JP2005268530A - 半導体ウエハのアライメント装置 - Google Patents

半導体ウエハのアライメント装置 Download PDF

Info

Publication number
JP2005268530A
JP2005268530A JP2004078742A JP2004078742A JP2005268530A JP 2005268530 A JP2005268530 A JP 2005268530A JP 2004078742 A JP2004078742 A JP 2004078742A JP 2004078742 A JP2004078742 A JP 2004078742A JP 2005268530 A JP2005268530 A JP 2005268530A
Authority
JP
Japan
Prior art keywords
semiconductor wafer
wafer
image data
edge
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004078742A
Other languages
English (en)
Inventor
Tomio Endo
富男 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2004078742A priority Critical patent/JP2005268530A/ja
Publication of JP2005268530A publication Critical patent/JP2005268530A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

【課題】少ないセンサを用いてオリフラやノッチ情報が混入していないウエハエッジ位置情報を判別し、高速にかつ精度高く半導体ウエハを基準位置にアライメントすること。
【解決手段】各エッジ位置センサ30〜33の撮像で取得された各キャプチャ画像データを半導体ウエハ1のウエハエッジ方向に積分処理し、各データを半導体ウエハ1の半径方向に微分処理し、各微分値のうち大きい方から半導体ウエハ1のノッチを有しない3つのキャプチャ画像データを選択し、各キャプチャ画像データに対応する各微分値のピークから得られるウエハエッジの各座標から半導体ウエハ1の中心座標を求め、この中心座標と基準位置とに基づく補正量に従ってウエハ搬送ロボット5を動作制御して半導体ウエハ1の中心位置を基準位置にセンタリングする。
【選択図】 図1

