005274179A
Authority
JP
Japan
Prior art keywords
light
honeycomb body
section
inspection
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004083987A
Other languages
Japanese (ja)
Other versions
JP4618532B2 (en
Inventor
Tatsuya Sakurai
達也 櫻井
Takahiro Sometsugu
孝博 染次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004083987A priority Critical patent/JP4618532B2/en
Publication of JP2005274179A publication Critical patent/JP2005274179A/en
Application granted granted Critical
Publication of JP4618532B2 publication Critical patent/JP4618532B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • G01N21/95692Patterns showing hole parts, e.g. honeycomb filtering structures

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection device capable of certainly inspecting the state of cells without relying on a cell bending state in the inspection of a honeycomb. <P>SOLUTION: The inspection device for inspecting the cell state of the honeycomb having a large number of parallelly arranged cells has an illumination means for irradiating one end surface of the honeycomb with light, a light detecting means for detecting the light passed through cells to emit from the other end surface of the honeycomb and a light control means for controlling the quantity of the light emitted from the illumination means on the basis of the quantity of the light detected by the light detection means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ハニカム体の検査装置に関し、特にハニカム体のセルの状態を検査するに好適な検査装置に係るものである。   The present invention relates to an inspection apparatus for a honeycomb body, and more particularly to an inspection apparatus suitable for inspecting the state of cells of a honeycomb body.

ハニカム体の一例として、ディーゼルエンジンから排出される排ガス中に含まれる粒子状物質(以下PM=Particle Matterと称する。)を浄化するために使用されるディーゼル・パティキュレート・フィルター(以下DPFと称する。)が知られている。   As an example of a honeycomb body, a diesel particulate filter (hereinafter referred to as DPF) used to purify particulate matter (hereinafter referred to as PM = Particle Matter) contained in exhaust gas discharged from a diesel engine. )It has been known.

DPFは、図1に示すように、耐熱性を有する多孔質セラミックスからなるセル壁72と該セル壁72で画成された流体通路76からなり、流体通路76の両端面が開口した多数のセル71を有するハニカム体7である。DPFとして使用されるハニカム体7では、市松模様またはチェッカー盤模様となるように一つおきのセル71の一方端面(以下第1開口端面と称する。)73の側の端が、それと逆の模様となるように残りのセル71の他方端面(以下第2開口端面と称する。)74の側の端が封止材で封止される。   As shown in FIG. 1, the DPF includes a cell wall 72 made of heat-resistant porous ceramics and a fluid passage 76 defined by the cell wall 72, and a plurality of cells in which both end faces of the fluid passage 76 are open. A honeycomb body 7 having 71. In the honeycomb body 7 used as the DPF, the end on the one end face (hereinafter referred to as the first opening end face) 73 of every other cell 71 is opposite to the checkerboard pattern or the checkerboard pattern. The other end surface (hereinafter referred to as the second opening end surface) 74 side of the remaining cell 71 is sealed with a sealing material so that

ハニカム体7をDPFとして使用する場合、セル71に異常が生じると次のような問題が発生する。例えば、セル壁72が変形しセル71に詰まりが生じると、排ガスが通過できる断面積が減少し、排ガスが充分に排気されず、DPFが連結されたエンジンの性能の低下につながる。また、その詰まりにPMが堆積し,PMが燃焼される際に堆積したPMが過熱してセル壁72が溶損する場合がある。溶損が生じると背圧が変化したり、DPFの濾過性能が低下したり、DPFが破壊する可能性が大きくなる。   When the honeycomb body 7 is used as a DPF, the following problems occur when an abnormality occurs in the cell 71. For example, when the cell wall 72 is deformed and the cell 71 is clogged, the cross-sectional area through which the exhaust gas can pass is reduced, the exhaust gas is not exhausted sufficiently, and the performance of the engine connected to the DPF is reduced. Further, PM accumulates in the clogging, and when PM is burned, the accumulated PM may overheat and the cell wall 72 may melt. When melting damage occurs, the back pressure changes, the filtration performance of the DPF decreases, and the possibility that the DPF breaks increases.

従って、ハニカム体7をDPFとして用いる場合には、セル71に詰まりなどの異常がない状態であることを確認するために検査をする必要がある。そのような目的のセル71の検査装置の一例が、下記特許文献1に開示されている。   Therefore, when the honeycomb body 7 is used as a DPF, it is necessary to inspect in order to confirm that the cell 71 is not in an abnormal state such as clogging. An example of such an inspection apparatus for the cell 71 is disclosed in Patent Document 1 below.

特許文献1の検査装置9は、図3に示すように、第2開口端面74の側から複数のセル71を通過するように光94を照射する照明手段92と、セル71を通過し第1開口端面73から出た光94を集光して複数のセル71に対応する検査像を形成するテレセントリック光学系912と検査像を撮像するカメラ911を備えた撮像手段91を有している。   As shown in FIG. 3, the inspection apparatus 9 of Patent Document 1 includes a lighting unit 92 that irradiates light 94 so as to pass through a plurality of cells 71 from the second opening end face 74 side, and a first passing through the cells 71. The imaging unit 91 includes a telecentric optical system 912 that collects the light 94 emitted from the opening end surface 73 to form inspection images corresponding to the plurality of cells 71 and a camera 911 that captures the inspection images.

上記検査装置9によれば、光94の光軸とセル71の軸とがほぼ一致するようにハニカム体7に対し照明手段92が位置決めされ、第2開口端面74の側からセル71を通過するように光94が照射される。セル71を通過した光94は、第1開口端面73から出る。第1開口端面73から出た光94は、テレセントリック光学系912で集光されて複数のセル71に対応した検査像が形成される。検査像は、カメラ914で撮像されモニタ等で表示される。表示された検査像の輝度が規定値以上の場合にはセル71は貫通していると判断する。また、規定値未満の場合にはセル71は貫通していないと判断する。特許文献1の検査装置9によれば撮像されたセル71の検査像に基づいてセル71の貫通度合を適確に判断できる利点がある。   According to the inspection apparatus 9, the illumination means 92 is positioned with respect to the honeycomb body 7 so that the optical axis of the light 94 and the axis of the cell 71 substantially coincide with each other, and pass through the cell 71 from the second opening end face 74 side. Thus, the light 94 is irradiated. The light 94 that has passed through the cell 71 exits from the first opening end face 73. The light 94 emitted from the first opening end surface 73 is condensed by the telecentric optical system 912 to form inspection images corresponding to the plurality of cells 71. The inspection image is captured by the camera 914 and displayed on a monitor or the like. When the luminance of the displayed inspection image is equal to or higher than the specified value, it is determined that the cell 71 has penetrated. If it is less than the specified value, it is determined that the cell 71 has not penetrated. According to the inspection apparatus 9 of Patent Document 1, there is an advantage that the penetration degree of the cell 71 can be accurately determined based on the captured inspection image of the cell 71.

