JP2005268663A - Composite lamination ceramic components and its manufacturing method - Google Patents

Composite lamination ceramic components and its manufacturing method Download PDF

Info

Publication number
JP2005268663A
JP2005268663A JP2004081578A JP2004081578A JP2005268663A JP 2005268663 A JP2005268663 A JP 2005268663A JP 2004081578 A JP2004081578 A JP 2004081578A JP 2004081578 A JP2004081578 A JP 2004081578A JP 2005268663 A JP2005268663 A JP 2005268663A
Authority
JP
Japan
Prior art keywords
dielectric constant
dielectric layer
volume
crystallized glass
constant dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004081578A
Other languages
Japanese (ja)
Other versions
JP4301503B2 (en
Inventor
Noboru Kojima
暢 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2004081578A priority Critical patent/JP4301503B2/en
Publication of JP2005268663A publication Critical patent/JP2005268663A/en
Application granted granted Critical
Publication of JP4301503B2 publication Critical patent/JP4301503B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Ceramic Capacitors (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a product with high reliability wherein any lead is not included in materials, any tarnish does not occur even if Ag is used as a conductor and the conductor is calcinated in one united body, and any crack, curvature, or foaming does not occur. <P>SOLUTION: In composite lamination ceramic components in which a high dielectric constant dielectric layer and a low dielectric constant dielectric layer are laminated and the conductor is arranged therein and is calcinated in one united body, the high dielectric constant dielectric layer comprises: ceramic powder; and a crystallized glass including SiO<SB>2</SB>-Ln<SB>2</SB>O<SB>3</SB>(lanthanoid system oxide)-TiO<SB>2</SB>-RO (R consists of one kind or more of Ba, Ca, Sr)-ZnO as a principal component, and the low dielectric constant dielectric layer comprises: ceramic powder; the same crystallized glass as used in the high dielectric constant dielectric layer; and an amorphous glass including SiO<SB>2</SB>-B<SB>2</SB>O<SB>3</SB>-K<SB>2</SB>O as a principal component. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、高誘電率の誘電体層と低誘電率の誘電体層を、内部に導体を配して積層し一体焼成する構造の複合積層セラミック部品及びその製造方法に関するものである。この技術は、例えばLCチップフィルタ等に有用である。   The present invention relates to a composite multilayer ceramic component having a structure in which a high dielectric constant dielectric layer and a low dielectric constant dielectric layer are laminated with a conductor disposed therein and integrally fired, and a method for manufacturing the same. This technique is useful for LC chip filters, for example.

電子機器の小型化に伴い、電子部品の小型化、SMD化(表面実装部品化)が急速に進み、1つのチップ内にコンデンサの機能とインダクタの機能の両方を具備する複合積層セラミック部品が開発され使用されている。以前は、コンデンサとインダクタを同一の誘電体層で形成してしていたが、誘電率の低い誘電体材料を用いた場合には形状が大きくなるし、誘電率の高い誘電体材料を用いた場合には浮遊容量によって周波数特性が悪化する等の問題があった。   Along with the downsizing of electronic equipment, the miniaturization of electronic parts and SMD (surface mounting parts) are rapidly progressing, and composite multilayer ceramic parts having both the function of a capacitor and the function of an inductor are developed in one chip. Is being used. In the past, capacitors and inductors were formed with the same dielectric layer, but when a dielectric material with a low dielectric constant was used, the shape increased and a dielectric material with a high dielectric constant was used. In some cases, there was a problem that the frequency characteristics deteriorated due to stray capacitance.

そのため、誘電率が異なる誘電体層を組み合わせ、コンデンサ機能に適した高誘電率誘電体層とインダクタ機能に適した低誘電率誘電体層を積層する構造が開発されている(例えば、特許文献1あるいは2等参照)。   Therefore, a structure has been developed in which dielectric layers having different dielectric constants are combined and a high dielectric constant dielectric layer suitable for a capacitor function and a low dielectric constant dielectric layer suitable for an inductor function are stacked (for example, Patent Document 1). Or refer to 2nd grade).

しかし、非晶質ガラスに鉛が含まれていたり、導体にAgを用いて一体焼成した際にガラス成分中にAgが拡散し、コロイド化して、変色することがあるといった問題がある。また、異種材料を一体焼成するため、材料の選択によっては亀裂や大きな反りが生じることもある。更に、焼成時にガラス間の反応により発泡が生じることがある。発泡により微細な穴が多数形成されている状態になると、外部電極形成のためにメッキ処理する際、メッキ液が穴に残留したり、強度の低下から信頼性の低下につながる。
特開平10−22162号公報 特許第3225851号公報
However, there is a problem that the amorphous glass contains lead, or when the conductor is integrally fired using Ag, Ag diffuses into the glass component, colloids, and discolors. In addition, since different materials are integrally fired, cracks and large warpage may occur depending on the selection of materials. Furthermore, foaming may occur due to the reaction between the glasses during firing. When a large number of fine holes are formed by foaming, when plating is performed for forming an external electrode, the plating solution remains in the holes, or the strength is lowered and the reliability is lowered.
Japanese Patent Laid-Open No. 10-22162 Japanese Patent No. 3225851

本発明が解決しようとする課題は、従来技術では、使用する材料に鉛を含むことがある点、導体としてAgを用いて一体焼成する際に変色する恐れがある点、亀裂や反りあるいは発泡が生じることがあり信頼性が低い点、などである。   The problem to be solved by the present invention is that, in the prior art, the material used may contain lead, there is a possibility of discoloration when integrally fired using Ag as a conductor, cracks, warpage or foaming. It may occur and the reliability is low.

