JP2005271080A - Method for melting metallic material in metal forming machine - Google Patents

Method for melting metallic material in metal forming machine Download PDF

Info

Publication number
JP2005271080A
JP2005271080A JP2005049098A JP2005049098A JP2005271080A JP 2005271080 A JP2005271080 A JP 2005271080A JP 2005049098 A JP2005049098 A JP 2005049098A JP 2005049098 A JP2005049098 A JP 2005049098A JP 2005271080 A JP2005271080 A JP 2005271080A
Authority
JP
Japan
Prior art keywords
metal material
melting
cylinder
melting cylinder
clearance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005049098A
Other languages
Japanese (ja)
Other versions
JP4582778B2 (en
Inventor
Kiyoto Takizawa
清登 滝澤
Norihiro Koda
紀泰 甲田
Mamoru Miyagawa
守 宮川
Kazuo Anzai
和夫 安在
Koji Takei
晃司 武居
Takashi Yamazaki
孝 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissei Plastic Industrial Co Ltd
Original Assignee
Nissei Plastic Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissei Plastic Industrial Co Ltd filed Critical Nissei Plastic Industrial Co Ltd
Priority to JP2005049098A priority Critical patent/JP4582778B2/en
Publication of JP2005271080A publication Critical patent/JP2005271080A/en
Application granted granted Critical
Publication of JP4582778B2 publication Critical patent/JP4582778B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the ease of insertion and heating efficiency of a cylindrical metallic material by setting the clearance with a melting cylinder that a heating/retaining cylinder of a metal forming machine has, from the linear expansion coefficient of the metallic material and the linear expansion coefficient of the melting cylinder when thermally expanded. <P>SOLUTION: The cylindrical metallic material inserted into a melting cylinder is melted halfway or completely by a heating means on the outer peripheral surface of the melting cylinder. The clearance between the inner peripheral surface of the melting cylinder and the outer peripheral surface of the cylindrical metallic material is set from the linear expansion coefficient of the metallic material and the linear expansion coefficient of the cylindrical metallic material. The setting, as defined by the inner diameter of the melting cylinder and the diameter of the cylindrical metallic material when thermally expanded, is limited to within a range that does not exceed 1.0 mm but permits the insertion of the non-thermally-expanded metallic material into the thermally-expanded melting cylinder at the temperature of the heating means. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、鋳造又は押出成形により円柱状に形成した金属素材を溶融して金型に射出し、所望の製品を射出成形する金属成形機における金属素材の溶融方法に関するものである。   The present invention relates to a method for melting a metal material in a metal molding machine that melts a metal material formed into a cylindrical shape by casting or extrusion molding and injects the metal material into a mold and injection-molds a desired product.

マグネシウム合金等の成形手段として、ノズル口を先端に有する筒体の外周囲に加熱手段を備え、そのノズル口に接続した計量室を縮径により先端部内に形成した溶融金属保持筒(加熱保持筒)に、粒状の金属素材を供給して溶融蓄積するか、または溶解炉により溶融した溶融金属を溶融金属保持筒に供給蓄積して、その内部に設けた射出プランジャの進退移動により、溶融金属の計量と金型への射出を行っているものがある。
また金属製品の鋳造法として、金属スラリーを冷却して鋳造した円柱状の金属素材を、インジェクション装置に横に供給して予備加熱したのち、半溶融状態に加熱して加熱チャンバに貯留し、吸引ロッドにより金型に射出するものもある。
特願2003−200249号 特開2001−252759号
As a forming means for magnesium alloy or the like, a molten metal holding cylinder (heating holding cylinder) is provided with a heating means on the outer periphery of a cylindrical body having a nozzle port at the tip, and a measuring chamber connected to the nozzle port is formed in the tip by reducing the diameter. ) By supplying a granular metal material and melting and accumulating it, or by supplying and accumulating molten metal melted by a melting furnace to the molten metal holding cylinder, and by moving the injection plunger inside and outside the molten metal, There are some that weigh and inject into the mold.
Also, as a casting method for metal products, a cylindrical metal material cast by cooling the metal slurry is supplied to the injection device sideways and preheated, then heated to a semi-molten state, stored in a heating chamber, and sucked. Some are injected into the mold by a rod.
Japanese Patent Application No. 2003-200309 JP 2001-252759 A

粒状の金属素材は酸化し易く、また軽量であることから溶融金属保持筒内に落下しても、溶湯内に沈んで直ちに溶融するものが少なく、その多くは湯面に浮き積もって熱気に長く曝されるのでスラッジが発生し易い。このスラッジの発生は、金属素材を粒状よりも酸化の度合いが少ない円柱体(丸棒ともいう)の状態に鋳造又は押出成形して形成することにより抑制することができる。   Since the granular metal material is easy to oxidize and is light in weight, even if it falls into the molten metal holding cylinder, there are few things that sink into the molten metal and immediately melt, and many of them float on the surface of the molten metal and are long to hot air. Because it is exposed, sludge is likely to occur. Generation | occurrence | production of this sludge can be suppressed by casting or extruding and forming a metal raw material in the state of the cylindrical body (it is also called a round bar) with a less oxidation degree than a granular form.

しかし、上記円柱状金属素材は溶融金属の加熱保持筒に直接供給できず、溶解炉により完全溶融してから供給するか、または予備加熱バレルにより予備加熱してから半溶融状態に加熱して加熱チャンバに貯溜してるので、金属成形機が大型となり、保守管理にも手数を要する。   However, the above cylindrical metal material cannot be supplied directly to the molten metal heating and holding cylinder, and is supplied after being completely melted by a melting furnace, or preheated by a preheating barrel and then heated to a semi-molten state and heated. Since it is stored in the chamber, the metal forming machine becomes large and maintenance work is also required.