Description

本発明は、例えばウエハカセットキャリアから取り出した半導体ウエハを基準位置にアライメントする半導体ウエハのアライメント装置に関する。
半導体ウエハのウエハ検査装置又は製造装置では、複数の半導体ウエハを収納したウエハキャリアからウエハローダによって未検査の半導体ウエハを取り出して検査時又は加工処理時にセンタリング(アライメント)する必要がある。
ウエハキャリアに収納されている未検査の各半導体ウエハは、整列しておらず、これら半導体ウエハの中心位置がばらばらな状態になっている。これら半導体ウエハをウエハローダによって取り出してウエハ検査装置又は製造装置に搬送すると、各半導体ウエハの中心位置がずれた状態で搬入される。このため、各半導体ウエハの中心位置ずれを基準位置にセンタリングする必要がある。
ローダとして直交ロボットを用いている場合は、ウエハキャリアから半導体ウエハを取り出してウエハ検査装置又は製造装置に受け渡す動作の搬送途中に例えば左右一対のセンサを配置し、これらセンサ上に半導体ウエハを一定速度で横切らせ、このとき半導体ウエハの4点のエッジを検出し、これらエッジの位置情報に基づいて半導体ウエハの中心位置を求めるとともに、この半導体ウエハの中心位置と基準位置からアライメントの補正量を求めるのが一般的である。
ローダとしてRθZ(伸縮、回転、昇降)動作を行う多関節のウエハ搬送ロボットを用いている場合は、各軸のロボットアームを制御して半導体ウエハのセンタリングを行うことが複雑であり、困難となっている。
アライメント方法には、特許文献1、2に記載された技術がある。特許文献1には、3つのラインセンサを用い、このうち各ラインセンサのうち2つを半導体ウエハのウエハエッジに対して垂直方向に配置すると共に、1つをウエハエッジに沿った方向に配置し、半導体ウエハを回転させてウエハエッジを検出すると共にノッチ又はオリフラを判定を行うことが記載されている。特許文献2には、ラインセンサを6つ放射状に設けてウエハエッジを検出し、半導体ウエハをアライメントすることが記載されている。
特開平6−45226号公報 特開平8−124995号公報
しかしながら、特許文献1では、半導体ウエハを回転させて多数回ウエハエッジを検出する必要がある。例えば、半導体ウエハが角度0.5度回転する毎に計720回ウエハエッジを検出し、これら検出結果から半導体ウエハのウエハエッジ位置、ノッチの中心位置を求める。このため、多数回のウエハエッジの検出によりアライメントに時間がかかる。半導体製造では、半導体ウエハの検査時間を短縮することも歩留まりの向上等により重要であり、マクロ検査のように半導体ウエハの中心位置ずれの精度が数十μm程度のあまり高精度を要求しない場合には、時間がかかり不利である。
特許文献2では、ラインセンサを6つも用いなければならず、高価になる。又、6つのラインセンサを各所定位置に位置合わせして設けなければならない。
本発明は、半導体ウエハの外周縁の少なくとも4箇所を撮像する2次元撮像素子と、これら2次元撮像素子の撮像により取得された少なくとも4箇所の各画像データをそれぞれ半導体ウエハの外周縁方向に積分処理し、これら積分処理した各データをそれぞれ半導体ウエハの半径方向に微分処理し、これら微分処理により求められた各微分値から半導体ウエハにおけるノッチ又はオリフラ情報を有しない画像データを選択し、選択された少なくとも3つの画像データから半導体ウエハの外周縁上の複数箇所の各位置情報を求め、これら位置情報から半導体ウエハの中心位置を求める位置検出部と、位置検出部により求められた半導体ウエハの中心位置と基準位置とから半導体ウエハのアライメントの補正量を求め、この補正量に基づいて半導体ウエハを基準位置にアライメントするアライメント制御部とを具備した半導体ウエハのアライメント装置である。
本発明は、半導体ウエハの外周縁の少なくとも4箇所を撮像する2次元撮像素子と、これら2次元撮像素子の撮像により取得された少なくとも4箇所の各画像データをそれぞれ半導体ウエハの半径方向に微分処理し、これら微分処理により求められた各微分値から半導体ウエハのノッチ又はオリフラ情報を有しない少なくとも3つの画像データを用いて半導体ウエハの中心位置を求める位置検出部と、位置検出部により求められた半導体ウエハの中心位置と基準位置とから半導体ウエハのアライメントの補正量を求め、この補正量に基づいて半導体ウエハを基準位置にアライメントするアライメント制御部とを具備した半導体ウエハのアライメント装置である。
本発明は、少ないセンサを用いてオリフラやノッチ情報が混入していないウエハエッジ位置情報を判別し、高速にかつ精度高く半導体ウエハを基準位置にアライメントできる半導体ウエハのアライメント装置を提供できる。
以下、本発明の一実施の形態について図面を参照して説明する。
図1はウエハ検査装置の構成図である。このウエハ検査装置は、大きく分けて、半導体ウエハ1に対するマクロ検査及びミクロ検査を行うための検査部2と、この検査部2に対して未検査の半導体ウエハ1を供給すると共に、検査部2から検査済みの半導体ウエハ1を排出するローダ部3をそれぞれ分離独立して設けている。
ローダ部3には、RθZ動作を行う多関節のウエハ搬送ロボット5が設けられている。このウエハ搬送ロボット5は、3つの連結アーム6〜8を連結してなり、その先端の連結アーム8にハンド9が設けられている。このハンド9は、く字形状をなし、半導体ウエハ1の載置面に複数の吸着孔10が形成されている。このウエハ搬送ロボット5は、各連結アーム6〜8を伸縮し、かつ軸11を中心として回転自在に構成されている。このウエハ搬送ロボット5は、半導体ウエハ1を検査部2に対して供給/排出する。
又、ローダ部3には、ウエハキャリア12が搭載されている。これらローダ部3とウエハキャリア12とは、検査部2の側面に配置されている。ウエハキャリア12内には、複数の半導体ウエハ1aが所定ピッチで収納されている。
検査部2には、ウエハ搬送装置13が設けられている。このウエハ搬送装置13は、3本の搬送アーム14a、14b、14cが設けられている。これら搬送アーム14a、14b、14cには、それぞれコ字形状のハンド(ウエハチャック)15a、15b、15cが設けられている。
このウエハ搬送装置13は、軸16を中心に例えば図面上左回り(矢印方向)に回転し、各搬送アーム14a、14b、14cをそれぞれウエハ受け渡し位置(ポジション)Pと、マクロ検査位置(ポジション)Pと、ミクロ検査受渡し位置(ポジション)Pとの間に循環してポジショニングする。ウエハ受け渡し位置Pは、当該位置Pの中心位置とウエハ搬送ロボット5の軸11との間隔がこのウエハ搬送ロボット5の搬送ストローク範囲内になるように位置付けられている。マクロ検査位置Pには、検査員4の目視により半導体ウエハ1をマクロ検査するためのマクロ検査用揺動機構(マクロ検査部)17と、半導体ウエハ1を回転させかつ上下方向に移動させるマクロ検査用回転機構(マクロ検査部)18とが設けられている。これらマクロ検査用揺動機構17及びマクロ検査用回転機構18の上方には、半導体ウエハ1を照明するための図示しないマクロ用照明装置が設けられている。