ここで、DPFとして採用されるハニカム体7は、たとえばSiC系のセラミックス粉末原料を主体として調整されたスラリーを押出し成形する成形工程と、ハニカム成形体を乾燥する乾燥工程と、ハニカム乾燥体を焼成する焼成工程などを経て製造される。従ってハニカム体7は、例えば、スラリー成分の不均一さや、乾燥または焼成条件の不均一さに起因する不可避のセル71の曲がりを有している。この曲がりは、特に熱的影響に左右されやすい外周部において著しい場合が多い。   Here, the honeycomb body 7 employed as the DPF includes, for example, a molding process for extruding a slurry prepared mainly using SiC-based ceramic powder raw material, a drying process for drying the honeycomb molded body, and a firing of the honeycomb dried body. It is manufactured through a firing process. Therefore, the honeycomb body 7 has inevitable bending of the cells 71 due to, for example, non-uniformity of slurry components and non-uniformity of drying or firing conditions. This bending is often remarkable especially in the outer peripheral portion that is easily affected by thermal influence.

このように曲がりの生じたハニカム体7の検査に、特許文献1の検査装置9を適用した場合、光94は、曲がっていないセル71は通過しやすく、曲がったセル71は通過しにくくなる。この結果、照明手段92から照射される光94の光量が同一であるにも拘わらず、第1開口端面73から出てくる光94の光量がセル71曲がりの状態で変化し、たとえば図6に示すように、ハニカム体7の第1開口端面73の中心付近では明るく、外周部では暗くなる。このため、暗くなった部分では正常なセル71と詰まったセル71の輝度の差が小さくなるため詰まったセル71を検出できなくなる場合があり、検査の信頼性が損なわれる
特開2003−270158号公報
When the inspection apparatus 9 of Patent Document 1 is applied to the inspection of the honeycomb body 7 that is bent in this way, the light 94 easily passes through the non-bent cells 71 and the bent cells 71 are difficult to pass through. As a result, the light amount of the light 94 emitted from the first opening end face 73 changes in a bent state of the cell 71 even though the light amount of the light 94 emitted from the illumination unit 92 is the same. As shown, it is bright near the center of the first opening end face 73 of the honeycomb body 7 and dark at the outer periphery. For this reason, in the darkened portion, the difference in luminance between the normal cell 71 and the clogged cell 71 becomes small, so that the clogged cell 71 may not be detected, and the reliability of the inspection is impaired.
JP 2003-270158 A

本発明は、ハニカム体を検査するにあたり、セルの曲がりの状態によらずにセルの状態を確度よく検査可能な検査装置を提供することを目的としている。   An object of the present invention is to provide an inspection apparatus capable of accurately inspecting the state of a cell regardless of the state of bending of the cell when inspecting a honeycomb body.

本発明は、並列した多数のセルを有するハニカム体のセルの状態を検査する検査装置であって、前記ハニカム体の一端面に光を照射する照明手段と、前記セルを通過し前記ハニカム体の他端面から出た前記光を受光する受光手段と、前記受光手段で受光した光の光量に基いて前記照明手段で照射する光の光量を制御する調光手段とを有する検査装置である。かかる検査装置によれば、ハニカム体の一端面に照明手段によって光が照射される。照射された光は、ハニカム体のセルを通過し、ハニカム体の他端面から出て受光手段によって受光される。調光手段は、受光手段で受光した光の光量に基づいて受光される光の光量が設定したレベルとなるように照明手段から照射される光の光量を制御する。従って、セルの曲がりの状態によらずハニカム体の他端面から出る光の光量は同じレベルとなる。   The present invention is an inspection apparatus for inspecting the state of cells of a honeycomb body having a large number of cells in parallel, illumination means for irradiating light to one end surface of the honeycomb body, and passing through the cells and the honeycomb body An inspection apparatus comprising: a light receiving unit configured to receive the light emitted from the other end surface; and a light control unit configured to control a light amount of the light emitted from the illumination unit based on a light amount of the light received by the light receiving unit. According to such an inspection apparatus, light is irradiated to the one end face of the honeycomb body by the illumination means. The irradiated light passes through the cells of the honeycomb body, exits from the other end surface of the honeycomb body, and is received by the light receiving means. The light control means controls the amount of light emitted from the illumination means so that the amount of light received based on the amount of light received by the light receiving means becomes a set level. Therefore, the amount of light emitted from the other end face of the honeycomb body is the same level regardless of the bending state of the cells.

ここで、前記照明手段は、前記ハニカム体の一端面の一区画に光を照射する物とすれば、比較的簡単に検査装置を構成できるので好ましい。この検査装置は、ハニカム体の一端面を複数の区画に分割し、すべての区画を区画ごとに上記と同様に検査する。したがって、セルの曲がりの状態が区画ごとに異なった場合でも、該区画の他端面から出る光の光量は同じレベルとなる。   Here, it is preferable that the illuminating means be an object that irradiates light to one section of one end face of the honeycomb body, since an inspection apparatus can be configured relatively easily. This inspection apparatus divides one end face of the honeycomb body into a plurality of sections, and inspects all sections for each section in the same manner as described above. Therefore, even when the cell bending state is different for each section, the amount of light emitted from the other end face of the section is the same level.

上記検査装置は、検査を能率的に行うため、上記第2開口端面を所定の区画ごとに移動して撮像を行うために照明手段と受光手段の位置関係を保持しつつ一体として移動させる移動手段を有していることが望ましい。   In order to efficiently perform the inspection, the inspection apparatus moves the second opening end surface for each predetermined section and moves the integrated unit while holding the positional relationship between the illumination unit and the light receiving unit in order to perform imaging. It is desirable to have

さらに、上記検査装置は、明確な検査像を得るため、上記ハニカム体のセルの貫通方向と上記光の光軸の方向とを一致させるためハニカム体または照明手段の姿勢を調整する光軸合わせ手段を有することが望ましい。   Further, in order to obtain a clear inspection image, the inspection apparatus is an optical axis alignment unit that adjusts the attitude of the honeycomb body or the illumination unit to match the cell penetration direction of the honeycomb body and the optical axis direction of the light. It is desirable to have

本発明の検査装置によれば、照明手段で照射する光の光量は、ハニカム体の他端面から出てくる光の光量が常にほぼ一定となるようにセルの曲がりの状態に応じて制御される。その結果、他端面から出てくる光で形成されるセルの検査像の明るさは、セルの曲がりによらず常に同じレベルとなり、セルの状態の良否を確度よく判定することが可能になる。   According to the inspection apparatus of the present invention, the amount of light irradiated by the illumination means is controlled according to the bending state of the cell so that the amount of light emitted from the other end face of the honeycomb body is always substantially constant. . As a result, the brightness of the inspection image of the cell formed by the light coming out from the other end surface is always the same level regardless of the bending of the cell, and it becomes possible to accurately determine the quality of the cell state.