本発明は、高誘電率誘電体層と低誘電率誘電体層が積層され、それらの内部に導体が配されて一体焼成されている複合積層セラミック部品において、高誘電率誘電体層は、セラミック粉末と、SiO2 −Ln2 3 (ランタノイド系酸化物)−TiO2 −RO(RはBa,Ca,Srの1種以上)−ZnOを主成分とする結晶化ガラスからなり、低誘電率誘電体層は、セラミック粉末と、高誘電率誘電体層で用いるのと同じ結晶化ガラスと、SiO2 −B2 3 −K2 Oを主成分とする非晶質ガラスからなることを特徴とする複合積層セラミック部品である。 The present invention relates to a composite multilayer ceramic component in which a high dielectric constant dielectric layer and a low dielectric constant dielectric layer are laminated, and a conductor is disposed therein and integrally fired. It consists of powder and crystallized glass mainly composed of SiO 2 -Ln 2 O 3 (lanthanoid oxide) -TiO 2 -RO (R is one or more of Ba, Ca, Sr) -ZnO, and has a low dielectric constant The dielectric layer is made of ceramic powder, the same crystallized glass as that used in the high dielectric constant dielectric layer, and amorphous glass mainly composed of SiO 2 —B 2 O 3 —K 2 O. This is a composite multilayer ceramic part.

ここで低誘電率誘電体層は、セラミック粉末が10〜25体積%、結晶化ガラス+非晶質ガラスが75〜90体積%であり、高誘電率誘電体層は、セラミック粉末が10〜30体積%、結晶化ガラスが70〜90体積%である比率が好ましい。低誘電率誘電体層に用いる結晶化ガラス/非晶質ガラスの体積比は、0.5以下とするのがよい。低誘電率誘電体層に用いるセラミック粉末としては、例えばアルミナを用いる。導体としては、例えばAgを用いる。   Here, the low dielectric constant dielectric layer is 10 to 25% by volume of ceramic powder, and the crystallized glass + amorphous glass is 75 to 90% by volume. The high dielectric constant dielectric layer is 10 to 30% of ceramic powder. A ratio of 70% by volume and 70% by volume of crystallized glass is preferable. The volume ratio of crystallized glass / amorphous glass used for the low dielectric constant dielectric layer is preferably 0.5 or less. As the ceramic powder used for the low dielectric constant dielectric layer, for example, alumina is used. For example, Ag is used as the conductor.

また本発明は、高誘電率誘電体層と低誘電率誘電体層を、それらの内部に導体を配して積層し一体焼成する複合積層セラミック部品の製造方法において、高誘電率誘電体層は、セラミック粉末と、SiO2 −Ln2 3 (ランタノイド系酸化物)−TiO2 −RO(RはBa,Ca,Srの1種以上)−ZnOを主成分とする結晶化ガラスからなり、低誘電率誘電体層は、セラミック粉末と、高誘電率誘電体層と同じ結晶化ガラスと、SiO2 −B2 3 −K2 Oを主成分とする非晶質ガラスからなり、焼成を840〜900℃にて行うことを特徴とする複合積層セラミック部品の製造方法である。ここでも低誘電率誘電体層は、セラミック粉末が10〜25体積%、結晶化ガラス+非晶質ガラスが75〜90体積%であり、高誘電率誘電体層は、セラミック粉末が10〜30体積%、結晶化ガラスが70〜90体積%であるのが望ましい。 The present invention also relates to a method for manufacturing a composite multilayer ceramic component in which a high dielectric constant dielectric layer and a low dielectric constant dielectric layer are laminated with a conductor disposed therein and integrally fired. Ceramic powder and crystallized glass mainly composed of SiO 2 —Ln 2 O 3 (lanthanoid oxide) —TiO 2 —RO (R is one or more of Ba, Ca, Sr) —ZnO. The dielectric constant dielectric layer is made of ceramic powder, the same crystallized glass as that of the high dielectric constant dielectric layer, and an amorphous glass mainly composed of SiO 2 —B 2 O 3 —K 2 O. It is a manufacturing method of the composite multilayer ceramic component characterized by performing at -900 degreeC. Again, the low dielectric constant dielectric layer is 10-25% by volume of ceramic powder, and the crystallized glass + amorphous glass is 75-90% by volume. The high dielectric constant dielectric layer is 10-30% of ceramic powder. It is desirable that the volume% and crystallized glass be 70 to 90 volume%.