又、検査部2の架台上には、ミクロ検査部19が設けられている。このミクロ検査部19は、ミクロ検査受渡し位置Pにポジショニングされたハンド15a、15b又は15c上に保持されている半導体ウエハ1を受け取り、顕微鏡20を用いて半導体ウエハ1をミクロ検査する。顕微鏡20の接眼レンズ21は、検査員4の前方に配置されている。検査部2の正面には、マクロ検査やミクロ検査の操作やこれら検査結果をインプットするための操作部22が設けられている。
ウエハ受け渡し位置Pには、半導体ウエハ1のアライメント用の4つのエッジ位置センサ30〜33がウエハ搬送装置13の各搬送アーム14a、14b、14cの下方となる検査部2の架台上に設けられている。これらエッジ位置センサ30〜33は、図2に示すように半導体ウエハ1の外周縁の位置(以下、ウエハエッジの位置と称する)に対応する同心円上の4箇所にそれぞれ配置されている。これらエッジ位置センサ30〜33は、半導体ウエハ1のウエハエッジを撮像してその画像信号を出力する。
図3は各エッジ位置センサ30〜33の具体的な構成図である。これらエッジ位置センサ30〜33は、落射テレセントリック照明結像光学系を用いたもので、光源として発光ダイオード(LED)34が設けられている。このLED34から出射されるLED光の光路上にはハーフミラー35が設けられ、このハーフミラー35の反射光路上に凸レンズ36が設けられている。この凸レンズ36は、LED34から出射されるLED光を平行光に整形して半導体ウエハ1のウエハエッジ部分に照射するコリメートレンズの作用と、このウエハエッジからの反射してきたLED光を集光する集光レンズとの作用とを有する。
この反射LED光の光路上には、CCDやC-MOSなどの2次元撮像素子38が設けられている。この2次元撮像素子38のラインの方向は、半導体ウエハ1のウエハエッジを横切る方向、最良のライン方向はウエハエッジの接線に対して垂直方向になるように設けられている。
凸レンズ36の外部側には、波長選択フィルタ39が装着されている。この選択フィルタ39は、半導体ウエハ1を製造する半導体製造工場の室内(周囲環境)を照明する照明光の波長成分外の波長領域の光を透過する特性を有する。2次元撮像素子38に入射する光は、半導体ウエハ1のウエハエッジからの反射してきたLED光の他に、当該ウエハ検査装置が設置された半導体製造工場の室内の照明光等がある。この半導体製造工場の室内照明としては、例えばNaランプが多く用いられる。Naランプから放射される光は、図4に示す波長特性を有する。このNaランプから放射される光の波長特性は、殆ど波長領域550nm〜650nmに含まれる。
各エッジ位置センサ30〜33に用いるLED34が例えば白色発光であれば、当該LED34から放射される光は、図5に示す波長特性を有する。LED34が青色発光であれば、当該LED34から放射される光は、図6に示す波長特性を有する。
従って、2次元撮像素子38は、Naランプから放射される波長領域550nm〜650nmの光以外の波長の光、例えば波長550nm以下の光を入射して半導体ウエハ1のウエハエッジを撮像するために、波長選択フィルタ39に波長550nm以下の光を透過する青色フィルタを用いる。
制御処理装置40は、図7に示すアライメント制御フローチャートに従い、各エッジ位置センサ30〜33における各2次元撮像素子38から出力された各画像信号を取り込んで各ディジタルのキャプチャ画像データとして記憶し、これらキャプチャ画像データを画像処理して半導体ウエハ1の中心位置を基準位置にセンタリングする。
具体的に画像選択部41は、各エッジ位置センサ30〜33における2次元撮像素子38の撮像により取得された各キャプチャ画像データ(画像の各画素)をそれぞれ半導体ウエハ1の円周方向(ウエハエッジ方向)に対して略平行に積分処理(加算)し、これら積分処理した各データをそれぞれ半導体ウエハ1の半径方向(半導体ウエハ1の円周方向に対して各画素を加算した加算方向と垂直な方向)に微分処理(差分演算)し、これら微分処理により求められた各微分値のうち大きい方から半導体ウエハ1におけるノッチN又はオリフラ情報を有しない少なくとも3つのキャプチャ画像データを選択する。
位置検出部42は、画像選択部41により選択された少なくとも3つのキャプチャ画像データから半導体ウエハ1のウエハエッジ上の複数箇所、例えば3箇所の各位置情報を求め、これら位置情報から半導体ウエハ1の中心位置を求める。
アライメント制御部43は、位置検出部42により求められた半導体ウエハ1の中心位置と基準位置とから半導体ウエハ1のセンタリングの補正量を求め、この補正量に従ってウエハ搬送ロボット5をRθZ動作制御して半導体ウエハ1の中心位置を基準位置にセンタリングする。
なお、2次元撮像素子38は、R(赤)G(緑)B(青)のカラー画像データを出力するものを用いてもよい。カラー2次元撮像素子38を用いることにより、画像選択部41は、ウエハ検査装置が設置された半導体製造工場の室内のNaランプから放射される波長領域550nm〜650nmの照明光の影響を低減するために、カラー2次元撮像素子38の撮像により取得された各カラーキャプチャ画像データから予め選択された波長成分例えば波長領域550nm〜650nm以外の波長成分としてB(青)成分の画像データを抽出する。そして、画像選択部41は、抽出したB成分の画像データに対して半導体ウエハ1のウエハエッジ方向θに対して略平行に積分処理し、これら積分処理した各データを半導体ウエハ1の半径方向Rに微分処理し、これら微分処理により求められた各微分値のうち大きい方から半導体ウエハ1におけるノッチN又はオリフラ情報を有しない少なくとも3つのキャプチャ画像データを選択するものとなる。
次に、上記の如く構成された装置の作用について説明する。
ウエハ搬送ロボット5は、制御処理装置40から発せられるウエハ取り出し指令を受けると、この指令に従ってウエハキャリア12内に収納されている未検査の半導体ウエハ1を保持し、各連結アーム6〜8を縮め、例えば左回りに90度回転して停止し、再び各連結アーム6〜8を検査部2の左面側からの矢印A方向に伸ばしてウエハ受け渡し位置Pに移動する。これにより、未検査の半導体ウエハ1は、図2に示すように4つのエッジ位置センサ30〜33の上方に配置される。
これらエッジ位置センサ30〜33は、それぞれLED34から青色光を出射する。この青色光は、ハーフミラー35で反射し、凸レンズ36により平行光に整形され、例えば波長550nm以下の光を透過する波長選択フィルタ39を透過して半導体ウエハ1のウエハエッジ部分に照射する。このウエハエッジからの反射してきた青色光は、再び波長選択フィルタ39を透過し、凸レンズ36により集光され2次元撮像素子38に入射する。このとき、半導体製造工場の室内のNaランプから放射される波長領域550nm〜650nmの照明光は、波長選択フィルタ39のよりカツトされる。2次元撮像素子38は、半導体ウエハ1のウエハエッジからの反射光を入射し、その画像信号を出力する。