上記課題は、円柱状金属素材の溶解手段に円筒体を採用し、その溶解筒を射出手段を内装した加熱保持筒に縦に設けて、溶解筒の周囲から内部に挿入した上記円柱状金属素材を加熱して溶融しながら、半溶融又は完全溶融状態で加熱保持筒に供給することにより解決できる。   The above-mentioned problem is that the columnar metal material adopts a cylindrical body as the melting means for the columnar metal material, and the melting cylinder is provided vertically in the heating and holding cylinder in which the injection means is installed, and is inserted from the periphery of the melting cylinder to the inside. This can be solved by supplying the heated holding cylinder in a semi-molten or completely melted state while heating and melting.

そのような金属成形機は、加熱保持筒と溶解筒とから構成されるので大型とならず、また保守管理も容易となるが、円柱状金属素材の溶融を溶解筒周囲の加熱手段による輻射熱により間接的に行っているので、円柱状金属素材を溶湯中に落として接触により直接加熱する溶解炉の場合よりも加熱効率が悪く、溶融に時間を要する。   Since such a metal forming machine is composed of a heating and holding cylinder and a melting cylinder, it is not large and maintenance is easy, but the melting of the columnar metal material is caused by radiant heat from the heating means around the melting cylinder. Since it is performed indirectly, the heating efficiency is lower than in the case of a melting furnace in which a cylindrical metal material is dropped into the molten metal and heated directly by contact, and it takes time to melt.

この溶解筒における加熱効率の悪さは、溶解筒と上記円柱状金属素材とのクリアランスが一因となってる。これまでクリアランスは、円柱状金属素材の挿入の容易さを考慮して設定しており、加熱前(非熱膨張時)の円柱状金属素材の直径から溶解筒の内径を決めて設定している。この内径の設定は円柱状金属素材の直径や溶解筒の内径に公差があり、また酸化物の付着による内径の部分的な狭まりなどがあるので、これらを考慮して設定している。このため必然的にクリアランスが大きく形成される傾向にある。   The poor heating efficiency of the melting cylinder is partly due to the clearance between the melting cylinder and the cylindrical metal material. Until now, the clearance has been set in consideration of the ease of insertion of the cylindrical metal material, and the inner diameter of the melting tube is determined from the diameter of the cylindrical metal material before heating (during non-thermal expansion). . The inner diameter is set in consideration of tolerances in the diameter of the cylindrical metal material and the inner diameter of the melting cylinder, and also due to partial narrowing of the inner diameter due to adhesion of oxides. For this reason, the clearance inevitably tends to be formed.

また溶解筒からの輻射熱による加熱では、円柱状金属素材の底面および上面からの加熱が行え難いことから、加熱は円柱状金属素材の胴部周囲に限られている。溶解筒での輻射熱による加熱効率は、クリアランス(加熱距離)が大きくなるほど低下してゆく。加熱効率の向上のためにクリアランスを小さく設定して、溶解筒の内面に円柱状金属素材の外面を接近させるほど、溶解筒内への円柱状金属素材の挿入は垂直に行わねばならず、溶解筒底面まで自重により落下挿入するには手間を要する。この挿入作業の手間取りによる供給の遅れから、加熱保持筒内の蓄積量が低減して、成形作業に支障を来すようなこともある。   Further, in the heating by radiant heat from the melting cylinder, it is difficult to heat from the bottom surface and the top surface of the cylindrical metal material, so that the heating is limited to the periphery of the body of the cylindrical metal material. The heating efficiency by radiant heat in the melting cylinder decreases as the clearance (heating distance) increases. The smaller the clearance is set to improve the heating efficiency, and the closer the outer surface of the cylindrical metal material is to the inner surface of the melting cylinder, the more the cylindrical metal material must be inserted into the melting cylinder vertically. It takes time and effort to drop and insert the cylinder bottom due to its own weight. Due to the delay in the supply due to the troublesome insertion work, the amount of accumulation in the heating and holding cylinder is reduced, which may hinder the molding work.

この発明の目的は、円柱状に形成した金属素材を縦に設けた溶解筒へ挿入する際の難易性と加熱効率に係る上記課題を、金属素材の線膨張係数と溶解筒の材質の線膨張係数とから、熱膨張時を対象にクリアランスを設定することによって解決する新たな金属成形機における金属素材の溶融方法を提供することにある。   The object of the present invention is to solve the above-mentioned problems relating to the difficulty and heating efficiency when inserting a cylindrically formed metal material into a vertically provided melting tube, and to determine the linear expansion coefficient of the metal material and the linear expansion of the material of the melting tube. An object of the present invention is to provide a metal material melting method in a new metal forming machine that solves the problem by setting a clearance for thermal expansion from the coefficient.

上記目的によるこの発明は、金属素材を鋳造又は押出成形により円柱状に形成し、その円柱状金属素材を成形材料として金属成形機の加熱保持筒に縦に設けた溶解筒に上方から挿入し、円柱状金属素材を溶解筒外周囲の加熱手段により半溶融又は完全溶融するにあたり、上記溶解筒の内周面と円柱状金属素材の外周面とのクリアランスを、予め金属素材の線膨張係数と溶解筒の金属材料の線膨張係数とから、熱膨張時の溶解筒の内径と円柱状金属素材の直径とを対象に1.0mmを超えず、かつ上記加熱手段の温度において熱膨張している溶解筒内に、非熱膨張状態の上記円柱状金属素材が挿入可能な範囲に設定してなる、というものである。   This invention according to the above object is formed by casting or extruding a metal material into a cylindrical shape, and inserting the cylindrical metal material as a molding material from above into a melting cylinder provided vertically in a heating and holding cylinder of a metal molding machine, When semi-melting or completely melting a cylindrical metal material by means of heating around the melting cylinder, the clearance between the inner circumferential surface of the melting cylinder and the outer circumferential surface of the cylindrical metal material is determined in advance with the linear expansion coefficient of the metal material. From the linear expansion coefficient of the metal material of the cylinder, the melting that does not exceed 1.0 mm for the inner diameter of the melting cylinder at the time of thermal expansion and the diameter of the cylindrical metal material, and is thermally expanded at the temperature of the heating means The cylindrical metal material in a non-thermally expanded state is set in a range that can be inserted into the cylinder.