本発明に係る複合積層セラミック部品は、材料中に鉛を一切含まず、導体にAgを使用しても誘電体が変色することはなく、また反りを抑制し、亀裂や発泡が生じず、緻密に焼成でき、高信頼性を実現できる。   The composite multilayer ceramic component according to the present invention does not contain any lead in the material, and even when Ag is used for the conductor, the dielectric does not discolor, suppresses warpage, does not cause cracks and foams, and is dense. High reliability can be realized.

本発明は、高誘電率誘電体層と低誘電率誘電体層が積層され、それらの内部に導体が配されて一体焼成されている構造の複合積層セラミック部品である。高誘電率誘電体層は、セラミック粉末と、SiO2 −Ln2 3 (ランタノイド系酸化物)−TiO2 −RO(RはBa,Ca,Srの1種以上)−ZnOを主成分とする結晶化ガラスからなり、セラミック粉末が10〜30体積%に対して結晶化ガラスが70〜90体積%とする。低誘電率誘電体層は、セラミック粉末と、高誘電率誘電体層で用いるのと同じ結晶化ガラスと、SiO2 −B2 3 −K2 Oを主成分とする非晶質ガラスからなり、セラミック粉末が10〜25体積%に対して(結晶化ガラス+非晶質ガラス)が75〜90体積%とする。なお、低誘電率誘電体層に用いる結晶化ガラス/非晶質ガラスの体積比は、0.5以下とする。 The present invention is a composite multilayer ceramic component having a structure in which a high dielectric constant dielectric layer and a low dielectric constant dielectric layer are laminated, and a conductor is disposed therein and integrally fired. The high dielectric constant dielectric layer is mainly composed of ceramic powder and SiO 2 —Ln 2 O 3 (lanthanoid oxide) —TiO 2 —RO (R is one or more of Ba, Ca, Sr) —ZnO. It consists of crystallized glass, and crystallized glass is 70-90 volume% with respect to 10-30 volume% of ceramic powder. The low dielectric constant dielectric layer is composed of ceramic powder, the same crystallized glass used for the high dielectric constant dielectric layer, and amorphous glass mainly composed of SiO 2 —B 2 O 3 —K 2 O. The ceramic powder is 10 to 25% by volume (crystallized glass + amorphous glass) is 75 to 90% by volume. The volume ratio of crystallized glass / amorphous glass used for the low dielectric constant dielectric layer is 0.5 or less.

複合積層セラミック部品は、例えば図1に示すように、高誘電率誘電体部分10にAgで所望の積層方向で対向するコンデンサ導体パターン12を形成してコンデンサ機能を持たせ、低誘電率誘電体部分14にAgで所望のコイル導体パターン16を形成してインダクタ機能を持たせた構成である。高誘電率誘電体部分10と低誘電率誘電体部分14は、ほぼ同じ厚みとなるように多数の誘電体層が積層されている。積層方法は、シート積層法でもよいし、印刷積層法でもよい。導体パターンの印刷には、Agペーストを使用する。積層体は一体焼成され、外部電極18が設けられる。   For example, as shown in FIG. 1, the composite multilayer ceramic component has a capacitor function by forming a capacitor conductor pattern 12 that opposes in a desired stacking direction with Ag on a high dielectric constant dielectric portion 10 to provide a low dielectric constant dielectric. A desired coil conductor pattern 16 is formed of Ag on the portion 14 to provide an inductor function. The high dielectric constant dielectric portion 10 and the low dielectric constant dielectric portion 14 are laminated with a large number of dielectric layers so as to have substantially the same thickness. The lamination method may be a sheet lamination method or a printing lamination method. An Ag paste is used for printing the conductor pattern. The laminated body is integrally fired and an external electrode 18 is provided.

本発明では、上記のように、低誘電率誘電体層に、高誘電率誘電体層と同じ結晶化ガラスを用いている点に一つの大きな特徴がある。これにより、高誘電率誘電体の層と低誘電率誘電体の層との熱収縮曲線や熱膨張率を整合させ、反りや亀裂、剥離を防ぐ。またセラミック粉末と結晶化ガラス、非晶質ガラスの混合比率を調整することによって発泡を防止し、緻密に焼結させる。   As described above, the present invention has one major feature in that the same crystallized glass as that of the high dielectric constant dielectric layer is used for the low dielectric constant dielectric layer. Thereby, the thermal contraction curve and the thermal expansion coefficient of the high dielectric constant dielectric layer and the low dielectric constant dielectric layer are matched to prevent warping, cracking and peeling. Further, by adjusting the mixing ratio of the ceramic powder, crystallized glass and amorphous glass, foaming is prevented and the powder is sintered densely.