制御処理装置40は、図7に示すアライメント制御フローチャートに従い、ステップ#1において、4つのエッジ位置センサ30〜33の各2次元撮像素子38からそれぞれ出力された各画像信号を取り込んでディジタルの各キャプチャ画像データとして記憶する。
ここで、図2に示すように4つのエッジ位置センサ30〜33の上方に半導体ウエハ1を配置するので、これらエッジ位置センサ30〜33のうちいずれか1つのエッジ位置センサ30〜33の撮像範囲内に半導体ウエハのノッチN又はオリフラが入る可能性が高い。図8(a)はエッジ位置センサ30〜33の撮像範囲内に半導体ウエハのノッチNが入っていないキャプチャ画像データDaを示し、図9(a)はエッジ位置センサ30〜33の撮像範囲内に半導体ウエハのノッチNが入っているキャプチャ画像データDbを示す。これらキャプチャ画像データDa、Dbは、横方向が半導体ウエハ1の半径方向R、縦方向が半導体ウエハ1の円周方向(ウエハエッジ方向)θであり、白色部分が半導体ウエハ1の像を示す。
次に、画像選択部41は、ステップ#2において、制御処理装置40により記憶された図8(a)及び図9(b)に示すような4つのキャプチャ画像データDa、Dbをそれぞれ半導体ウエハ1のウエハエッジ方向θに対して略平行に積分(加算)処理する。この積分処理は、各キャプチャ画像データDa、Dbにおけるノイズ成分の影響を軽減するためである。この積分処理は、各キャプチャ画像データDa、Dbの全画面を積分処理する必要はなく、例えば半導体ウエハ1の半径方向Rに640画素、ウエハエッジ方向θに480画素の大きさの画素とすれば、10〜100ライン程度の範囲の画面を積分処理してもよい。図8(b)は同図(a)に示すキャプチャ画像データDaの積分処理したデータを示し、図9(b)は同図(a)に示すキャプチャ画像データDbの積分処理したデータを示す。図8(b)に示す積分処理結果に比較して図9(b)に示す積分処理結果は、ノッチNの像を含む分だけ半導体ウエハ1の半径方向Rに対する輝度値の変化が緩慢である。
次に、画像選択部41は、ステップ#3において、図8(b)に示すキャプチャ画像データDaの積分処理したデータ、及び図9(b)に示すキャプチャ画像データDbの積分処理結果したデータをそれぞれ半導体ウエハ1の半径方向Rに微分(差分)処理する。図8(c)は同図(b)に示す半導体ウエハ1のノッチNの入っていないキャプチャ画像データDaの積分処理したデータを微分処理した結果の微分データを示し、この微分データは、図8(b)に示す半導体ウエハ1のウエハエッジに対応する部分で鋭いピークを有する。又、図9(c)は同図(b)に示す半導体ウエハ1のノッチNの入っているキャプチャ画像データDbの積分処理したデータを微分処理した結果の微分データを示し、この微分データは、緩やかなピークを有する。
4つのエッジ位置センサ30〜33のうち撮像範囲内にノッチNが入るのは、最大でも1のエッジ位置センサ30、31、…、33である。ノッチNがエッジ位置センサ30〜33の撮像範囲内に入ると、半導体ウエハ1のウエハエッジの検出に誤差が生じるので、その影響を除去するために、4つのエッジ位置センサ30〜33に対応する各微分データのうち微分値が最小となったエッジ位置センサ30、31、…、33のキャプチャ画像データDbを用いないものとする。従って、画像選択部41は、ステップ#4において、4つのエッジ位置センサ30〜33に対応する各微分データのうち大きい方の3つの微分値を選択し、これと共に、これら3つの微分値に対応する各エッジ位置センサ(例えば30〜32)を選択する。
なお、カラー2次元撮像素子38を用いれば、画像選択部41は、各エッジ位置センサ30〜33におけるカラー2次元撮像素子38の撮像により取得された各カラーキャプチャ画像データからB成分の画像データを抽出し、B成分の画像データに対して半導体ウエハ1のウエハエッジ方向θに対して略平行に積分処理し、これら積分処理した各データを半導体ウエハ1の半径方向Rに微分処理し、これら微分処理により求められた各微分値のうち大きい方から半導体ウエハ1におけるノッチを有しない3つのキャプチャ画像データを選択する。
次に、位置検出部42は、ステップ#5において、画像選択部41により選択された3つのノッチNを含まない各キャプチャ画像データDa(図8(a))の各微分データ(図8(c))から半導体ウエハ1のウエハエッジ座標を演算し求める。図8(c)に示す各微分データのピーク位置は、半導体ウエハ1のウエハエッジ位置に対応し、これらピーク位置をr、r、rとする。但し、これらピーク位置をr、r、rの原点は、図8(a)に示す各キャプチャ画像データDaにおける最下部とする。
ここで、ウエハ受け渡し位置P上に配置された半導体ウエハ1が基準位置からずれていないときの半導体ウエハ1の中心座標を原点とする。4つのエッジ位置センサ30〜33の撮像中心の座標と撮像範囲とは、予め設計時と組み立て時の取付位置から既知である。これらエッジ位置センサ30〜33の撮像範囲の寸法は、横方向をW、縦方向をHとする。
上記選択された3つのエッジ位置センサ30〜32の中心座標を極座標により表わすと、エッジ位置センサ30は中心座標(R,θ)、エッジ位置センサ31は中心座標(R,θ)、エッジ位置センサ32は中心座標(R,θ)となる。
次に、位置検出部42は、ステップ#6において、基準位置を原点として半導体ウエハ1のウエハエッジ位置r、r、rをXY座標に変換する。これら半導体ウエハ1のウエハエッジの座標(x,y)は、
=(R+r)cosθ、y=(R+r)sinθ …(1)
となる。なお、n=1,2,3である。
位置検出部42は、3つの半導体ウエハ1のウエハエッジの座標(x,y)を求めると、次式を演算して半導体ウエハ1の中心座標(a,b)を求める。
Figure 2005268530
次に、アライメント制御部43は、ステップ#7において、位置検出部42により求められた半導体ウエハ1の中心座標(a,b)と基準位置とから半導体ウエハ1のアライメントの補正量を求め、この補正量に従ってウエハ搬送ロボット5をRθZ動作制御して半導体ウエハ1を基準位置にセンタリングする。
センタリングが終了すると、ウエハ搬送ロボット5は、未検査の半導体ウエハ1を搬送アーム14aのハンド15a上に渡す。このハンド15aは、半導体ウエハ1を吸着保持する。そして、ウエハ搬送装置13が軸16を中心に図面上左回りに回転すると、搬送アーム14aは、マクロ検査位置Pにポジショニングされる。このマクロ検査位置Pにおいて、半導体ウエハ1は、マクロ検査用揺動機構17により揺動されたり、マクロ検査用回転機構18により回転されて検査員4の目視によりマクロ検査が行われる。
