JP2005272331A - Preparation method of high-purity phenol-ethylene oxide adduct - Google Patents

Preparation method of high-purity phenol-ethylene oxide adduct Download PDF

Info

Publication number
JP2005272331A
JP2005272331A JP2004086049A JP2004086049A JP2005272331A JP 2005272331 A JP2005272331 A JP 2005272331A JP 2004086049 A JP2004086049 A JP 2004086049A JP 2004086049 A JP2004086049 A JP 2004086049A JP 2005272331 A JP2005272331 A JP 2005272331A
Authority
JP
Japan
Prior art keywords
ethylene oxide
phenol
temperature
reaction
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004086049A
Other languages
Japanese (ja)
Other versions
JP4500076B2 (en
Inventor
Toshiaki Inagi
俊明 稲木
Yoshitaka Uchiyama
義隆 内山
Sukeoki Nishiwaki
資起 西脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokkaichi Chemical Co Ltd
Original Assignee
Yokkaichi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokkaichi Chemical Co Ltd filed Critical Yokkaichi Chemical Co Ltd
Priority to JP2004086049A priority Critical patent/JP4500076B2/en
Publication of JP2005272331A publication Critical patent/JP2005272331A/en
Application granted granted Critical
Publication of JP4500076B2 publication Critical patent/JP4500076B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for directly preparing a high-purity phenol-ethylene oxide adduct having a low phenol content, e.g. ≤50 ppm, without using any solvent, whereby a basic catalyst does not need to be changed and no rectification process is required. <P>SOLUTION: In a method for preparing the phenol-ethylene oxide adduct, phenol is reacted with ethylene oxide in the absence of a solvent and in the presence of the basic catalyst. Here, 1-10 mol ethylene oxide against 1 mol phenol is supplied at a reaction temperature of 130-180°C to keep the ethylene oxide concentration in a reaction mixture at ≥0.05%, and as soon as the amount of ethylene oxide supplied reaches an amount corresponding to >70% but <100% of the required amount, the reaction mixture is cooled to a temperature lower than the reaction temperature by ≥15°C, and the rest of ethylene oxide is supplied. Then, at the same temperature or at a temperature 0-15°C lower than this, the reaction mixture is matured without any further supply of ethylene oxide. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フェノール・酸化エチレン付加体の製造方法に関する。詳しくは、フェノール含有量の少ないフェノール・酸化エチレン付加体を、無溶媒、塩基性触媒の存在下で効率的に製造する方法に関する。フェノール・酸化エチレン付加体のうち、1対1付加体は、フェノキシエタノールあるいはグリコールフェノールエーテルと呼称されることもあるが、本発明では上記の通り、フェノール・酸化エチレン付加体と呼称する。   The present invention relates to a method for producing a phenol / ethylene oxide adduct. Specifically, the present invention relates to a method for efficiently producing a phenol / ethylene oxide adduct having a low phenol content in the absence of a solvent and a basic catalyst. Among the phenol / ethylene oxide adducts, the one-to-one adduct is sometimes called phenoxyethanol or glycol phenol ether, but in the present invention, it is called a phenol / ethylene oxide adduct as described above.

フェノール・酸化エチレン付加体は、化粧品の防腐剤、医農薬、洗浄剤、香料及びUV硬化剤の中間体の原料として、また、酢酸ビニル系ポリマーエマルジョンの造膜温度調整剤として広く用いられている。従来の製造方法としては、アルカリ金属水酸化物(特許文献1参照)、イオン交換樹脂(特許文献2参照)といった塩基性触媒の存在下で、フェノールを酸化エチレン(エチレンオキシド)と反応させて、得られた反応液を乳酸、グリコール酸、酒石酸、クエン酸といった有機酸、または硫酸、塩酸、燐酸といった無機酸で中和し、製品としている。求められる製品の品質に応じて、脱塩及び/又は精留といった操作を施し、製品のフェノール・酸化エチレン付加体の純度を高めている。   Phenol / ethylene oxide adducts are widely used as raw materials for cosmetic preservatives, medicines and agricultural chemicals, detergents, fragrances and UV curing agents, and as a film-forming temperature regulator for vinyl acetate polymer emulsions. . As a conventional production method, phenol is reacted with ethylene oxide (ethylene oxide) in the presence of a basic catalyst such as an alkali metal hydroxide (see Patent Document 1) or an ion exchange resin (see Patent Document 2). The resulting reaction solution is neutralized with an organic acid such as lactic acid, glycolic acid, tartaric acid or citric acid, or an inorganic acid such as sulfuric acid, hydrochloric acid or phosphoric acid to produce a product. Depending on the required product quality, operations such as desalting and / or rectification are performed to increase the purity of the phenol / ethylene oxide adduct of the product.

近年、ユーザーの安全への意識向上から、より低フェノール含有量の製品が求められている。単に製品中のフェノール含有量を低下させることだけを目的とするのであれば、フェノールに対する酸化エチレンの付加反応モル比を上げて付加反応の後、精留すれば良いが、2−(2−フェノキシエトキシ)エタノールのようなフェノールに酸化エチレンが複数モル付加反応した高モル付加体が多く生成し、製品が蒸留精製を必要としない場合には製品の機能低下の問題を、一方、蒸留精製する必要がある場合には蒸留時に製品の歩留まり低下、ボトム量の増加といった問題を引き起こす。   In recent years, products with a lower phenol content have been demanded in order to improve user safety awareness. If the purpose is simply to reduce the phenol content in the product, the addition reaction molar ratio of ethylene oxide to phenol may be increased and rectification may be carried out after the addition reaction, but 2- (2-phenoxy) When a product such as ethoxy) ethanol is added to a high-mole adduct of a plurality of moles of ethylene oxide and the product does not require distillation purification, the product may not function properly. If there is, it causes problems such as a decrease in product yield and an increase in the bottom amount during distillation.

従来技術の問題点を解決するために、フェノールと酸化エチレンとの反応において、触媒の変更、溶媒の選定により、フェノールへの酸化エチレン付加モル分布を狭くしようとする検討がなされている。   In order to solve the problems of the prior art, in the reaction of phenol and ethylene oxide, studies have been made to narrow the ethylene oxide addition molar distribution to phenol by changing the catalyst and selecting a solvent.

例えば、フェノールのグリコールエーテルの工業的製造方法として、水相中で少量の水溶性中性アルカリ金属塩またはアルカリ土類金属塩の存在下、20〜130℃の温度及び10気圧以下の圧力下で攪拌しつつフェノールとアルキレンオキシドを反応させる方法(特許文献3参照)が開示されている。   For example, as an industrial method for producing a glycol ether of phenol, in the presence of a small amount of a water-soluble neutral alkali metal salt or alkaline earth metal salt in an aqueous phase, at a temperature of 20 to 130 ° C. and a pressure of 10 atm or less. A method of reacting phenol and alkylene oxide with stirring (see Patent Document 3) is disclosed.

この反応では、溶媒の水とアルキレンオキシドとが反応して(ポリ)アルキレングリコールを副生する等、アルキレンオキシドを浪費し、バッチ当りの製品収量が低下するため好ましくない。また、アルキレンオキシド付加反応後に水層、油層の分離操作が必要であり、さらにフェノールへ2モル以上のアルキレンオキシドが付加した水溶性が高いポリアルキレングリコールモノフェニルエーテルが副生するため、COD負荷の高い排水を処理する必要があるといった問題がある。   This reaction is not preferable because the solvent oxide and alkylene oxide react to produce (poly) alkylene glycol as a by-product, which wastes alkylene oxide and reduces the product yield per batch. In addition, it is necessary to separate the water layer and the oil layer after the alkylene oxide addition reaction, and furthermore, polyalkylene glycol monophenyl ether having a high water solubility in which 2 mol or more of alkylene oxide is added to phenol is by-produced. There is a problem that high waste water needs to be treated.