なおセラミック粉末としては、各層の誘電体層に要求される誘電率、誘電損失、誘電率温度係数、熱膨張率などの各特性に応じて、アルミナ以外に、フォルステライトやチタン酸マグネシウム(MgTiO3 )、BaNd2 Ti5 14など多様な誘電体層材料を選択することができる。 The ceramic powder includes forsterite and magnesium titanate (MgTiO 3) in addition to alumina, depending on the characteristics such as dielectric constant, dielectric loss, dielectric constant temperature coefficient, and thermal expansion coefficient required for each dielectric layer. ), Various dielectric layer materials such as BaNd 2 Ti 5 O 14 can be selected.

また本発明は、高誘電率誘電体層と低誘電率誘電体層を、それらの内部に導体を配して積層し一体焼成する複合積層セラミック部品の製造方法において、高誘電率誘電体層は、セラミック粉末と、SiO2 −Ln2 3 (ランタノイド系酸化物)−TiO2 −RO(RはBa,Ca,Srの1種以上)−ZnOを主成分とする結晶化ガラスからなり、低誘電率誘電体層は、セラミック粉末と、高誘電率誘電体層と同じ結晶化ガラスと、SiO2 −B2 3 −K2 Oを主成分とする非晶質ガラスからなり、焼成を840〜900℃にて行うことを特徴とする複合積層セラミック部品の製造方法である。ここで低誘電率誘電体層は、セラミック粉末が10〜25体積%、結晶化ガラス+非晶質ガラスが75〜90体積%であり、高誘電率誘電体層は、セラミック粉末が10〜30体積%、結晶化ガラスが70〜90体積%であるのが望ましい。 The present invention also relates to a method for manufacturing a composite multilayer ceramic component in which a high dielectric constant dielectric layer and a low dielectric constant dielectric layer are laminated with a conductor disposed therein and integrally fired. Ceramic powder and SiO 2 —Ln 2 O 3 (lanthanoid oxide) —TiO 2 —RO (R is one or more of Ba, Ca, Sr) —ZnO as a main component, The dielectric constant dielectric layer is made of ceramic powder, the same crystallized glass as that of the high dielectric constant dielectric layer, and an amorphous glass mainly composed of SiO 2 —B 2 O 3 —K 2 O. It is a manufacturing method of the composite multilayer ceramic component characterized by performing at -900 degreeC. Here, the low dielectric constant dielectric layer is 10 to 25% by volume of ceramic powder, and the crystallized glass + amorphous glass is 75 to 90% by volume. The high dielectric constant dielectric layer is 10 to 30% of ceramic powder. It is desirable that the volume% and crystallized glass be 70 to 90 volume%.

高誘電率の誘電体層として、粒径2.0μmのアルミナ粉末35体積%と粒径1.1μmの結晶化ガラス65体積%の混合物を用い、低誘電率の誘電体層としてアルミナ粉末と結晶化ガラス及び非晶質ガラスの混合物を用いた。ここで高誘電率誘電体層及び低誘電率誘電体層で用いる結晶化ガラスは、SiO2 20重量%、Nd2 3 13重量%、Pr6 114重量%、TiO2 20重量%、BaO14重量%、SrO6重量%、CaO3重量%、ZnO16重量%、Na2 O4重量%からなる。また低誘電率誘電体層で用いる非晶質ガラスは、SiO2 80重量%、B2 3 16重量%、K2 O4重量%からなる。低誘電率誘電体は、粉末成形法により、密度及び誘電率測定用試料として直径20mm、高さ10mmに、抗折強度試験用試料として長さ30mm、幅5mm、厚さ4mmに、それぞれ成形し、880℃にて2時間焼成した。その後、密度は水中置換法により、誘電率はHakki&Coleman法により、また抗折強度は3点曲げ強度試験により測定した。表1に、低誘電率誘電体層を構成する成分の体積比率による特性変化を示す。表中、*印を付した試料は比較例、付していない試料は本発明である。 A mixture of 35% by volume of alumina powder having a particle size of 2.0 μm and 65% by volume of crystallized glass having a particle size of 1.1 μm is used as the dielectric layer having a high dielectric constant, and alumina powder and crystals are used as the dielectric layer having a low dielectric constant. A mixture of vitrified glass and amorphous glass was used. Here, the crystallized glass used in the high dielectric constant dielectric layer and the low dielectric constant dielectric layer is SiO 2 20 wt%, Nd 2 O 3 13 wt%, Pr 6 O 11 4 wt%, TiO 2 20 wt%, It consists of BaO 14% by weight, SrO 6% by weight, CaO 3% by weight, ZnO 16% by weight, Na 2 O 4% by weight. The amorphous glass used in low-k dielectric layer, SiO 2 80 wt%, B 2 O 3 16 wt%, consisting of K 2 O4 wt%. The low dielectric constant dielectric is formed into a 20 mm diameter and a height of 10 mm as a sample for density and dielectric constant measurement by a powder molding method, and a length of 30 mm, a width of 5 mm and a thickness of 4 mm as a specimen for a bending strength test. And baked at 880 ° C. for 2 hours. Thereafter, the density was measured by an underwater substitution method, the dielectric constant was measured by a Hakki & Coleman method, and the bending strength was measured by a three-point bending strength test. Table 1 shows the change in characteristics depending on the volume ratio of the components constituting the low dielectric constant dielectric layer. In the table, samples marked with * are comparative examples, and samples not marked are the present invention.