本発明について、その実施態様の一例に基き図面を参照しながら説明する。図1は、本発明の一実施態様のハニカム体の検査装置の概略構成図である。図2は、図1の検査装置の調光手段における光量計算のフロー図である。図4は、図1の検査装置を用いて検査した際の検査像の概略図である。図5は、図1の検査装置の調光手段において光量の計算に用いる検量線の例である。なお、以下の説明で対象となるハニカム体は、上述したハニカム体7と同様の物であるが、本発明は、例えば金属や樹脂からなるハニカム体の検査にも同様に適用される。さらに、下記説明される検査装置の構成要素は、それぞれ単独に或いは適宜組合せて実施される。   The present invention will be described based on an example of the embodiment with reference to the drawings. FIG. 1 is a schematic configuration diagram of a honeycomb body inspection apparatus according to an embodiment of the present invention. FIG. 2 is a flowchart of light amount calculation in the light control means of the inspection apparatus of FIG. FIG. 4 is a schematic diagram of an inspection image when inspecting using the inspection apparatus of FIG. FIG. 5 is an example of a calibration curve used for light amount calculation in the light control means of the inspection apparatus of FIG. Note that the target honeycomb body in the following description is the same as the honeycomb body 7 described above, but the present invention is similarly applied to the inspection of a honeycomb body made of, for example, metal or resin. Furthermore, the constituent elements of the inspection apparatus described below are implemented individually or in appropriate combination.

本態様の検査装置1は、図1に示すようにハニカム体7の第2開口端面74の一区画にセル71を通過するようにほぼ平行な光14を照射する照明手段12と、第1開口端面73から出た光14を受光する受光手段11と、受光手段11で受光した光14の光量に基づいて照明手段12で照射する光14の光量を制御する調光手段13aを内蔵した処理部13を有している。なお、図1においてハニカム体7は、支持手段である支持台161の上に載置されているが、ハニカム体7の支持手段は、特に図示に限定されることはない。以下、照明手段12、受光手段11、調光手段13aについて説明する。   As shown in FIG. 1, the inspection apparatus 1 according to this aspect includes an illumination unit 12 that irradiates a section of the second opening end surface 74 of the honeycomb body 7 with substantially parallel light 14 so as to pass through the cells 71, and a first opening. A processing unit including a light receiving unit 11 that receives the light 14 emitted from the end face 73 and a light control unit 13a that controls the light amount of the light 14 irradiated by the illumination unit 12 based on the light amount of the light 14 received by the light receiving unit 11. 13. In FIG. 1, the honeycomb body 7 is placed on a support base 161 that is a support means, but the support means for the honeycomb body 7 is not particularly limited to the illustration. Hereinafter, the illumination unit 12, the light receiving unit 11, and the light control unit 13a will be described.

照明手段12は、光14を生成する光源121とコリメータレンズ122を備えている。コリメータレンズ122は、光源121の光をほぼ平行な光14に変換するものである。光源121は、後述する調光手段13aによる調光が容易なように所定の制御信号で光量を自在に制御可能なものが好ましい。なお、照明手段12を、図4(a)に示すハニカム体7の第2開口端面74の区画aに対応するように光14を照射する範囲が調整可能に構成すれば、明確な検査像を得ることができ有利である。   The illumination unit 12 includes a light source 121 that generates light 14 and a collimator lens 122. The collimator lens 122 converts light from the light source 121 into substantially parallel light 14. The light source 121 is preferably capable of freely controlling the amount of light with a predetermined control signal so that light control by the light control means 13a described later is easy. In addition, if the illumination means 12 is configured so that the range of irradiation with the light 14 can be adjusted so as to correspond to the section a of the second opening end face 74 of the honeycomb body 7 shown in FIG. It can be obtained and is advantageous.

受光手段11は、照明手段12から区画aへ照射され、セル71を通過し第1開口端面73から出た光14を受光し、該区画aのセル71の検査像を形成するためのテレセントリックレンズ112と、該テレセントリックレンズ112を通した光を受光し、検査像を撮像するカメラとしてのCCDカメラ111を備えている。なお、本態様では、受光した光14の光量に対応する情報としてセル71の検査像の輝度を採用し、その輝度に基づいて照明手段12における光14の光量の制御をするため、およびモニタ等にセル71の検査像を表示させるために受光手段11としてテレセントリックレンズ112とCCDカメラ111を組み合わせたものを使用しているが、受光手段11としては光14を受光し光量を計測可能なセンサ(例えば光量、照度センサ等)をカメラ等と別途に配したものでもよい。   The light receiving means 11 is a telecentric lens for irradiating the section a from the illuminating means 12, receiving the light 14 passing through the cell 71 and exiting from the first opening end face 73, and forming an inspection image of the cell 71 in the section a. 112 and a CCD camera 111 as a camera that receives light passing through the telecentric lens 112 and captures an inspection image. In this aspect, the luminance of the inspection image of the cell 71 is adopted as information corresponding to the light amount of the received light 14, and the light amount of the light 14 in the illumination unit 12 is controlled based on the luminance, and a monitor or the like. In order to display the inspection image of the cell 71, a combination of the telecentric lens 112 and the CCD camera 111 is used as the light receiving means 11, but the light receiving means 11 receives a light 14 and can measure the light quantity ( For example, a light amount, an illuminance sensor, or the like) may be provided separately from the camera or the like.

ここで、図1において、水平方向をX軸、鉛直方向をZ軸、X軸、Z軸に直行する方向をY軸、Y軸廻りの軸をθy、Z軸廻りの軸をθzと座標系を定義する。   Here, in FIG. 1, the horizontal direction is the X axis, the vertical direction is the Z axis, the X axis, the direction perpendicular to the Z axis is the Y axis, the axis around the Y axis is θy, and the axis around the Z axis is θz. Define

照明手段12は、図1に示すように、ハニカム体7の第2開口端面74の側に配置される。光14の光軸とセル71の軸がほぼ一致するようにハニカム体7と照明手段12の相互の各軸の関係は調整される。受光手段11は、照明手段12から照射され第一開口端面73から出た光14を受光するため、ハニカム体7の第1開口端面73の側にその光軸と照明手段12の光軸とが一致するように配置される。   The illumination means 12 is arrange | positioned at the 2nd opening end surface 74 side of the honeycomb body 7, as shown in FIG. The relationship between the respective axes of the honeycomb body 7 and the illumination means 12 is adjusted so that the optical axis of the light 14 and the axis of the cell 71 substantially coincide. Since the light receiving means 11 receives the light 14 emitted from the illumination means 12 and emitted from the first opening end face 73, the optical axis of the honeycomb body 7 and the optical axis of the illumination means 12 are on the first opening end face 73 side. Arranged to match.

検査台161は、ハニカム体7のセル71の軸と光14の軸とを容易に一致させるために、ハニカム体7をθy軸およびθz軸方向に回転させる光軸合わせ手段16を備えていることが望ましい。なお、光14の光軸とセル71の軸は、照明手段12および受光手段11の軸を一定に保ったまま方向を適宜調整して合わせてもよい。   The inspection table 161 includes optical axis alignment means 16 for rotating the honeycomb body 7 in the θy axis and θz axis directions so that the axis of the cell 71 of the honeycomb body 7 and the axis of the light 14 are easily aligned. Is desirable. Note that the optical axis of the light 14 and the axis of the cell 71 may be adjusted by appropriately adjusting the directions while keeping the axes of the illumination unit 12 and the light receiving unit 11 constant.

図4(a)に示すように、本態様においてハニカム体7の全体を検査をする場合には、ハニカム体7の第2開口端面74の全体が入るように検査領域Aが設定され、さらに検査領域Aが分割され複数の区画a(a1・・・a35)が設定される。照明手段12と受光手段11は、例えば区画a1からa2・・・a35の順序で移動され、各区画a毎に検査を繰り返しハニカム体7の全体を検査する。   As shown in FIG. 4A, when the entire honeycomb body 7 is inspected in this embodiment, the inspection area A is set so that the entire second opening end face 74 of the honeycomb body 7 enters, and further the inspection is performed. The area A is divided and a plurality of sections a (a1... A35) are set. The illuminating means 12 and the light receiving means 11 are moved in the order of sections a1 to a2... A35, for example, and the inspection of the entire honeycomb body 7 is repeated for each section a.

照明手段12と受光手段11は区画aごとに人手で移動されてもよいが、照明手段12と受光手段11の位置関係を保持しつつ一体としてYおよびZ軸方向に移動させる移動手段15で移動されることが望ましい。例えば移動手段15としては、照明手段12と受光手段11をそれぞれにYおよびZ軸方向に直動可能に固定したリニアガイドと、サーボモータまたはステッピングモータ等を組合わせて構成することができる。なお移動手段15の移動範囲は、少なくともハニカム体7の直径程度であればハニカム体7の所望の部位の検査が可能となり好ましい。また、上記移動手段15は、ハニカム体7をY軸、Z軸方向に移動させる機構であってもよい。   The illuminating means 12 and the light receiving means 11 may be moved manually for each section a. However, the illuminating means 12 and the light receiving means 11 are moved by the moving means 15 that moves together in the Y and Z axis directions while maintaining the positional relationship between the illuminating means 12 and the light receiving means 11. It is desirable that For example, the moving means 15 can be configured by combining a linear guide in which the illuminating means 12 and the light receiving means 11 are fixed so as to be linearly movable in the Y and Z axis directions, and a servo motor or a stepping motor, for example. In addition, if the moving range of the moving means 15 is at least about the diameter of the honeycomb body 7, a desired part of the honeycomb body 7 can be inspected, which is preferable. The moving means 15 may be a mechanism that moves the honeycomb body 7 in the Y-axis and Z-axis directions.

次に、調光手段13aについて説明する。調光手段13aは、受光手段11で受光した光の光量に基づいて照明手段12で照射する光の光量を制御するものであり、受光手段11で撮像された検査像の輝度情報をディジタル値に変換する変換部131と、検査像の輝度情報に基づき区画aの輝度を算出する輝度演算部137と、輝度演算部137で算出された区画aの輝度に基づき照明手段12で照射する光14の光量を算出する光量演算部132と、光量演算部132で算出された光量を制御信号に変換し,照明手段12へ出力する入出力部133と、検査像の輝度情報などのデータを格納するためのメモリ136を有している。   Next, the light control means 13a will be described. The light control means 13a controls the light quantity of the light irradiated by the illumination means 12 based on the light quantity of the light received by the light receiving means 11, and the luminance information of the inspection image picked up by the light receiving means 11 is converted into a digital value. The conversion unit 131 for conversion, the luminance calculation unit 137 for calculating the luminance of the section a based on the luminance information of the inspection image, and the light 14 irradiated by the illumination unit 12 based on the luminance of the section a calculated by the luminance calculation unit 137 A light amount calculation unit 132 for calculating the light amount, a light amount calculated by the light amount calculation unit 132 to be converted into a control signal, output to the illumination means 12, and data such as luminance information of the inspection image are stored. The memory 136 is provided.

変換部131は、受光手段11で撮像された区画aに対応する検査像の輝度をCCDカメラ111の画素ごとにディジタル的な階調に変換する。例えば、ディジタル的な階調として256階調を採用した場合、適宜定めた輝度の最低値を0とし、最高値を255とし、その間の輝度は比例して変換される。   The conversion unit 131 converts the luminance of the inspection image corresponding to the section a captured by the light receiving unit 11 into a digital gradation for each pixel of the CCD camera 111. For example, when 256 gradations are adopted as digital gradations, a minimum value of luminance determined as appropriate is set to 0 and a maximum value is set to 255, and the luminance between them is converted in proportion.

メモリ136は、CCDカメラ111の画素の位置とその画素における変換された輝度とを関連付けた輝度情報として格納する領域と、後述するフィルタ画像に係わるデータを格納する領域および光量の補正データを格納する領域を有している。   The memory 136 stores an area for storing luminance information associating the position of the pixel of the CCD camera 111 with the converted luminance at the pixel, an area for storing data relating to a filter image, which will be described later, and light amount correction data. Has an area.

輝度演算部137における動作の原理について説明する。輝度演算部137は、図4(b)に示すように、区画aを複数の小区画wに分割し、各小区画wの平均輝度を求め、各小区画wの輝度を平均し区画aの輝度とする。例えばCCDカメラ111の画素数を100万画素とし、図4(b)に示すように区画a9を25個の小区画w(w1〜w25)に分割した場合には、各小区画wには4万画素が存在する。小区画wの輝度はこの画素に対応した輝度を平均することにより得ることができる。なお、区画aを小区画wに分割するルールや小区画wの平均輝度の求め方は、使用する演算装置の性能等により適宜定めてよい。   The principle of operation in the luminance calculation unit 137 will be described. As shown in FIG. 4B, the luminance calculation unit 137 divides the section a into a plurality of small sections w, obtains the average luminance of each small section w, averages the luminance of each small section w, and Let it be luminance. For example, when the number of pixels of the CCD camera 111 is 1 million pixels and the section a9 is divided into 25 small sections w (w1 to w25) as shown in FIG. There are 10,000 pixels. The luminance of the small section w can be obtained by averaging the luminance corresponding to this pixel. Note that the rule for dividing the section a into the small sections w and the method for obtaining the average luminance of the small sections w may be appropriately determined depending on the performance of the arithmetic device used.

ここで、図4(b)に示すように、小区画wの検査像には、小区画w25のように全領域にハニカム体7の像が写るもの(第1種の検査像)、小区画w1のようにハニカム体7の像が写らないもの(第2種の検査像)、小区画w8のようにハニカム体7の像が部分的に写るもの(第3種の検査像)の3種の検査像が存在する。輝度演算部137は、第1種の検査像の場合には、その小区画wの輝度を上記の通り区画aの輝度の計算に算入するように判断する。第2種の検査像の場合には計算から除外するように判断する。第3種の検査像の場合には、例えばハニカム体7の像の面積比が設定値以上であれば区画aの輝度の計算に算入し、設定値以下であれば除外するように判断する。   Here, as shown in FIG. 4B, in the inspection image of the small section w, an image of the honeycomb body 7 appears in the entire area as in the small section w25 (first type inspection image), and the small section There are three types: an image in which the image of the honeycomb body 7 is not captured as in w1 (second type inspection image), and an image of the honeycomb body 7 is partially imaged in the small section w8 (third type inspection image). The inspection image exists. In the case of the first type inspection image, the luminance calculation unit 137 determines to include the luminance of the small section w in the calculation of the luminance of the section a as described above. In the case of the second type inspection image, it is determined to exclude it from the calculation. In the case of the third type of inspection image, for example, if the area ratio of the image of the honeycomb body 7 is equal to or greater than a set value, it is included in the calculation of the luminance of the section a, and if it is equal to or less than the set value, it is determined to exclude.

ここで、上記第1種の検査像に含まれるセル71が正常で光14が良好にセル71を通過する場合、第1種の検査像と検査の第2種の検査像の輝度がほぼ同等になってしまうため、その検査像のみに基いて輝度演算部137が上記した判断をすることは難しい。そのため、本態様では、小区画wに対応したフィルタ画像と呼ぶデータをメモリ136に格納しておき、フィルタ画像と実際の検査像を比較して上記判断を行うこととした。このフィルタ画像は、例えば、検査対象となるハニカム体7の直径と等しい開口径をもつ平板を準備し、本態様におけるハニカム体7の検査と同様にその平板を検査し、区画aごとに得られた画像データである。このようにして得られたフィルタ画像の例を図8に示す。このフィルタ画像は画像処理で2値化処理されたものであり、ハニカム体7の像が予定される部分が白く、予定されない部分が黒く表示される。   Here, when the cell 71 included in the first type inspection image is normal and the light 14 passes through the cell 71 well, the luminance of the first type inspection image and the second type inspection image of the inspection are almost equal. Therefore, it is difficult for the luminance calculation unit 137 to make the above determination based only on the inspection image. Therefore, in this aspect, data called a filter image corresponding to the small section w is stored in the memory 136, and the determination is made by comparing the filter image with the actual inspection image. This filter image is obtained for each section a by preparing a flat plate having an opening diameter equal to the diameter of the honeycomb body 7 to be inspected and inspecting the flat plate in the same manner as the inspection of the honeycomb body 7 in this embodiment. Image data. An example of the filter image obtained in this way is shown in FIG. This filter image is binarized by image processing, and a portion where the image of the honeycomb body 7 is planned is displayed in white, and a portion where the image is not planned is displayed in black.

ハニカム体7を検査する場合には、輝度計算部137は、ハニカム体7の区画aに対応したフィルタ画像の区画aのフィルタ画像をメモリーから取り出し、ハニカム体7の区画aを小区画wに区分するのと同じルールでフィルタ画像の区画aを小区画wに分割する。輝度計算部137は、フィルタ画像の小区画wにおいて白い部分(ハニカム体7の像があると予定される部分)の小区画wの面積に対する面積比を計算する。輝度計算部137は、算出した面積比に基づいてハニカム体7の小区画wの輝度を区画aの輝度計算に算入するかしないかを判断する。   When inspecting the honeycomb body 7, the luminance calculation unit 137 takes out the filter image of the section a of the filter image corresponding to the section a of the honeycomb body 7 from the memory, and divides the section a of the honeycomb body 7 into the small sections w. The section a of the filter image is divided into small sections w according to the same rules as those used. The luminance calculation unit 137 calculates the area ratio of the white portion (portion where the image of the honeycomb body 7 is expected) in the small section w of the filter image to the area of the small section w. The luminance calculation unit 137 determines whether or not to include the luminance of the small section w of the honeycomb body 7 in the luminance calculation of the section a based on the calculated area ratio.

上記輝度演算部137の動作のフローを図2を参照し説明する。   The operation flow of the luminance calculation unit 137 will be described with reference to FIG.

メモリ136に格納されている区画aに対応した検査像を取込む(S1)。   An inspection image corresponding to the section a stored in the memory 136 is captured (S1).

区画aの検査像について、所定数の小区画wに予め設定したルールに基づき分割する(S2)。   The inspection image of the section a is divided based on a predetermined rule for a predetermined number of small sections w (S2).

小区画w毎に検査像の面積比により区画aの輝度の計算に算入するかどうかを判断する(S3)。算入する場合には、ステップS4に進む。算入しない場合には、ステップS5に進む。   It is determined whether or not to calculate the brightness of the section a by the area ratio of the inspection image for each small section w (S3). If so, the process proceeds to step S4. If not, go to step S5.

小区画wに含まれる画素に対応した輝度の平均値を求め、小区画wの輝度とする(S4)。   An average value of luminance corresponding to the pixels included in the small section w is obtained and set as the luminance of the small section w (S4).

計算が終了した小区画wの数をメモリ136に予め設定しておいた全ての小区画wの数と比較する(S5)。計算が終了した小区画wの数が少ない場合にはステップS3に戻り、次の小区画wについて処理をする。このようにして小区画w1〜w25の輝度を求める。計算が終了した小区画wの数が等しい場合には、ステップS6に進む。   The number of small partitions w for which calculation has been completed is compared with the number of all small partitions w set in advance in the memory 136 (S5). When the number of the small blocks w for which the calculation has been completed is small, the process returns to step S3 and the next small block w is processed. In this way, the luminance of the small sections w1 to w25 is obtained. If the number of sub-compartments w that have been calculated is equal, the process proceeds to step S6.

区画aにおける各小区画wの輝度平均値を求め区画aの輝度とする(S6)。   The average brightness value of each small section w in the section a is obtained and set as the brightness of the section a (S6).

次に、光量演算部132について説明する。
照明手段12から照射される光14の光量と区画aにおける検査像の輝度との関係は、図5において実線(以下検量線と称する。)31で示すように、所定の数式で表現可能な曲線で表わされる。従って、図示するように所望の輝度321に対し、輝度演算部137で算出された輝度322が低い場合には、それぞれの輝度に対応する光の光量331、332を求め、その差分(I)を補正するように光源121を制御すればよい。したがって、光量演算部132は、輝度演算部137で算出された区画aの輝度322と所望の輝度311を比較し光源121における光の光量を制御するための制御信号を生成する。ここで、上述した検量線31に対応した補正データはメモリ136に格納されている。
Next, the light amount calculation unit 132 will be described.
The relationship between the light amount of the light 14 emitted from the illumination means 12 and the luminance of the inspection image in the section a is a curve that can be expressed by a predetermined formula as shown by a solid line (hereinafter referred to as a calibration curve) 31 in FIG. It is represented by Therefore, when the brightness 322 calculated by the brightness calculator 137 is lower than the desired brightness 321 as shown in the figure, the light amounts 331 and 332 of the light corresponding to the respective brightness are obtained, and the difference (I) is obtained. What is necessary is just to control the light source 121 so that it may correct | amend. Therefore, the light amount calculation unit 132 compares the luminance 322 of the section a calculated by the luminance calculation unit 137 with the desired luminance 311 and generates a control signal for controlling the light amount of the light in the light source 121. Here, the correction data corresponding to the calibration curve 31 is stored in the memory 136.

光量演算部132の動作について図2を参照し説明する。   The operation of the light amount calculation unit 132 will be described with reference to FIG.

輝度演算部137の動作フローのステップS6において計算された区画aの輝度が図5における所望の輝度321に対し所定の範囲の中に入っているかを判断する(S7)。区画aの輝度がその範囲に入っている場合には、区画aにおける処理は終了する。   It is determined whether the brightness of the section a calculated in step S6 of the operation flow of the brightness calculation unit 137 is within a predetermined range with respect to the desired brightness 321 in FIG. 5 (S7). When the brightness of the section a is within the range, the process in the section a ends.

所定の範囲に入っていない場合には、メモリ136に格納した、図5に示される検量線31に対応する補正データから区画aの輝度322に対応する光源121の光量のデータ332を求め、所望の輝度321に対応した光量331との差分(I)を求める(S8)。   If not within the predetermined range, the light quantity data 332 of the light source 121 corresponding to the luminance 322 of the section a is obtained from the correction data corresponding to the calibration curve 31 shown in FIG. The difference (I) from the amount of light 331 corresponding to the luminance 321 is obtained (S8).

次に求めた差分Iを現在の照明の制御値に加え、照射する光量の新たな制御値とする(S9)。   Next, the obtained difference I is added to the current illumination control value to obtain a new control value for the amount of light to be irradiated (S9).

入出力部133は、制御値を制御信号に変換し、照明手段12に出力する(S10)。   The input / output unit 133 converts the control value into a control signal and outputs the control signal to the illumination unit 12 (S10).

新たな照明の制御値を用いて照明手段12から光14を照射し、図2で説明した処理を第一開口端面73から出た光14の光量が所定の範囲に入るまで繰り返す。   The light 14 is emitted from the illumination unit 12 using the new illumination control value, and the process described in FIG. 2 is repeated until the light amount of the light 14 emitted from the first opening end surface 73 falls within a predetermined range.

検査装置1の動作を説明する。
ハニカム体7を検査台161にセットする。ハニカム体7が撮像できる位置に照明手段12と受光手段11を移動し、ハニカム体7の第2開口端面74に光14を照射しつつ、ハニカム体7のセル71の軸と光14の光軸の方向とを一致させる。次に図4(a)に示すようにハニカム体7の区画a1に対応した位置に照明手段12と受光手段11を移動し、光14を区画a1に照射する。第1開口端面73から出た光14を受光手段11は受光し、区画a1部の検査像を撮像する。区画a1における検査像の輝度を上述したように輝度演算部137にて計算し、区画a1の輝度が所望の輝度でなければ光源121の光の光量が所定の明るさとなるような制御信号を生成する。目標範囲に入ればそのときの画像を区画の検査像としてメモリに格納する。次に区画a2の位置に移動し、区画a2の検査像を撮像する。このようにして区画a1〜a25の検査像を撮像する。なお、区画aを移動するごとに光軸合わせを行えば、セル71の曲がりによる検査像の明暗の差がより小さくなるので有効である。
The operation of the inspection apparatus 1 will be described.
The honeycomb body 7 is set on the inspection table 161. The illumination means 12 and the light receiving means 11 are moved to a position where the honeycomb body 7 can be imaged, and the second opening end face 74 of the honeycomb body 7 is irradiated with the light 14, while the cell 71 axis of the honeycomb body 7 and the optical axis of the light 14. Match the direction of. Next, as shown to Fig.4 (a), the illumination means 12 and the light-receiving means 11 are moved to the position corresponding to the division a1 of the honeycomb body 7, and the light 14 is irradiated to the division a1. The light receiving means 11 receives the light 14 emitted from the first opening end face 73, and takes an inspection image of the section a1. The luminance calculation unit 137 calculates the luminance of the inspection image in the section a1 as described above, and generates a control signal so that the light amount of the light source 121 becomes a predetermined brightness unless the luminance of the section a1 is a desired luminance. To do. If the target range is entered, the image at that time is stored in the memory as an inspection image of the section. Next, it moves to the position of the section a2 and takes an inspection image of the section a2. In this way, the inspection images of the sections a1 to a25 are taken. If the optical axis is aligned each time the section a is moved, it is effective because the difference in brightness of the inspection image due to the bending of the cell 71 becomes smaller.

なお、上記の検査装置では比較的簡単に装置を構成するために、照明手段12は区画aごとに光12を照射し、受光手段11は区画aごとに受光する物としているが、照明手段12は、ハニカム7の第2開口端面74の全体に光14を照射し、受光手段11は第1開口端面73の全てのセル71から出た光を受光する物としてもよい。この場合、照明手段12としては、照射する光14の光量を部分的に調整可能な物が選択される。   In the above inspection apparatus, the illumination means 12 emits light 12 for each section a and the light receiving means 11 receives light for each section a in order to configure the apparatus relatively easily. May irradiate the entire second opening end face 74 of the honeycomb 7 with light 14, and the light receiving means 11 may receive light emitted from all the cells 71 on the first opening end face 73. In this case, as the illuminating means 12, an object capable of partially adjusting the amount of light 14 to be irradiated is selected.

目視検査を行う場合において、区画aごとに検査像を確認することは不便であり、検査効率の悪化を招く。これを容易かつ効率的に行うために、本態様の検査装置1は、画像合成部134を処理部13に組み込んでいる。   When visual inspection is performed, it is inconvenient to confirm the inspection image for each section a, and the inspection efficiency is deteriorated. In order to perform this easily and efficiently, the inspection apparatus 1 of this aspect incorporates the image composition unit 134 into the processing unit 13.

画像合成部134は、メモリ136に蓄えられた区画aごとの検査像を合成し、ハニカム体7全体の検査像を形成するものである。これは、受光手段12にて撮像された第1開口端面73の各区画aの検査像の画像情報と、所定の各区画aの検査像を撮像した際の移動手段15の移動量に基づいた各検査像の座標情報からなり、検査像の座標に基づいて各区画aの検査像を合成し、ハニカム体7全体としての検査像を作成する。このように作成された全体検査像は、例えばモニタ等からなる表示部135にて表示され、これを目視確認することで良否判別することができる。   The image composition unit 134 synthesizes inspection images for each section a stored in the memory 136 to form an inspection image of the entire honeycomb body 7. This is based on the image information of the inspection image of each section a of the first opening end face 73 imaged by the light receiving unit 12 and the amount of movement of the moving unit 15 when the inspection image of each predetermined section a is captured. It consists of the coordinate information of each inspection image, and the inspection image of each section a is synthesized based on the coordinates of the inspection image, and the inspection image of the entire honeycomb body 7 is created. The entire inspection image created in this way is displayed on the display unit 135 including, for example, a monitor, and the quality can be determined by visually confirming this.

表示部135に表示された検査像を確認した場合、図7(b)に示すように白く表示されている部分に対応するセル71は、貫通していることが判る。また、図7(c)に示すように複数のセル71に渉って黒く表示されている部分がある場合、セル71は損傷を受け、詰まりが生じていることが判る。さらに、図7(d)に示すように複数のセル壁72が表示されない部分がある場合、流体通路76が完全に画成されていないことが判る。   When the inspection image displayed on the display unit 135 is confirmed, it can be seen that the cell 71 corresponding to the portion displayed in white as shown in FIG. Further, as shown in FIG. 7 (c), when there is a portion displayed in black behind the plurality of cells 71, it can be seen that the cells 71 are damaged and clogged. Furthermore, as shown in FIG. 7D, when there is a portion where the plurality of cell walls 72 are not displayed, it can be seen that the fluid passage 76 is not completely defined.

本発明は、ハニカム体のように多数のセルを有するものだけでなく、例えば長尺の筒体の内部の損傷状態を検査する用途にも利用されうる。   The present invention can be used not only for a cell having a large number of cells such as a honeycomb body but also for an application for inspecting a damaged state inside a long cylindrical body, for example.

本発明の一実施態様の検査装置の概略構成図である。It is a schematic block diagram of the inspection apparatus of one embodiment of this invention. 図1の検査装置の調光手段における光量計算のフロー図である。It is a flowchart of the light quantity calculation in the light control means of the inspection apparatus of FIG. 従来の検査装置の概略構成図である。It is a schematic block diagram of the conventional inspection apparatus. 図1の検査装置の調光手段における検査像の一例である。It is an example of the test | inspection image in the light control means of the test | inspection apparatus of FIG. 図1の検査装置の調光手段における検量線の一例である。It is an example of the calibration curve in the light control means of the inspection apparatus of FIG. 従来の検査装置による検査像の一例である。It is an example of the test | inspection image by the conventional test | inspection apparatus. 図1の検査装置における検査像の一例である。It is an example of the test | inspection image in the test | inspection apparatus of FIG. 図1の検査装置におけるフィルタ画像の一例である。It is an example of the filter image in the inspection apparatus of FIG.

符号の説明Explanation of symbols

1 検査装置
11 受光手段
12 照明手段
13 PC処理部
14 光
15 移動手段
16 光軸合わせ手段
3 検量線図
31 検量線
7 ハニカム体
71 セル
72 セル壁
73 第1開口端面
74 第2開口端面
75 外周面
9 従来の検査装置
DESCRIPTION OF SYMBOLS 1 Inspection apparatus 11 Light reception means 12 Illumination means 13 PC processing part 14 Light 15 Movement means 16 Optical axis alignment means 3 Calibration curve figure 31 Calibration curve 7 Honeycomb body 71 Cell 72 Cell wall 73 1st opening end surface 74 2nd opening end surface 75 Outer periphery Surface 9 Conventional inspection equipment

Claims (4)

並列した多数のセルを有するハニカム体のセルの状態を検査する検査装置であって、前記ハニカム体の一端面に光を照射する照明手段と、前記セルを通過し前記ハニカム体の他端面から出た前記光を受光する受光手段と、前記受光手段で受光した光の光量に基いて前記照明手段で照射する光の光量を制御する調光手段とを有する検査装置。 An inspection apparatus for inspecting the state of a cell of a honeycomb body having a large number of cells in parallel, the illumination means for irradiating light to one end surface of the honeycomb body, and an exit from the other end surface of the honeycomb body through the cell An inspection apparatus comprising: a light receiving unit configured to receive the light; and a light control unit configured to control a light amount emitted from the illumination unit based on a light amount received by the light receiving unit. 請求項1に記載の検査装置において、前記照明手段は、前記ハニカム体の一端面の一区画に光を照射する検査装置 The inspection apparatus according to claim 1, wherein the illumination unit irradiates light to a section of one end surface of the honeycomb body. 請求項1又は2に記載の検査装置において、前記照明手段と受光手段の位置関係を保持しつつ一体として移動する移動手段を有する検査装置。 3. The inspection apparatus according to claim 1, further comprising a moving unit that moves as one unit while maintaining a positional relationship between the illumination unit and the light receiving unit. 請求項1乃至3に記載の検査装置において、ハニカム体または照明手段の姿勢を調整する光軸合わせ手段を有する検査装置。 4. The inspection apparatus according to claim 1, further comprising an optical axis alignment unit that adjusts a posture of the honeycomb body or the illumination unit.
JP2004083987A 2004-03-23 2004-03-23 Honeycomb body inspection device Expired - Lifetime JP4618532B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083987A JP4618532B2 (en) 2004-03-23 2004-03-23 Honeycomb body inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083987A JP4618532B2 (en) 2004-03-23 2004-03-23 Honeycomb body inspection device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009212636A Division JP5035705B2 (en) 2009-09-15 2009-09-15 Honeycomb body inspection device

Publications (2)

Publication Number Publication Date
JP2005274179A true JP2005274179A (en) 2005-10-06
JP4618532B2 JP4618532B2 (en) 2011-01-26

Family

ID=35174029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083987A Expired - Lifetime JP4618532B2 (en) 2004-03-23 2004-03-23 Honeycomb body inspection device

Country Status (1)

Country Link
JP (1) JP4618532B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007070318A1 (en) * 2005-12-12 2007-06-21 Corning Incorporated Collimated light method and system for detecting defects in honeycombs
WO2008047565A1 (en) 2006-09-28 2008-04-24 Hitachi Metals, Ltd. Method and apparatus for manufacturing ceramic honeycomb structure
WO2010021748A1 (en) * 2008-08-22 2010-02-25 Corning Incorporated Systems and methods for detecting defects in ceramic filter bodies
JP2010249798A (en) * 2009-03-23 2010-11-04 Ngk Insulators Ltd Inspection device of plugged honeycomb structure and inspection method of plugged honeycomb structure
JP2010249799A (en) * 2009-03-23 2010-11-04 Ngk Insulators Ltd Inspection method of honeycomb structure
JP2012088273A (en) * 2010-10-22 2012-05-10 Sumitomo Chemical Co Ltd Method and device for checking defect of honeycomb structure
WO2013008790A1 (en) * 2011-07-14 2013-01-17 住友化学株式会社 Method for inspecting honeycomb structure, method for manufacturing honeycomb structure, and device for inspecting honeycomb structure
WO2016085737A1 (en) * 2014-11-25 2016-06-02 Corning Incorporated Apparatus and methods of inspecting ceramic honeycomb bodies
JP2017518496A (en) * 2014-05-28 2017-07-06 コーニング インコーポレイテッド System and method for inspecting an object
CN113464254A (en) * 2020-03-31 2021-10-01 日本碍子株式会社 Method for inspecting columnar honeycomb filter

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089736A (en) * 1984-06-12 1985-05-20 Ngk Insulators Ltd Apparatus for inspecting intermediate breaking of ceramic body having innumerable perforated small pores
JPH04229863A (en) * 1990-12-27 1992-08-19 Nikon Corp Photomask tester
JP2002014051A (en) * 2000-06-27 2002-01-18 Ibiden Co Ltd Method and equipment for inspecting defect of porous ceramic member
WO2002011884A1 (en) * 2000-08-03 2002-02-14 Ngk Insulators, Ltd. Ceramic honeycomb structure
JP2003270158A (en) * 2002-03-12 2003-09-25 Denso Corp Penetration inspection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089736A (en) * 1984-06-12 1985-05-20 Ngk Insulators Ltd Apparatus for inspecting intermediate breaking of ceramic body having innumerable perforated small pores
JPH04229863A (en) * 1990-12-27 1992-08-19 Nikon Corp Photomask tester
JP2002014051A (en) * 2000-06-27 2002-01-18 Ibiden Co Ltd Method and equipment for inspecting defect of porous ceramic member
WO2002011884A1 (en) * 2000-08-03 2002-02-14 Ngk Insulators, Ltd. Ceramic honeycomb structure
JP2003270158A (en) * 2002-03-12 2003-09-25 Denso Corp Penetration inspection device

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7701570B2 (en) 2005-12-12 2010-04-20 Corning Incorporated Collimated light method and system for detecting defects in honeycombs
WO2007070318A1 (en) * 2005-12-12 2007-06-21 Corning Incorporated Collimated light method and system for detecting defects in honeycombs
WO2008047565A1 (en) 2006-09-28 2008-04-24 Hitachi Metals, Ltd. Method and apparatus for manufacturing ceramic honeycomb structure
JP2012500969A (en) * 2008-08-22 2012-01-12 コーニング インコーポレイテッド Defect detection system and method for ceramic filter body
WO2010021748A1 (en) * 2008-08-22 2010-02-25 Corning Incorporated Systems and methods for detecting defects in ceramic filter bodies
JP2015111129A (en) * 2008-08-22 2015-06-18 コーニング インコーポレイテッド Method for detecting defect in ceramic filter body
US8049878B2 (en) 2008-08-22 2011-11-01 Corning Incorporated Systems and methods for detecting defects in ceramic filter bodies
JP2010249799A (en) * 2009-03-23 2010-11-04 Ngk Insulators Ltd Inspection method of honeycomb structure
JP2010249798A (en) * 2009-03-23 2010-11-04 Ngk Insulators Ltd Inspection device of plugged honeycomb structure and inspection method of plugged honeycomb structure
JP2012088273A (en) * 2010-10-22 2012-05-10 Sumitomo Chemical Co Ltd Method and device for checking defect of honeycomb structure
WO2013008790A1 (en) * 2011-07-14 2013-01-17 住友化学株式会社 Method for inspecting honeycomb structure, method for manufacturing honeycomb structure, and device for inspecting honeycomb structure
JP2017518496A (en) * 2014-05-28 2017-07-06 コーニング インコーポレイテッド System and method for inspecting an object
WO2016085737A1 (en) * 2014-11-25 2016-06-02 Corning Incorporated Apparatus and methods of inspecting ceramic honeycomb bodies
CN107209129A (en) * 2014-11-25 2017-09-26 康宁股份有限公司 The apparatus and method for checking ceramic honeycomb body
EP3224602A1 (en) * 2014-11-25 2017-10-04 Corning Incorporated Apparatus and methods of inspecting ceramic honeycomb bodies
JP2017538114A (en) * 2014-11-25 2017-12-21 コーニング インコーポレイテッド Apparatus and method for inspecting ceramic honeycomb body
US10145805B2 (en) 2014-11-25 2018-12-04 Corning Incorporated Apparatus and methods of inspecting ceramic honeycomb bodies
EP3224602B1 (en) * 2014-11-25 2021-07-21 Corning Incorporated Apparatus and methods of inspecting ceramic honeycomb bodies
CN113464254A (en) * 2020-03-31 2021-10-01 日本碍子株式会社 Method for inspecting columnar honeycomb filter
CN113464254B (en) * 2020-03-31 2023-03-24 日本碍子株式会社 Method for inspecting columnar honeycomb filter

Also Published As

Publication number Publication date
JP4618532B2 (en) 2011-01-26

Similar Documents

Publication Publication Date Title
US7520918B2 (en) Method and system for identifying and repairing defective cells in a plugged honeycomb structure
JP4618532B2 (en) Honeycomb body inspection device
TW201702572A (en) Oil leakage detection system capable of detecting oil leakage with high precision without complicating an apparatus
US20090153749A1 (en) Portable projector background color correction scheme
US20240020820A1 (en) Inspection method and inspection system for pillar-shaped honeycomb structure made of ceramic
JP5035705B2 (en) Honeycomb body inspection device
JP4740705B2 (en) Pattern defect inspection system
JPH04148544A (en) Wire bonding inspector
JP2009008578A (en) Printed circuit board inspecting device and method
US20210302325A1 (en) Inspection method and inspection system for cylindrical honeycomb structure made of ceramics
JP5006005B2 (en) Foreign matter inspection apparatus and foreign matter inspection method
WO2018008051A1 (en) Inspection device and inspection method
KR20180038857A (en) Visual inspection apparatus and method of optical calibration of the same
JP5298929B2 (en) Overhead line inspection device
KR20100121560A (en) Method of forming mounting inspection data, media storing the same, and inspection apparatus using the same
JP2007103787A (en) Inspection apparatus for solid-state imaging device
US11796308B2 (en) Three-dimensional measuring apparatus, three-dimensional measuring method
JP2007033295A (en) Inspection device
JP2015111158A (en) Sealed honeycomb structure inspection apparatus and sealed honeycomb structure inspection method
JP2011220755A (en) Surface appearance inspection apparatus
US20130176465A1 (en) Image pickup apparatus and method of forming image data
JP2009014447A (en) Flaw inspection device and flaw inspection program
TW201736240A (en) Inspection device, inspection system, and inspection method for passenger conveyor
KR100605027B1 (en) Method and apparatus for visual inspection by taking images of an object while a camera or the object is moving
KR101502430B1 (en) Flat display eldctrode trimmer with real time inspection and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090723

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091008

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101001

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131105

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4618532

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term