次に、ウエハ搬送装置13がさらに軸16を中心に左回りに回転すると、搬送アーム14aは、ミクロ検査受渡し位置Pにポジショニングされる。このミクロ検査受渡し位置Pにおいて、ハンド14a上の半導体ウエハ1は、ミクロ検査部19に受け渡され、ここで顕微鏡20により拡大されてその像が撮像装置21により撮像されたり、接眼レンズ22を通してミクロ検査が行われる。
次に、ウエハ搬送装置13がさらに軸16を中心に左回りに回転すると、搬送アーム14aは、再びウエハ受け渡し位置Pにポジショニングされ、ウエハ搬送ロボット5のハンド9に渡される。このウエハ搬送ロボット5は、各連結アーム6〜8を縮め、例えば右回りに90°回転して停止し、再び各連結アーム6〜8を伸ばして検査済みの半導体ウエハ1をウェハキャリア12内に収納する。なお、搬送アーム14b、14cについても同様の動作が行なわれる。
このように上記一実施の形態においては、4つのエッジ位置センサ30〜33の撮像により取得された各キャプチャ画像データを半導体ウエハ1のウエハエッジ方向θに対して積分処理し、これら積分処理した各データを半導体ウエハ1の半径方向Rに微分処理し、これら微分値のうち大きい方から半導体ウエハ1におけるノッチNを有しない3つのキャプチャ画像データを選択し、これら3つのキャプチャ画像データに対応する各微分値のピークから求められるウエハエッジの各座標(x,y)から半導体ウエハ1の中心座標(a,b)を求め、この中心座標(a,b)と基準位置とから求められる補正量に従ってウエハ搬送ロボット5をRθZ動作制御して半導体ウエハ1の中心位置を基準位置にセンタリングする。
これにより、半導体ウエハ1におけるノッチNを有しない3つのキャプチャ画像データを正確に選択できて、高速でかつ精度高く半導体ウエハ1を基準位置にセンタリングできる。そのうえ、半導体ウエハ1をウェハキャリア12から取り出して検査部2に渡す流れの中のウエハ受け渡し位置Pにポジショニングするときに行うので、半導体ウエハ1を特許文献1に開示されているように回転させる必要もなく、センタリングの時間を短縮できる。
このように半導体ウエハ1を基準位置にセンタリングできれば、マクロ検査時の半導体ウエハ1の回転偏芯動作を減少できそのマクロ観察の効率を向上でき、さらにミクロ検査部19に半導体ウエハ1を受け渡すときにも半導体ウエハ1を所定のアライメント範囲内、すなわちミクロ検査部19のステージによるアライメント範囲内に入れることができ、アライメント時間の短縮を図ることができる。そして、4つのエッジ位置センサ30〜33を設ければよいので、安価で実現できる。
又、各エッジ位置センサ30〜33には、例えば波長550nm以下の光を透過する波長選択フィルタ39を装着しているので、ウエハ検査装置が設置された半導体製造工場の室内のNaランプから放射される波長領域550nm〜650nmの照明光が各エッジ位置センサ30〜33に入射しても、この照明光が2次元撮像素子38に到達する光量を低減でき、半導体製造工場の室内の照明光の影響を低減してSN比良く半導体ウエハ1のウエハエッジ座標を検出できる。
又、カラー2次元撮像素子38を用いれば、当該カラー2次元撮像素子38の撮像により取得された各カラーキャプチャ画像データからB成分の画像データを抽出することにより、上記同様に、半導体製造工場の室内の照明光の影響を低減してSN比良く半導体ウエハ1のウエハエッジ座標を検出できる。
なお、この発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合せにより種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。更に、異なる実施形態に亘る構成要素を適宜組み合せてもよい。
例えば、画像選択部41は、2次元撮像素子38の撮像により取得されたキャプチャ画像データを半導体ウエハ1のウエハエッジ方向θに対して積分処理しているが、キャプチャ画像データの輝度が十分高くかつSN比が良ければ、積分処理を省略して、キャプチャ画像データを半導体ウエハ1の半径方向Rに微分処理し、これら微分処理により求められた各微分値のうち大きい方から半導体ウエハ1におけるノッチN又はオリフラ情報を有しない少なくとも3つのキャプチャ画像データを選択してもよい。
又、4つのエッジ位置センサ30〜33の各キャプチャ画像データからノッチN又はオリフラの入っていない3つのキャプチャ画像データを選択しているが、これに限らず、例えば位置検出部42は、2次元撮像素子38の撮像により取得された各キャプチャ画像データをそれぞれ半導体ウエハ1の半径方向Rに微分処理し、これら微分処理により求められた各微分値が予め設定された閾値以上であるか否かを判断する。この判断の結果、微分値が閾値以上であれば、位置検出部42は、半導体ウエハ1のウエハエッジにノッチN又はオリフラ情報が無いと認識し、各2次元撮像素子38の撮像によりそれぞれ取得された4つのキャプチャ画像データを用いて最小二乗法により半導体ウエハ1の中心位置を求めることもできる。
また、上記実施形態では2次元撮像素子38を半導体ウエハ1の外周縁の位置に対応する同心円上の4箇所に配置したが、半導体ウエハ1を載置して回転する回転ステージでアライメントする場合には、半導体ウエハ1の外周縁の位置に対応する同心円上の1箇所に2次元撮像素子38を配置して半導体ウエハ1を回転させて少なくとも4箇所の半導体ウエハ1の外周縁を撮像してもよい。更に、2次元撮像素子38を半導体ウエハ1の搬送路中にオリフラより長い間隔で2箇所に配置し、半導体ウエハ1の前後の外周縁の4箇所を撮像してもよい。
本発明に係るウエハ検査装置の一実施の形態を示す構成図。 同装置における各エッジ位置センサの配置図。 同装置におけるエッジ位置センサの構成図。 Naランプから放射される光の波長特性を示す図。 同装置におけるエッジ位置センサに用いられる白色LEDから放射される光の波長特性を示す図。 同装置におけるエッジ位置センサに用いられる青色LEDから放射される光の波長特性を示す図。 同装置におけるアライメント制御フローチャート。 同装置により取得されるノッチを含まないキャプチャ画像データ、積分処理データ及び微分データを示す図。 同装置により取得されるノッチを含むキャプチャ画像データ、積分処理データ及び微分データを示す図。
符号の説明
1:半導体ウエハ、2:検査部、3:ローダ部、5:ウエハ搬送ロボット、6〜8:連結アーム、9:ハンド、10:吸着孔、11:軸、12:ウエハキャリア、13:ウエハ搬送装置、14a,14b,14c:搬送アーム、15a,15b,15c:ハンド(ウエハチャック)、16:軸、17:マクロ検査用揺動機構(マクロ検査部)、18:マクロ検査用回転機構(マクロ検査部)、19:ミクロ検査部、20:顕微鏡、21:接眼レンズ、22:操作部、30〜33:エッジ位置センサ、34:発光ダイオード(LED)、35:ハーフミラー、36:凸レンズ、37:ライン状の絞り、38:2次元撮像素子、39:波長選択フィルタ、40:制御処理装置、41:画像選択部、42:位置検出部、43:アライメント制御部。

Claims (4)

  1. 半導体ウエハの外周縁の少なくとも4箇所を撮像する2次元撮像素子と、
    これら2次元撮像素子の撮像により取得された前記少なくとも4箇所の各画像データをそれぞれ前記半導体ウエハの外周縁方向に積分処理し、これら積分処理した各データをそれぞれ前記半導体ウエハの半径方向に微分処理し、これら微分処理により求められた各微分値から前記半導体ウエハにおけるノッチ又はオリフラ情報を有しない画像データを選択し、選択された少なくとも3つの前記画像データから前記半導体ウエハの外周縁上の複数箇所の各位置情報を求め、これら位置情報から前記半導体ウエハの中心位置を求める位置検出部と、
    前記位置検出部により求められた前記半導体ウエハの中心位置と基準位置とから前記半導体ウエハのアライメントの補正量を求め、この補正量に基づいて前記半導体ウエハを基準位置にアライメントするアライメント制御部と、
    を具備したことを特徴とする半導体ウエハのアライメント装置。
  2. 半導体ウエハの外周縁の少なくとも4箇所を撮像する2次元撮像素子と、
    これら2次元撮像素子の撮像により取得された前記少なくとも4箇所の各画像データをそれぞれ前記半導体ウエハの半径方向に微分処理し、これら微分処理により求められた各微分値から前記半導体ウエハのノッチ又はオリフラ情報を有しない少なくとも3つの前記画像データを用いて前記半導体ウエハの中心位置を求める位置検出部と、
    前記位置検出部により求められた前記半導体ウエハの中心位置と基準位置とから前記半導体ウエハのアライメントの補正量を求め、この補正量に基づいて前記半導体ウエハを基準位置にアライメントするアライメント制御部と、
    を具備したことを特徴とする半導体ウエハのアライメント装置。
  3. 前記2次元撮像素子は、前記半導体ウエハを含む周囲環境を照明する照明光の波長成分外の波長領域の光を透過する波長選択フィルタを介して前記半導体ウエハの外周縁を撮像することを特徴とする請求項1又は2記載の半導体ウエハのアライメント装置。
  4. 前記2次元撮像素子は、カラー画像データを出力し、
    前記位置検出部は、前記カラー画像信号から選択された波長成分の画像データを抽出することを特徴とする請求項1又は2記載の半導体ウエハのアライメント装置。
JP2004078742A 2004-03-18 2004-03-18 半導体ウエハのアライメント装置 Withdrawn JP2005268530A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004078742A JP2005268530A (ja) 2004-03-18 2004-03-18 半導体ウエハのアライメント装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004078742A JP2005268530A (ja) 2004-03-18 2004-03-18 半導体ウエハのアライメント装置