Figure 2005268663
Figure 2005268663

アルミナ粉末が10〜25体積%、結晶化ガラス+非晶質ガラスが75〜90体積%であれば、焼成後に信頼性上必要な160MPa以上の抗折強度が得られる。因みに、アルミナ粉末が少ない(比較例:試料1−3)と抗折強度は低下するし、逆にアルミナ粉末が多い(比較例:試料1−9)と焼結不足となる。結晶化ガラス/非晶質ガラスの体積比率が0.5以下であれば、結晶化ガラスと非晶質ガラスとの反応は生じず、発泡は見られない。しかし、結晶化ガラス/非晶質ガラスの体積比率が0.5を超える(比較例:試料1−7,1−10)と発泡が生じる。   If the alumina powder is 10 to 25% by volume and the crystallized glass + amorphous glass is 75 to 90% by volume, a bending strength of 160 MPa or more necessary for reliability can be obtained after firing. Incidentally, when the amount of alumina powder is small (comparative example: sample 1-3), the bending strength is lowered, and conversely, when the amount of alumina powder is large (comparative example: sample 1-9), the sintering is insufficient. When the volume ratio of crystallized glass / amorphous glass is 0.5 or less, the reaction between crystallized glass and amorphous glass does not occur, and foaming is not observed. However, foaming occurs when the volume ratio of crystallized glass / amorphous glass exceeds 0.5 (Comparative Examples: Samples 1-7 and 1-10).

Figure 2005268663
Figure 2005268663

表2は、低誘電率誘電体層を構成する成分の粒径と体積比率による焼結品の変化を示している。低誘電率誘電体層に結晶化ガラスを用いない場合には亀裂が生じたり(比較例:試料2−1)、反りが大きかった(比較例:試料2−1〜3)。しかし、低誘電率誘電体層に高誘電率誘電体層と同じ結晶化ガラスを用いると、亀裂は生じず、反りは小さくなった。特に、平均粒径2.0μmのアルミナ粉末16体積%、平均粒径1.1μmの結晶化ガラス19体積%、平均粒径1.2μmの非晶質ガラス65体積%の場合(試料2−5)では、反りがほぼ0になった。   Table 2 shows changes in the sintered product depending on the particle size and volume ratio of the components constituting the low dielectric constant dielectric layer. When crystallized glass was not used for the low dielectric constant dielectric layer, cracks occurred (Comparative Example: Sample 2-1) or warpage was large (Comparative Example: Samples 2-1 to 3). However, when the same crystallized glass as that of the high dielectric constant dielectric layer was used for the low dielectric constant dielectric layer, cracks did not occur and the warpage was reduced. Particularly, in the case of 16% by volume of alumina powder having an average particle size of 2.0 μm, 19% by volume of crystallized glass having an average particle size of 1.1 μm, and 65% by volume of amorphous glass having an average particle size of 1.2 μm (Sample 2-5) ), The warpage was almost zero.

参考例として、結晶化ガラスがSiO2 −CaO−MgO−ZnO系の場合、あるいは非晶質ガラスがSiO2 −RO(RはBa,Ca,Srの1種以上)−Al2 3 系の場合も試作したところ、誘電体層に変色が発生した。 As a reference example, when the crystallized glass is of the SiO 2 —CaO—MgO—ZnO type, or the amorphous glass is of SiO 2 —RO (R is one or more of Ba, Ca, Sr) —Al 2 O 3 type. In some cases, discoloration occurred in the dielectric layer.