また上記溶解筒は、上記金属素材の線膨張係数よりも小さい線膨張係数の金属材料からなるというものであり、上記金属素材は、マグネシウム合金、アルミニウム合金等の低融点金属合金からなるというものである。また金属素材は固液共存温度領域の温度でチクソトロピー性状を呈するマグネシウム合金からなる、というものである。   The melting cylinder is made of a metal material having a linear expansion coefficient smaller than that of the metal material, and the metal material is made of a low melting point metal alloy such as a magnesium alloy or an aluminum alloy. is there. The metal material is made of a magnesium alloy exhibiting thixotropic properties at a temperature in the solid-liquid coexistence temperature region.

上記構成では、両方の熱膨張時のクリアランスcを1mmを超えない範囲に設定しても、円柱状金属素材の挿入時のクリアランスは、円柱状金属素材が加熱を受けるまで非熱膨張状態にあるので、その非熱膨張分だけ熱膨張時のクリアランスよりも大きく形成されるようになる。このため熱膨張時のクリアランスに基いて設定された両方の非熱膨張時のクリアランスが、円柱状金属素材の挿入限界に近いクリアランスとなっていても、円柱状金属素材の挿入が支障なく行えるようになる。またクリアランスは挿入後の金属素材の熱膨張により自然に狭く変わるので加熱効率が向上し、溶解時間が早まるので成形サイクルに対応した金属素材の溶融が行え、加熱保持筒への供給と蓄積とを効率よくできるようになる。さらにまた溶解筒の材質が変わっても、その材質の線膨張係数から適正なクリアランスを設定することができる。   In the above configuration, even when the clearance c at the time of both thermal expansions is set within a range not exceeding 1 mm, the clearance at the time of insertion of the cylindrical metal material is in a non-thermal expansion state until the cylindrical metal material is heated. Therefore, the non-thermal expansion portion is formed larger than the clearance at the time of thermal expansion. Therefore, even when both non-thermal expansion clearances set based on the thermal expansion clearance are close to the insertion limit of the cylindrical metal material, the cylindrical metal material can be inserted without any problem. become. In addition, the clearance naturally changes due to the thermal expansion of the metal material after insertion, so that the heating efficiency is improved and the melting time is shortened, so that the metal material can be melted in correspondence with the molding cycle, and supplied to and accumulated in the heating and holding cylinder. You can do it efficiently. Furthermore, even if the material of the melting cylinder changes, an appropriate clearance can be set from the linear expansion coefficient of the material.

図中1は金属成形機で、筒体21の先端にノズル部材22を有する加熱保持筒2と、鋳造又は押出成形により円柱体(丸棒)に形成した金属素材M(以下円柱状金属素材という)の溶解供給装置3と、射出保持筒2の後部の射出駆動装置4とからなる。   In the figure, 1 is a metal forming machine, a heating and holding cylinder 2 having a nozzle member 22 at the tip of a cylinder 21, and a metal material M (hereinafter referred to as a columnar metal material) formed into a cylinder (round bar) by casting or extrusion molding. ) Melting supply device 3 and an injection driving device 4 at the rear of the injection holding cylinder 2.

上記加熱保持筒2は、筒体21の中程上側に設けた供給口に上記溶解供給装置3を備え、筒体外周囲にバンドヒータによる加熱手段24を備える。この加熱手段24による加熱保持筒2の温度は、成形材料として用いられるマグネシウム合金、アルミニウム合などの金属素材が、固液共存温度領域の温度でチクソトロピー性状を呈する場合には、液相線温度と固相線温度との間の温度に設定され、また完全溶融を要する場合には、液相線温度以上の温度に設定される。   The heating and holding cylinder 2 includes the melting supply device 3 at a supply port provided in the middle upper side of the cylinder 21 and a heating means 24 using a band heater on the outer periphery of the cylinder. The temperature of the heating and holding cylinder 2 by the heating means 24 is the liquidus temperature when a metal material such as magnesium alloy or aluminum alloy used as a molding material exhibits thixotropic properties at a temperature in the solid-liquid coexistence temperature region. It is set to a temperature between the solidus temperature, and when complete melting is required, it is set to a temperature equal to or higher than the liquidus temperature.

加熱保持筒2は筒体後端部を支持部材23に取付けて、射出駆動装置4と共に水平面に対し45°の角度に斜設してある。この斜設により下向きに位置する上記ノズル部材22のノズル口と連通する先端部内は、上記射出手段26の射出プランジャ26aが進退自在に嵌挿された計量室25となっている。射出プランジャ26aはロッド26bの先端に取付けてあり、外周面にシールリングを埋設した逆止弁26cを軸部周囲に進退自在に備えている。   The heating and holding cylinder 2 is attached to the support member 23 at the rear end of the cylinder, and is inclined with the injection driving device 4 at an angle of 45 ° with respect to the horizontal plane. A measuring chamber 25 in which an injection plunger 26a of the injection means 26 is inserted and retracted is inserted in the tip end portion communicating with the nozzle port of the nozzle member 22 positioned downward by the oblique installation. The injection plunger 26a is attached to the tip of the rod 26b, and is provided with a check valve 26c having a seal ring embedded in the outer peripheral surface thereof so as to be movable back and forth around the shaft portion.