Publications (1)

Publication Number Publication Date
JP2005268530A true JP2005268530A (ja) 2005-09-29

Family

ID=35092761

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004078742A Withdrawn JP2005268530A (ja) 2004-03-18 2004-03-18 半導体ウエハのアライメント装置

Country Status (1)

Country Link
JP (1) JP2005268530A (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009253197A (ja) * 2008-04-10 2009-10-29 Yamatake Corp 中心位置検出方法および装置、並びに中心位置合わせ方法および装置
JP2011216789A (ja) * 2010-04-01 2011-10-27 Nikon Corp 位置検出装置、重ね合わせ装置、位置検出方法およびデバイスの製造方法
JP2013141012A (ja) * 2006-09-29 2013-07-18 Lam Research Corporation 基板の位置決めオフセットの補正方法
JP2014085296A (ja) * 2012-10-26 2014-05-12 Tokyo Seimitsu Co Ltd ウェーハ形状測定装置
JP2014085295A (ja) * 2012-10-26 2014-05-12 Tokyo Seimitsu Co Ltd ウェーハの形状測定装置
KR101402123B1 (ko) * 2012-07-03 2014-06-03 주식회사 나노솔루션테크 웨이퍼 정렬장치
JP2014236182A (ja) * 2013-06-05 2014-12-15 信越半導体株式会社 半導体ウェーハの評価方法及び製造方法
JP2016128831A (ja) * 2016-02-12 2016-07-14 株式会社東京精密 研削スリップ条痕観察装置及び研削スリップ条痕観察方法
JP2016130738A (ja) * 2016-02-12 2016-07-21 株式会社東京精密 ウェーハ形状測定装置及び方法
KR20180136778A (ko) * 2017-06-15 2018-12-26 (주)에스아이엔지니어링 영상을 이용한 반도체 웨이퍼의 위치 정렬 장치 및 그 방법
JP2020091177A (ja) * 2018-12-05 2020-06-11 株式会社ディスコ 中心検出方法
CN116423689A (zh) * 2023-06-13 2023-07-14 江苏京创先进电子科技有限公司 太鼓晶圆对中确定方法及太鼓晶圆切割方法
CN116754577A (zh) * 2023-08-16 2023-09-15 苏州高视半导体技术有限公司 晶圆边缘成像***、其控制方法、电子设备及存储介质

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141012A (ja) * 2006-09-29 2013-07-18 Lam Research Corporation 基板の位置決めオフセットの補正方法
JP2009253197A (ja) * 2008-04-10 2009-10-29 Yamatake Corp 中心位置検出方法および装置、並びに中心位置合わせ方法および装置
JP2011216789A (ja) * 2010-04-01 2011-10-27 Nikon Corp 位置検出装置、重ね合わせ装置、位置検出方法およびデバイスの製造方法
KR101402123B1 (ko) * 2012-07-03 2014-06-03 주식회사 나노솔루션테크 웨이퍼 정렬장치
JP2014085296A (ja) * 2012-10-26 2014-05-12 Tokyo Seimitsu Co Ltd ウェーハ形状測定装置
JP2014085295A (ja) * 2012-10-26 2014-05-12 Tokyo Seimitsu Co Ltd ウェーハの形状測定装置
JP2014236182A (ja) * 2013-06-05 2014-12-15 信越半導体株式会社 半導体ウェーハの評価方法及び製造方法
JP2016130738A (ja) * 2016-02-12 2016-07-21 株式会社東京精密 ウェーハ形状測定装置及び方法
JP2016128831A (ja) * 2016-02-12 2016-07-14 株式会社東京精密 研削スリップ条痕観察装置及び研削スリップ条痕観察方法
KR20180136778A (ko) * 2017-06-15 2018-12-26 (주)에스아이엔지니어링 영상을 이용한 반도체 웨이퍼의 위치 정렬 장치 및 그 방법
KR102032403B1 (ko) 2017-06-15 2019-10-15 (주)에스아이엔지니어링 영상을 이용한 반도체 웨이퍼의 위치 정렬 장치 및 그 방법
JP2020091177A (ja) * 2018-12-05 2020-06-11 株式会社ディスコ 中心検出方法
JP7185510B2 (ja) 2018-12-05 2022-12-07 株式会社ディスコ 中心検出方法
CN116423689A (zh) * 2023-06-13 2023-07-14 江苏京创先进电子科技有限公司 太鼓晶圆对中确定方法及太鼓晶圆切割方法
CN116423689B (zh) * 2023-06-13 2023-09-15 江苏京创先进电子科技有限公司 太鼓晶圆对中确定方法及太鼓晶圆切割方法
CN116754577A (zh) * 2023-08-16 2023-09-15 苏州高视半导体技术有限公司 晶圆边缘成像***、其控制方法、电子设备及存储介质

Similar Documents

Publication Publication Date Title
US6549825B2 (en) Alignment apparatus
US7372062B2 (en) Defect inspection device and substrate manufacturing system using the same
JP5934874B2 (ja) ウェーハを検査するためのシステム及び方法
JP4020144B2 (ja) 表面状態の検査方法
CN109270906B (zh) 工件处理装置、工件输送***
US20050122509A1 (en) Apparatus for wafer inspection
US20080225281A1 (en) Visual inspection apparatus
JP2008235892A (ja) ウエハの縁部領域の欠陥の評価のための装置及び方法
US20090161094A1 (en) Wafer bevel inspection mechanism
JP2012515331A (ja) ウェーハを検査するためのシステム及び方法
JPH11317429A (ja) 直接プローブ・センシングのための改良された方法および装置
JP2005268530A (ja) 半導体ウエハのアライメント装置
JP2009016455A (ja) 基板位置検出装置及び基板位置検出方法
KR20020054345A (ko) 광학식 센서
JP2007248241A (ja) 表面状態の検査方法および表面状態検査装置
JP2015190826A (ja) 基板検査装置
CN103247548B (zh) 一种晶圆缺陷检测装置及方法
TWI620039B (zh) 位置判斷裝置、位置判斷方法、微影設備及用於製造物件的方法
US6963394B2 (en) Inspecting device for semiconductor wafer
JP4560898B2 (ja) 検査装置及び検査方法
CN116137893A (zh) 检查装置、检查方法以及活塞的制造方法
JP5272784B2 (ja) 光学的検査方法および光学的検査装置
JP2008021884A (ja) 検査装置
JP2010019600A (ja) 基板外観検査方法および基板外観検査装置
JP3946485B2 (ja) ウエハアライナ装置及びこれを備えるウエハ検査装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605