また、フェノール類とアルキレンオキサイドとの反応をエーテル、ケトン、エステル、炭化水素、ハロゲン化炭化水素及びニトロ芳香族化合物からなる群から選ばれた少なくとも1種の有機溶媒で、3級アミン、3級アルシン及び3級スチビンからなる群から選ばれた何れかの触媒の存在下に反応させることを特徴とする方法(特許文献4参照)が開示されている。   In addition, the reaction between the phenol and the alkylene oxide is carried out with at least one organic solvent selected from the group consisting of ethers, ketones, esters, hydrocarbons, halogenated hydrocarbons and nitroaromatic compounds. A method (see Patent Document 4) characterized by reacting in the presence of any catalyst selected from the group consisting of arsine and tertiary stibine is disclosed.

この方法では、有機溶媒を用いるため、バッチ当りの製品収量の低下、溶媒の回収、リサイクルといった問題がある。また、アミン触媒を用いると反応液が着臭し、反応液を蒸留精製する場合でも、その臭気は製品に残り、その様な臭気が残った製品は、特に、香料分野、化粧品分野では使用できない。さらに、ヒ素化合物、アンチモン化合物を触媒に用いることは、製品を香料分野、化粧品分野等、人と接触する用途で使用する場合には好ましくない。   In this method, since an organic solvent is used, there are problems such as a reduction in product yield per batch, recovery of the solvent, and recycling. In addition, when an amine catalyst is used, the reaction solution odors, and even when the reaction solution is purified by distillation, the odor remains in the product, and the product with such odor remaining cannot be used particularly in the perfume and cosmetic fields. . Furthermore, the use of an arsenic compound or antimony compound as a catalyst is not preferred when the product is used in applications that come into contact with humans, such as in the perfumery and cosmetic fields.

また、該反応の触媒として、各種ホスホニウム塩を用いることが開示されている(特許文献5〜8参照)。   Moreover, using various phosphonium salts as a catalyst of this reaction is disclosed (refer patent documents 5-8).

ホスホニウム塩触媒を用いると反応液の色相は良好で、フェノール・酸化エチレン付加体の純度は高いが、反応液にホスホニウム化合物が分解した臭気がある。その臭気は精留しても製品に残り、その様な臭気が残った製品は、特に、香料分野、化粧品分野では使用できない。   When a phosphonium salt catalyst is used, the hue of the reaction solution is good and the purity of the phenol / ethylene oxide adduct is high, but the reaction solution has an odor of decomposition of the phosphonium compound. The odor remains in the product even after rectification, and a product having such an odor cannot be used particularly in the perfume and cosmetic fields.

また、アルカリ金属水酸化物及びアルカリ金属硼水素化物を用いる、芳香品質のエチレングリコールモノアリールエーテルの製造方法(特許文献9〜10参照)が開示されている。   Moreover, the manufacturing method (refer patent documents 9-10) of aromatic quality ethylene glycol monoaryl ether using an alkali metal hydroxide and alkali metal borohydride is disclosed.

この方法では得られる反応液は色相、臭気共に優れているが、フェノール含有量が数百ppmと多いため、フェノール含有量を100ppm以下にするためには、フェノールを除去する工程が必要になる。さらに製品を蒸留精製する必要がある場合には、前記フェノール除去工程を実施しないと、蒸留精製時にフェノール除去の負荷が高く、また製品の収率が低くなるといった問題があった。
東独国特許第282448号明細書 米国特許第2852566号明細書 特公昭39−30272号公報 特公昭50−17976号公報 ***国特許第2609475号明細書 英国特許第1485598号明細書 加国特許第1091690号明細書 米国特許第4302574号明細書 ***国特許第3312684号明細書 米国特許第4533759号明細書
In this method, the obtained reaction solution is excellent in both hue and odor. However, since the phenol content is as high as several hundred ppm, a step of removing phenol is required to make the phenol content 100 ppm or less. Further, when the product needs to be purified by distillation, there is a problem that unless the phenol removal step is carried out, the load of removing phenol is high during the distillation purification and the yield of the product is lowered.
East German Patent No. 282448 US Pat. No. 2,852,566 Japanese Examined Patent Publication No. 39-30272 Japanese Patent Publication No. 50-17976 Specification of West German Patent No. 2609475 British Patent No. 1485598 Canadian Patent No. 1091690 U.S. Pat. No. 4,302,574 German German Patent No. 3312684 US Pat. No. 4,533,759

本発明者らは、上記のような従来の技術の状況に鑑み、塩基性触媒の変更を伴わず、溶媒を使用せず、かつ特別な精製工程を伴わない、高純度フェノール・酸化エチレン付加体の製造方法を提供すべく、鋭意検討を重ねた。   In view of the state of the prior art as described above, the present inventors have not changed the basic catalyst, do not use a solvent, and do not involve a special purification step, and have a high purity phenol / ethylene oxide adduct. In order to provide a manufacturing method for the above, intensive study was repeated.

その結果、反応原料の供給方法及び温度制御について特定の方法を選択することにより、蒸留精製など特別な負荷を伴うことなく簡単な操作でフェノール含有量を大幅に低減できることを見出し、本発明に到達した。   As a result, it was found that the phenol content can be greatly reduced by a simple operation without any special load such as distillation purification by selecting a specific method for the reaction raw material supply method and temperature control, and the present invention has been achieved. did.

即ち、本発明の要旨は、無溶媒、塩基性触媒の存在下でフェノールと酸化エチレンとを反応させて、フェノール・酸化エチレン付加体を製造する方法において、フェノール1モルに対して1〜10モルの酸化エチレンを、反応混合物中の酸化エチレン濃度が常時0.05%以上となるように維持しながら、反応温度130〜180℃で供給し、酸化エチレンの供給量が所要量の70%を超え100%未満の時点で、前記反応温度よりも15℃以上低い温度にまで冷却しつつ残余の酸化エチレンを供給し、更に同一温度条件下又は0〜15℃冷却した温度条件下、酸化エチレンを供給することなく、熟成することを特徴とする高純度フェノール・酸化エチレン付加体の製造方法に存する。   That is, the gist of the present invention is that a phenol / ethylene oxide adduct is produced by reacting phenol and ethylene oxide in the absence of a solvent and in the presence of a basic catalyst. While maintaining the ethylene oxide concentration in the reaction mixture to be always 0.05% or more, the ethylene oxide was supplied at a reaction temperature of 130 to 180 ° C., and the supply amount of ethylene oxide exceeded 70% of the required amount. When the temperature is less than 100%, the remaining ethylene oxide is supplied while cooling to a temperature lower by 15 ° C. or more than the reaction temperature, and further, ethylene oxide is supplied under the same temperature condition or a temperature condition of 0 to 15 ° C. The present invention resides in a method for producing a high-purity phenol / ethylene oxide adduct characterized by aging without aging.

また、本発明は上記の方法で製造されたフェノール含有量が30ppm以下の高純度フェノール・酸化エチレン付加体にも存する。   The present invention also resides in a high-purity phenol / ethylene oxide adduct having a phenol content of 30 ppm or less produced by the above method.

塩基性触媒の変更を伴わず、溶媒を使用せず、かつ蒸留精製など特別な負荷を伴うことなく簡単な温度制御操作で、フェノール含有量が50ppm以下、特に30ppm以下の高純度フェノール・酸化エチレン付加体を製造することができる。   High-purity phenol / ethylene oxide with a phenol content of 50 ppm or less, especially 30 ppm or less, with simple temperature control without changing the basic catalyst, without using a solvent, and without any special load such as distillation purification. Adducts can be produced.

1.酸化エチレン付加反応工程
反応器に原料のフェノール及び塩基性触媒を仕込み、反応器内の雰囲気を窒素、ヘリウム等の不活性ガスで置換し、130〜180℃、好ましくは155〜175℃に加熱し、同温度範囲で酸化エチレンをフェノール(仕込量)に対しモル比で1〜10、好ましくは1.0〜3.0に達するまで供給し、付加反応させる。通常、フェノールは反応に先立ち、反応器内に所定量の全量が一括して仕込まれる。
1. Ethylene oxide addition reaction step Raw material phenol and basic catalyst are charged into the reactor, and the atmosphere in the reactor is replaced with an inert gas such as nitrogen or helium, and heated to 130 to 180 ° C, preferably 155 to 175 ° C. In the same temperature range, ethylene oxide is supplied in a molar ratio with respect to phenol (feed amount) in a molar ratio of 1 to 10, preferably 1.0 to 3.0, and subjected to an addition reaction. Usually, prior to the reaction, a predetermined amount of the whole amount of phenol is charged all at once in the reactor.

反応器内の雰囲気を不活性ガスに置換する操作は、反応液の着色防止と安全性確保のために行うものである。この操作は温度40〜70℃の範囲内で行うことが好ましい。40℃よりも低いとフェノールが凝固する恐れがあり、逆に、70℃を超えると、反応液が着色し、また反応液からアルカリ焼けにより異臭がする恐れもある。   The operation of replacing the atmosphere in the reactor with an inert gas is performed to prevent coloring of the reaction solution and to ensure safety. This operation is preferably performed within a temperature range of 40 to 70 ° C. If the temperature is lower than 40 ° C., the phenol may be solidified. On the other hand, if the temperature exceeds 70 ° C., the reaction solution may be colored, and the reaction solution may cause an odor due to alkali burning.

塩基性触媒としては、強アルカリが好適であり、例えば水酸化リチウム、水酸化ナトリウム、水酸化カリウムが好ましいが、他の弱アルカリ、例えば水酸化マグネシウム、水酸化バリウム、水酸化カルシウム、炭酸ナトリウムあるいは炭酸カリウムもまた使用することができる。反応性、工業的入手の容易さ等から、特に、水酸化カリウム、水酸化ナトリウムが好ましい。   As the basic catalyst, strong alkali is suitable, for example, lithium hydroxide, sodium hydroxide, potassium hydroxide is preferable, but other weak alkalis such as magnesium hydroxide, barium hydroxide, calcium hydroxide, sodium carbonate or Potassium carbonate can also be used. In view of reactivity, industrial availability, etc., potassium hydroxide and sodium hydroxide are particularly preferred.

塩基性触媒の使用量(仕込量)は、フェノール(仕込量)に対して0.01〜1.0重量%であり、好ましくは0.05〜0.5重量%である。1.0重量%より多くても、反応速度の上昇は飽和しており、熟成後の反応液中のフェノール含有量は変わらず、中和に使用する酸成分が多くなるだけ、経済的に不利である。逆に、0.01重量%より少ないと、反応速度が低下し、反応に長時間がかかる。塩基性触媒は、通常、必要量の全量を一括して反応器に仕込むが、複数回に分割してもよく、反応後半に酸性物質を加えて部分的に中和することもできる。   The usage-amount (preparation amount) of a basic catalyst is 0.01 to 1.0 weight% with respect to phenol (preparation amount), Preferably it is 0.05 to 0.5 weight%. Even if it exceeds 1.0% by weight, the increase in the reaction rate is saturated, the phenol content in the reaction solution after aging does not change, and only an acid component used for neutralization increases, which is economically disadvantageous. It is. On the other hand, when the amount is less than 0.01% by weight, the reaction rate decreases and the reaction takes a long time. Usually, the basic catalyst is charged into the reactor in a necessary amount all at once, but it may be divided into a plurality of times, or it can be partially neutralized by adding an acidic substance in the latter half of the reaction.

この酸化エチレン付加反応工程での反応温度は130〜180℃であり、好ましくは155〜175℃、更に好ましくは160〜170℃である。反応温度が130℃よりも低いと、反応が遅く、反応に長時間を要する。逆に180℃よりも高いと、無触媒反応(フェノールの自触媒作用)が進行し、フェノールが多く残存し、また副生物の生成量が増加する。本発明の付加反応は大きな発熱を伴うので、反応温度の制御は冷却手段や酸化エチレンの供給速度などを考慮して、上記130〜180℃の間から適宜に選択される。   The reaction temperature in this ethylene oxide addition reaction process is 130-180 degreeC, Preferably it is 155-175 degreeC, More preferably, it is 160-170 degreeC. When the reaction temperature is lower than 130 ° C., the reaction is slow and the reaction takes a long time. Conversely, when the temperature is higher than 180 ° C., a non-catalytic reaction (phenol autocatalysis) proceeds, a large amount of phenol remains, and the amount of by-products increases. Since the addition reaction of the present invention involves a large exotherm, the control of the reaction temperature is appropriately selected from the above 130 to 180 ° C. in consideration of the cooling means and the ethylene oxide supply rate.

本発明における反応は前段反応と後段反応の二つに分割できる。好ましくは150〜180℃で行われる前段反応と、それより15℃以上低い、好ましくはそれより20〜40℃低い、130〜150℃で行われる後段反応に分割して実施される。付加反応の後期において、目的生成物の熱分解によりフェノール含有量が増加する傾向にあるので、該分解を抑えるために反応温度を下げるものである。前段反応は、150〜180℃の間で通常一定温度で実施するが、温度制御のバラツキを含めて考慮すると0〜10℃程度、連続的又は不連続に上下させてもよい。しかしながら生成物のプロセス・品質管理を容易にするうえでは、反応を一定温度で行う態様は好ましい。   The reaction in the present invention can be divided into a first reaction and a second reaction. It is preferably carried out by dividing it into a first-stage reaction performed at 150 to 180 ° C. and a second-stage reaction performed at 130 to 150 ° C., which is 15 ° C. or more lower, preferably 20 to 40 ° C. lower than that. In the latter stage of the addition reaction, the phenol content tends to increase due to the thermal decomposition of the target product, so the reaction temperature is lowered to suppress the decomposition. The pre-reaction is usually carried out at a constant temperature between 150 and 180 ° C., but may be raised or lowered continuously or discontinuously by about 0 to 10 ° C. in consideration of variations in temperature control. However, in order to facilitate the process and quality control of the product, an embodiment in which the reaction is performed at a constant temperature is preferable.

この反応工程で酸化エチレンは、連続的又は間欠的に供給することができるが、一定の供給速度で連続的に供給する方法は好ましい。酸化エチレンの供給量は、フェノール(仕込量)に対するモル比で、1〜10であり、好ましくは1〜6であり、最も好ましくは1.0〜3.0である。このモル比は目的とする付加体の構造(付加モル数)に応じて適宜に選択される。反応器としては、通常撹拌槽が用いられる。   In this reaction step, ethylene oxide can be continuously or intermittently supplied, but a method of continuously supplying ethylene oxide at a constant supply rate is preferable. The supply amount of ethylene oxide is 1 to 10, preferably 1 to 6, and most preferably 1.0 to 3.0 in terms of a molar ratio with respect to phenol (feed amount). This molar ratio is appropriately selected according to the structure (number of added moles) of the target adduct. As the reactor, a stirring tank is usually used.

酸化エチレンの供給速度は、反応のサイズによって異なるが、例えば容量1リットルの反応器を用いて反応を行う場合、100〜200g/時程度である。   Although the supply rate of ethylene oxide varies depending on the size of the reaction, for example, when the reaction is performed using a reactor having a capacity of 1 liter, it is about 100 to 200 g / hour.

反応時間(酸化エチレンを供給する時間)は、反応温度、触媒量、酸化エチレンの供給速度などにも左右されるが、通常、前段反応は30分〜3時間、後段反応は冷却所要時間を含めて20分〜2時間程度である。   The reaction time (time for supplying ethylene oxide) depends on the reaction temperature, the amount of catalyst, the supply rate of ethylene oxide, etc., but usually the former reaction includes 30 minutes to 3 hours, and the latter reaction includes the time required for cooling. About 20 minutes to 2 hours.

フェノールと酸化エチレンとの付加反応速度は十分に大きく、上記のような触媒の存在下、130〜180℃で反応を実施する場合、供給した酸化エチレンは速やかに消費される。従って、反応混合物中の酸化エチレン濃度は通常ゼロに近く、例えば、0.01%以下である。   The addition reaction rate of phenol and ethylene oxide is sufficiently high, and when the reaction is carried out at 130 to 180 ° C. in the presence of the catalyst as described above, the supplied ethylene oxide is quickly consumed. Accordingly, the ethylene oxide concentration in the reaction mixture is usually close to zero, for example, 0.01% or less.

本発明において最も大きな特徴とするところは、反応混合物中の酸化エチレン濃度を付加反応の開始から終了までの間、常時0.05%以上に保持することにある。従来公知の方法においては反応混合物中の酸化エチレン濃度について詳しくは着目されておらず、本発明者らの知る限り、酸化エチレンによる反応圧力がかからない条件下での反応において、酸化エチレン濃度は通常ゼロに近く、多くとも0.01%程度と推測される。反応混合物中の酸化エチレン濃度を常時0.05%以上に保持する方法としては、反応温度、触媒量、酸化エチレンの供給速度などが挙げられる。例えば、一定圧力の加圧状態に保ちながら反応を行うと制御が容易である。要するに、酸化エチレンが完全消費されるような過大な反応速度の雰囲気は好ましくない。   The most significant feature of the present invention is that the ethylene oxide concentration in the reaction mixture is always maintained at 0.05% or more from the start to the end of the addition reaction. In the conventionally known method, the ethylene oxide concentration in the reaction mixture is not paid attention to in detail. As far as the present inventors know, the ethylene oxide concentration is usually zero in the reaction under the condition where reaction pressure by ethylene oxide is not applied. It is estimated that the maximum is about 0.01%. Examples of the method for constantly maintaining the ethylene oxide concentration in the reaction mixture at 0.05% or more include reaction temperature, catalyst amount, ethylene oxide supply rate, and the like. For example, if the reaction is carried out while maintaining a constant pressure, the control is easy. In short, an atmosphere with an excessive reaction rate in which ethylene oxide is completely consumed is not preferable.

130〜180℃の高温の温度帯域において、酸化エチレン濃度が0.05%を下回ると一旦生成した付加体が分解(逆反応)したり副反応を起こしてフェノール濃度が増加する。一方、酸化エチレン濃度が大きすぎる状態で後段反応に移行すると、後段反応及び熟成(反応の押し切り)に長時間を要するので生産性が落ちる。従って、反応混合物中の酸化エチレン濃度は、好ましくは0.06〜1%となるように調節される。   When the ethylene oxide concentration falls below 0.05% in a high temperature range of 130 to 180 ° C., the adduct once produced decomposes (reverse reaction) or causes side reactions, thereby increasing the phenol concentration. On the other hand, if the ethylene oxide concentration is too high and the process proceeds to the subsequent reaction, productivity is lowered because a long time is required for the subsequent reaction and ripening (reaction cut-off). Accordingly, the ethylene oxide concentration in the reaction mixture is preferably adjusted to be 0.06 to 1%.

本発明においてもう一つの大きな特徴は、付加反応の後段に特定範囲で反応温度を下げることである。ここでいう後段反応とは、酸化エチレンの供給量が所要量の70%を超え100%未満の状態になった時点をいう。好ましくは酸化エチレンの供給量が所要量の80〜90%となった時点で冷却を開始することである。冷却速度は反応器の大きさにも左右されるが、1℃/分以上、好ましくは2℃/分以上の急速冷却が好ましい。冷却の温度幅は15℃以上、好ましくは20〜40℃である。この冷却により反応速度は低下するが、反応器には酸化エチレンの供給量が所定値になるまで、引き続いて酸化エチレンが供給され、フェノール・酸化エチレンの付加反応が継続する。反応温度が低下したことにより、付加体の分解が抑制され、結果としてフェノール含有量の増加を抑える効果がある。   Another major feature of the present invention is to lower the reaction temperature within a specific range after the addition reaction. The post-reaction here refers to a point in time when the supply amount of ethylene oxide exceeds 70% of the required amount and is less than 100%. Preferably, the cooling is started when the supply amount of ethylene oxide reaches 80 to 90% of the required amount. Although the cooling rate depends on the size of the reactor, rapid cooling at 1 ° C./min or more, preferably 2 ° C./min or more is preferred. The temperature range of cooling is 15 ° C. or more, preferably 20 to 40 ° C. Although the reaction rate is reduced by this cooling, ethylene oxide is continuously supplied to the reactor until the supply amount of ethylene oxide reaches a predetermined value, and the addition reaction of phenol / ethylene oxide continues. By reducing the reaction temperature, decomposition of the adduct is suppressed, and as a result, there is an effect of suppressing an increase in the phenol content.

2.熟成工程
本発明において熟成とは、所定量の酸化エチレンの供給を終えた後、酸化エチレンを供給することなく、反応混合物をそのまま加熱状態に保持することをいう。好ましくは緩やかな撹拌下に保持されるが、撹拌は不可欠ではない。熟成中の温度は、後段反応と同温度、又は更に0〜15℃低い温度条件下、通常10分〜300分、好ましくは20分〜2時間行われる。熟成中酸化エチレンは供給されないが、反応混合物中に存在する未反応の酸化エチレンがフェノールと反応する押しきりが行われ、所定の組成を有する付加体が得られる。この熟成中にも付加体の分解によりフェノールが増加するおそれがあるので、上記の温度条件下で実施することが肝要である。結果として、付加体中のフェノール含有量が30ppm以下、好ましくは20ppm以下、酸化エチレン濃度として、好ましくは1000ppm以下、更に好ましくは500ppm以下に調整することができる。
2. Aging step In the present invention, aging refers to maintaining the reaction mixture in a heated state without supplying ethylene oxide after supplying a predetermined amount of ethylene oxide. Preferably, it is kept under gentle agitation, but agitation is not essential. The aging is performed at the same temperature as the subsequent reaction or at a temperature lower by 0 to 15 ° C., usually 10 minutes to 300 minutes, preferably 20 minutes to 2 hours. Ethylene oxide is not supplied during aging, but unreacted ethylene oxide present in the reaction mixture undergoes a reaction that reacts with phenol, and an adduct having a predetermined composition is obtained. Even during this aging, phenol may increase due to decomposition of the adduct, so it is important to carry out under the above temperature conditions. As a result, the phenol content in the adduct can be adjusted to 30 ppm or less, preferably 20 ppm or less, and the ethylene oxide concentration is preferably 1000 ppm or less, more preferably 500 ppm or less.

3.中和工程
本発明の中和工程は、反応混合物中に残存する塩基性触媒を無害化するために行われる。中和剤としては、硫酸、塩酸、リン酸等の無機酸、酢酸、乳酸、クエン酸等の有機酸を使用することができる。これらの酸の中では、酢酸又は硫酸が好ましい。また、吸着剤により塩基性触媒等を除去することもできる。例えば、キョーワード−600及びキョーワード−700(協和化学工業社製)のようなアルカリ吸着剤で処理して、処理液を濾過、遠心分離等の固液分離操作を施すこともできる。さらに塩基性触媒に対して過剰量の硫酸、塩酸、リン酸等の無機酸で中和し、キョーワード−500(協和化学工業社製)のような酸吸着剤で処理して、処理液に濾過、遠心分離等の固液分離操作を施してもよい。
3. Neutralization process The neutralization process of this invention is performed in order to detoxify the basic catalyst which remains in a reaction mixture. As the neutralizing agent, inorganic acids such as sulfuric acid, hydrochloric acid and phosphoric acid, and organic acids such as acetic acid, lactic acid and citric acid can be used. Of these acids, acetic acid or sulfuric acid is preferred. Moreover, a basic catalyst etc. can also be removed with an adsorbent. For example, the treatment liquid can be treated with an alkali adsorbent such as Kyoward-600 and Kyoward-700 (manufactured by Kyowa Chemical Industry Co., Ltd.) and subjected to solid-liquid separation operations such as filtration and centrifugation. Furthermore, it is neutralized with an excessive amount of sulfuric acid, hydrochloric acid, phosphoric acid or other inorganic acid with respect to the basic catalyst, and treated with an acid adsorbent such as KYOWARD-500 (manufactured by Kyowa Chemical Industry Co., Ltd.). You may perform solid-liquid separation operation, such as filtration and centrifugation.

この中和工程の温度は、通常50〜100℃であり、好ましくは50〜70℃である。50℃より低くても大きな問題はないが、あまり低くしすぎると冷却に要する時間が長くなり、反応液の粘度が増加し、中和に要する時間が延びる傾向にある。逆に100℃を超えると、仕込み作業上危険である。   The temperature of this neutralization process is 50-100 degreeC normally, Preferably it is 50-70 degreeC. Even if the temperature is lower than 50 ° C., there is no significant problem. However, if the temperature is too low, the time required for cooling becomes longer, the viscosity of the reaction solution increases, and the time required for neutralization tends to increase. Conversely, if it exceeds 100 ° C., it is dangerous in preparation work.

以下に本発明を実施例により詳述するが、本発明はこれらに限定されるものではない。なお、以下の実施例における部及び%は重量基準で示す。
なお、化学分析は下記の方法に従った。
EXAMPLES The present invention will be described in detail below by examples, but the present invention is not limited to these examples. In addition, the part and% in a following example are shown on a weight basis.
In addition, the chemical analysis followed the following method.

(1)フェノール濃度
JIS K 0400−28−10:1999に準拠して行った。
(2)酸化エチレン濃度
島津製作所社製 GC−14Aを使用してガスクロマトグラフィー分析により求めた。
(1) Phenol concentration It was performed according to JIS K 0400-28-10: 1999.
(2) Ethylene oxide concentration It was determined by gas chromatography analysis using GC-14A manufactured by Shimadzu Corporation.

測定条件の一例を以下に示す。   An example of measurement conditions is shown below.

カラム: ガラス製、長さ1.6m×内径3.2mm
充填剤: Silicone OV−1 10%
担体: Uniport HP 60/80
カラム温度: 145℃(4分間保持)から220℃(5℃/分の昇温)
窒素流量: 50mL/分
Column: made of glass, length 1.6 m x inner diameter 3.2 mm
Filler: Silicone OV-1 10%
Carrier: Uniport HP 60/80
Column temperature: 145 ° C. (hold for 4 minutes) to 220 ° C. (temperature increase of 5 ° C./min)
Nitrogen flow: 50 mL / min

(3)水酸基価
ピリジン溶媒中、微沸下で所定量のサンプルを過剰の無水酢酸と反応させ、生成する酢酸と残存する酢酸を自動滴定装置(京都電子工業社製、AT−420)を使用し、N/2の水酸化カリウム水溶液で滴定する。ブランクとの差より水酸基価を計算し、mgKOH/gの単位で表示した。
(3) Hydroxyl value A predetermined amount of sample is reacted with excess acetic anhydride in a pyridine solvent under slight boiling, and an automatic titrator (AT-420, manufactured by Kyoto Electronics Industry Co., Ltd.) is used for the generated acetic acid and the remaining acetic acid. And titrate with an aqueous N / 2 potassium hydroxide solution. The hydroxyl value was calculated from the difference from the blank and displayed in units of mgKOH / g.

[実施例1]
フェノール470g(5モル)、触媒として水酸化カリウム0.32g(0.006モル)を撹拌機及び冷却手段を有する容量1リットルのオートクレーブに仕込み、窒素置換を行った。その後、60分かけて135℃まで加熱し、その温度で酸化エチレンの供給を開始した。酸化エチレンは連続的に定量供給した。
[Example 1]
470 g (5 mol) of phenol and 0.32 g (0.006 mol) of potassium hydroxide as a catalyst were charged into a 1 liter autoclave having a stirrer and a cooling means to perform nitrogen substitution. Then, it heated to 135 degreeC over 60 minutes, and supply of ethylene oxide was started at the temperature. Ethylene oxide was metered continuously.

反応中、圧力はゲージ圧力0.34MPa以下、温度は反応熱を利用して165℃まで昇温させた。同温度を保つよう必要に応じて冷却しつつ反応させた。酸化エチレン総反応量330g(7.5モル)の内、286g(6.5モル)を100分かけて導入した。その時点で、酸化エチレンの供給は継続したまま、オートクレーブの冷却を開始し、反応温度を145℃に制御しつつ、残り44g(1モル)を導入した。165℃から145℃の冷却に要した時間は10分であった。   During the reaction, the pressure was raised to a gauge pressure of 0.34 MPa or less, and the temperature was raised to 165 ° C. using the heat of reaction. The reaction was conducted while cooling as necessary to maintain the same temperature. Of the total ethylene oxide reaction amount of 330 g (7.5 mol), 286 g (6.5 mol) was introduced over 100 minutes. At that time, while the supply of ethylene oxide was continued, cooling of the autoclave was started, and the remaining 44 g (1 mol) was introduced while controlling the reaction temperature to 145 ° C. The time required for cooling from 165 ° C. to 145 ° C. was 10 minutes.

酸化エチレンの導入終了後、更に温度145℃で60分間熟成した。酸化エチレンの導入終了時点で反応物の一部をサンプリングして分析したところ、フェノール濃度は3ppm、酸化エチレン濃度は1.5%であった。その後、温度110℃まで冷却し、酢酸0.38g(0.006モル)を仕込み、温度110℃を30分間保持し、中和を行った。最終的に室温まで冷却し、目的物としてフェノール・酸化エチレン付加体800g(5モル)を得た。   After the introduction of ethylene oxide, the mixture was further aged at 145 ° C. for 60 minutes. When a part of the reaction product was sampled and analyzed at the end of introduction of ethylene oxide, the phenol concentration was 3 ppm and the ethylene oxide concentration was 1.5%. Then, it cooled to the temperature of 110 degreeC, the acetic acid 0.38g (0.006 mol) was prepared, and the temperature of 110 degreeC was hold | maintained for 30 minutes, and neutralization was performed. Finally, it was cooled to room temperature to obtain 800 g (5 mol) of a phenol / ethylene oxide adduct as a target product.

このフェノール・酸化エチレン付加体のフェノール濃度は5ppm、酸化エチレン濃度は0.04%、水酸基価は350であった。図1に、原料の仕込み時から反応生成物の室温冷却までの温度変化及び酸化エチレンの積算供給率(%)を示した。前段の反応温度よりも20℃低い後段反応及び熟成により、フェノール濃度を殆ど増加させることなく、酸化エチレン濃度を1/37に低減することができた。酸化エチレン濃度を可及的ゼロに近づけることは、反応生成物である付加体の組成を目標値に合わせるために極めて重要である。結果を表1にまとめた。   The phenol / ethylene oxide adduct had a phenol concentration of 5 ppm, an ethylene oxide concentration of 0.04%, and a hydroxyl value of 350. FIG. 1 shows the temperature change from the charging of raw materials to the room temperature cooling of the reaction product and the cumulative supply rate (%) of ethylene oxide. The ethylene oxide concentration could be reduced to 1/37 with almost no increase in the phenol concentration by the latter reaction and aging which was 20 ° C. lower than the reaction temperature in the previous step. Making the ethylene oxide concentration as close to zero as possible is extremely important for adjusting the composition of the adduct, which is a reaction product, to the target value. The results are summarized in Table 1.

[実施例2]
フェノール329g(3.5モル)、触媒として水酸化カリウム0.65g(0.012モル)を撹拌機及び冷却手段を有する容量1リットルのオートクレーブに仕込み、窒素置換を行った。その後、90分かけて150℃まで加熱し、その温度で酸化エチレンの供給を開始した。酸化エチレンは連続的に定量供給した。
[Example 2]
329 g (3.5 mol) of phenol and 0.65 g (0.012 mol) of potassium hydroxide as a catalyst were charged into an autoclave having a capacity of 1 liter having a stirrer and a cooling means to perform nitrogen substitution. Then, it heated to 150 degreeC over 90 minutes, and supply of ethylene oxide was started at the temperature. Ethylene oxide was metered continuously.

反応中、圧力はゲージ圧力0.34MPa以下、温度は反応熱を利用して165℃まで昇温させた。同温度を保つよう必要に応じて冷却しつつ反応させた。酸化エチレン総反応量463g(10.5モル)の内、389g(8.8モル)を120分かけて導入した。その時点で、酸化エチレンの供給は継続したまま、オートクレーブの冷却を開始し、反応温度を145℃に制御しつつ、残り74g(1.7モル)を導入した。165℃から145℃の冷却に要した時間は10分であった。   During the reaction, the pressure was raised to a gauge pressure of 0.34 MPa or less, and the temperature was raised to 165 ° C. using the heat of reaction. The reaction was conducted while cooling as necessary to maintain the same temperature. Of the total reaction amount of ethylene oxide (463 g, 10.5 mol), 389 g (8.8 mol) was introduced over 120 minutes. At that time, while the supply of ethylene oxide was continued, cooling of the autoclave was started, and the remaining 74 g (1.7 mol) was introduced while controlling the reaction temperature to 145 ° C. The time required for cooling from 165 ° C. to 145 ° C. was 10 minutes.

酸化エチレンの導入終了後、更に温度145℃で30分間熟成した。酸化エチレンの導入終了時点で反応物の一部をサンプリングして分析したところ、フェノール濃度は3ppm、酸化エチレン濃度は1.5%であった。その後、温度110℃まで冷却し、酢酸0.72g(0.012モル)を仕込み、温度110℃を30分間保持し、中和を行った。最終的に室温まで冷却し、目的物としてフェノール酸化エチレン付加体790g(3.5モル)を得た。   After the introduction of ethylene oxide, the mixture was further aged at 145 ° C. for 30 minutes. When a part of the reaction product was sampled and analyzed at the end of introduction of ethylene oxide, the phenol concentration was 3 ppm and the ethylene oxide concentration was 1.5%. Then, it cooled to the temperature of 110 degreeC, the acetic acid 0.72g (0.012 mol) was prepared, and the temperature of 110 degreeC was hold | maintained for 30 minutes, and neutralization was performed. Finally, it was cooled to room temperature to obtain 790 g (3.5 mol) of a phenol-ethylene oxide adduct as a target product.

このフェノール・酸化エチレン付加体のフェノール濃度は6ppm、酸化エチレン濃度は0.07%、水酸基価は250であった。図2に、原料の仕込み時から反応生成物の室温冷却までの温度変化及び酸化エチレンの積算供給率(%)を示した。後段反応においてフェノールは殆ど生成しておらず、また熟成中、フェノール濃度を増加させることなく酸化エチレン濃度を1/21に低減することができた。   The phenol / ethylene oxide adduct had a phenol concentration of 6 ppm, an ethylene oxide concentration of 0.07%, and a hydroxyl value of 250. FIG. 2 shows the temperature change from the charging of the raw material to the room temperature cooling of the reaction product and the cumulative supply rate (%) of ethylene oxide. Phenol was hardly produced in the subsequent reaction, and the ethylene oxide concentration could be reduced to 1/21 without increasing the phenol concentration during ripening.

[比較例1]
フェノール470g(5モル)、触媒として水酸化カリウム0.32g(0.006モル)を撹拌機及び冷却手段を有する容量1リットルのオートクレーブに仕込み、窒素置換を行った。その後、60分かけて135℃まで加熱し、その温度で酸化エチレンの供給を開始した。酸化エチレンは連続的に定量供給した。
[Comparative Example 1]
470 g (5 mol) of phenol and 0.32 g (0.006 mol) of potassium hydroxide as a catalyst were charged into a 1 liter autoclave having a stirrer and a cooling means to perform nitrogen substitution. Then, it heated to 135 degreeC over 60 minutes, and supply of ethylene oxide was started at the temperature. Ethylene oxide was metered continuously.

反応中、圧力はゲージ圧力0.34MPa以下、温度は反応熱を利用して165℃まで昇温させた。同温度を保つよう必要に応じて冷却しつつ反応させた。酸化エチレン330g(7.5モル)を115分かけて導入した。   During the reaction, the pressure was raised to a gauge pressure of 0.34 MPa or less, and the temperature was raised to 165 ° C. using the heat of reaction. The reaction was conducted while cooling as necessary to maintain the same temperature. 330 g (7.5 mol) of ethylene oxide was introduced over 115 minutes.

酸化エチレンの導入終了後、冷却することなく165℃のまま60分間保持した。その後、温度60〜70℃まで冷却し、酢酸0.38g(0.006モル)を仕込み、その温度で30分間保持し、中和を行った。最終的に室温まで冷却し、目的物としてフェノール・酸化エチレン付加体800g(5モル)を得た。なお、酸化エチレンの導入終了時点における、反応混合物中の酸化エチレン濃度は1.9%であった。   After the introduction of ethylene oxide, the temperature was maintained at 165 ° C. for 60 minutes without cooling. Then, it cooled to the temperature of 60-70 degreeC, the acetic acid 0.38g (0.006 mol) was prepared, and it hold | maintained for 30 minutes at the temperature, and neutralized. Finally, it was cooled to room temperature to obtain 800 g (5 mol) of a phenol / ethylene oxide adduct as a target product. The ethylene oxide concentration in the reaction mixture at the end of introduction of ethylene oxide was 1.9%.

このフェノール・酸化エチレン付加体のフェノール濃度は54ppm、酸化エチレン濃度は0.005%、水酸基価は351であった。図3に、原料の仕込み時から反応生成物の室温冷却までの温度変化及び酸化エチレンの積算供給率(%)を示した。付加反応を165℃の一定温度で行い、かつ酸化エチレンの供給終了後の熟成を同温度で実施したものである。酸化エチレン濃度は十分低いものの、フェノール濃度は54ppmと大きくなった。   The phenol / ethylene oxide adduct had a phenol concentration of 54 ppm, an ethylene oxide concentration of 0.005%, and a hydroxyl value of 351. FIG. 3 shows the temperature change from the charging of the raw material to the room temperature cooling of the reaction product and the cumulative supply rate (%) of ethylene oxide. The addition reaction is performed at a constant temperature of 165 ° C., and the aging after completion of the supply of ethylene oxide is performed at the same temperature. Although the ethylene oxide concentration was sufficiently low, the phenol concentration increased to 54 ppm.

化粧品の防腐剤、医農薬、洗浄剤、香料、UV硬化剤の原料、酢酸ビニル系ポリマーエマルジョンの造膜温度調整剤などとして有用なフェノール・酸化エチレン付加体の製造方法を提供する。     Provided is a method for producing a phenol / ethylene oxide adduct useful as a preservative for cosmetics, medical pesticides, cleaning agents, fragrances, raw materials for UV curing agents, film-forming temperature regulators for vinyl acetate polymer emulsions, and the like.

Figure 2005272331
Figure 2005272331

原料の仕込み時から反応生成物の室温冷却までの温度変化及び酸化エチレンの積算供給率(%)を示すグラフである(実施例1)。It is a graph which shows the temperature change from the preparation time of a raw material to room temperature cooling of a reaction product, and the integral supply rate (%) of ethylene oxide (Example 1). 原料の仕込み時から反応生成物の室温冷却までの温度変化及び酸化エチレンの積算供給率(%)を示すグラフである(実施例2)。It is a graph which shows the temperature change from the preparation time of a raw material to room temperature cooling of a reaction product, and the integral supply rate (%) of ethylene oxide (Example 2). 原料の仕込み時から反応生成物の室温冷却までの温度変化及び酸化エチレンの積算供給率(%)を示すグラフである(比較例1)。It is a graph which shows the temperature change from the preparation time of a raw material to room temperature cooling of a reaction product, and the integral supply rate (%) of ethylene oxide (Comparative Example 1).

符号の説明Explanation of symbols

実線は反応温度(℃)を、破線は酸化エチレンの積算供給率(%)を示す。黒丸は酸化エチレンの供給開始時点を、白抜き丸は酸化エチレンの供給終了時点を示す。
The solid line indicates the reaction temperature (° C.), and the broken line indicates the cumulative supply rate (%) of ethylene oxide. Black circles indicate the supply start time of ethylene oxide, and open circles indicate the end time of supply of ethylene oxide.

Claims (14)

無溶媒、塩基性触媒の存在下でフェノールと酸化エチレンとを反応させて、フェノール・酸化エチレン付加体を製造する方法において、フェノール1モルに対して1〜10モルの酸化エチレンを、反応混合物中の酸化エチレン濃度が常時0.05%以上となるように維持しながら、反応温度130〜180℃で供給し、酸化エチレンの供給量が所要量の70%を超え100%未満の時点で、前記反応温度よりも15℃以上低い温度にまで冷却しつつ残余の酸化エチレンを供給し、更に同一温度条件下又は0〜15℃冷却した温度条件下、酸化エチレンを供給することなく、熟成することを特徴とする高純度フェノール・酸化エチレン付加体の製造方法。   In a method for producing a phenol / ethylene oxide adduct by reacting phenol and ethylene oxide in the presence of a solvent-free basic catalyst, 1 to 10 mol of ethylene oxide is added to 1 mol of phenol in the reaction mixture. While maintaining the ethylene oxide concentration at 0.05% or more at all times, the reaction temperature is 130 to 180 ° C., and when the supply amount of ethylene oxide exceeds 70% of the required amount and less than 100%, The remaining ethylene oxide is supplied while cooling to a temperature lower than the reaction temperature by 15 ° C. or more, and further aging without supplying ethylene oxide under the same temperature condition or a temperature condition cooled at 0 to 15 ° C. A method for producing a high-purity phenol / ethylene oxide adduct characterized by the above. 反応温度が155〜175℃であることを特徴とする請求項1に記載の高純度フェノール・酸化エチレン付加体の製造方法。   The process for producing a high-purity phenol / ethylene oxide adduct according to claim 1, wherein the reaction temperature is 155 to 175 ° C. 熟成温度が100〜150℃であることを特徴とする請求項1又は2に記載の高純度フェノール・酸化エチレン付加体の製造方法。   The method for producing a high-purity phenol / ethylene oxide adduct according to claim 1 or 2, wherein the aging temperature is 100 to 150 ° C. 酸化エチレンの供給量が所要量の80〜100%未満の範囲で冷却を行うことを特徴とする請求項1〜3のいずれか1項に記載の高純度フェノール・酸化エチレン付加体の製造方法。   The method for producing a high purity phenol / ethylene oxide adduct according to any one of claims 1 to 3, wherein the cooling is performed in a range where the supply amount of ethylene oxide is less than 80 to 100% of the required amount. 冷却速度が2℃/分以上であることを特徴とする請求項1〜4のいずれか1項に記載の高純度フェノール・酸化エチレン付加体の製造方法。   The method for producing a high-purity phenol / ethylene oxide adduct according to any one of claims 1 to 4, wherein the cooling rate is 2 ° C / min or more. 反応混合物中の酸化エチレン濃度が常時0.06〜1%となるように維持することを特徴とする請求項1〜5のいずれか1項に記載の高純度フェノール・酸化エチレン付加体の製造方法。   The method for producing a high-purity phenol / ethylene oxide adduct according to any one of claims 1 to 5, wherein the ethylene oxide concentration in the reaction mixture is constantly maintained to be 0.06 to 1%. . 反応温度から20〜40℃低い温度に冷却することを特徴とする請求項1〜6のいずれか1項に記載の高純度フェノール・酸化エチレン付加体の製造方法。   The method for producing a high-purity phenol / ethylene oxide adduct according to any one of claims 1 to 6, which is cooled to a temperature 20 to 40 ° C lower than the reaction temperature. フェノール1モルに対して1.0〜3.0モルの酸化エチレンを供給することを特徴とする請求項1〜7のいずれか1項に記載の高純度フェノール・酸化エチレン付加体の製造方法。   The method for producing a high purity phenol / ethylene oxide adduct according to any one of claims 1 to 7, wherein 1.0 to 3.0 mol of ethylene oxide is supplied to 1 mol of phenol. 酸化エチレンの供給を連続的又は間欠的に実施することを特徴とする請求項1〜8のいずれか1項に記載の高純度フェノール・酸化エチレン付加体の製造方法。   The method for producing a high-purity phenol / ethylene oxide adduct according to any one of claims 1 to 8, wherein ethylene oxide is supplied continuously or intermittently. 酸化エチレンを連続・定量的に供給することを特徴とする請求項9に記載の高純度フェノール・酸化エチレン付加体の製造方法。   The method for producing a high-purity phenol / ethylene oxide adduct according to claim 9, wherein ethylene oxide is continuously and quantitatively supplied. 熟成時間が10〜300分であることを特徴とする請求項1〜10のいずれか1項に記載の高純度フェノール・酸化エチレン付加体の製造方法。   The method for producing a high-purity phenol / ethylene oxide adduct according to any one of claims 1 to 10, wherein the aging time is 10 to 300 minutes. 熟成終了後、熟成温度又は必要に応じて熟成温度よりも冷却された温度下、酸成分を添加して残存する塩基性触媒を中和することを特徴とする請求項1〜11のいずれか1項に記載の高純度フェノール・酸化エチレン付加体の製造方法。   After completion of ripening, the remaining basic catalyst is neutralized by adding an acid component at a ripening temperature or, if necessary, at a temperature lower than the ripening temperature. A method for producing a high-purity phenol / ethylene oxide adduct according to item 2. 酸成分が硫酸又は酢酸であることを特徴とする請求項12に記載の高純度フェノール・酸化エチレン付加体の製造方法。   The method for producing a high-purity phenol / ethylene oxide adduct according to claim 12, wherein the acid component is sulfuric acid or acetic acid. 請求項1〜13のいずれか1項に記載の方法で製造されたフェノール含有量が30ppm以下の高純度フェノール・酸化エチレン付加体。
A high-purity phenol / ethylene oxide adduct having a phenol content of 30 ppm or less produced by the method according to claim 1.
JP2004086049A 2004-03-24 2004-03-24 Method for producing high purity phenol / ethylene oxide adduct Expired - Lifetime JP4500076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004086049A JP4500076B2 (en) 2004-03-24 2004-03-24 Method for producing high purity phenol / ethylene oxide adduct

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004086049A JP4500076B2 (en) 2004-03-24 2004-03-24 Method for producing high purity phenol / ethylene oxide adduct

Publications (2)

Publication Number Publication Date
JP2005272331A true JP2005272331A (en) 2005-10-06
JP4500076B2 JP4500076B2 (en) 2010-07-14

Family

ID=35172378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004086049A Expired - Lifetime JP4500076B2 (en) 2004-03-24 2004-03-24 Method for producing high purity phenol / ethylene oxide adduct

Country Status (1)

Country Link
JP (1) JP4500076B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829033B2 (en) 2003-07-03 2010-11-09 Fuel Tech, Inc. Selective catalytic reduction of NOx enabled by sidestream urea decomposition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116523A (en) * 1997-08-11 1999-04-27 Kao Corp Production of alkylene oxide adduct
JP2000109444A (en) * 1998-10-02 2000-04-18 Mitsui Chemicals Inc Octylcyclohexanol alkylene oxide adduct, its production and use
JP2002155005A (en) * 2000-11-20 2002-05-28 Yokkaichi Chem Co Ltd Method for producing bisphenol a polyethoxylate
JP2002322131A (en) * 2001-04-27 2002-11-08 Kyoeisha Chem Co Ltd (meth)acrylic acid dialkylene glycol monoester and curable composition containing the same
JP2004066222A (en) * 2002-05-13 2004-03-04 Bayer Ag Method and equipment for separating mixture by distillation
JP2004143075A (en) * 2002-10-24 2004-05-20 Yokkaichi Chem Co Ltd Method for manufacturing 2-phenoxyethanol reaction liquid of high purity
JP2005272333A (en) * 2004-03-24 2005-10-06 Yokkaichi Chem Co Ltd Preparation method of high-purity phenol-ethylene oxide adduct

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11116523A (en) * 1997-08-11 1999-04-27 Kao Corp Production of alkylene oxide adduct
JP2000109444A (en) * 1998-10-02 2000-04-18 Mitsui Chemicals Inc Octylcyclohexanol alkylene oxide adduct, its production and use
JP2002155005A (en) * 2000-11-20 2002-05-28 Yokkaichi Chem Co Ltd Method for producing bisphenol a polyethoxylate
JP2002322131A (en) * 2001-04-27 2002-11-08 Kyoeisha Chem Co Ltd (meth)acrylic acid dialkylene glycol monoester and curable composition containing the same
JP2004066222A (en) * 2002-05-13 2004-03-04 Bayer Ag Method and equipment for separating mixture by distillation
JP2004143075A (en) * 2002-10-24 2004-05-20 Yokkaichi Chem Co Ltd Method for manufacturing 2-phenoxyethanol reaction liquid of high purity
JP2005272333A (en) * 2004-03-24 2005-10-06 Yokkaichi Chem Co Ltd Preparation method of high-purity phenol-ethylene oxide adduct

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7829033B2 (en) 2003-07-03 2010-11-09 Fuel Tech, Inc. Selective catalytic reduction of NOx enabled by sidestream urea decomposition

Also Published As

Publication number Publication date
JP4500076B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
CA2025809A1 (en) Process for the manufacture of 1,1,1-chlorodifluoroethane
CN109476569B (en) Process for producing Guerbet alcohol
JP4500077B2 (en) Production method of high purity phenol / ethylene oxide adduct
EP2277849B1 (en) Process for the preparation of 1-alkyl glycerol ethers
WO2010043581A1 (en) Method and catalysts for producing cyclic carbonates
JP4500076B2 (en) Method for producing high purity phenol / ethylene oxide adduct
DE10163170A1 (en) Catalyst regeneration with elemental halogen
JP5531101B2 (en) Method for improving the color number of trimethylolpropane
JP4204843B2 (en) Method for producing high purity 2-phenoxyethanol reaction solution
US6762279B2 (en) Polyol processing
JPH05271143A (en) Production of cyclohexanone
CA2015434A1 (en) Process for the purification of alkylene oxide adducts
JP2007077081A (en) Method for producing ammonium lactate
JPH04334336A (en) Method of alkoxylation catalyzed by sodium phosphate or potassium barium
EP0278570A2 (en) Purification of diaryl alkylphosphonate reaction mixture
US5118857A (en) Polar solvent treatment of n-dodecyl mercaptoethanol
KR100407593B1 (en) Method for improving the purity of 1,6-hexanediol
CN1599709A (en) Process for preparing monochloroacetic acid
CN1345709A (en) Process for preparing 1,1,1-trifluoro propene
EP1019348A1 (en) PROCESS FOR THE PREPARATION OF para-FLUOROPHENOL
JPH0534350B2 (en)
EP2108639A1 (en) Process for the preparation of monopropylene glycol
JPH0798770B2 (en) Method for producing methylcyclohexanone
JP2008150331A (en) Method for producing alkylene oxide adduct
KR0165620B1 (en) Method of preparing cyclohexyl acetate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4500076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250