高誘電率誘電体層として、粒径1.1μmのBaNd2 Ti5 14(セラミック粉末)と粒径1.1μmの結晶化ガラスを用いた場合の体積比率による特性変化を図3に示す。なお、*印を付した試料は比較例である。ここで高誘電率誘電体層は、SiO2 20重量%、Nd2 3 13重量%、Pr6 114重量%、TiO2 20重量%、BaO14重量%、SrO6重量%、CaO3重量%、ZnO16重量%、Na2 O4重量%からなる。BaNd2 Ti5 14(セラミック粉末)が10〜20体積%、結晶化ガラスが80〜90体積%であれば、焼成後に信頼性上必要な160MPa以上の抗折強度が得られる。因みにBaNd2 Ti5 14(セラミック粉末)が多すぎると(比較例:試料3−1)焼結不足となり、逆にBaNd2 Ti5 14(セラミック粉末)が少なすぎると(比較例:試料3−6)軟化変形が生じる。 FIG. 3 shows a change in characteristics depending on the volume ratio when BaNd 2 Ti 5 O 14 (ceramic powder) having a particle size of 1.1 μm and crystallized glass having a particle size of 1.1 μm are used as the high dielectric constant dielectric layer. Samples marked with * are comparative examples. Here, the high dielectric constant dielectric layer is composed of SiO 2 20 wt%, Nd 2 O 3 13 wt%, Pr 6 O 11 4 wt%, TiO 2 20 wt%, BaO 14 wt%, SrO 6 wt%, CaO 3 wt%, It consists of 16 wt% ZnO and 4 wt% Na 2 O. If BaNd 2 Ti 5 O 14 (ceramic powder) is 10 to 20% by volume and crystallized glass is 80 to 90% by volume, a bending strength of 160 MPa or more necessary for reliability after firing can be obtained. Incidentally, if there is too much BaNd 2 Ti 5 O 14 (ceramic powder) (Comparative Example: Sample 3-1), the sintering will be insufficient, and conversely if BaNd 2 Ti 5 O 14 (ceramic powder) is too little (Comparative Example: Sample). 3-6) Softening deformation occurs.

Figure 2005268663
Figure 2005268663

高誘電率誘電体層がBaNd2 Ti5 14(セラミック粉末)25体積%と結晶化ガラス75体積%からなる場合、低誘電率誘電体層に表2の試料2−5を用いて同時焼成した際には亀裂が生じず、反りも0.17mmと小さかったが、低誘電率誘電体層に結晶化ガラスを有しない表2の試料2−1を用いて同時焼成した際には亀裂が生じ、反りも1.5mmと大きかった。 When the high dielectric constant dielectric layer is composed of 25% by volume of BaNd 2 Ti 5 O 14 (ceramic powder) and 75% by volume of crystallized glass, the low dielectric constant dielectric layer is simultaneously fired using Sample 2-5 in Table 2 When cracked, the warpage was as small as 0.17 mm. However, when the sample 2-1 of Table 2 having no crystallized glass was used for the low dielectric constant dielectric layer, cracks were not generated. The warpage was as large as 1.5 mm.

粒径2.0μmのアルミナ粉末17体積%と結晶化ガラス27体積%及び非晶質ガラス56体積%を混合した。ここで結晶化ガラスは、SiO2 20重量%、Nd2 3 13重量%、Pr6 114重量%、TiO2 20重量%、BaO14重量%、SrO6重量%、CaO3重量%、ZnO16重量%、Na2 O4重量%からなる。また、非晶質ガラスは、SiO2 80重量%、B2 3 16重量%、K2 O4重量%からなる。この混合物にポリビニルアルコール(PVA)を加えて造粒し、粉末成形法によってシート状に成形した。その後、450℃にて脱バインダ処理し、焼成温度820〜920℃で2時間焼成した。その結果を表4に示す。*印を付した試料は比較例である。 17% by volume of alumina powder having a particle size of 2.0 μm, 27% by volume of crystallized glass, and 56% by volume of amorphous glass were mixed. Here, the crystallized glass is SiO 2 20 wt%, Nd 2 O 3 13 wt%, Pr 6 O 11 4 wt%, TiO 2 20 wt%, BaO 14 wt%, SrO 6 wt%, CaO 3 wt%, ZnO 16 wt%. Na2 O4 wt%. The amorphous glass is composed of 80 wt% SiO 2 , 16 wt% B 2 O 3 and 4 wt% K 2 O. Polyvinyl alcohol (PVA) was added to this mixture, granulated, and molded into a sheet by a powder molding method. Thereafter, the binder was removed at 450 ° C., and the mixture was baked at a baking temperature of 820 to 920 ° C. for 2 hours. The results are shown in Table 4. Samples marked with * are comparative examples.

Figure 2005268663
Figure 2005268663

結晶化ガラス/非晶質ガラスの体積比が0.48の組成でも、焼成温度が840〜900℃では発泡することなく緻密に焼結した。それに対して焼成温度820℃の場合(比較例:試料4−1)は焼結不足であり、焼成温度920℃の場合(比較例:試料4−6)は発泡が認められた。   Even with a composition having a crystallized glass / amorphous glass volume ratio of 0.48, sintering was carried out densely without foaming at a firing temperature of 840 to 900 ° C. In contrast, when the firing temperature was 820 ° C. (Comparative Example: Sample 4-1), sintering was insufficient, and when the firing temperature was 920 ° C. (Comparative Example: Sample 4-6), foaming was observed.

複合積層セラミック部品の一例を示す縦断面図。The longitudinal cross-sectional view which shows an example of a composite laminated ceramic component.

符号の説明Explanation of symbols

10 高誘電率誘電体部分
12 コンデンサ導体パターン
14 低誘電率誘電体部分
16 コイル導体パターン
18 外部電極
10 Dielectric part with high dielectric constant 12 Capacitor conductor pattern 14 Dielectric part with low dielectric constant 16 Coil conductor pattern 18 External electrode

Claims (8)

高誘電率誘電体層と低誘電率誘電体層が積層され、それらの内部に導体が配されて一体焼成されている複合積層セラミック部品において、
高誘電率誘電体層は、セラミック粉末と、SiO2 −Ln2 3 (ランタノイド系酸化物)−TiO2 −RO(RはBa,Ca,Srの1種以上)−ZnOを主成分とする結晶化ガラスからなり、低誘電率誘電体層は、セラミック粉末と、高誘電率誘電体層と同じ結晶化ガラスと、SiO2 −B2 3 −K2 Oを主成分とする非晶質ガラスからなることを特徴とする複合積層セラミック部品。
In a composite multilayer ceramic component in which a high dielectric constant dielectric layer and a low dielectric constant dielectric layer are laminated, and a conductor is disposed inside them and integrally fired,
The high dielectric constant dielectric layer is mainly composed of ceramic powder and SiO 2 —Ln 2 O 3 (lanthanoid oxide) —TiO 2 —RO (R is one or more of Ba, Ca, Sr) —ZnO. Made of crystallized glass, the low dielectric constant dielectric layer is ceramic powder, the same crystallized glass as the high dielectric constant dielectric layer, and an amorphous material mainly composed of SiO 2 —B 2 O 3 —K 2 O A composite multilayer ceramic part made of glass.
低誘電率誘電体層は、セラミック粉末が10〜25体積%、結晶化ガラス+非晶質ガラスが75〜90体積%である請求項1記載の複合積層セラミック部品。   The composite multilayer ceramic component according to claim 1, wherein the low dielectric constant dielectric layer is 10 to 25% by volume of ceramic powder and 75 to 90% by volume of crystallized glass + amorphous glass. 高誘電率誘電体層は、セラミック粉末が10〜30体積%、結晶化ガラスが70〜90体積%である請求項1記載の複合積層セラミック部品。   The composite multilayer ceramic component according to claim 1, wherein the high dielectric constant dielectric layer is 10 to 30% by volume of ceramic powder and 70 to 90% by volume of crystallized glass. 低誘電率誘電体層に用いる結晶化ガラス/非晶質ガラスの体積比が、0.5以下である請求項2記載の複合積層セラミック部品。   The composite multilayer ceramic component according to claim 2, wherein a volume ratio of crystallized glass / amorphous glass used for the low dielectric constant dielectric layer is 0.5 or less. 低誘電率誘電体層に用いるセラミック粉末がアルミナである請求項1記載の複合積層セラミック部品。   The composite multilayer ceramic component according to claim 1, wherein the ceramic powder used for the low dielectric constant dielectric layer is alumina. 導体がAgである請求項1記載の複合積層セラミック部品。   The composite multilayer ceramic component according to claim 1, wherein the conductor is Ag. 高誘電率誘電体層と低誘電率誘電体層を、それらの内部に導体を配して積層し一体焼成する複合積層セラミック部品の製造方法において、
高誘電率誘電体層は、セラミック粉末と、SiO2 −Ln2 3 (ランタノイド系酸化物)−TiO2 −RO(RはBa,Ca,Srの1種以上)−ZnOを主成分とする結晶化ガラスからなり、低誘電率誘電体層は、セラミック粉末と、高誘電率誘電体層と同じ結晶化ガラスと、SiO2 −B2 3 −K2 Oを主成分とする非晶質ガラスからなり、焼成を840〜900℃にて行うことを特徴とする複合積層セラミック部品の製造方法。
In a method for producing a composite multilayer ceramic component, in which a high dielectric constant dielectric layer and a low dielectric constant dielectric layer are laminated with a conductor disposed therein and integrally fired,
The high dielectric constant dielectric layer is mainly composed of ceramic powder and SiO 2 —Ln 2 O 3 (lanthanoid oxide) —TiO 2 —RO (R is one or more of Ba, Ca, Sr) —ZnO. Made of crystallized glass, the low dielectric constant dielectric layer is ceramic powder, the same crystallized glass as the high dielectric constant dielectric layer, and an amorphous material mainly composed of SiO 2 —B 2 O 3 —K 2 O A method for producing a composite multilayer ceramic component comprising glass and firing at 840 to 900 ° C.
低誘電率誘電体層は、セラミック粉末が10〜25体積%、結晶化ガラス+非晶質ガラスが75〜90体積%であり、高誘電率誘電体層は、セラミック粉末が10〜30体積%、結晶化ガラスが70〜90体積%である請求項7記載の複合積層セラミック部品の製造方法。
The low dielectric constant dielectric layer is 10 to 25% by volume of ceramic powder, and crystallized glass + amorphous glass is 75 to 90% by volume. The high dielectric constant dielectric layer is 10 to 30% by volume of ceramic powder. The method for producing a composite multilayer ceramic component according to claim 7, wherein the crystallized glass is 70 to 90% by volume.
JP2004081578A 2004-03-19 2004-03-19 Composite multilayer ceramic component and manufacturing method thereof Expired - Fee Related JP4301503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081578A JP4301503B2 (en) 2004-03-19 2004-03-19 Composite multilayer ceramic component and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081578A JP4301503B2 (en) 2004-03-19 2004-03-19 Composite multilayer ceramic component and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005268663A true JP2005268663A (en) 2005-09-29
JP4301503B2 JP4301503B2 (en) 2009-07-22

Family

ID=35092861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081578A Expired - Fee Related JP4301503B2 (en) 2004-03-19 2004-03-19 Composite multilayer ceramic component and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4301503B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226038A (en) * 2009-03-25 2010-10-07 Tdk Corp Ceramic electronic component
CN102248723A (en) * 2010-03-31 2011-11-23 Tdk株式会社 Ceramic electronic component and method of manufacturing ceramic electronic component
JP2013507757A (en) * 2009-10-12 2013-03-04 エプコス アーゲー Electrical multilayer components and circuit devices
WO2013121929A1 (en) * 2012-02-13 2013-08-22 株式会社村田製作所 Composite multilayer ceramic electronic component
CN103827991A (en) * 2011-09-07 2014-05-28 Tdk株式会社 Laminated coil component
CN112038040A (en) * 2019-06-03 2020-12-04 株式会社村田制作所 Inductor component

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010226038A (en) * 2009-03-25 2010-10-07 Tdk Corp Ceramic electronic component
JP2013507757A (en) * 2009-10-12 2013-03-04 エプコス アーゲー Electrical multilayer components and circuit devices
CN102248723A (en) * 2010-03-31 2011-11-23 Tdk株式会社 Ceramic electronic component and method of manufacturing ceramic electronic component
CN103827991A (en) * 2011-09-07 2014-05-28 Tdk株式会社 Laminated coil component
US10043608B2 (en) 2011-09-07 2018-08-07 Tdk Corporation Laminated coil component
US10600540B2 (en) 2011-09-07 2020-03-24 Tdk Corporation Laminated coil component
WO2013121929A1 (en) * 2012-02-13 2013-08-22 株式会社村田製作所 Composite multilayer ceramic electronic component
CN104144898A (en) * 2012-02-13 2014-11-12 株式会社村田制作所 Composite multilayer ceramic electronic component
JPWO2013121929A1 (en) * 2012-02-13 2015-05-11 株式会社村田製作所 Composite multilayer ceramic electronic components
US9190211B2 (en) 2012-02-13 2015-11-17 Murata Manufacturing Co., Ltd. Composite laminated ceramic electronic component
CN112038040A (en) * 2019-06-03 2020-12-04 株式会社村田制作所 Inductor component

Also Published As

Publication number Publication date
JP4301503B2 (en) 2009-07-22

Similar Documents

Publication Publication Date Title
JP5104761B2 (en) Ceramic substrate and manufacturing method thereof
JP5821975B2 (en) Composite multilayer ceramic electronic components
US7153800B2 (en) Dielectric ceramic composition and multilayer ceramic part using the same
JP5435176B2 (en) Composite multilayer ceramic electronic components
JP2007294862A (en) Substrate and circuit board using the same
JP5316545B2 (en) Glass ceramic composition and glass ceramic substrate
KR20160098066A (en) Glass ceramics composition and coil electric device
JP5888524B2 (en) Composite multilayer ceramic electronic components
JPWO2008018407A1 (en) Glass ceramic composition, glass ceramic sintered body, and multilayer ceramic electronic component
JP6728859B2 (en) Ceramic substrate and manufacturing method thereof
JP2006012687A (en) Low-temperature calcined board material and multilayer wiring board using the same
JP4301503B2 (en) Composite multilayer ceramic component and manufacturing method thereof
JP4606115B2 (en) Multilayer substrate and manufacturing method thereof
JP2006261351A (en) Laminated ceramic component and manufacturing method thereof
JP7180688B2 (en) LAMINATED BODY, ELECTRONIC COMPONENT, AND METHOD FOR MANUFACTURING LAMINATED BODY
JP3934841B2 (en) Multilayer board
JP4508625B2 (en) Multilayer substrate and manufacturing method thereof
JP4699769B2 (en) Manufacturing method of ceramic multilayer substrate
JP2010034176A (en) Multilayer wiring board, and method of manufacturing the same
JP2008186909A (en) Ceramic multilayer plate board
JP2008031005A (en) Multilayered ceramic substrate and composite green sheet for manufacturing multilayered ceramic substrate
JP2007173857A (en) Multilayer substrate and method for manufacturing same
JP3764605B2 (en) Circuit board manufacturing method
US20230416142A1 (en) Glass ceramic material, laminate, and electronic component
JP2006196674A (en) Method of manufacturing wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090416

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090417

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees