JP2005269874A - Rotor for permanent-magnet synchronous motor - Google Patents

Rotor for permanent-magnet synchronous motor Download PDF

Info

Publication number
JP2005269874A
JP2005269874A JP2004083228A JP2004083228A JP2005269874A JP 2005269874 A JP2005269874 A JP 2005269874A JP 2004083228 A JP2004083228 A JP 2004083228A JP 2004083228 A JP2004083228 A JP 2004083228A JP 2005269874 A JP2005269874 A JP 2005269874A
Authority
JP
Japan
Prior art keywords
permanent magnet
end plate
rotor
holding member
synchronous motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004083228A
Other languages
Japanese (ja)
Inventor
Yoshiaki Fukatsu
喜明 深津
Noritoshi Narumi
礼斗史 鳴海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004083228A priority Critical patent/JP2005269874A/en
Publication of JP2005269874A publication Critical patent/JP2005269874A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotor for a permanent-magnet synchronous motor, eliminating the idea for positively contacting the outer surface of the permanent-magnet to the outside core wall part of a core member, in holding the permanent-magnet in the magnet insertion hole of the core member. <P>SOLUTION: The rotor for a permanent-magnet synchronous motor comprises a cylindrical core member 12 with a plurality of magnet insertion holes 14 extending in the circumferential direction and penetrating through in the axial direction being separately provided in the circumferential direction; a plurality of permanent magnets 20 inserted into the magnet insertion holes; a pair of end plates 25 having a plurality of openings 26 opposed to the magnet insertion holes and holding the core member in between on both sides of the axial direction; and pressing member 30 arranged between the axial direction end part of the permanent magnet and the peripheral edge of the opening of the end plate and radially pressing the permanent magnet in the inward direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、永久磁石同期モータの回転子に関する。   The present invention relates to a rotor of a permanent magnet synchronous motor.

同期モータの一種に永久磁石同期モータがあり、円筒状でコイルを持つ固定子(ステータ)の中空部に、円柱状で永久磁石を持つ回転子(ロータ)が配置されている。固定子の永久磁石が発生する磁束と回転子のコイルのこれに直交する電流との電磁作用により回転子にトルクが発生する。   One type of synchronous motor is a permanent magnet synchronous motor, and a cylindrical rotor (rotor) having a permanent magnet is disposed in a hollow portion of a cylindrical stator (stator) having a coil. Torque is generated in the rotor by the electromagnetic action of the magnetic flux generated by the permanent magnet of the stator and the current orthogonal to the coil of the rotor.

回転子は鉄心(コア)と、コア内に埋め込まれた複数の永久磁石とを含み、永久磁石の形状や鉄心への配置態様には種々のものが知られている。例えば従来のブラシレスDCモータの回転子は、図14及び図15に示すように、複数の挿入孔251を持つ回転子コア250と、挿入孔251に挿入された板状の永久磁石255と、回転子コア250の両端面の挿入孔251の開口を覆う非磁性の一対の端板260及び262とを含む。   The rotor includes an iron core (core) and a plurality of permanent magnets embedded in the core, and various types of permanent magnets and arrangements on the iron core are known. For example, as shown in FIGS. 14 and 15, a rotor of a conventional brushless DC motor includes a rotor core 250 having a plurality of insertion holes 251, a plate-like permanent magnet 255 inserted into the insertion holes 251, and a rotation. And a pair of nonmagnetic end plates 260 and 262 that cover the openings of the insertion holes 251 on both end faces of the child core 250.

永久磁石255を回転子コア250の挿入孔251内で所定状態で保持するために、永久磁石255の軸方向長さを回転子コア250の軸方向長さよりも長くし、挿入孔251の開口から突出した永久磁石255の端部を、回転子コア250の端面に取り付けた一対の端板260及び262で挟圧保持している。
特開平9−233750号公報
In order to hold the permanent magnet 255 in a predetermined state in the insertion hole 251 of the rotor core 250, the axial length of the permanent magnet 255 is made longer than the axial length of the rotor core 250, and the opening of the insertion hole 251 is extended. The protruding end portion of the permanent magnet 255 is clamped and held by a pair of end plates 260 and 262 attached to the end face of the rotor core 250.
JP-A-9-233750

永久磁石255は回転子コア250の挿入孔251内で軸方向及び半径方向に位置決め、保持される必要がある。半径方向の保持は、回転子コア250の回転時に永久磁石255に作用する遠心力によりフラックスバリア252の外縁を区画するブリッジ部253が破損することを防止するために重要である。   The permanent magnet 255 needs to be positioned and held in the insertion hole 251 of the rotor core 250 in the axial direction and the radial direction. The holding in the radial direction is important for preventing the bridge portion 253 that defines the outer edge of the flux barrier 252 from being damaged by the centrifugal force acting on the permanent magnet 255 when the rotor core 250 rotates.

永久磁石255は回転子コア250の軸方向では端板260及び262により挿入孔251に対して位置決め、保持できるかも知れないが、半径方向で位置決め、保持することは困難である。その理由は、回転子コア250、端板260,262及び永久磁石255の製造時の寸法誤差、並びに寸法誤差に起因するこれらの要素間のすきまのばらつきにある。   The permanent magnet 255 may be positioned and held with respect to the insertion hole 251 by the end plates 260 and 262 in the axial direction of the rotor core 250, but is difficult to position and hold in the radial direction. This is because of the dimensional error in manufacturing the rotor core 250, the end plates 260 and 262, and the permanent magnet 255, and the variation in the clearance between these elements due to the dimensional error.

即ち、回転子コア250を構成する複数の積層板及び端板260及び262は金属板のプレス加工により製造され、永久磁石255は焼結により製造され、何れも寸法精度はあまり良くない。一方、永久磁石255に作用する遠心力を回転子コア250で受け止めるためには、永久磁石255の外面256と挿入孔251の外壁面252とを接触させなければらならない。   That is, the plurality of laminated plates and end plates 260 and 262 constituting the rotor core 250 are manufactured by pressing a metal plate, and the permanent magnet 255 is manufactured by sintering, and the dimensional accuracy is not so good. On the other hand, in order to receive the centrifugal force acting on the permanent magnet 255 by the rotor core 250, the outer surface 256 of the permanent magnet 255 and the outer wall surface 252 of the insertion hole 251 must be brought into contact with each other.

上記寸法のばらつきを考慮すると、外面256と外壁面252とを確実に接触させためには、挿入孔251の外壁面252の中心からの半径を大きくして、永久磁石255の外面256との間にすきまを設定することが必要となる。しかし、このすきまが存在すると、永久磁石255の厚さ方向に通過する磁束に対する磁気抵抗が大きくなり、回転子の性能が低下する。   In consideration of the above dimensional variation, in order to ensure that the outer surface 256 and the outer wall surface 252 are in contact with each other, the radius from the center of the outer wall surface 252 of the insertion hole 251 is increased and the outer surface 256 of the permanent magnet 255 It is necessary to set the clearance. However, if this clearance exists, the magnetic resistance against the magnetic flux passing in the thickness direction of the permanent magnet 255 increases, and the performance of the rotor decreases.

また、従来例では、永久磁石255の両端部が回転子コア250の両端面から軸方向に突出し、軸方向長さが長いためにコストが上昇している。   Further, in the conventional example, both end portions of the permanent magnet 255 protrude in the axial direction from both end surfaces of the rotor core 250, and the cost increases because the axial length is long.

本発明は上記事情に鑑みてなされたもので、コア部材や永久磁石に製造時の寸法誤差があっても、永久磁石に作用する遠心力によりフラックスバリアのブリッジ部が破損することを確実に防止できる永久磁石同期モータ用回転子を提供することを目的としてなされたものである。   The present invention has been made in view of the above circumstances, and reliably prevents the bridge portion of the flux barrier from being damaged by centrifugal force acting on the permanent magnet even if the core member or permanent magnet has a dimensional error during manufacture. The purpose of the present invention is to provide a permanent magnet synchronous motor rotor.

本願の発明者は、端板と永久磁石との間に永久磁石を半径方向内向きに押圧又は付勢等する手段を設け、永久磁石に作用する遠心力を端板で受ける(永久磁石の外面とコア部材の外側コア壁部とを接触させない)ことを思い付いて、本発明を完成した。
(1)本願の第1発明に係る永久磁石同期モータ用回転子は、請求項1に記載したように、軸方向に貫通した複数の磁石挿入孔14が円周方向に隔設された円柱形状のコア部材12と;磁石挿入孔に挿入された複数の永久磁石20と;磁石挿入孔と対向する複数の開口26を持ち、コア部材を軸方向の両側から挟む一対の端板25,40,50と;永久磁石の軸方向端部と端板の開口の周縁との間に配置され、永久磁石を半径方向内向きに押圧する押圧部材30,35,55と;から成る。この永久磁石同期モータ用回転子において、永久磁石の軸方向端部と端板の開口の周縁との間に配置された押圧部材が永久磁石を半径方向内向きに押圧する。
(2)第2発明に係る永久磁石同期モータ用回転子は、請求項4に記載したように、軸方向に貫通した複数の磁石挿入孔14が円周方向に隔設された円柱形状のコア部材12と;磁石挿入孔に挿入された複数の永久磁石20と;永久磁石の円周方向側面に取り付けられた保持部材60,75,95と;コア部材を軸方向の両側から挟む一対の端板65,80,90と;保持部材と端板との間に配置され保持部材の半径方向位置を調整可能な位置調整手段63,85,100と;から成る。この永久磁石同期モータ用回転子において、保持部材と端板との間に配置された位置調整手段が保持部材即ち永久磁石の半径方向位置を調整する。
(3)第3発明に係る永久磁石同期モータ用回転子は、請求項8に記載したように、軸方向に貫通した複数の磁石挿入孔14が円周方向に隔設された円柱形状のコア部材12と;
磁石挿入孔に挿入された複数の永久磁石20と;永久磁石の円周方向側面に取り付けられた保持部材110,125,140と;コア部材を軸方向の両側から挟む一対の端板105,120,145と;保持部材と端板との間に配置され、保持部材を半径方向内向きに付勢する付勢手段107,127,141と;から成る。この永久磁石同期モータ用回転子において、保持部材と端板との間に配置された付勢手段が保持部材即ち永久磁石を半径方向内向きに付勢する。
(4)第4発明に係る永久磁石同期モータ用回転子は、請求項11に記載したように、軸方向に貫通した複数の磁石挿入孔14が円周方向に隔設された円柱形状のコア部材12と;磁石挿入孔に挿入された複数の永久磁石20と;永久磁石の半径方向外面に取り付けられた磁性の保持部材150,180,195と;コア部材を軸方向の両側から挟む一対の端板155,170,190と;保持部材と端板との間に配置され保持部材の軸方向端部を半径方向内向きに付勢する付勢手段150,175,197と;から成る。この永久磁石同期モータ用回転子において、持部材と端板との間に配置された付勢手段が保持部材の軸方向端部を半径方向内向きに付勢する。
(5)第5発明に係る永久磁石同期モータ用回転子は、請求項13に記載したように、軸方向に貫通した複数の磁石挿入孔14が円周方向に隔設された円柱形状のコア部材12と;磁石挿入孔に挿入された複数の永久磁石20と;永久磁石の半径方向外面に取り付けられた磁性の保持部材205と;コア部材を軸方向の両側から挟む一対の端板200と;保持部材の軸方向端部と端板との間に配置され、保持部材の半径方向位置を調整する位置調整手段210と;から成る。この永久磁石同期モータ用回転子において、保持部材の軸方向端部と端板との間に配置された位置調整手段が保持部材即ち永久磁石の半径方向位置を調整する。
The inventor of the present application provides means for pressing or urging the permanent magnet inward in the radial direction between the end plate and the permanent magnet, and receives the centrifugal force acting on the permanent magnet by the end plate (the outer surface of the permanent magnet). And the outer core wall portion of the core member are not brought into contact with each other.
(1) The rotor for a permanent magnet synchronous motor according to the first invention of the present application is, as described in claim 1, a cylindrical shape in which a plurality of axially penetrating magnet insertion holes 14 are spaced apart in the circumferential direction. A plurality of permanent magnets 20 inserted into the magnet insertion holes; a pair of end plates 25, 40 having a plurality of openings 26 facing the magnet insertion holes and sandwiching the core member from both sides in the axial direction; And 50; pressing members 30, 35, 55 which are arranged between the axial end of the permanent magnet and the peripheral edge of the opening of the end plate and press the permanent magnet inward in the radial direction. In this permanent magnet synchronous motor rotor, a pressing member disposed between the axial end of the permanent magnet and the peripheral edge of the opening of the end plate presses the permanent magnet inward in the radial direction.
(2) The rotor for a permanent magnet synchronous motor according to the second aspect of the present invention is the cylindrical core having a plurality of axially penetrating magnet insertion holes 14 spaced in the circumferential direction. A plurality of permanent magnets 20 inserted into the magnet insertion holes; holding members 60, 75, and 95 attached to the circumferential side surfaces of the permanent magnets; a pair of ends sandwiching the core member from both sides in the axial direction Plates 65, 80, 90; and position adjusting means 63, 85, 100 arranged between the holding member and the end plate and capable of adjusting the radial position of the holding member. In this permanent magnet synchronous motor rotor, the position adjusting means disposed between the holding member and the end plate adjusts the radial direction position of the holding member, that is, the permanent magnet.
(3) A rotor for a permanent magnet synchronous motor according to a third aspect of the present invention is the cylindrical core having a plurality of axially penetrating magnet insertion holes 14 spaced in the circumferential direction. Member 12;
A plurality of permanent magnets 20 inserted into the magnet insertion holes; holding members 110, 125, 140 attached to the circumferential side surfaces of the permanent magnets; a pair of end plates 105, 120 sandwiching the core member from both sides in the axial direction , 145; biasing means 107, 127, 141 disposed between the holding member and the end plate and biasing the holding member radially inward. In the permanent magnet synchronous motor rotor, biasing means disposed between the holding member and the end plate biases the holding member, that is, the permanent magnet inward in the radial direction.
(4) A rotor for a permanent magnet synchronous motor according to a fourth aspect of the present invention is the cylindrical core having a plurality of axially penetrating magnet insertion holes 14 spaced in the circumferential direction. A plurality of permanent magnets 20 inserted into the magnet insertion holes; a magnetic holding member 150, 180, 195 attached to the radially outer surface of the permanent magnet; a pair of sandwiching the core member from both sides in the axial direction End plates 155, 170, 190; and biasing means 150, 175, 197 disposed between the holding members and the end plates and biasing the axial ends of the holding members inward in the radial direction. In the permanent magnet synchronous motor rotor, biasing means disposed between the holding member and the end plate biases the axial end of the holding member inward in the radial direction.
(5) A rotor for a permanent magnet synchronous motor according to a fifth aspect of the present invention is the cylindrical core having a plurality of axially penetrating magnet insertion holes 14 spaced in the circumferential direction. A plurality of permanent magnets 20 inserted into the magnet insertion holes; a magnetic holding member 205 attached to the radially outer surface of the permanent magnet; a pair of end plates 200 sandwiching the core member from both sides in the axial direction; And a position adjusting means 210 disposed between the axial end portion of the holding member and the end plate, for adjusting the radial position of the holding member. In this permanent magnet synchronous motor rotor, the position adjusting means disposed between the axial end of the holding member and the end plate adjusts the radial position of the holding member, that is, the permanent magnet.

(1)本願の第1発明に係る永久磁石同期モータ用回転子によれば、押圧部材が永久磁石を直接半径方向内向きに押圧するので、回転時に永久磁石に作用する遠心力は端板で受け止められる。従って、永久磁石から外側コア壁部に半径方向方向外向きの力は作用せず、フラックスバリアのブリッジ部の破損が防止される。また、永久磁石の外面と外側コア壁部とを接触させることを前提とした細かいすきまの管理は不要になるので、コア部材や永久磁石に寸法管理をラフにできる。 (1) According to the rotor for a permanent magnet synchronous motor according to the first invention of the present application, since the pressing member directly presses the permanent magnet inward in the radial direction, the centrifugal force acting on the permanent magnet during rotation is the end plate. It is accepted. Therefore, the outward outward force in the radial direction does not act on the outer core wall portion from the permanent magnet, and the bridge portion of the flux barrier is prevented from being damaged. In addition, since it is not necessary to manage the fine clearance on the assumption that the outer surface of the permanent magnet and the outer core wall are brought into contact with each other, dimensional management can be roughened for the core member and the permanent magnet.

請求項2及び3の永久磁石同期モータ用回転子によれば、簡単な構成の押圧部材により永久磁石を容易かつ確実に半径方向内向きに押圧できる。
(2)第2発明に係る永久磁石同期モータ用回転子によれば、位置調整手段が端板に対する保持部材即ち永久磁石の半径方向位置を調整するので、回転時に永久磁石に作用する遠心力は端板で受け止められる。従って、永久磁石から外側コア壁部に半径方向方向外向きの力は作用せず、フラックスバリアのブリッジ部の破損が防止される。また、保持部材は永久磁石の円周方向側面に取り付けられているので回転子の半径方向寸法が増加する心配はない。端板に開口を形成することは不可欠ではなく、端板の形状に融通性がでる。さらに、永久磁石の外面と外側コア壁部とを接触させることを前提とした細かいすきまの管理は不要になるので、コア部材や永久磁石の寸法管理をラフにできる。
According to the rotor for the permanent magnet synchronous motor of the second and third aspects, the permanent magnet can be easily and surely pressed inward in the radial direction by the pressing member having a simple configuration.
(2) According to the rotor for a permanent magnet synchronous motor according to the second invention, since the position adjusting means adjusts the radial position of the holding member, that is, the permanent magnet with respect to the end plate, the centrifugal force acting on the permanent magnet during rotation is It is received by the end plate. Therefore, the outward outward force in the radial direction does not act on the outer core wall portion from the permanent magnet, and the bridge portion of the flux barrier is prevented from being damaged. Further, since the holding member is attached to the circumferential side surface of the permanent magnet, there is no fear that the radial dimension of the rotor increases. It is not essential to form an opening in the end plate, and the shape of the end plate is flexible. Furthermore, since it is not necessary to manage the fine clearance on the assumption that the outer surface of the permanent magnet and the outer core wall are brought into contact with each other, the size management of the core member and the permanent magnet can be roughened.

請求項5、6及び7の永久磁石同期モータ用回転子によれば、位置調整手段を調整するのみで、具体的にはねじ部材を回転させるのみで、容易に保持部材の半径方向位置が調整できる。
(3)第3発明に係る永久磁石同期モータ用回転子によれば、付勢手段が保持部材即ち永久磁石を半径方向内向きに付勢するので、回転時に永久磁石に作用する遠心力は端板で受け止められる。従って、永久磁石から外側コア壁部に半径方向方向外向きの力は作用せず、フラックスバリアのブリッジ部の破損が防止される。また、保持部材は永久磁石の円周方向側面に取り付けられているので、回転子の半径方向寸法が増加する心配はない。さらに、永久磁石の外面と外側コア壁部とを接触させることを前提とした細かいすきまの管理は不要になるので、コア部材や永久磁石の寸法管理をラフにできる。
According to the rotor for a permanent magnet synchronous motor of claims 5, 6 and 7, the radial position of the holding member can be easily adjusted only by adjusting the position adjusting means, specifically by simply rotating the screw member. it can.
(3) According to the rotor for a permanent magnet synchronous motor according to the third invention, the urging means urges the holding member, that is, the permanent magnet inward in the radial direction. It is received on the board. Therefore, the outward outward force in the radial direction does not act on the outer core wall portion from the permanent magnet, and the bridge portion of the flux barrier is prevented from being damaged. Moreover, since the holding member is attached to the circumferential side surface of the permanent magnet, there is no fear that the radial dimension of the rotor increases. Furthermore, since it is not necessary to manage the fine clearance on the assumption that the outer surface of the permanent magnet and the outer core wall are brought into contact with each other, the size management of the core member and the permanent magnet can be roughened.

請求項9及び10の永久磁石同期モータ用回転子によれば、コア部材を一対の端板で挟むのみで付勢手段が保持部材即ち永久磁石を確実に半径方向内向きに付勢できる。傾斜面は保持部材又は端板に形成することができ、設計の自由度が増す。
(4)第4発明に係る永久磁石同期モータ用回転子によれば、付勢手段が端板に対して保持部材の軸方向端部即ち永久磁石を半径方向内向きに付勢するので、回転時に永久磁石に作用する遠心力は端板で受け止められる。従って、永久磁石から外側コア壁部に半径方向方向外向きの力は作用せず、フラックスバリアのブリッジ部の破損が防止される。また、保持部材は永久磁石の外面に取り付けられているが、永久磁石の円周方向側面への取付けが困難な場合にも対処できるとともに、磁性であるので磁束の通過を妨げることはない。さらに、永久磁石の外面と外側コア壁部とを接触させることを前提とした細かいすきまの管理は不要になるので、コア部材や永久磁石の寸法管理をラフにできる。
According to the rotor for the permanent magnet synchronous motor of the ninth and tenth aspects, the urging means can urge the holding member, that is, the permanent magnet, inward in the radial direction only by sandwiching the core member between the pair of end plates. An inclined surface can be formed in a holding member or an end plate, and the freedom degree of design increases.
(4) According to the permanent magnet synchronous motor rotor according to the fourth aspect of the present invention, the biasing means biases the axial end of the holding member, that is, the permanent magnet inward in the radial direction against the end plate. Sometimes the centrifugal force acting on the permanent magnet is received by the end plate. Therefore, the outward outward force in the radial direction does not act on the outer core wall portion from the permanent magnet, and the bridge portion of the flux barrier is prevented from being damaged. Moreover, although the holding member is attached to the outer surface of the permanent magnet, it is possible to cope with the case where it is difficult to attach the permanent magnet to the side surface in the circumferential direction, and since it is magnetic, it does not hinder the passage of the magnetic flux. Furthermore, since it is not necessary to manage the fine clearance on the assumption that the outer surface of the permanent magnet and the outer core wall are brought into contact with each other, the size management of the core member and the permanent magnet can be roughened.

請求項12の永久磁石同期モータ用回転子によれば、一対の端板をコア部材に取り付けるのみで、付勢手段が持部材を確実に半径方向内向きに付勢できる。
(5)第5発明に係る永久磁石同期モータ用回転子によれば、位置調整手段が保持部材即ち永久磁石の半径方向位置を調整するので、回転時に永久磁石に作用する遠心力は端板で受け止められる。従って、永久磁石から外側コア壁部に半径方向方向外向きの力は作用せず、フラックスバリアのブリッジ部の破損が防止される。また、保持部材は永久磁石の外面に取り付けられているが、永久磁石の円周方向側面への取付けが困難な場合にも対処できるとともに、磁性であるので磁束の通過を妨げることはない。さらに、永久磁石の外面と外側コア壁部とを接触させることを前提とした細かいすきまの管理は不要になるので、コア部材や永久磁石の寸法管理をラフにできる。
According to the rotor for the permanent magnet synchronous motor of the twelfth aspect, the urging means can reliably urge the holding member inward in the radial direction only by attaching the pair of end plates to the core member.
(5) According to the permanent magnet synchronous motor rotor according to the fifth aspect of the present invention, since the position adjusting means adjusts the radial direction position of the holding member, that is, the permanent magnet, the centrifugal force acting on the permanent magnet during rotation is the end plate. It is accepted. Therefore, the outward outward force in the radial direction does not act on the outer core wall portion from the permanent magnet, and the bridge portion of the flux barrier is prevented from being damaged. Moreover, although the holding member is attached to the outer surface of the permanent magnet, it is possible to cope with the case where it is difficult to attach the permanent magnet to the side surface in the circumferential direction, and since it is magnetic, it does not hinder the passage of the magnetic flux. Furthermore, since it is not necessary to manage the fine clearance on the assumption that the outer surface of the permanent magnet and the outer core wall are brought into contact with each other, the size management of the core member and the permanent magnet can be roughened.

請求項14の永久磁石同期モータ用回転子によれば、位置調整手段を調整するのみで、具体的にはねじ部材を回転させるのみで、確実に保持部材の半径方向位置を調整できる。   According to the rotor for a permanent magnet synchronous motor of the fourteenth aspect, the radial position of the holding member can be reliably adjusted only by adjusting the position adjusting means, specifically by simply rotating the screw member.

<各発明に共通の構成要素>
(イ)コア部材は円筒形状を持ち、外周縁には複数の磁石挿入孔が円周方向に隔設されている。磁石挿入孔は円周方向に細長い矩形状を持ち、軸方向にコア部材を貫通している。磁石挿入孔の個数や具体的形状は適宜選択できる。
(ロ)永久磁石は薄板矩形状を持ち、磁石挿入孔に挿入されている。その軸方向両端部はコア部材の両端部から軸方向外側に突出し、次述する端板の開口内に臨んでいるが、端板より更に軸方向外方に突出することはない。
(ハ)一対の端板は円板形状を持ち、コア部材を軸方向の両側から挟み、軸方向の結合手段によって相互に結合される。コア部材の磁石挿入孔に対向する開口を持ち、永久磁石の端部を受け入れる。開口は磁石挿入孔より大きくても小さくても良く、開口の周縁に傾斜面を形成しても良い。また、端板は半径方向外向きの突起や半径方向内向きのくぼみ等を持つことができる。
<各発明に特有の構成>
本発明の永久磁石同期モータ用回転子は永久磁石を半径方向内向きに押圧又は付勢等する構造に応じて以下のタイプに分類できる。なお、本願明細書では基本的に「付勢」はばね等による半径方向内向きの力の付与を意味し、「押圧」は「付勢」の他、傾斜面が発生する半径方向内向きの力を意味するものとして使用しているが、両者の区別は必ずしも厳密なものではない。また、「位置調整」とはねじ部材等による保持部材の半径方向位置の微調整であり、その目的は保持部材で永久磁石を押圧するためである。
(イ)第1タイプ
第1タイプは、永久磁石の軸方向端部を端板の開口内に臨ませ、端部の外面と開口の周縁(外縁)との間の空間に押圧部材を配置したもので、独立請求項1の発明がこれに対応する。押圧部材で永久磁石を押圧する場合であり、非磁性の押圧部材は半径方向内向きの力を発生させる傾斜面を備えること、又は半径方向内向きの力を発生させるばね性を持つことができる。
(ロ)第2タイプ
第2タイプは永久磁石の円周方向側面(一側面又は両側面)に非磁性の一つ又は二つの保持部材を取り付け、この保持部材と端板との間に位置調整手段又は付勢手段を配置したものである。位置調整手段を設けた独立請求項4及び付勢手段を設けた独立請求項8の発明がこれに対応する。
<Components common to each invention>
(A) The core member has a cylindrical shape, and a plurality of magnet insertion holes are provided in the circumferential direction on the outer peripheral edge. The magnet insertion hole has an elongated rectangular shape in the circumferential direction and penetrates the core member in the axial direction. The number and specific shape of the magnet insertion holes can be selected as appropriate.
(B) The permanent magnet has a thin plate rectangular shape and is inserted into the magnet insertion hole. The both axial end portions protrude outward in the axial direction from both end portions of the core member and face the opening of the end plate described below, but do not protrude further outward in the axial direction than the end plate.
(C) The pair of end plates has a disk shape, and the core members are sandwiched from both sides in the axial direction and are coupled to each other by the coupling means in the axial direction. It has an opening facing the magnet insertion hole of the core member and receives the end of the permanent magnet. The opening may be larger or smaller than the magnet insertion hole, and an inclined surface may be formed on the periphery of the opening. Further, the end plate can have a radially outward projection, a radially inward recess, or the like.
<Configuration unique to each invention>
The rotor for a permanent magnet synchronous motor of the present invention can be classified into the following types according to the structure for pressing or biasing the permanent magnet inward in the radial direction. In the specification of the present application, “biasing” basically means application of a radially inward force by a spring or the like, and “pressing” means “inward”, in addition to “biasing”, an inward radial direction in which an inclined surface is generated. Although it is used to mean force, the distinction between the two is not necessarily strict. The “position adjustment” is a fine adjustment of the radial position of the holding member using a screw member or the like, and the purpose is to press the permanent magnet with the holding member.
(B) First type The first type has the axial end of the permanent magnet facing the opening of the end plate, and the pressing member is arranged in the space between the outer surface of the end and the peripheral edge (outer edge) of the opening. Therefore, the invention of the independent claim 1 corresponds to this. This is a case where a permanent magnet is pressed by the pressing member, and the non-magnetic pressing member can have an inclined surface that generates a radially inward force, or can have a spring property that generates a radially inward force. .
(B) Second type In the second type, one or two non-magnetic holding members are attached to the circumferential side surface (one side surface or both side surfaces) of the permanent magnet, and the position is adjusted between the holding member and the end plate. Means or biasing means are arranged. The invention according to the independent claim 4 provided with the position adjusting means and the independent claim 8 provided with the biasing means correspond to this.

位置調整手段は、端板を貫通し軸方向に延び押圧部材の軸方向端部に螺合されるねじ部材を含むこと、端板の外周縁部を貫通し半径方向に延び押圧部材に螺合されるねじ部材を含むこと、又は押圧部材の軸方向端部を貫通し円周方向に延び端板に螺合されるねじ部材を含むことができる。   The position adjusting means includes a screw member that passes through the end plate and extends in the axial direction and is screwed to the axial end portion of the pressing member, and passes through the outer peripheral edge of the end plate and extends in the radial direction and screwed to the pressing member. Or a screw member that penetrates the axial end portion of the pressing member and extends in the circumferential direction and is screwed to the end plate.

付勢手段は、端板に形成された傾斜面と押圧部材の軸方向端部に形成され傾斜面に押圧される押圧部とを含むことができ、又は保持部材に形成された傾斜面と端板に取り付けられ傾斜面に接触する接触部材とを含むことができる。
(ハ)第3タイプ
第3タイプは永久磁石の半径方向外面に磁性の保持部材を取り付け、このブラケットと端板との間に付勢手段又は位置調整手段を配置したものである。付勢手段を設けた独立請求項11及び位置調整手段を設けた独立請求項13の発明がこれに対応する。
The biasing means may include an inclined surface formed on the end plate and a pressing portion formed on the axial end portion of the pressing member and pressed against the inclined surface, or the inclined surface and end formed on the holding member. And a contact member attached to the plate and contacting the inclined surface.
(C) Third type The third type has a magnetic holding member attached to the outer surface in the radial direction of the permanent magnet, and an urging means or a position adjusting means is disposed between the bracket and the end plate. The invention of the independent claim 11 provided with the biasing means and the invention of the independent claim 13 provided with the position adjusting means correspond to this.

付勢手段は、端板の開口に固定された固定部材に形成された第1傾斜面と、保持部材の軸方向端部に形成され傾斜面に接触する第2傾斜面とを含むことができる。一方、位置調整手段は、保持部材の軸方向端部を貫通し半径方向に延び、端板に螺合されたねじ部材を含むことができる。なお、第1傾斜面は直接端板に形成することもできる。   The biasing means may include a first inclined surface formed on a fixing member fixed to the opening of the end plate, and a second inclined surface formed on an axial end portion of the holding member and in contact with the inclined surface. . On the other hand, the position adjusting means may include a screw member that penetrates the axial end of the holding member and extends in the radial direction and is screwed to the end plate. The first inclined surface can also be formed directly on the end plate.

以下、本発明の実施例を添付図面を参照しつつ説明する。第1実施例から第3実施例が上記第1タイプに相当する。
<実施例1>
(構成)
図1(a)(b)に第1実施例の回転子(ロータ)を示す。このロータは回転軸10、円柱形状のコア部材12、複数の永久磁石20、一対の端板25、及び一対の押圧部材30から成る。このうち、コア部材12は複数の鋼板を積層して成り円柱形状を持ち、回転軸10に相対回転不能に固定され外周面近くに複数の磁石挿入孔14が形成されている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. The first to third embodiments correspond to the first type.
<Example 1>
(Constitution)
1A and 1B show a rotor (rotor) according to a first embodiment. The rotor includes a rotating shaft 10, a cylindrical core member 12, a plurality of permanent magnets 20, a pair of end plates 25, and a pair of pressing members 30. Among these, the core member 12 is formed by laminating a plurality of steel plates, has a cylindrical shape, is fixed to the rotating shaft 10 so as not to be relatively rotatable, and has a plurality of magnet insertion holes 14 near the outer peripheral surface.

図1(a)の右半分から分かるように、各磁石挿入孔14はコア部材12の側面視において円周方向に細長い矩形状をもち、円周方向に所定間隔で隔設されている。図1(b)から分かるように、磁石挿入孔14はコア部材12の軸方向全長にわたって延び(貫通し)、両端部は一端面13a及び他端面13bで開口している。   As can be seen from the right half of FIG. 1A, each magnet insertion hole 14 has a rectangular shape elongated in the circumferential direction in a side view of the core member 12, and is spaced at a predetermined interval in the circumferential direction. As can be seen from FIG. 1B, the magnet insertion hole 14 extends (penetrates) over the entire axial length of the core member 12, and both end portions open at one end surface 13a and the other end surface 13b.

半径方向内側の内側コア壁部15a及び半径方向外側の外側コア壁部15bが磁石挿入孔14を区画している。なお、磁石挿入孔14の円周方向両側部に半径方向外向きに延び軸方向に貫通したフラックスバリア17が形成されている。   The inner core wall portion 15 a on the inner side in the radial direction and the outer core wall portion 15 b on the outer side in the radial direction define the magnet insertion hole 14. A flux barrier 17 extending outward in the radial direction and penetrating in the axial direction is formed on both sides in the circumferential direction of the magnet insertion hole 14.

複数(磁石挿入孔14と同数)の永久磁石20がコア部材12の磁石挿入孔14に挿入されている。永久磁石20は磁石挿入孔14の形状に対応する形状を持ち、端面視は横方向に細長い矩形状で、その内面21aが内側コア壁15aに密着し、外面21bは外側コア壁部15bに対向している。長さは磁石挿入孔14の長さよりも少し短い。内面21aがS極で外面21bがN極の永久磁石20と、内面21aがN極で外面21bがS極の永久磁石20とが円周方向で交互に配置されている。   A plurality of permanent magnets 20 (the same number as the magnet insertion holes 14) are inserted into the magnet insertion holes 14 of the core member 12. The permanent magnet 20 has a shape corresponding to the shape of the magnet insertion hole 14, and when viewed from the end, is a rectangular shape that is elongated in the lateral direction, its inner surface 21 a is in close contact with the inner core wall 15 a, and the outer surface 21 b is opposed to the outer core wall portion 15 b. doing. The length is slightly shorter than the length of the magnet insertion hole 14. Permanent magnets 20 having an inner surface 21a having an S pole and an outer surface 21b having an N pole, and permanent magnets 20 having an inner surface 21a having an N pole and an outer surface 21b having an S pole are alternately arranged in the circumferential direction.

一対の端板25は同形状を持ち、ともに円板形状でその外径はコア部材12の外径とほぼ等しく、回転軸10に相対回転不能に固定されている。図1(a)の左半分に示すように、外周縁に沿って複数の開口26が形成され、その円周方向及び半径方向位置はコア部材12の磁石挿入孔14のそれに対向している。各開口26は永久磁石20の端部22の円周方向寸法(幅)及び半径方向寸法(厚さ)にそれぞれ対応する円周方向寸法及び半径方向寸法を持ち、内縁27a及び外縁27bで区画されている。図1(b)から分かるように、外縁27bは内側面側が半径方向外寄りで外側面側が半径方向内寄りとなるよう傾斜している。   The pair of end plates 25 have the same shape, are both disk-shaped, and have an outer diameter substantially equal to the outer diameter of the core member 12 and are fixed to the rotating shaft 10 so as not to be relatively rotatable. As shown in the left half of FIG. 1A, a plurality of openings 26 are formed along the outer peripheral edge, and the circumferential direction and the radial direction position thereof oppose that of the magnet insertion hole 14 of the core member 12. Each opening 26 has a circumferential dimension and a radial dimension corresponding to the circumferential dimension (width) and radial dimension (thickness) of the end 22 of the permanent magnet 20, and is defined by an inner edge 27a and an outer edge 27b. ing. As can be seen from FIG. 1B, the outer edge 27b is inclined so that the inner surface side is radially outward and the outer surface side is radially inward.

その結果、永久磁石20の両端部22の外面と、コア部材12の外側コア壁部15bの端面と、端板25の外縁(傾斜縁)27bとで形成された空間内に押圧部材30が配置されている。押圧部材30は横断面三角形状で細長い棒状を呈し、円周方向に延び、その内面が永久磁石20の端部22の外面に、側面がコア部材12の外側コア壁部15bの端面に、傾斜面31が端板25の傾斜縁27bにそれぞれ接触している。
(組付け)
このロータの組付け時は、コア部材12の各磁石挿入孔14に各永久磁石20を軸方向に挿入すると、その両端部22はコア部材12の端面13a及び13bから少し突出する。各永久磁石20の端部22の外面に各押圧部材30をセットした後、一対の端板25をコア部材12の端面13a及び13bに押し当て相互に結合すると、端部22が開口26内に位置する。
(作用効果)
ロータの作用は公知であり、また本発明と直接関係しないので説明を省略する。
As a result, the pressing member 30 is disposed in the space formed by the outer surfaces of the both end portions 22 of the permanent magnet 20, the end surface of the outer core wall portion 15 b of the core member 12, and the outer edge (inclined edge) 27 b of the end plate 25. Has been. The pressing member 30 has a triangular shape in cross section and has a long and narrow bar shape. The pressing member 30 extends in the circumferential direction. The surface 31 is in contact with the inclined edge 27b of the end plate 25, respectively.
(Assembly)
When the rotor is assembled, when each permanent magnet 20 is inserted in each magnet insertion hole 14 of the core member 12 in the axial direction, both end portions 22 of the rotor protrude slightly from the end surfaces 13 a and 13 b of the core member 12. After each pressing member 30 is set on the outer surface of the end portion 22 of each permanent magnet 20, when the pair of end plates 25 are pressed against the end surfaces 13 a and 13 b of the core member 12 and coupled to each other, the end portion 22 enters the opening 26. To position.
(Function and effect)
Since the operation of the rotor is known and is not directly related to the present invention, the description thereof is omitted.

このロータによれば、第1に、各永久磁石20が一対の端板25の各開口26の外周側に配置された各押圧部材30により各磁石挿入孔14内の所定位置に確実に保持できる。即ち、押圧部材30の傾斜面31と、端板25の傾斜縁27bとの接触により、押圧部材30に軸方向内向き及び半径方向内向きの押圧力が作用する。   According to this rotor, first, each permanent magnet 20 can be reliably held at a predetermined position in each magnet insertion hole 14 by each pressing member 30 arranged on the outer peripheral side of each opening 26 of the pair of end plates 25. . That is, due to the contact between the inclined surface 31 of the pressing member 30 and the inclined edge 27 b of the end plate 25, an axially inward and radial inward pressing force acts on the pressing member 30.

その結果、ロータの回転時に永久磁石20に作用する遠心力は押圧部材30を介して一対の端板25により受け止められ、外側コア壁部15bには作用しない。よって、フラックスバリア17の外縁を区画するブリッジ部18には半径方向外向きの力は作用せず、ブリッジ部18が破損する心配はない。   As a result, the centrifugal force acting on the permanent magnet 20 during rotation of the rotor is received by the pair of end plates 25 via the pressing member 30, and does not act on the outer core wall portion 15b. Therefore, a radially outward force does not act on the bridge portion 18 that defines the outer edge of the flux barrier 17, and there is no fear that the bridge portion 18 is damaged.

第2に、コア部材12、永久磁石20及び/又は端板25の寸法管理がラフで良くなる。永久磁石20の外面21bはコア部材12の外側コア壁部15bに当接しないので、両者を接触させることを前提とした寸法管理は不要となるからである。その結果、永久磁石20が磁石挿入孔14に確実に挿入できるように、永久磁石20及び磁石挿入孔14の寸法を選定すれば良くなる。   Second, the dimensional management of the core member 12, the permanent magnet 20, and / or the end plate 25 is rough. This is because the outer surface 21b of the permanent magnet 20 does not come into contact with the outer core wall portion 15b of the core member 12, so that dimensional management on the assumption that both are brought into contact with each other becomes unnecessary. As a result, the dimensions of the permanent magnet 20 and the magnet insertion hole 14 may be selected so that the permanent magnet 20 can be reliably inserted into the magnet insertion hole 14.

第3に、永久磁石20の両端部21が端板25の開口26内で止まり端板25から軸方向外側に突出していないので、軸方向長さが短くなり、その分コストが低減される。これらの効果は、細部では異なる場合もあるが、基本的に以下の実施例でも同様に得られる。
<実施例2>
以下、本発明の第2実施例から第12実施例を順次説明するが、重複記載をさけるため、第1実施例と共通する構成の説明は簡単に行い又は説明を割愛し、異なる構成を中心に説明する。
Third, since both end portions 21 of the permanent magnet 20 stop within the opening 26 of the end plate 25 and do not protrude outward in the axial direction from the end plate 25, the axial length is shortened, and the cost is reduced accordingly. These effects may differ in details, but basically the same effects can be obtained in the following embodiments.
<Example 2>
Hereinafter, the second to twelfth embodiments of the present invention will be described in order. However, in order to avoid duplication, the description of the configuration common to the first embodiment will be simplified or omitted, and different configurations will be mainly described. Explained.

図2(a)(b)に示す第2実施例では、端板40の開口41の外周側に配置された押圧部材の構成が異なる。端板40の開口41の半径方向寸法は永久磁石20の端部22の半径方向寸法よりも大きく、その結果開口41の外周側に形成されたすきまに押圧部材35が配置されている。この押圧部材35は開口41の全幅にわたって延び、その厚さ(コア部材12の軸方向寸法)は端板40の厚さとほぼ等しい。横断面台形状を持ち、短い内縁36aが永久磁石20の端部22の外側面に押圧され、側面36bが外側コア壁部15bの端面に密着している。端板40の開口41の外周側の外周壁部43にねじ部材45が半径方向に螺合され、その先端が押圧部材35の長い外縁36cに当接している。   In the second embodiment shown in FIGS. 2A and 2B, the configuration of the pressing member arranged on the outer peripheral side of the opening 41 of the end plate 40 is different. The radial dimension of the opening 41 of the end plate 40 is larger than the radial dimension of the end portion 22 of the permanent magnet 20, and as a result, the pressing member 35 is disposed in the gap formed on the outer peripheral side of the opening 41. The pressing member 35 extends over the entire width of the opening 41, and its thickness (axial dimension of the core member 12) is substantially equal to the thickness of the end plate 40. It has a cross-sectional trapezoidal shape, the short inner edge 36a is pressed against the outer surface of the end portion 22 of the permanent magnet 20, and the side surface 36b is in close contact with the end surface of the outer core wall portion 15b. A screw member 45 is screwed in the radial direction with the outer peripheral wall portion 43 on the outer peripheral side of the opening 41 of the end plate 40, and the tip thereof is in contact with the long outer edge 36 c of the pressing member 35.

このロータの組付け時は、コア部材12の磁石挿入孔14に永久磁石20を軸方向に挿入し、両端部22をコア部材12の端面13a及び13bから突出させる。永久磁石20の端部22の外面に押圧部材35をセットした後、ねじ部材45を端板40の外周壁部43に螺合させる。ねじ部材45を回転させ半径方向内向きに前進させると、その先端が外縁36cに当接した押圧部材35が同じ方向に移動し、内縁36aが永久磁石20を半径方向内向きに押圧する。その結果、永久磁石20の内面21aがコア部材12の内側コア壁部15aに密着される。
<実施例3>
図3(a)(b)に示す第3実施例では、端板50の開口51の外周側に配置された押圧部材の構成が異なる。端板50の開口51の外周側に形成されたすきまに波板ばね55が配置されている。この波板ばね55は開口51の円周方向長さと同じ長さを持ち、端板50の厚さと同じ幅を持つ。その厚さ方向に弾性変形可能で、内面突部56が永久磁石20の端部22の外面に、外面突部57が外側コア壁15bの内面に、それぞれ接触している。
When the rotor is assembled, the permanent magnet 20 is inserted in the magnet insertion hole 14 of the core member 12 in the axial direction, and both end portions 22 are protruded from the end surfaces 13 a and 13 b of the core member 12. After the pressing member 35 is set on the outer surface of the end 22 of the permanent magnet 20, the screw member 45 is screwed to the outer peripheral wall 43 of the end plate 40. When the screw member 45 is rotated and advanced inward in the radial direction, the pressing member 35 whose tip abuts against the outer edge 36c moves in the same direction, and the inner edge 36a presses the permanent magnet 20 inward in the radial direction. As a result, the inner surface 21 a of the permanent magnet 20 is brought into close contact with the inner core wall portion 15 a of the core member 12.
<Example 3>
In the third embodiment shown in FIGS. 3A and 3B, the configuration of the pressing member disposed on the outer peripheral side of the opening 51 of the end plate 50 is different. A corrugated spring 55 is disposed in a gap formed on the outer peripheral side of the opening 51 of the end plate 50. The corrugated spring 55 has the same length as the circumferential length of the opening 51 and the same width as the thickness of the end plate 50. The inner surface protrusion 56 is in contact with the outer surface of the end 22 of the permanent magnet 20, and the outer surface protrusion 57 is in contact with the inner surface of the outer core wall 15b.

このロータの組付け時は、コア部材12の磁石挿入孔14に永久磁石20を軸方向に挿入し、両端部22をコア部材12の端面13a及び13bから突出させる。コア部材12の両端面に一対の端板50を押し当て、開口51の外周側のすきまに板ばね55を介在させる。板ばね55はその弾性によりコア部材12に対して永久磁石20の両端部22を半径内向きに付勢する。その結果、永久磁石20の内面21aがコア部材12の内側コア壁部15aに密着される。
<実施例4>
以下説明する第4実施例から第8実施例が上記第2タイプに相当する。まず、図4(a)(b)に示す第4実施例では、永久磁石20が非磁性の一対のブラケット(保持部材)60を介して端板65に取り付けられている。すなわち、永久磁石20の円周方向の一側面23a及び他側面23bに、非磁性で細長い棒形状のブラケット60が取り付けられている。
各ブラケット60は本体部61の両端部の直角に屈曲した取付け部62において、ねじ部材63により端板65にねじ結合されている。端板65の貫通孔(半径方向に長い長孔)66を軸方向に貫通したねじ部材63の先端の雄ねじ部がブラケット60の取付け部62の雌ねじ部に螺合している。取付け部62やねじ部材63等はフラックスバリア17内に位置している。
When the rotor is assembled, the permanent magnet 20 is inserted in the magnet insertion hole 14 of the core member 12 in the axial direction, and both end portions 22 are protruded from the end surfaces 13 a and 13 b of the core member 12. A pair of end plates 50 are pressed against both end faces of the core member 12, and a leaf spring 55 is interposed in the clearance on the outer peripheral side of the opening 51. The leaf spring 55 urges both end portions 22 of the permanent magnet 20 radially inward with respect to the core member 12 due to its elasticity. As a result, the inner surface 21 a of the permanent magnet 20 is brought into close contact with the inner core wall portion 15 a of the core member 12.
<Example 4>
The fourth to eighth embodiments described below correspond to the second type. First, in the fourth embodiment shown in FIGS. 4A and 4B, the permanent magnet 20 is attached to the end plate 65 via a pair of nonmagnetic brackets (holding members) 60. In other words, the nonmagnetic and elongated bar-shaped bracket 60 is attached to one side surface 23 a and the other side surface 23 b in the circumferential direction of the permanent magnet 20.
Each bracket 60 is screwed to the end plate 65 by a screw member 63 at a mounting portion 62 bent at a right angle at both ends of the main body portion 61. The male threaded portion at the tip of the screw member 63 passing through the through-hole (long hole elongated in the radial direction) 66 of the end plate 65 in the axial direction is screwed into the female threaded portion of the mounting portion 62 of the bracket 60. The mounting portion 62, the screw member 63, and the like are located in the flux barrier 17.

ロータの組付け時は、各永久磁石20に一対のブラケット60を取り付けた状態でコア部材12の磁石挿入孔14に挿入する。コア部材12の両端面に端板65をあてがい、端板65を貫通させたねじ部材63をブラケット60の取付け部62に螺合させる。   When the rotor is assembled, it is inserted into the magnet insertion hole 14 of the core member 12 with a pair of brackets 60 attached to each permanent magnet 20. The end plate 65 is applied to both end faces of the core member 12, and the screw member 63 penetrating the end plate 65 is screwed to the mounting portion 62 of the bracket 60.

その際、端板65の長孔66を利用して、端板65に対してブラケット60及び永久磁石20を半径方向で位置調整した後ねじ部材63を締めれば、永久磁石20のコア部材12に対する位置を調整できる。その結果、永久磁石20の内面21aがコア部材の内側コア壁部15aに押圧され、永久磁石20がコア部材12に対して軸方向及び半径方向において所定状態に位置決めされる。
<実施例5>
図5(a)(b)に示す第5実施例では、永久磁石20に非磁性のブラケット(保持部材)75が取り付けられている。このブラケット75は四角枠状の保持部76と、永久磁石20の円周方向両端部において保持部76から半径方向内向きに延びた一対の取付け部77とから成り、縦断面コ字形状を持つ。保持部76は永久磁石20よりも少し小さい大きい矩形枠状を持ち、その空間に永久磁石20が収容されている。両端板80にコ字形状の開口81が、コ字が半径方向内向きに解放するように形成されている。
At that time, the position of the bracket 60 and the permanent magnet 20 in the radial direction is adjusted with respect to the end plate 65 by using the long hole 66 of the end plate 65, and then the screw member 63 is tightened. The position can be adjusted. As a result, the inner surface 21a of the permanent magnet 20 is pressed against the inner core wall 15a of the core member, and the permanent magnet 20 is positioned in a predetermined state with respect to the core member 12 in the axial direction and the radial direction.
<Example 5>
In the fifth embodiment shown in FIGS. 5A and 5B, a nonmagnetic bracket (holding member) 75 is attached to the permanent magnet 20. The bracket 75 includes a rectangular frame-shaped holding portion 76 and a pair of attachment portions 77 extending radially inward from the holding portion 76 at both circumferential ends of the permanent magnet 20 and has a U-shaped longitudinal section. . The holding portion 76 has a large rectangular frame shape slightly smaller than the permanent magnet 20, and the permanent magnet 20 is accommodated in the space. A U-shaped opening 81 is formed in both end plates 80 so that the U-shape is released inward in the radial direction.

ブラケット75の取付け部77は端板80の開口81内に臨み、取付け部77と開口81の内縁との間にはすきまがある。開口81の外周側の外周壁部82に形成された雌ねじ孔にねじ部材85の雄ねじ部が螺合され半径方向内向きに延び、先端がブラケット75を半径方向内向きに押圧している。   The attachment portion 77 of the bracket 75 faces the opening 81 of the end plate 80, and there is a gap between the attachment portion 77 and the inner edge of the opening 81. The male screw portion of the screw member 85 is screwed into the female screw hole formed in the outer peripheral wall portion 82 on the outer peripheral side of the opening 81 and extends radially inward, and the tip presses the bracket 75 radially inward.

ロータの組付け時は、各永久磁石20にブラケット75を取り付けた状態でコア部材12の磁石挿入孔14に挿入する。ブラケット75の取付け部77はフラックスバリア17内に配置する。コア部材12の両端面13a及び13bに端板80をあてがい、その開口81にブラケット75の取付け部77を臨ませる。端板81の外周壁部82に螺合させたねじ部材85を回転すると、ブラケット75の取付け部77が開口81内で半径方向内向きに移動する。その結果、永久磁石20の内面21aがコア部材の内側コア壁部15aに押圧される。
<実施例6>
図6(a)(b)に示す第6実施例では、端板90の外周縁に沿って円周方向に所定間隔で、半径方向外向きに延びる複数の突起91が形成されている。その本体部96が永久磁石20の幅方向(コア部材12の円周方向)両側面に取り付けられた非磁性の一対のブラケット(保持部材)95の両端部97が突起91の両側面に接触している。ブラケット95の取付け部97の貫通孔(半径方向に長い長孔)98を貫通したねじ部材100の雄ねじ部が突起91の雌ねじ孔に螺合されている。
When the rotor is assembled, it is inserted into the magnet insertion hole 14 of the core member 12 with the bracket 75 attached to each permanent magnet 20. A mounting portion 77 of the bracket 75 is disposed in the flux barrier 17. End plates 80 are applied to both end faces 13 a and 13 b of the core member 12, and the attachment portions 77 of the bracket 75 are made to face the openings 81. When the screw member 85 screwed into the outer peripheral wall portion 82 of the end plate 81 is rotated, the attachment portion 77 of the bracket 75 moves inward in the radial direction within the opening 81. As a result, the inner surface 21a of the permanent magnet 20 is pressed against the inner core wall portion 15a of the core member.
<Example 6>
In the sixth embodiment shown in FIGS. 6A and 6B, a plurality of protrusions 91 extending outward in the radial direction are formed along the outer peripheral edge of the end plate 90 at predetermined intervals in the circumferential direction. Both end portions 97 of a pair of nonmagnetic brackets (holding members) 95 whose main body portions 96 are attached to both side surfaces of the permanent magnet 20 in the width direction (circumferential direction of the core member 12) are in contact with both side surfaces of the protrusion 91. ing. The male screw portion of the screw member 100 that passes through the through hole (long hole long in the radial direction) 98 of the mounting portion 97 of the bracket 95 is screwed into the female screw hole of the protrusion 91.

ロータの組付け時、永久磁石14及び一対のブラケット95をコア部材12の磁石挿入孔14に挿入し、コア部材12の両端面に一対の端板90をあてがう。端板90の突起91を一対のブラケット95の端部で両側から挟み、取付け部97から突起91にねじ部材100を螺合させる。その際、ブラケット95の貫通孔(長孔)98を利用して、端板90に対するブラケット95及び永久磁石20の半径方向位置を調整し、その後ねじ部材100を締める。その結果、永久磁石20の内面21aがコア部材の12の内側コア壁部1
5aに押圧される。
<実施例7>
図7(a)(b)に示す第7実施例では、一対の端板105に台形状の開口106が形成され、半径方向外寄りの幅が狭く、半径方向内寄りの幅が広くなっている。永久磁石20の両側面に取り付けた非磁性で一対のブラケット(保持部材)110の両端部111が端板105の開口106内に延びている。ブラケット110の端部111に小孔112が形成され、外面側から小球113が保持されている。小球113の突出端が端板105の開口106のハ字形状に傾斜した傾斜面107に当接している。
When the rotor is assembled, the permanent magnet 14 and the pair of brackets 95 are inserted into the magnet insertion holes 14 of the core member 12, and the pair of end plates 90 are applied to both end faces of the core member 12. The projection 91 of the end plate 90 is sandwiched from both sides by the end portions of the pair of brackets 95, and the screw member 100 is screwed into the projection 91 from the attachment portion 97. At that time, the through hole (long hole) 98 of the bracket 95 is used to adjust the radial position of the bracket 95 and the permanent magnet 20 with respect to the end plate 90, and then the screw member 100 is tightened. As a result, the inner surface 21 a of the permanent magnet 20 is the inner core wall portion 1 of the core member 12.
5a is pressed.
<Example 7>
In the seventh embodiment shown in FIGS. 7A and 7B, a pair of end plates 105 are formed with trapezoidal openings 106 so that the radially outward width is narrow and the radially inward width is wide. Yes. Both end portions 111 of a pair of non-magnetic brackets (holding members) 110 attached to both side surfaces of the permanent magnet 20 extend into the openings 106 of the end plate 105. A small hole 112 is formed in the end portion 111 of the bracket 110, and a small ball 113 is held from the outer surface side. The protruding end of the small sphere 113 is in contact with an inclined surface 107 inclined in a C shape of the opening 106 of the end plate 105.

ロータの組付け時、永久磁石20及びブラケット110をコア部材12の磁石挿入孔14内に挿入する。ブラケット110の端部111を端板105の開口106内に臨ませ、小孔112内に保持した小球113を開口106の傾斜面107に接触させる。すると、ブラケット110即ち永久磁石20は半径方向内向きに押圧され、永久磁石20の内面21aがコア部材12の内側コア壁部15aに押圧される。
<実施例8>
図8(a)(b)に示す第8実施例では、端板120に内側面側のくぼみ121と、雌ねじ孔122とが形成されている。永久磁石20の両側面に取り付けた非磁性で一対のブラケット(保持部材)125はフラックスバリア17内に収容され、その傾斜端部127が端板120のくぼみ121内に延びている。ブラケット125の傾斜端部127は半径方向外寄りの部分が内寄りの部分よりも間隔が狭くなるように傾斜し、その上にくぼみ128が形成されている。
When the rotor is assembled, the permanent magnet 20 and the bracket 110 are inserted into the magnet insertion hole 14 of the core member 12. The end portion 111 of the bracket 110 faces the opening 106 of the end plate 105, and the small ball 113 held in the small hole 112 is brought into contact with the inclined surface 107 of the opening 106. Then, the bracket 110, that is, the permanent magnet 20 is pressed inward in the radial direction, and the inner surface 21 a of the permanent magnet 20 is pressed against the inner core wall portion 15 a of the core member 12.
<Example 8>
In the eighth embodiment shown in FIGS. 8 (a) and 8 (b), the end plate 120 is formed with a recess 121 on the inner surface side and a female screw hole 122. A pair of non-magnetic brackets (holding members) 125 attached to both side surfaces of the permanent magnet 20 are accommodated in the flux barrier 17, and inclined end portions 127 extend into the recesses 121 of the end plate 120. The inclined end portion 127 of the bracket 125 is inclined such that the radially outward portion is narrower than the inward portion, and a recess 128 is formed thereon.

ブラケット125の傾斜端部127間に、端板120の円周方向に押圧部材130が延びている。この押圧部材130は矩形薄板形状を持ち、その両端がブラケット125のくぼみ128内に収容されている。端板120の雌ねじ孔122に螺合されたねじ部材135の先端が押圧部材130の外面に当接している。   A pressing member 130 extends between the inclined ends 127 of the bracket 125 in the circumferential direction of the end plate 120. The pressing member 130 has a rectangular thin plate shape, and both ends thereof are accommodated in the recess 128 of the bracket 125. The tip of the screw member 135 screwed into the female screw hole 122 of the end plate 120 is in contact with the outer surface of the pressing member 130.

ロータの組み付け時は、永久磁石20を磁石挿入孔14に挿入し、一対のブラケット125をフラックスバリア17内に収容する。コア部材12の端面に端板120をあてがい、端板120の雌ねじ孔122に螺合させたねじ部材135を回転させると、傾斜端部127上のくぼみ128に収容した押圧部材130の作用により、ブラケット125及び永久磁石20に半径方向内向きの力が作用する。その結果、永久磁石20の内面21aがコア部材12の内側コア壁部15aに押圧される。   When the rotor is assembled, the permanent magnet 20 is inserted into the magnet insertion hole 14 and the pair of brackets 125 are accommodated in the flux barrier 17. When the end plate 120 is applied to the end face of the core member 12 and the screw member 135 screwed into the female screw hole 122 of the end plate 120 is rotated, the action of the pressing member 130 accommodated in the recess 128 on the inclined end portion 127 causes A radially inward force acts on the bracket 125 and the permanent magnet 20. As a result, the inner surface 21 a of the permanent magnet 20 is pressed against the inner core wall portion 15 a of the core member 12.

なお、上記第8実施例の変形例として、図9(a)(b)に示すように、永久磁石20の両側面に固定した一対のブラケット140の両端の傾斜端部141に、端板145の取付け孔146に挿入した細長い押圧部材150の先端を当接させてもよい。この場合、コア部材12の両端面に端板145をあてがう際、押圧部材150がブラケット140及び即ち永久磁石20を半径方向内向きに押圧する。
<実施例9>
以下説明する第9実施例から第12実施例が上記第3タイプに相当する。まず、図10(a)(b)に示す第9実施例では、永久磁石20の外面21bに磁性のブラケット(保持部材)150が取り付けられている。このブラケット150は矩形薄板形状で、永久磁石20の外面21b全体を覆い磁石挿入孔14に挿入され、その両端部151は端板155の開口156内に延びている。
As a modification of the eighth embodiment, as shown in FIGS. 9A and 9B, end plates 145 are provided on the inclined end portions 141 at both ends of a pair of brackets 140 fixed to both side surfaces of the permanent magnet 20. The tip of the elongated pressing member 150 inserted into the mounting hole 146 may be brought into contact. In this case, when the end plates 145 are applied to both end faces of the core member 12, the pressing member 150 presses the bracket 140 and the permanent magnet 20 inward in the radial direction.
<Example 9>
Ninth to twelfth embodiments described below correspond to the third type. First, in the ninth embodiment shown in FIGS. 10A and 10B, a magnetic bracket (holding member) 150 is attached to the outer surface 21 b of the permanent magnet 20. The bracket 150 has a rectangular thin plate shape, covers the entire outer surface 21 b of the permanent magnet 20, and is inserted into the magnet insertion hole 14, and both end portions 151 extend into the openings 156 of the end plate 155.

開口156の半径方向寸法は磁石挿入孔14のそれよりも大きく、ブラケット150の両端部151と端板155の開口156の外縁との間に、非磁性の押圧部材160が圧入されている。即ち、押圧部材160の高さは開口156の高さから端部151の高さを減じた寸法よりも少し大きい。   The radial dimension of the opening 156 is larger than that of the magnet insertion hole 14, and a nonmagnetic pressing member 160 is press-fitted between both end portions 151 of the bracket 150 and the outer edge of the opening 156 of the end plate 155. That is, the height of the pressing member 160 is slightly larger than the dimension obtained by subtracting the height of the end portion 151 from the height of the opening 156.

ロータの組み付け時は、永久磁石20及びブラケット150をコア部材12の磁石挿入孔14に挿入し、両端面に一対の端板155をあてがい、ブラケット150の両端部151は端板155の開口156に臨ませる。ブラケット150の端部151の外面と開口156の外縁との間の空間に押圧部材160を強制的に圧入すると、押圧部材160が半径方向内向きに押圧されるので、永久磁石20の内面21aがコア部材12の内側コア壁部15aに押圧される。なお、ブラケット150は磁性であるので、磁束の半径方向の通過を妨げる心配はない。
<実施例10>
図11(a)(b)に示す第10実施例では、端板170に円周方向に長い矩形状の開口171が形成されている。開口171内に断面矩形状で細長い押圧部材175が収容され、その内側面にテーパ状の行止まり溝176が形成されている。永久磁石20の外面21aに取り付けられた磁性で薄板矩形状のブラケット180の両端部が、行止まり溝176内に嵌入されている。
When the rotor is assembled, the permanent magnet 20 and the bracket 150 are inserted into the magnet insertion holes 14 of the core member 12, a pair of end plates 155 are attached to both end surfaces, and both end portions 151 of the bracket 150 are in the openings 156 of the end plate 155. Let it come. When the pressing member 160 is forcibly pressed into the space between the outer surface of the end portion 151 of the bracket 150 and the outer edge of the opening 156, the pressing member 160 is pressed inward in the radial direction, so that the inner surface 21a of the permanent magnet 20 is The inner core wall 15a of the core member 12 is pressed. In addition, since the bracket 150 is magnetic, there is no fear that the magnetic flux is prevented from passing in the radial direction.
<Example 10>
In the tenth embodiment shown in FIGS. 11A and 11B, the end plate 170 is formed with a rectangular opening 171 that is long in the circumferential direction. An elongated pressing member 175 having a rectangular cross section is accommodated in the opening 171, and a tapered dead-end groove 176 is formed on the inner surface thereof. Both end portions of a magnetic thin plate rectangular bracket 180 attached to the outer surface 21 a of the permanent magnet 20 are fitted into the dead-end groove 176.

ロータの組付け時、永久磁石20及びブラケット180をコア部材12の磁石挿入孔14に挿入し、両端面に一対の端板170をあてがい、開口171に押圧部材175を嵌合する。すると、押圧部材175の行止まり溝176内にブラケット180の両端部181が挿入され、テーパ状の行止まり溝176の作用によりブラケット180及び永久磁石20は半径方向内向きに押圧される。
<実施例11>
図12(a)(b)に示す第11実施例では、端板190に円周方向に長い矩形状の開口191が形成され、開口191の外縁に傾斜面192が形成されている。この傾斜面192は、端板190の内側面側が半径方向外寄りで、外側面側が半径方向内寄りとなるように傾斜している。また、永久磁石20の外面21bに取り付けられた磁性で薄板矩形状のブラケット(保持部材)195の両端部196の外周側にテーパ面197が形成されている。このテーパ面197は軸方向外寄りが半径方向内寄りで、軸方向内寄りが半径外寄りとなるように傾斜している。
When the rotor is assembled, the permanent magnet 20 and the bracket 180 are inserted into the magnet insertion holes 14 of the core member 12, a pair of end plates 170 are attached to both end faces, and the pressing member 175 is fitted into the opening 171. Then, both end portions 181 of the bracket 180 are inserted into the dead end groove 176 of the pressing member 175, and the bracket 180 and the permanent magnet 20 are pressed inward in the radial direction by the action of the tapered dead end groove 176.
<Example 11>
In the eleventh embodiment shown in FIGS. 12 (a) and 12 (b), a rectangular opening 191 that is long in the circumferential direction is formed in the end plate 190, and an inclined surface 192 is formed on the outer edge of the opening 191. The inclined surface 192 is inclined so that the inner surface side of the end plate 190 is radially outward and the outer surface side is radially inward. Further, a tapered surface 197 is formed on the outer peripheral side of both end portions 196 of a magnetic thin plate rectangular bracket (holding member) 195 attached to the outer surface 21 b of the permanent magnet 20. The tapered surface 197 is inclined so that the outer side in the axial direction is inward in the radial direction and the inner side in the axial direction is outward in the radial direction.

ロータの組付け時、永久磁石20及びブラケット195をコア部材12の磁石挿入孔14に挿入し、コア部材12の両端面に一対の端板190をあてがい、永久磁石20を端板190で両側から挟む。すると、開口191の傾斜面192と端部196の傾斜面197との作用により、ブラケット195は半径方向内向きに付勢され、永久磁石20の内面21aがコア部材12の内側コア壁部15aに押圧される。
<実施例12>
図13(a)(b)に示す第12実施例では、端板200に円周方向に所定間隔で半径方向内向きにへこんだくぼみ201が形成されている。永久磁石20の外面21bに取り付けられた磁性で薄板矩形状のブラケット(保持部材)205の両端部206がくぼみ201の底壁202上に延びている。ブラケット205の端部206から端板200の底壁202にかけて、ねじ部材210が半径方向内向きに延びている。ねじ部材210は端部206の貫通孔207を貫通し、その雄ねじ部が底壁202に形成された雌ねじ孔に螺合されている。
When the rotor is assembled, the permanent magnet 20 and the bracket 195 are inserted into the magnet insertion holes 14 of the core member 12, a pair of end plates 190 are applied to both end faces of the core member 12, and the permanent magnet 20 is attached to the end plates 190 from both sides. Pinch. Then, the bracket 195 is biased inward in the radial direction by the action of the inclined surface 192 of the opening 191 and the inclined surface 197 of the end 196, and the inner surface 21 a of the permanent magnet 20 is applied to the inner core wall portion 15 a of the core member 12. Pressed.
<Example 12>
In the twelfth embodiment shown in FIGS. 13 (a) and 13 (b), the end plate 200 is formed with depressions 201 that are recessed inward in the radial direction at predetermined intervals in the circumferential direction. Both end portions 206 of a magnetic thin plate rectangular bracket (holding member) 205 attached to the outer surface 21 b of the permanent magnet 20 extend on the bottom wall 202 of the recess 201. A screw member 210 extends radially inward from the end 206 of the bracket 205 to the bottom wall 202 of the end plate 200. The screw member 210 passes through the through hole 207 of the end portion 206, and the male screw portion is screwed into a female screw hole formed in the bottom wall 202.

ロータの組付け時、永久磁石20及びブラケット205をコア部材12の磁石挿入孔14に挿入し、コア部材12の両端面に一対の端板200をあてがう。その際、ブラケット205の両端部206を端板200の底壁202に着座させる。ねじ部材210を回転させ半径方向内向きに前進させると、ブラケット205が永久磁石20の内面21aをコア部材12の内側コア壁部15aに押圧する。   When the rotor is assembled, the permanent magnet 20 and the bracket 205 are inserted into the magnet insertion holes 14 of the core member 12, and the pair of end plates 200 are applied to both end faces of the core member 12. At that time, both end portions 206 of the bracket 205 are seated on the bottom wall 202 of the end plate 200. When the screw member 210 is rotated and advanced inward in the radial direction, the bracket 205 presses the inner surface 21 a of the permanent magnet 20 against the inner core wall portion 15 a of the core member 12.

(a)は第1実施例を示す正面図で、(b)はその1−1断面図である。(A) is a front view which shows 1st Example, (b) is the 1-1 sectional drawing. (a)は第2実施例を示す正面図で、(b)はその2−2断面図である。(A) is a front view which shows 2nd Example, (b) is the 2-2 sectional drawing. (a)は第3実施例を示す正面図で、(b)はその3−3断面図である。(A) is a front view which shows 3rd Example, (b) is the 3-3 sectional drawing. (a)は第4実施例を示す正面図で、(b)はその4−4断面図である。(A) is a front view which shows 4th Example, (b) is the 4-4 sectional drawing. (a)は第5実施例を示す正面図で、(b)はその5−5断面図である。(A) is a front view which shows 5th Example, (b) is the 5-5 sectional drawing. (a)は第6実施例を示す正面図で、(b)はその6−6断面図である。(A) is a front view which shows 6th Example, (b) is the 6-6 sectional drawing. (a)は第7実施例を示す正面図で、(b)はその7−7断面図である。(A) is a front view which shows 7th Example, (b) is the 7-7 sectional drawing. (a)は第8実施例を示す正面図で、(b)はその8−8断面図である。(A) is a front view which shows 8th Example, (b) is the 8-8 sectional drawing. (a)は第8実施例の変形例を示す正面図で、(b)はその9−9断面図である。(A) is a front view which shows the modification of 8th Example, (b) is the 9-9 sectional drawing. (a)は第9実施例を示す正面図、(b)はその10−10断面図である。(A) is the front view which shows 9th Example, (b) is the 10-10 sectional drawing. (a)は第10実施例を示す正面図で、(b)はその11−11断面図である。(A) is a front view which shows 10th Example, (b) is the 11-11 sectional drawing. (a)は第11実施例を示す正面図で、(b)はその12−12断面図である。(A) is a front view which shows 11th Example, (b) is the 12-12 sectional drawing. (a)は第12実施例を示す正面図で、(b)はその13−13断面図である。(A) is a front view which shows 12th Example, (b) is the 13-13 sectional drawing. 従来例を示す縦断面図である。It is a longitudinal cross-sectional view which shows a prior art example. 同じく平面図である。It is also a plan view.

符号の説明Explanation of symbols

10:回転軸 12:コア部材
14:磁石挿入孔 15a:内側コア壁部
20:永久磁石 21a:内面
25:端板 26:開口
30:押圧部材
10: Rotating shaft 12: Core member 14: Magnet insertion hole 15a: Inner core wall portion 20: Permanent magnet 21a: Inner surface 25: End plate 26: Opening 30: Pressing member

Claims (14)

軸方向に貫通した複数の磁石挿入孔が円周方向に隔設された円柱形状のコア部材と、
前記磁石挿入孔に挿入された複数の永久磁石と、
前記磁石挿入孔と対向する複数の開口を持ち、前記コア部材を軸方向の両側から挟む一対の端板と、
前記永久磁石の軸方向端部と前記端板の開口の周縁との間に配置され、該永久磁石を半径方向内向きに押圧する押圧部材と、
から成ることを特徴とする永久磁石同期モータ用回転子
A cylindrical core member in which a plurality of magnet insertion holes penetrating in the axial direction are circumferentially spaced; and
A plurality of permanent magnets inserted into the magnet insertion holes;
A pair of end plates having a plurality of openings facing the magnet insertion holes and sandwiching the core member from both sides in the axial direction;
A pressing member disposed between an axial end of the permanent magnet and a peripheral edge of the opening of the end plate, and pressing the permanent magnet radially inward;
A rotor for a permanent magnet synchronous motor characterized by comprising
前記押圧部材は、半径方向内向きの力を発生させる傾斜面を備えている請求項1に記載の永久磁石同期モータ用回転子。   The permanent magnet synchronous motor rotor according to claim 1, wherein the pressing member includes an inclined surface that generates a radially inward force. 前記押圧部材は、半径方向内向きの力を発生させるばね性を持つ請求項1に記載の永久磁石同期モータ用回転子。   The permanent magnet synchronous motor rotor according to claim 1, wherein the pressing member has a spring property that generates a radially inward force. 軸方向に貫通した複数の磁石挿入孔が円周方向に隔設された円柱形状のコア部材と、
前記磁石挿入孔に挿入された複数の永久磁石と、
前記永久磁石の円周方向側面に取り付けられた保持部材と、
前記コア部材を軸方向の両側から挟む一対の端板と、
前記持部材と前記端板との間に配置され、該保持部材の半径方向位置を調整可能な位置調整手段と、
から成ることを特徴とする永久磁石同期モータ用回転子
A cylindrical core member in which a plurality of magnet insertion holes penetrating in the axial direction are circumferentially spaced; and
A plurality of permanent magnets inserted into the magnet insertion holes;
A holding member attached to a circumferential side surface of the permanent magnet;
A pair of end plates sandwiching the core member from both sides in the axial direction;
A position adjusting means that is disposed between the holding member and the end plate and is capable of adjusting a radial position of the holding member;
A rotor for a permanent magnet synchronous motor characterized by comprising
前記位置調整手段は、前記端板を貫通し軸方向に延び前記保持部材の軸方向端部に螺合されるねじ部材を含む請求項4に記載の永久磁石同期モータ用回転子。   The rotor for a permanent magnet synchronous motor according to claim 4, wherein the position adjusting means includes a screw member that penetrates the end plate and extends in the axial direction and is screwed to an axial end of the holding member. 前記位置調整手段は、前記端板の外周部を貫通し半径方向に延び前記保持部材に螺合されるねじ部材を含む請求項4に記載の永久磁石同期モータ用回転子。   5. The permanent magnet synchronous motor rotor according to claim 4, wherein the position adjusting means includes a screw member that penetrates an outer peripheral portion of the end plate and extends in a radial direction and is screwed to the holding member. 前記位置調整手段は、前記保持部材の軸方向端部を貫通し円周方向に延び前記端板に螺合されるねじ部材を含む請求項4に記載の永久磁石同期モータ用回転子。   5. The permanent magnet synchronous motor rotor according to claim 4, wherein the position adjusting means includes a screw member that passes through an axial end portion of the holding member and extends in a circumferential direction and is screwed to the end plate. 軸方向に貫通した複数の磁石挿入孔が円周方向に隔設された円柱形状のコア部材と、
前記磁石挿入孔に挿入された複数の永久磁石と、
前記永久磁石の円周方向側面に取り付けられた保持部材と、
前記コア部材を軸方向の両側から挟む一対の端板と、
前記保持部材と前記端板との間に配置され、該保持部材を半径方向内向きに付勢する付勢手段と、
から成ることを特徴とする永久磁石同期モータ用回転子
A cylindrical core member in which a plurality of magnet insertion holes penetrating in the axial direction are circumferentially spaced; and
A plurality of permanent magnets inserted into the magnet insertion holes;
A holding member attached to a circumferential side surface of the permanent magnet;
A pair of end plates sandwiching the core member from both sides in the axial direction;
An urging means disposed between the holding member and the end plate and urging the holding member radially inward;
A rotor for a permanent magnet synchronous motor characterized by comprising
前記付勢手段は、前記端板に形成された傾斜面と、前記保持部材の軸方向端部に形成され該傾斜面に押圧される押圧部とを含む請求項8に記載の永久磁石同期モータ用回転子。   The permanent magnet synchronous motor according to claim 8, wherein the urging means includes an inclined surface formed on the end plate and a pressing portion formed on an axial end portion of the holding member and pressed against the inclined surface. Rotor. 前記付勢手段は、前記保持部材に形成された傾斜面と、前記端板に取り付けられ該傾斜面に接触する接触部材とを含む請求項8に記載の永久磁石同期モータ用回転子。   The permanent magnet synchronous motor rotor according to claim 8, wherein the biasing means includes an inclined surface formed on the holding member and a contact member attached to the end plate and in contact with the inclined surface. 軸方向に貫通した複数の磁石挿入孔が円周方向に隔設された円柱形状のコア部材と、
前記磁石挿入孔に挿入された複数の永久磁石と、
前記永久磁石の半径方向外面に取り付けられた磁性の保持部材と、
前記コア部材を軸方向の両側から挟む一対の端板と、
前記保持部材と前記端板との間に配置され、該保持部材の軸方向端部を半径方向内向きに付勢する付勢手段と、
から成ることを特徴とする永久磁石同期モータ用回転子
A cylindrical core member in which a plurality of magnet insertion holes penetrating in the axial direction are circumferentially spaced; and
A plurality of permanent magnets inserted into the magnet insertion holes;
A magnetic holding member attached to a radially outer surface of the permanent magnet;
A pair of end plates sandwiching the core member from both sides in the axial direction;
A biasing means disposed between the holding member and the end plate and biasing an axial end of the holding member radially inward;
A rotor for a permanent magnet synchronous motor characterized by comprising
前記付勢手段は、前記端板又は該端板の開口に固定された固定部材に形成された第1傾斜面と、前記押圧部材の軸方向端部に形成され該第1傾斜面に接触する第2傾斜面とを含む請求項11に記載の永久磁石同期モータ用回転子。   The biasing means is formed on the end plate or a fixed member fixed to the opening of the end plate, and is formed at an axial end of the pressing member and contacts the first inclined surface. The rotor for a permanent magnet synchronous motor according to claim 11, comprising a second inclined surface. 軸方向に貫通した複数の磁石挿入孔が円周方向に隔設された円柱形状のコア部材と、
前記磁石挿入孔に挿入された複数の永久磁石と、
前記永久磁石の半径方向外面に取り付けられた磁性の保持部材と、
前記コア部材を軸方向の両側から挟む一対の端板と、
前記保持部材の軸方向端部と前記端板との間に配置され、該保持部材の半径方向位置を調整する位置調整手段と、
から成ることを特徴とする永久磁石同期モータ用回転子
A cylindrical core member in which a plurality of magnet insertion holes penetrating in the axial direction are circumferentially spaced; and
A plurality of permanent magnets inserted into the magnet insertion holes;
A magnetic holding member attached to a radially outer surface of the permanent magnet;
A pair of end plates sandwiching the core member from both sides in the axial direction;
A position adjusting means arranged between an end portion in the axial direction of the holding member and the end plate, and adjusting a radial position of the holding member;
A rotor for a permanent magnet synchronous motor characterized by comprising
前記位置調整手段は、前記保持部材の軸方向端部を貫通して半径方向に延び前記端板に螺合されたねじ部材を含む請求項13に記載の永久磁石同期モータ用回転子。   The permanent magnet synchronous motor rotor according to claim 13, wherein the position adjusting means includes a screw member that extends in a radial direction through an axial end portion of the holding member and is screwed to the end plate.
JP2004083228A 2004-03-22 2004-03-22 Rotor for permanent-magnet synchronous motor Pending JP2005269874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004083228A JP2005269874A (en) 2004-03-22 2004-03-22 Rotor for permanent-magnet synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004083228A JP2005269874A (en) 2004-03-22 2004-03-22 Rotor for permanent-magnet synchronous motor

Publications (1)

Publication Number Publication Date
JP2005269874A true JP2005269874A (en) 2005-09-29

Family

ID=35093818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004083228A Pending JP2005269874A (en) 2004-03-22 2004-03-22 Rotor for permanent-magnet synchronous motor

Country Status (1)

Country Link
JP (1) JP2005269874A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010130884A (en) * 2008-12-01 2010-06-10 Mitsubishi Electric Corp Rotating electric machine and method for manufacturing rotating electric machine
JP2010207090A (en) * 2010-06-21 2010-09-16 Mitsubishi Electric Corp Rotor for permanent magnet embedded motors
JP2010207089A (en) * 2010-06-21 2010-09-16 Mitsubishi Electric Corp Rotor for permanent magnet embedded motors
KR101092323B1 (en) 2005-12-21 2011-12-09 주식회사 동서전자 Rotor of a line start permanent magnet synchronous motor
JP2011254575A (en) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd Rotor for rotary electric machine
JP2017079502A (en) * 2015-10-19 2017-04-27 Tdk株式会社 Magnet structure and motor using the same
CN107431394A (en) * 2015-06-17 2017-12-01 三菱电机株式会社 Compressor permanent magnetic baried type motor, compressor and refrigerating circulatory device
WO2019123550A1 (en) * 2017-12-19 2019-06-27 三菱電機株式会社 Rotating electric machine rotor and permanent magnet fixing method
DE102021206837A1 (en) 2021-06-30 2023-01-05 Valeo Eautomotive Germany Gmbh Rotor having an end plate with a camber

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101092323B1 (en) 2005-12-21 2011-12-09 주식회사 동서전자 Rotor of a line start permanent magnet synchronous motor
JP2010130884A (en) * 2008-12-01 2010-06-10 Mitsubishi Electric Corp Rotating electric machine and method for manufacturing rotating electric machine
JP2011254575A (en) * 2010-05-31 2011-12-15 Aisin Seiki Co Ltd Rotor for rotary electric machine
JP2010207090A (en) * 2010-06-21 2010-09-16 Mitsubishi Electric Corp Rotor for permanent magnet embedded motors
JP2010207089A (en) * 2010-06-21 2010-09-16 Mitsubishi Electric Corp Rotor for permanent magnet embedded motors
CN107431394A (en) * 2015-06-17 2017-12-01 三菱电机株式会社 Compressor permanent magnetic baried type motor, compressor and refrigerating circulatory device
US20180048209A1 (en) * 2015-06-17 2018-02-15 Mitsubishi Electric Corporation Permanent-magnet-embedded electric motor for compressor, compressor, and refrigeration cycle device
US10879760B2 (en) 2015-06-17 2020-12-29 Mitsubishi Electric Corporation Permanent-magnet-embedded electric motor for compressor, compressor, and refrigeration cycle device
CN107431394B (en) * 2015-06-17 2021-02-05 三菱电机株式会社 Compressor and refrigeration cycle device
JP2017079502A (en) * 2015-10-19 2017-04-27 Tdk株式会社 Magnet structure and motor using the same
WO2019123550A1 (en) * 2017-12-19 2019-06-27 三菱電機株式会社 Rotating electric machine rotor and permanent magnet fixing method
DE102021206837A1 (en) 2021-06-30 2023-01-05 Valeo Eautomotive Germany Gmbh Rotor having an end plate with a camber

Similar Documents

Publication Publication Date Title
US9472985B2 (en) Rotor yoke with circumferential recess portions and motor applying rotor yoke
JP3779097B2 (en) Electric motor rotor
JP5353917B2 (en) Rotating machine rotor
JP5976122B2 (en) Permanent magnet embedded motor
JP2017169402A (en) Motor rotor and brushless motor
JP2005269874A (en) Rotor for permanent-magnet synchronous motor
JP2005354798A (en) Electric motor
JP2017167014A (en) Encoder and motor with the same
JP2009278838A (en) Outer rotor type permanent magnet type motor
JP5790426B2 (en) Rotor
JP4291211B2 (en) Rotating electric machine rotor and rotating electric machine
JP2013219930A (en) Rotor
JP2008072790A (en) Rotor of ipm motor
JP2005168127A (en) Permanent magnet type rotor
JP3523900B2 (en) PMDC electric motor with magnet spacer
JP2007306688A (en) Motor
JP2014003785A (en) Permanent magnet type rotary electrical machine
JP5983245B2 (en) Molded motor
JP5132429B2 (en) Motor with brush
JP6157379B2 (en) Rotating electric machine stator
JP2012125111A (en) Rotor of outer rotor type rotary machine
JP5852345B2 (en) Rotor and motor
JP2006254620A (en) Permanent magnetic rotor
JP2014171349A (en) Electromagnetic rotary device
JPH11252890A (en) Stepping motor with lead screw