上記溶解供給装置3は、細長い管体の一端部内を閉塞して平底の底部となし、その平底の中央に小径の供給流路31aを穿設して形成した溶解筒31と、その外周囲に複数ゾーンに分割して個々に温度制御可能に設けたバンドヒータや誘導加熱器等による加熱手段32と、溶解筒31の上部に縦長に連結した供給筒33とからなり、加熱手段32は液相線温度以上の温度か又は液相線温度以下の温度で固相線温度以上の温度(固液共存温度領域)のいずれかの温度に設定してある。   The dissolution supply device 3 is formed by closing the inside of one end of an elongated tube body to form a flat bottom, and forming a dissolution tube 31 formed by drilling a small-diameter supply channel 31a in the center of the flat bottom. The heating means 32 includes a band heater or an induction heater that is divided into a plurality of zones so as to be individually temperature-controllable, and a supply cylinder 33 that is vertically connected to the upper part of the melting cylinder 31. The temperature is set to a temperature not lower than the line temperature or a temperature not higher than the liquidus temperature and not lower than the solidus temperature (solid-liquid coexistence temperature region).

また溶解供給装置3は、溶解筒31の底部側を筒体21に設けた材料供給口に差込み、供給筒33を上記支持部材23に固設したアーム部材27に取付けて加熱保持筒2に縦に設けられ、その下部から加熱保持筒2の溶湯面Lの内部までと、溶解筒31の上部の空間内とにアルゴンガス等の不活性ガスの注入管34a,34bが設けてある。   Further, the melting supply device 3 is inserted into the material supply port provided in the cylinder body 21 at the bottom side of the melting cylinder 31, and the supply cylinder 33 is attached to the arm member 27 fixed to the support member 23 so as to be vertically connected to the heating and holding cylinder 2. Injecting pipes 34 a and 34 b for inert gas such as argon gas are provided from the lower part to the inside of the molten metal surface L of the heating and holding cylinder 2 and in the space above the melting cylinder 31.

このような溶解供給装置3では、上記円柱状金属素材Mを供給筒33の上部開口から挿入すると、円柱状金属素材Mは溶解筒31の底面まで自重により落下して底着する。この円柱状金属素材Mは溶解筒31の周囲からの輻射熱による加熱により半溶融又は完全溶融する。溶融した金属素材は上記供給路31aから流下して加熱保持筒2に蓄積され、上記射出プランジャ26aの後退移動により計量室25に流入して計量されたのち、射出プランジャ26aの前進移動により図示しない金型に射出される。   In such a melting and supplying apparatus 3, when the cylindrical metal material M is inserted from the upper opening of the supply cylinder 33, the cylindrical metal material M falls to the bottom surface of the melting cylinder 31 by its own weight and bottoms. The columnar metal material M is semi-molten or completely melted by heating by radiant heat from the periphery of the melting cylinder 31. The molten metal material flows down from the supply path 31a, accumulates in the heating and holding cylinder 2, flows into the measuring chamber 25 by the backward movement of the injection plunger 26a, is measured, and is not shown by the forward movement of the injection plunger 26a. It is injected into the mold.

図2および図3において、上記溶解筒31の内周面と円柱状金属素材Mの外周面とのクリアランスcは、溶解筒の内径Dと円柱状金属素材Mの直径dとの差から生ずるので、その差の1/2がクリアランスcとなる。円柱状金属素材Mの挿入の容易さを考慮して、通常は、その両方が加熱を受ける前の非熱膨張時を対象として設定されるが、加熱効率はクリアランスcが小さいほど効率が高いので、ここでは溶解筒31と円柱状金属素材Mの両方の熱膨張時を対象にクリアランスを設定している。   2 and 3, the clearance c between the inner peripheral surface of the melting cylinder 31 and the outer peripheral surface of the cylindrical metal material M results from the difference between the inner diameter D of the melting cylinder and the diameter d of the cylindrical metal material M. , 1/2 of the difference is the clearance c. Considering the ease of insertion of the cylindrical metal material M, it is usually set for non-thermal expansion before both are subjected to heating, but the heating efficiency is higher as the clearance c is smaller. Here, the clearance is set for the thermal expansion of both the melting cylinder 31 and the cylindrical metal material M.

このクリアランスcの設定は、金属素材の線膨張係数と、溶解筒に採用される金属材料の線膨張係数とから得られる熱膨張時の円柱状金属素材Mの直径dと溶解筒31の内径Dとを対象に行っている。この熱膨張温度は円柱状金属素材Mの形態が熱膨張により変形しない維持可能な上限温度(たとえば、マグネシウム合金では550℃)で行うのが好ましい。   The clearance c is set by the diameter d of the cylindrical metal material M and the inner diameter D of the melting cylinder 31 at the time of thermal expansion obtained from the linear expansion coefficient of the metal material and the linear expansion coefficient of the metal material employed in the melting cylinder. And go to. This thermal expansion temperature is preferably performed at an upper limit temperature at which the form of the columnar metal material M can be maintained without being deformed by thermal expansion (for example, 550 ° C. for a magnesium alloy).

クリアランスcは狭いほど加熱効率が高くなるが、反対に円柱状金属素材Mの挿入が困難となるので、挿入の容易性と加熱効率とを考慮して両方の熱膨張時に1.0mmを超えず、また熱膨張している溶解筒31に、非熱膨張状態の円柱状金属素材Mを挿入する際のクリアランスcが1.5mmを超えない範囲に設定してある。また熱膨張によるクリアランスcの拡大を防止するために、溶解筒31には線膨張係数が金属素材の線膨張係数より小さい膨張率の金属材料が使用されている。   The narrower the clearance c, the higher the heating efficiency. On the other hand, it becomes difficult to insert the columnar metal material M. Therefore, considering the ease of insertion and the heating efficiency, both do not exceed 1.0 mm at the time of thermal expansion. The clearance c when the non-thermally expanded columnar metal material M is inserted into the thermally expanding melting cylinder 31 is set in a range not exceeding 1.5 mm. Further, in order to prevent the clearance c from expanding due to thermal expansion, a metal material having an expansion coefficient smaller than that of the metal material is used for the melting cylinder 31.

このクリアランスcに基いて設定される両方の非熱膨張時のクリアランスc′が、溶解筒31の内周面に付着した酸化物による円柱状金属素材Mの挿入限界(約0.8mm)よりも小さいクリアランスでも、円柱状金属素材Mの挿入時には、円柱状金属素材Mは加熱されていないので熱膨張しておらず、その円柱状金属素材Mの非熱膨張分がクリアランスc′を大きく形成するようになるので、円柱状金属素材Mの挿入が支障なく行えるようになる。   Both of the clearances c ′ at the time of non-thermal expansion set based on the clearance c are larger than the insertion limit (about 0.8 mm) of the columnar metal material M by the oxide adhering to the inner peripheral surface of the melting cylinder 31. Even with a small clearance, when the cylindrical metal material M is inserted, the cylindrical metal material M is not heated and thus does not thermally expand, and the non-thermal expansion of the cylindrical metal material M forms a large clearance c ′. As a result, the cylindrical metal material M can be inserted without hindrance.

また挿入ずれにより左右のクリアランスに差が生ずるようなことがあつても、その差は1.0mmを超えないクリアランスの範囲の中のことなので、加熱効率に大きな影響を与えることはない。この結果、加熱効率が高く、円柱状金属素材Mの挿入がスムーズなクリアランスの設定が可能となり、上記円柱状金属素材Mの溶融を溶解筒31で行うものであつても、成形サイクルに対応した金属素材の溶融供給と蓄積とを行うことができる。   Further, even if there is a difference between the left and right clearances due to the displacement of the insertion, the difference is within the clearance range not exceeding 1.0 mm, so that the heating efficiency is not greatly affected. As a result, the heating efficiency is high, and it is possible to set the clearance for smooth insertion of the cylindrical metal material M. Even if the cylindrical metal material M is melted by the melting cylinder 31, it corresponds to the molding cycle. It is possible to supply and accumulate metal materials.

なお、円柱状金属素材Mの溶解筒31への挿入に際しては、円柱状金属素材Mの鋳造又は押出成形時に生じた表層の巣や、表面に付着した酸化物等の不純物は、予め切削により除去しておくのが好ましい。   In addition, when inserting the cylindrical metal material M into the melting cylinder 31, impurities such as surface nests and oxides adhering to the surface generated during casting or extrusion of the cylindrical metal material M are removed in advance by cutting. It is preferable to keep it.

溶解筒31により円柱状金属素材Mの温度が液相線温度を超えると、金属素材は完全に溶融して湯となるが、金属組織が固液共存温度領域の温度でチクソトロピー性状を呈する金属素材では、結晶間に分布する共晶が液相線温度に達する前の固液共存温度領域の温度で溶融し、液相と固相とによる半溶融状態となって上記供給流路31aをを流下してゆく。   When the temperature of the cylindrical metal material M exceeds the liquidus temperature by the melting cylinder 31, the metal material is completely melted into hot water, but the metal material exhibits thixotropic properties at a temperature in the solid-liquid coexistence temperature region. Then, the eutectic distributed between the crystals melts at a temperature in the solid-liquid coexistence temperature region before reaching the liquidus temperature, becomes a semi-molten state by the liquid phase and the solid phase, and flows down the supply channel 31a. I will do it.

クリアランスの設定条件(寸法mm)
金属素材 マグネシウム合金(AZ91D)
線膨張係数:27.0×10-6/K
形状:円柱体
長さ:300
溶解筒材質:ステンレス鋼(SUS304)
線膨張係数:16.5×10-6/K
形状:円筒体 高さ:610
加熱手段:バンドヒータ 定格 5kw
加熱温度:550℃
Clearance setting conditions (dimension mm)
Metal material Magnesium alloy (AZ91D)
Linear expansion coefficient: 27.0 × 10 −6 / K
Shape: cylinder Length: 300
Melting cylinder material: Stainless steel (SUS304)
Linear expansion coefficient: 16.5 × 10 −6 / K
Shape: Cylindrical body Height: 610
Heating means: Band heater rating 5 kW
Heating temperature: 550 ° C

[NO1] 非熱膨張時 熱膨張時
円柱体 直径 60.0(A) 60.891
溶解筒 内径 61.0 61.554(B)
直径と内径の差 1.0 0.663
クリアランス 0.5 0.331
[NO1] Non-thermal expansion Thermal expansion Cylindrical body Diameter 60.0 (A) 60.899
Melting cylinder inner diameter 61.0 61.554 (B)
Difference between diameter and inner diameter 1.0 0.663
Clearance 0.5 0.331

[NO2] 非熱膨張時 熱膨張時
円柱体 直径 60.0(A) 60.891
溶解筒 内径 61.5 62.058(B)
直径と内径の差 1.5 1.167
クリアランス 0.75 0.583
[NO2] Non-thermal expansion Thermal expansion Cylindrical body Diameter 60.0 (A) 60.899
Melting cylinder inner diameter 61.5 62.58 (B)
Difference between diameter and inner diameter 1.5 1.167
Clearance 0.75 0.583

[NO3] 非熱膨張時 熱膨張時
円柱体 直径 60.0(A) 60.891
溶解筒 内径 62.0 62.536(B)
直径と内径の差 2.0 1.672
クリアランス 1.0 0.836
[NO3] Non-thermal expansion Thermal expansion Cylindrical body Diameter 60.0 (A) 60.899
Melting cylinder inner diameter 62.0 62.536 (B)
Difference between diameter and inner diameter 2.0 1.672
Clearance 1.0 0.836

[NO4] 非熱膨張時 熱膨張時
円柱体 直径 60.0(A) 60.891
溶解筒 内径 62.3 62.865(B)
直径と内径の差 2.3 1.974
クリアランス 1.15 0.987
[NO4] Non-thermal expansion Thermal expansion Cylindrical body Diameter 60.0 (A) 60.899
Melting cylinder inner diameter 62.3 62.865 (B)
Difference between diameter and inner diameter 2.3 1.974
Clearance 1.15 0.987

[NO5] 非熱膨張時 熱膨張時
円柱体 直径 60.0(A) 60.891
溶解筒 内径 63.0 63.572(B)
直径と内径の差 3.0 2.681
クリアランス 1.5 1.340
[NO5] Non-thermal expansion Thermal expansion Cylindrical body Diameter 60.0 (A) 60.899
Melting cylinder inner diameter 63.0 63.572 (B)
Difference between diameter and inner diameter 3.0 2.681
Clearance 1.5 1.340

上記表から、各実施例の両非熱膨張時、非熱膨張・熱膨張時、熱膨張・熱膨張時のクリアランス(寸法mm)
両非熱膨張時 非熱膨張・熱膨張時 両熱膨張時
[NO1] 0.5 0.777 0.331
[NO2] 0.75 1.029 0.583
[NO3] 1.0 1.252 0.836
[NO4] 1.15 1.433 0.987
[NO5] 1.5 1.786 1.340
但し、非熱膨張・熱膨張時のクリアランスは上表(B)−(A)/2で、こ れが上記円柱体の挿入クリアランスとなる。
From the above table, the clearance (dimension mm) at the time of both non-thermal expansion, non-thermal expansion / thermal expansion, thermal expansion / thermal expansion of each example.
Both non-thermal expansions Non-thermal expansions / thermal expansions Both thermal expansions [NO1] 0.5 0.777 0.331
[NO2] 0.75 1.029 0.583
[NO3] 1.0 1.252 0.836
[NO4] 1.15 1.433 0.987
[NO5] 1.5 1.786 1.340
However, the clearance at the time of non-thermal expansion / thermal expansion is (B)-(A) / 2 in the above table, and this is the insertion clearance for the cylinder.

円柱状金属素材の完全溶融(液相状態)時間(分)
(但し、加熱温度:600℃)
[NO1] [NO2] [NO3] [NO4] [NO5]
12 13 15 17 20
Complete melting (liquid phase) time (minutes) of cylindrical metal material
(However, heating temperature: 600 ° C)
[NO1] [NO2] [NO3] [NO4] [NO5]
12 13 15 17 20

成形条件
製品質量:40g(1ショット)
金属素材:質量:1.5Kg(約37ショット分)
成形サイクル(1ショット):30秒
加熱温度:600℃
成形サイクル対応溶融時間(37ショット×30秒):約19分
金属成形機:FMg3000(日精樹脂工業株式会社製)
Molding conditions Product mass: 40g (1 shot)
Metal material: Mass: 1.5Kg (about 37 shots)
Molding cycle (1 shot): 30 seconds Heating temperature: 600 ° C
Molding cycle compatible melting time (37 shots × 30 seconds): about 19 minutes Metal molding machine: FMg3000 (manufactured by Nissei Plastic Industry Co., Ltd.)

結 果
上記実施例において、[NO1]は両熱膨張時のクリアランスが小さいので、加熱効率が最も良く溶解時間も約12分となるが、非熱膨張状態の上記円柱体を溶解筒に挿入するときの非熱膨張・熱膨張時のクリアランスが、挿入限界と見做される約0.8mmよりも小さい0.77mmなので適用することができない。
Results [NO1] In the above embodiment, [NO1] has a small clearance during both thermal expansions, so the heating efficiency is the best and the melting time is about 12 minutes, but the non-thermally expanded columnar body is inserted into the melting cylinder. Since the clearance at the time of non-thermal expansion / thermal expansion is 0.77 mm, which is smaller than about 0.8 mm, which is regarded as the insertion limit, it cannot be applied.

また[NO5]は、両熱膨張時のクリアランスが大きいので、非熱膨張状態の上記円柱体を溶解筒に容易に挿入できるが、非熱膨張・熱膨張時のクリアランスも比例して大きくなるので加熱効率が悪く、溶融に約20分も要するので、上記成形サイクルに対応した溶融時間(約19分)で全量を溶融することがてきない。このため加熱保持筒への安定供給が行えないので適用し難い。   [NO5] has a large clearance during both thermal expansions, so the above-mentioned cylinder in the non-thermal expansion state can be easily inserted into the melting cylinder, but the clearance during non-thermal expansion and thermal expansion also increases proportionally. Since the heating efficiency is poor and the melting takes about 20 minutes, the entire amount cannot be melted in the melting time (about 19 minutes) corresponding to the molding cycle. For this reason, it is difficult to apply because stable supply to the heating and holding cylinder cannot be performed.

[NO2]では、上記円柱体と溶解筒の両方の非熱膨張時のクリアランスが0.75mmと上記挿入限界より小さいが、非熱膨張・熱膨張時のクリアランスが挿入限界よりも大きい1.029mmに拡大形成される。したがつて、円柱体を溶解筒に挿入することができる。また溶融時間(13分)も上記成形サイクルに対応した溶融時間(約19分)内で済むので適用可能ではあるが、長時間の使用により溶解筒の内面に生ずる酸化物の付着による影響を受け易いので、一定期間ごとに清掃を要する。   In [NO2], the clearance at the time of non-thermal expansion of both the cylindrical body and the melting cylinder is 0.75 mm, which is smaller than the insertion limit, but the clearance at the time of non-thermal expansion / thermal expansion is 1.029 mm, which is larger than the insertion limit. It is enlarged and formed. Therefore, the cylindrical body can be inserted into the melting cylinder. Also, the melting time (13 minutes) can be applied because it is within the melting time (about 19 minutes) corresponding to the above molding cycle, but it is affected by the adhesion of oxides generated on the inner surface of the melting cylinder due to long-term use. Because it is easy, cleaning is required at regular intervals.

[NO3]は、[NO2]よりも非熱膨張・熱膨張時のクリアランスが1.252mmと大きく形成されるので、上記円柱体の溶解筒への挿入も容易となる。また溶融溶融時間(15分)も上記成形サイクルに対応した溶融時間(約19分)内で済み、酸化物の付着による影響もクリアランスが充分に確保されるの受け難い。したがって、長期にわたり清掃を行う必要がなく、最も好ましい状態で上記円柱体の挿入と金属素材の溶融を可能とする。   [NO3] is formed to have a larger clearance of 1.252 mm at the time of non-thermal expansion / thermal expansion than [NO2], so that the cylindrical body can be easily inserted into the melting cylinder. Further, the melting and melting time (15 minutes) is also within the melting time (about 19 minutes) corresponding to the above molding cycle, and it is difficult to receive a sufficient clearance from the influence of the adhesion of oxides. Therefore, it is not necessary to perform cleaning over a long period of time, and the cylindrical body can be inserted and the metal material can be melted in the most preferable state.

[NO4]は、[NO3]よりも非熱膨張・熱膨張時のクリアランスが1.433mmと大きく形成されるので、さらに上記円柱体の溶解筒への挿入が容易となる。また酸化物の付着による影響もなくなるので清掃が不要となるが、加熱効率の低下により溶融時間がかかる。しかし、上記成形サイクルに対応した溶融時間(約19分)内で全量の溶融(17分)が済むので、この辺りまでが適用可能な範囲となる。   [NO4] has a larger non-thermal expansion / thermal expansion clearance of 1.433 mm than [NO3], which makes it easier to insert the cylindrical body into the melting cylinder. Further, since the influence of oxide adhesion is eliminated, cleaning becomes unnecessary, but it takes a long time to melt due to a decrease in heating efficiency. However, since the entire amount of melting (17 minutes) is completed within the melting time (about 19 minutes) corresponding to the molding cycle, this range is applicable.

したがって、実施例[NO2]〜[NO4]から明らかなことは、金属素材の線膨張係数と、溶解筒の材質の線膨張係数とから、熱膨張時の溶解筒の内径Dと円柱状金属素材の直径dとを対象にして、クリアランスが1.0mmを超えない範囲の設定であれば、溶解筒に対する上記円柱状金属素材の挿入をスムーズに、また成形サイクルに対応した溶融時間内での溶融が可能となるということであり、それから溶解筒の実質的な内径を非熱膨張状態で設定して、金属成形機における円柱状金属素材の挿入の容易性と効率的な溶融とを両立させて行うことができるということである。   Therefore, it is clear from Examples [NO2] to [NO4] that the inner diameter D of the melting cylinder and the cylindrical metal material at the time of thermal expansion are obtained from the linear expansion coefficient of the metal material and the linear expansion coefficient of the material of the melting cylinder. If the clearance is set within a range not exceeding 1.0 mm, the cylindrical metal material can be smoothly inserted into the melting tube and melted within the melting time corresponding to the molding cycle. Then, by setting the substantial inner diameter of the melting cylinder in a non-thermal expansion state, it is possible to achieve both ease of insertion of the cylindrical metal material and efficient melting in the metal forming machine. It can be done.

この発明に係る金属素材の溶融方法を採用し得る金属成形機の1実施形態の縦断側面図である。1 is a longitudinal side view of an embodiment of a metal forming machine that can employ a melting method of a metal material according to the present invention. 溶解筒と円柱体の金属素材との加熱膨張時のクリアランスを示す部分断面図である。It is a fragmentary sectional view which shows the clearance at the time of the heating expansion of a melt | dissolution cylinder and a cylindrical metal material. 溶解筒と円柱体の金属素材との非熱膨張時のクリアランスを示す部分断面図である。It is a fragmentary sectional view which shows the clearance at the time of the non-thermal expansion with a melting cylinder and the metal raw material of a cylindrical body.

符号の説明Explanation of symbols

1 金属成形機
2 加熱保持筒
3 溶解供給装置
24 加熱手段
25 計量室
26 射出手段
26a 射出プランジャ
31 溶解筒
32 加熱手段
DESCRIPTION OF SYMBOLS 1 Metal forming machine 2 Heating holding cylinder 3 Melting supply apparatus 24 Heating means 25 Measuring chamber 26 Injection means 26a Injection plunger 31 Melting cylinder 32 Heating means

Claims (4)

金属素材を鋳造又は押出成形により円柱状に形成し、その円柱状金属素材を成形材料として金属成形機の加熱保持筒に縦に設けた溶解筒に上方から挿入し、円柱状金属素材を溶解筒外周囲の加熱手段により半溶融又は完全溶融するにあたり、
上記溶解筒の内周面と円柱状金属素材の外周面とのクリアランスを、予め金属素材の線膨張係数と溶解筒の金属材料の線膨張係数とから、熱膨張時の溶解筒の内径と円柱状金属素材の直径とを対象に1.0mmを超えず、かつ上記加熱手段の温度において熱膨張している溶解筒内に、非熱膨張状態の上記円柱状金属素材が挿入可能な範囲に設定してなることを特徴とする金属成形機における金属素材の溶融方法。
A metal material is formed into a cylindrical shape by casting or extrusion molding, and the cylindrical metal material is inserted as a molding material from above into a melting cylinder provided vertically in the heating and holding cylinder of the metal molding machine, and the cylindrical metal material is melted into the melting cylinder. When semi-molten or completely melted by the surrounding heating means,
The clearance between the inner peripheral surface of the melting cylinder and the outer peripheral surface of the cylindrical metal material is determined in advance from the linear expansion coefficient of the metal material and the linear expansion coefficient of the metal material of the melting cylinder, and the inner diameter and circle of the melting cylinder at the time of thermal expansion. The columnar metal material has a diameter that does not exceed 1.0 mm and is set in a range in which the columnar metal material in a non-thermal expansion state can be inserted into a melting cylinder that is thermally expanded at the temperature of the heating means. A method for melting a metal material in a metal forming machine.
上記溶解筒は、上記金属素材の線膨張係数よりも小さい線膨張係数の金属材料からなることを特徴とする請求項1記載の金属成形機における金属素材の溶融方法。   2. The method for melting a metal material in a metal forming machine according to claim 1, wherein the melting cylinder is made of a metal material having a linear expansion coefficient smaller than that of the metal material. 上記金属素材は、マグネシウム合金、アルミニウム合金の低融点金属合金からなることを特徴とする請求項1記載の金属成形機における金属素材の溶融方法。   2. The method for melting a metal material in a metal forming machine according to claim 1, wherein the metal material comprises a low melting point metal alloy of magnesium alloy or aluminum alloy. 上記金属素材は、固液共存温度領域の温度でチクソトロピー性状を呈するマグネシウム合金からなることを特徴とする請求項3記載の金属成形機における金属素材の溶融方法。   4. The method for melting a metal material in a metal forming machine according to claim 3, wherein the metal material is made of a magnesium alloy exhibiting thixotropic properties at a temperature in a solid-liquid coexistence temperature region.
JP2005049098A 2004-02-25 2005-02-24 Method of melting metal material in metal forming machine Expired - Fee Related JP4582778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049098A JP4582778B2 (en) 2004-02-25 2005-02-24 Method of melting metal material in metal forming machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004049975 2004-02-25
JP2005049098A JP4582778B2 (en) 2004-02-25 2005-02-24 Method of melting metal material in metal forming machine

Publications (2)

Publication Number Publication Date
JP2005271080A true JP2005271080A (en) 2005-10-06
JP4582778B2 JP4582778B2 (en) 2010-11-17

Family

ID=35171270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049098A Expired - Fee Related JP4582778B2 (en) 2004-02-25 2005-02-24 Method of melting metal material in metal forming machine

Country Status (1)

Country Link
JP (1) JP4582778B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210024A (en) * 2006-02-13 2007-08-23 Toyo Mach & Metal Co Ltd Molten metal forming apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007210024A (en) * 2006-02-13 2007-08-23 Toyo Mach & Metal Co Ltd Molten metal forming apparatus
JP4516535B2 (en) * 2006-02-13 2010-08-04 東洋機械金属株式会社 Molten metal forming equipment

Also Published As

Publication number Publication date
JP4582778B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
CA2855799C (en) Die cast nozzle and method for operating a die cast nozzle
JP4119892B2 (en) Injection device for light metal injection molding machine
JP4272413B2 (en) Cold chamber die casting machine injection apparatus and weighing method thereof
JP4666317B2 (en) Rod-like material melting and holding apparatus for metal forming injection device
US7331372B2 (en) Method for melting metallic raw material in metal molding apparatus
CN104550822A (en) Molding apparatus, production apparatus of semi-solidified metal, production method of semi-solidified metal, and molding method
JP4582778B2 (en) Method of melting metal material in metal forming machine
JP2001191162A (en) Injection molding machine of low melting point metal
JP4273045B2 (en) Method of melting metal material in metal forming machine
US3726333A (en) Control of continuous casting operation
CN105834386A (en) Continuous casting device of high temperature alloy tubes and continuous casting method of high temperature alloy tubes
JP4486037B2 (en) Metal forming machine with billet melting cylinder
JP6612095B2 (en) Injection device for light metal injection molding machine
JP4526542B2 (en) Nozzle movement control method in metal forming machine
JP2009166054A (en) Molding method and molding machine
JP4229452B2 (en) Method of raising temperature in heating cylinder of metal forming machine
JPS60191640A (en) Casting method of casting ingot in heated mold type continuous casting method
WO2005030414A1 (en) A heater and heating method for parts of pressure die casting machines
JP2004160507A (en) Direct casting apparatus
JP3188815B2 (en) High pressure casting apparatus and hot water supply method
JPH08267211A (en) Method for controlling deformation of plunger sleeve for die casting
JP2008087047A (en) Plunger tip
RU2326752C2 (en) Method of fabricating continuous cast deformed blanks out of high temperature metals and assembly for implementation of this method
JP2008188649A (en) Method of controlling leakage of molten metal material in injection unit of metal molding machine
JPH1157972A (en) Pressure casting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080714

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081217

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees