JP2005266362A - Polarization independent optical device - Google Patents

Polarization independent optical device Download PDF

Info

Publication number
JP2005266362A
JP2005266362A JP2004079223A JP2004079223A JP2005266362A JP 2005266362 A JP2005266362 A JP 2005266362A JP 2004079223 A JP2004079223 A JP 2004079223A JP 2004079223 A JP2004079223 A JP 2004079223A JP 2005266362 A JP2005266362 A JP 2005266362A
Authority
JP
Japan
Prior art keywords
polarization
optical element
light
optical
light wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004079223A
Other languages
Japanese (ja)
Other versions
JP4500074B2 (en
Inventor
Shingo Mori
慎吾 森
Masayuki Ichioka
雅之 市岡
Yoichi Sato
洋一 佐藤
Junichiro Ichikawa
潤一郎 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2004079223A priority Critical patent/JP4500074B2/en
Publication of JP2005266362A publication Critical patent/JP2005266362A/en
Application granted granted Critical
Publication of JP4500074B2 publication Critical patent/JP4500074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical device independent on polarization that has few components and is easy to manufacture. <P>SOLUTION: This device has: an optical element 20 dependent on polarization; a polarization separating means 24 to split the single input light having several polarized components into light waves having different polarized components; and a polarization-combining means 29 to combine light waves having single polarized components, to obtain a light wave having several polarized components. The device introduces the light wave from the polarization-separating means 24 to the optical element 20; and in the optical device constituted so as to introduce the light waves from the means 24 to the means 29, the polarization separating means 24 or the polarization compositing means 29 includes a polarization separating coupler, by using two polarization-keeping fibers, and ends 28 and 30 of one of this polarization-keeping fiber are turned and adjusted to a predetermined angle. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、偏波依存性を有する光学素子を用いた光学機器に関し、特に、光学機器に入射する光波が複数の偏波成分を有する場合でも、偏波依存性を有する光学素子が安定して動作するように構成した偏波無依存型光学機器に関する。   The present invention relates to an optical apparatus using a polarization-dependent optical element, and in particular, even when a light wave incident on the optical apparatus has a plurality of polarization components, the polarization-dependent optical element is stable. The present invention relates to a polarization-independent optical device configured to operate.

近年、高速・大容量光ファイバ通信システムの進歩に伴い、外部変調器に代表されるように、導波路型光学素子を用いた高速光変調器が実用化され、広く用いられるようになってきている。
例えば、導波路型光学素子は、LiNbO3(ニオブ酸リチウム)などの電気光学効果を有する基板上に、Tiなどを熱拡散して導波路を形成するものである。特に、導波路の形状として2つの分岐光導波路を有するマッハツェンダー型の光導波路が多く利用されており、このような構成の光学素子にあっては、S偏波成分とP偏波成分とで、分岐光導波路における電気光学定数が異なるため、位相をπシフトさせるのに必要な半波長電圧の大きさが異なるという偏波依存性を有することが知られており、したがって光源光を光導波路の入射端へ伝送する光ファイバとしては偏波保持ファイバを用いる必要があった。
In recent years, with the advancement of high-speed and large-capacity optical fiber communication systems, as represented by external modulators, high-speed optical modulators using waveguide type optical elements have been put into practical use and are widely used. Yes.
For example, the waveguide type optical element forms a waveguide by thermally diffusing Ti or the like on a substrate having an electrooptic effect such as LiNbO 3 (lithium niobate). In particular, a Mach-Zehnder type optical waveguide having two branched optical waveguides is often used as the shape of the waveguide. In an optical element having such a configuration, an S-polarization component and a P-polarization component are used. It is known that since the electro-optic constants in the branched optical waveguides are different, it has polarization dependency that the magnitude of the half-wave voltage required for shifting the phase by π is different. It was necessary to use a polarization maintaining fiber as an optical fiber to be transmitted to the incident end.

しかしながら、最近では、導波路型光学素子を、シングルモード光ファイバからなる光伝送路の中途に介在させて使用することが求められている。そのため、偏波依存性を有する光学素子の入射側に設けられる光ファイバが偏波保持光ファイバでなく、入射光の偏波状態がランダムに変化する場合であっても、光学素子が良好に動作する構成が求められている。
本出願人は、以下の特許文献1において、波長依存性を有する導波路型光学素子を用いた偏波無依存性の光学機器を提案している。
特開2003−270591号公報
However, recently, it has been demanded to use a waveguide type optical element in the middle of an optical transmission line composed of a single mode optical fiber. Therefore, even if the optical fiber provided on the incident side of the polarization-dependent optical element is not a polarization-maintaining optical fiber, the optical element operates well even when the polarization state of the incident light changes randomly. There is a need for a configuration to do this.
In the following Patent Document 1, the present applicant has proposed a polarization-independent optical device using a waveguide-type optical element having wavelength dependency.
JP 2003-270591 A

特許文献1に記載の発明は、図1に示すように、入射手段1からの入射光2が偏波分離手段3でS偏波成分とP偏波成分とに分離され、S偏波成分が第1の偏波回転手段4でP偏波成分に変換された光束と、P偏波成分が第1の光路長補正手段5を透過した光束とが第1のプリズム6を経て第1のレンズ7でそれぞれ集光されて導波路型光学素子8の2つの光導波路9,10にそれぞれ入射される。
特に、偏波分離手段3は、複屈折材料からなり入射光の進行方向における長さが等しい2つの偏波分離素子3a,3bの間に、偏波回転素子3cを設けるものである。
In the invention described in Patent Document 1, as shown in FIG. 1, the incident light 2 from the incident means 1 is separated into the S-polarized component and the P-polarized component by the polarization separating means 3, and the S-polarized component is The light beam converted into the P polarization component by the first polarization rotation means 4 and the light beam having the P polarization component transmitted through the first optical path length correction means 5 pass through the first prism 6 and the first lens. 7 are respectively condensed and made incident on the two optical waveguides 9 and 10 of the waveguide type optical element 8.
In particular, the polarization separation means 3 is provided with a polarization rotation element 3c between two polarization separation elements 3a and 3b made of a birefringent material and having the same length in the traveling direction of incident light.

上述の構成により、伝搬光の偏波状態がランダムに変化しても、常に一定の偏波状態(P偏波成分のみ)の2つの分光を光導波路に入射させることができるとともに、光導波路の入射側で生じる該2つの分光間の光路差を低減することができる。したがって、偏波依存性を有する導波路型光学素子への入射光の偏波状態がランダムに変化しても、導波路型光学素子が安定して動作し、かつ通信システムの高速化にも対応しうる偏波無依存型光学機器を得ることができる。   With the above-described configuration, even when the polarization state of the propagating light changes at random, it is possible to always enter two light beams having a constant polarization state (only the P polarization component) into the optical waveguide. The optical path difference between the two spectra generated on the incident side can be reduced. Therefore, even if the polarization state of incident light on a waveguide-type optical element having polarization dependence changes randomly, the waveguide-type optical element operates stably and supports high-speed communication systems. A polarization independent optical device that can be obtained can be obtained.

特許文献1に記載される偏波無依存型光学機器においては、空間光学系を用いているため、入射部で光ファイバの射出光を平行光にするためのコリメータレンズ、偏波分離素子、偏波回転素子、光学素子へ入射するためのコリメータレンズが必要であり、光学素子の出射部側でも同様の空間光学系が必要となる。
このため、部品点数が多く、部品コストが高い上に、製造時の工程が複雑かつ困難なものとなる。特に、特許文献1においては、光学素子に入射する際の偏波分離部で生じる二つの平行光の光路差を補正するために、偏波を回転させて2つの偏波分離素子を通過させる必要があり、より部品点数が多くなる上、製造が複雑化するという問題点がある。
In the polarization-independent optical device described in Patent Document 1, since a spatial optical system is used, a collimator lens, a polarization separation element, and a polarization for making the light emitted from the optical fiber into parallel light at the incident portion. A collimator lens for entering the wave rotating element and the optical element is required, and a similar spatial optical system is also required on the exit side of the optical element.
For this reason, the number of parts is large, the part cost is high, and the manufacturing process is complicated and difficult. In particular, in Patent Document 1, in order to correct an optical path difference between two parallel lights generated in a polarization separation unit when entering an optical element, it is necessary to rotate the polarization and pass the two polarization separation elements. There is a problem that the number of parts is increased and the manufacturing is complicated.

本発明の目的は、上述した問題を解決し、部品点数が少なく、製造も容易な偏波無依存型光学機器を提供することである。   An object of the present invention is to provide a polarization-independent optical apparatus that solves the above-described problems, has a small number of parts, and is easy to manufacture.

上記課題を解決するために、請求項1に係る発明では、偏波依存性を有する光学素子と、複数の偏波成分を有する単一の入射光を異なる偏波成分を有する複数の光波に分離する偏波分離手段と、同一の偏波成分を有する複数の光波を複数の偏波成分を有する単一の出射光に合成する偏波合成手段とを有し、該偏波分離手段からの光波を該光学素子に導入すると共に、該光学素子からの光波を該偏波合成手段に導入するよう構成された偏波無依存型光学機器において、該偏波分離手段又は該偏波合波手段が、2つの偏波保持ファイバを用いた偏波分離カプラで構成されていることを特徴とする。   In order to solve the above-described problem, in the invention according to claim 1, an optical element having polarization dependency and a single incident light having a plurality of polarization components are separated into a plurality of light waves having different polarization components. And a polarization beam combining unit that combines a plurality of light waves having the same polarization component into a single outgoing light having a plurality of polarization components, and the light wave from the polarization beam separation unit In the polarization-independent optical apparatus configured to introduce the light wave from the optical element into the polarization beam combining unit, the polarization separation unit or the polarization beam combining unit includes: It is characterized by comprising a polarization separation coupler using two polarization maintaining fibers.

また、請求項2に係る発明では、請求項1に記載の偏波無依存型光学機器において、該偏波分離手段と該偏波合成手段とを、一つの偏波分離カプラで構成することを特徴とする。   According to a second aspect of the present invention, in the polarization independent optical device according to the first aspect, the polarization separation unit and the polarization beam combining unit may be configured by a single polarization separation coupler. Features.

また、請求項3に係る発明では、請求項1又は2に記載の偏波無依存型光学機器において、該偏波分離カプラの一方の偏波保持ファイバの一端が所定の角度に回転調整されていることを特徴とする。   In the invention according to claim 3, in the polarization independent optical device according to claim 1 or 2, one end of one polarization maintaining fiber of the polarization separation coupler is rotationally adjusted to a predetermined angle. It is characterized by being.

また、請求項4に係る発明では、請求項1乃至3のいずれかに記載の偏波無依存型光学機器において、該偏波分離カプラの光波の入射側又は出射側の少なくとも一方の側で、2つの偏波保持ファイバの端部を固定保持する支持部材を設けることを特徴とする。   Further, in the invention according to claim 4, in the polarization independent optical device according to any one of claims 1 to 3, at least one of the light wave incident side and the light exit side of the polarization separating coupler, A support member for fixing and holding the ends of the two polarization maintaining fibers is provided.

また、請求項5に係る発明では、請求項1乃至4のいずれかに記載の偏波無依存型光学機器において、該光学素子が導波路型光変調素子であることを特徴とする偏波無依存型光学機器。   The invention according to claim 5 is the polarization independent optical device according to any one of claims 1 to 4, wherein the optical element is a waveguide type light modulation element. Dependent optical equipment.

請求項1に係る発明により、偏波分離手段又は偏波合成手段として、2つの偏波保持ファイバを用いた偏波分離カプラを用いているため、偏波分離手段や偏波合成手段を、偏波分離カプラという単一の光学部品で構成することが可能となり、部品点数の削減、製造の容易性に寄与する。   According to the first aspect of the present invention, since the polarization separation coupler using two polarization maintaining fibers is used as the polarization separation means or the polarization synthesis means, the polarization separation means and the polarization synthesis means are not polarized. A single optical component called a wave separation coupler can be used, which contributes to a reduction in the number of components and ease of manufacturing.

請求項2に係る発明により、偏波分離手段と偏波合成手段とを共通化し、一つの偏波分離カプラで構成するため、より部品点数の削減を達成できる。しかも、偏波依存性を有する光学素子に対して一方の側のみに偏波分離カプラを配置することとなるため、光学素子の両側に偏波分離カプラを設置するものよりコンパクトに偏波無依存型光学機器を構成することが可能となる。   According to the second aspect of the present invention, since the polarization splitting means and the polarization combining means are made common and configured by one polarization splitting coupler, the number of parts can be further reduced. In addition, since the polarization splitting coupler is disposed only on one side of the optical element having polarization dependence, the polarization independent is more compact than the one having the polarization splitting coupler on both sides of the optical element. It is possible to configure a mold optical apparatus.

請求項3に係る発明により、偏波成分を回転させる際には、従来のような偏波回転手段を用いず、単に偏波保持ファイバの端部を所定角度に回転調整するだけで良く、一層の部品点数の削減、製造の容易性に寄与するものとなる。   According to the third aspect of the present invention, when the polarization component is rotated, it is only necessary to rotate and adjust the end of the polarization maintaining fiber to a predetermined angle without using the conventional polarization rotation means. This contributes to the reduction of the number of parts and the ease of manufacturing.

請求項4に係る発明により、偏波分離カプラの光波の入射側又は出射側の少なくとも一方の側で、2つの偏波保持ファイバの端部を固定保持する支持部材を設けるため、偏波分離カプラの偏波保持ファイバを光学素子などに取り付ける際に、製造・組立を容易に行うことが可能となる。   According to the invention of claim 4, the polarization separation coupler is provided with the support member for fixing and holding the ends of the two polarization maintaining fibers on at least one of the light wave incident side and the light emission side of the polarization separation coupler. When attaching the polarization maintaining fiber to an optical element or the like, it becomes possible to easily manufacture and assemble.

請求項5に係る発明により、光学素子が導波路型光変調素子であるため、偏波依存性を有する導波路型光変調素子への入射光の偏波状態がランダムに変化しても、導波路型光学素子が安定して動作し、かつ通信システムの高速化にも対応しうる偏波無依存型光学機器を得ることができる。   According to the invention of claim 5, since the optical element is a waveguide type light modulation element, even if the polarization state of the incident light to the waveguide type light modulation element having polarization dependency changes randomly, the optical element is guided. It is possible to obtain a polarization-independent optical device in which the waveguide optical element operates stably and can cope with a high speed communication system.

以下、本発明を好適例を用いて詳細に説明する。
本発明の特徴は、偏波依存性を有する光学素子と、複数の偏波成分を有する単一の入射光を異なる偏波成分を有する複数の光波に分離する偏波分離手段と、同一の偏波成分を有する複数の光波を複数の偏波成分を有する単一の出射光に合成する偏波合成手段とを有し、該偏波分離手段からの光波を該光学素子に導入すると共に、該光学素子からの光波を該偏波合成手段に導入するよう構成された偏波無依存型光学機器において、該偏波分離手段又は該偏波合波手段が、2つの偏波保持ファイバを用いた偏波分離カプラで構成されていることを特徴とする。
Hereinafter, the present invention will be described in detail using preferred examples.
A feature of the present invention is that an optical element having polarization dependency, a polarization separation unit that separates single incident light having a plurality of polarization components into a plurality of light waves having different polarization components, and the same polarization Polarization combining means for combining a plurality of light waves having wave components into a single outgoing light having a plurality of polarization components, and introducing the light waves from the polarization separation means into the optical element, In a polarization-independent optical device configured to introduce a light wave from an optical element into the polarization beam combining unit, the polarization beam separation unit or the polarization beam combining unit uses two polarization maintaining fibers. It is characterized by comprising a polarization separation coupler.

図2は、本発明に係る偏波無依存型光学機器の概略を示す図である。
20は、偏波依存性を有する光学素子を示し、例えば、電気光学効果を有する基板21上に、マッハツェンダー型の導波路22,23を形成した導波路型光変調素子などを利用することが可能である。
本発明に係る光学素子は、上記の導波路型光変調素子に限定されるものではなく、偏波分離した各光波に対応して、偏波依存性を有する光学素子を2つ平行に配置したものであるなら、本発明を適用することが可能である。
FIG. 2 is a diagram showing an outline of a polarization-independent optical apparatus according to the present invention.
Reference numeral 20 denotes an optical element having polarization dependency. For example, a waveguide type light modulation element in which Mach-Zehnder type waveguides 22 and 23 are formed on a substrate 21 having an electrooptic effect may be used. Is possible.
The optical element according to the present invention is not limited to the above-described waveguide type light modulation element, and two optical elements having polarization dependency are arranged in parallel corresponding to each light wave separated by polarization. If it is, the present invention can be applied.

光学素子20の入力側には、2つの偏波保持ファイバで構成される偏波分離カプラ24を配置する。一方の偏波保持ファイバの入力端25には、P偏波成分とS偏波成分とを共に有するランダムな偏波状態の入射光が入力される。他方の偏波保持ファイバの入力端26は使用せず、端部は外部から光波が入力されないよう遮光されている。   On the input side of the optical element 20, a polarization separation coupler 24 composed of two polarization maintaining fibers is disposed. Incident light in a random polarization state having both a P polarization component and an S polarization component is input to the input end 25 of one polarization maintaining fiber. The input end 26 of the other polarization maintaining fiber is not used, and the end is shielded so that no light wave is input from the outside.

偏波分離カプラ24を通過した光波は、P偏波成分とS偏波成分に分離され、例えば、P偏波成分は偏波保持ファイバの出力端27に、S偏波成分は偏波保持ファイバの出力端28に導出される。   The light wave that has passed through the polarization separation coupler 24 is separated into a P polarization component and an S polarization component. For example, the P polarization component is at the output end 27 of the polarization maintaining fiber, and the S polarization component is at the polarization maintaining fiber. Is output to the output terminal 28.

光学素子20がP偏波成分に対して最も変調効果が高い光学素子(以下、「P偏波用光学素子」という)である場合には、光学素子20の導波路22には、P偏波成分を維持するように偏波保持ファイバの出力端27が接続され、他方、導波路23には、S偏波成分がP偏波成分となるように、偏波保持ファイバの出力端28が90°回転調整された状態で接続されている。なお、光学素子20がP偏波用光学素子と、S偏波成分に対して最も変調効果が高い光学素子(以下、「S偏波用光学素子」という)との組合せで構成される場合には、偏波保持ファイバの出力端28を回転させずに、S偏波用光学素子に直接接続することも可能である。   When the optical element 20 is an optical element having the highest modulation effect with respect to the P polarization component (hereinafter referred to as “P polarization optical element”), the waveguide 22 of the optical element 20 has a P polarization. The output end 27 of the polarization maintaining fiber is connected so as to maintain the component. On the other hand, the output end 28 of the polarization maintaining fiber is connected to the waveguide 23 so that the S polarization component becomes the P polarization component. ° Connected with rotation adjusted. When the optical element 20 is composed of a combination of a P-polarization optical element and an optical element having the highest modulation effect on the S-polarization component (hereinafter referred to as “S-polarization optical element”). Can be directly connected to the optical element for S polarization without rotating the output end 28 of the polarization maintaining fiber.

光学素子20に導入された各光波は、いずれもP偏波成分であり、各導波路22,23を伝搬する際に、基板21上に形成された不図示の変調電極により位相変調を受ける。各導波路22,23における各変調は、基本的には同じ変調が行われ、同じ変調を受けた各光波が光学素子20から導出される。   Each light wave introduced into the optical element 20 is a P polarization component, and undergoes phase modulation by a modulation electrode (not shown) formed on the substrate 21 when propagating through the waveguides 22 and 23. The respective modulations in the respective waveguides 22 and 23 are basically the same modulation, and the respective light waves subjected to the same modulation are derived from the optical element 20.

光学素子20の出力側には、入力側と同様に、2つの偏波保持ファイバで構成される偏波分離カプラ29(偏波合成手段として機能する)を配置する。一方の偏波保持ファイバの入力端30には、導波路22から出射するP偏波成分の変調光が入力される。他方の偏波保持ファイバの入力端31には、導波路23から出射するP偏波成分の変調光が入力される。   On the output side of the optical element 20, similarly to the input side, a polarization separation coupler 29 (functioning as a polarization combining unit) composed of two polarization maintaining fibers is disposed. The modulated light of the P polarization component emitted from the waveguide 22 is input to the input end 30 of one polarization maintaining fiber. P-polarized component modulated light emitted from the waveguide 23 is input to the input end 31 of the other polarization maintaining fiber.

2つのP偏波成分をP偏波成分の状態で合成することも可能であるが、この場合には、互いの光波が干渉する現象を生じることが危惧されるため、いずれか一方の偏波保持ファイバの入力端を90°回転調整された状態とすることにより、偏波分離カプラ29において、P偏波成分とS偏波成分とを合成した出力光を得ることができる。図2では、入力端30を90°回転する例を示している。なお、光学素子20がP偏波用光学素子と、S偏波用光学素子との組合せで構成される場合には、偏波保持ファイバの入力端30を回転させずに、S偏波用光学素子に直接接続することも可能である。   Although it is possible to synthesize two P-polarized components in the state of P-polarized components, in this case, there is a risk of causing a phenomenon in which light waves interfere with each other. By setting the input end of the fiber to be rotated by 90 °, the polarization separating coupler 29 can obtain output light obtained by combining the P polarization component and the S polarization component. FIG. 2 shows an example in which the input end 30 is rotated by 90 °. In the case where the optical element 20 is composed of a combination of a P-polarization optical element and an S-polarization optical element, the optical element for S-polarization can be used without rotating the input end 30 of the polarization-maintaining fiber. It is also possible to connect directly to the element.

偏波合成手段である偏波分離カプラ29を通過した光波は、図2に示すように、いずれか一方の偏波保持ファイバの出力端33からP偏波成分とS偏波成分とを共に有する変調光として出力される。
この構成により、偏波依存性を有する光学素子20に対して、ランダムな偏波状態の光波を入射させる場合でも、効果的に光学素子を機能させることができ、偏波無依存型光学機器を得ることが可能となる。
As shown in FIG. 2, the light wave that has passed through the polarization splitting coupler 29, which is a polarization beam combining means, has both a P-polarized wave component and an S-polarized wave component from the output end 33 of one of the polarization maintaining fibers. Output as modulated light.
With this configuration, even when a light wave having a random polarization state is incident on the optical element 20 having polarization dependency, the optical element can be effectively functioned, and a polarization-independent optical device can be obtained. Can be obtained.

本発明では、P偏波成分とS偏波成分との間の変換を、偏波保持ファイバの光軸周りの回転により調整しているため、従来のような1/2波長板などが不要となり、部品点数の削減に繋がると共に、2つの偏波保持ファイバの長さを同じにする以外は、偏波分離した2つの光波の光路長を調整する特別な手段も必要ない。   In the present invention, since the conversion between the P polarization component and the S polarization component is adjusted by the rotation around the optical axis of the polarization maintaining fiber, a conventional half-wave plate or the like becomes unnecessary. In addition to reducing the number of parts, no special means for adjusting the optical path lengths of the two polarization-separated light waves is required except that the two polarization maintaining fibers have the same length.

また、光学素子20に光波を入射させる際には、光波の偏波成分をより適切に制御するため、例えば、偏波保持ファイバの出力端27と導波路22との間や、偏波保持ファイバの出力端28と導波路23との間に、不図示の偏光板を設置することも可能である。   Further, when the light wave is incident on the optical element 20, in order to more appropriately control the polarization component of the light wave, for example, between the output end 27 of the polarization maintaining fiber and the waveguide 22, or the polarization maintaining fiber. It is also possible to install a polarizing plate (not shown) between the output end 28 and the waveguide 23.

さらに、2つの偏波保持ファイバの出力端又は入力端と、光学素子との光学的接続を容易に行うため、図3に示すように、2つの偏波保持ファイバの端部を固定保持する支持部材40を利用することも可能である。
支持部材40には、例えばV溝41,42を形成し、該V溝に偏波保持ファイバの端部を配置し、接着剤などにより固定する方法が利用できる。偏波保持ファイバと支持部材との接合方法は、接着剤だけに限らず、機械的手段で狭持することも可能である。ただし、偏波保持ファイバは応力が付与されると、偏波面が変化する可能性があることにも、留意する必要がある。
Further, in order to facilitate optical connection between the output end or the input end of the two polarization maintaining fibers and the optical element, as shown in FIG. 3, a support for fixing and holding the ends of the two polarization maintaining fibers. The member 40 can also be used.
For example, a method of forming V-grooves 41 and 42 in the support member 40, disposing the end portion of the polarization maintaining fiber in the V-groove, and fixing with an adhesive or the like can be used. The method of joining the polarization maintaining fiber and the support member is not limited to the adhesive, and can be held by mechanical means. However, it should be noted that the polarization maintaining fiber may change its polarization plane when stress is applied.

このような支持部材を利用し、予め偏波保持ファイバを適切な状態(例えば、一方の偏波保持ファイバを回転調整した状態)で支持部材に固定させておくことにより、光学素子への偏波保持ファイバの接続に際しては、支持部材を光学素子の基板等に固着するだけで、両者の接続を簡単に実現することが可能となる。   By using such a support member, the polarization maintaining fiber is fixed to the support member in an appropriate state (for example, in a state where one polarization maintaining fiber is rotationally adjusted) in advance, so that the polarization to the optical element can be obtained. When the holding fiber is connected, it is possible to easily realize the connection between both by simply fixing the support member to the substrate of the optical element.

図4は、偏波分離手段と偏波合成手段とを一つの偏波分離カプラで構成する場合の例を示す。
光学素子は、基板50上に図4に示すような導波路51,52を形成し、基板の端部には1/4波長板53と反射板54が接続されている。
FIG. 4 shows an example in which the polarization separating means and the polarization synthesizing means are constituted by one polarization separating coupler.
In the optical element, waveguides 51 and 52 as shown in FIG. 4 are formed on a substrate 50, and a quarter-wave plate 53 and a reflecting plate 54 are connected to the end of the substrate.

図4に示す光学素子の動作は、例えば、導波路51の入力部に導入されたP偏波成分を有する光波は、Y分岐導波路で2つに分岐され、各分岐導波路おいて不図示の変調電極により、位相変調を受ける。位相変調を受けた光波は、1/4波長板53を通過し、反射板(あるいは反射膜)54で反射し、再度1/4波長板53を通過して、同じ分岐導波路を逆方向に伝搬する。
このように、光波が2回、1/4波長板を通過することにより、P偏波成分はS偏波成分へと回転され、導波路51を逆方向に伝搬する光波はS偏波成分を有することとなる。
このような光学素子は以下の特許文献2にも開示されており、本発明においては、図4に記載の光学素子に限らず、特許文献2に記載の種々の光学素子を利用することが可能である。
特開平7−325276号公報
The operation of the optical element shown in FIG. 4 is such that, for example, a light wave having a P-polarized component introduced into the input portion of the waveguide 51 is branched into two by the Y branch waveguide, and is not shown in each branch waveguide. The modulation electrode is subjected to phase modulation. The light wave subjected to the phase modulation passes through the quarter-wave plate 53, is reflected by the reflection plate (or reflection film) 54, passes through the quarter-wave plate 53 again, and passes through the same branch waveguide in the reverse direction. Propagate.
Thus, when the light wave passes through the quarter wavelength plate twice, the P polarization component is rotated to the S polarization component, and the light wave propagating in the reverse direction through the waveguide 51 has the S polarization component. Will have.
Such an optical element is also disclosed in Patent Document 2 below. In the present invention, not only the optical element described in FIG. 4 but also various optical elements described in Patent Document 2 can be used. It is.
JP 7-325276 A

図4に示す光学素子を利用して、偏波無依存型光学機器を構成するには、光学素子の入力側(出力側でもある)に偏波分離カプラ55を配置する。
具体的には、偏波保持ファイバの入力端56に、P偏波成分とS偏波成分とを共に有するランダムな偏波状態の入射光が入力される。該入射光は、偏波分離カプラ55によりP偏波成分とS偏波成分とに分離され、例えば、P偏波成分は偏波保持ファイバの端部58に、S偏波成分は偏波保持ファイバの端部59に導出される。
In order to construct a polarization-independent optical device using the optical element shown in FIG. 4, a polarization separation coupler 55 is disposed on the input side (also the output side) of the optical element.
Specifically, incident light in a random polarization state having both a P polarization component and an S polarization component is input to the input end 56 of the polarization maintaining fiber. The incident light is separated into a P-polarized component and an S-polarized component by the polarization separation coupler 55. For example, the P-polarized component is at the end 58 of the polarization-maintaining fiber, and the S-polarized component is polarized. Leaded to the end 59 of the fiber.

光学素子がP偏波用光学素子である場合には、光学素子の導波路51には、P偏波成分を維持するように偏波保持ファイバの端部58が接続され、他方、導波路52には、S偏波成分がP偏波成分となるように、偏波保持ファイバの端部59が90°回転調整された状態で接続されている。   When the optical element is a P-polarization optical element, an end 58 of the polarization-maintaining fiber is connected to the waveguide 51 of the optical element so as to maintain the P-polarization component, while the waveguide 52 Are connected in a state in which the end portion 59 of the polarization maintaining fiber is rotated by 90 ° so that the S polarization component becomes the P polarization component.

光学素子に導入されたP偏波成分を有する各光波は、上述のような光学素子の変調や回転を受け、S偏波成分となって、光学素子から導出される。
光学素子から出射するS偏波成分の光波は、再度、偏波保持ファイバの端部58,59に入射し、偏波保持ファイバの端部58から入射した光波は、S偏波成分として偏波分離カプラ55に戻され、偏波保持ファイバの端部59から入射した光波は、S偏波成分からP偏波成分へと回転され、偏波分離カプラ55に戻される。
Each light wave having a P-polarized component introduced into the optical element is subjected to the modulation and rotation of the optical element as described above, becomes an S-polarized component, and is derived from the optical element.
The light wave of the S polarization component emitted from the optical element again enters the end portions 58 and 59 of the polarization maintaining fiber, and the light wave incident from the end portion 58 of the polarization maintaining fiber is polarized as the S polarization component. The light wave returned to the separation coupler 55 and incident from the end portion 59 of the polarization maintaining fiber is rotated from the S polarization component to the P polarization component and returned to the polarization separation coupler 55.

偏波分離カプラ55においては、2つの戻り光を合成し、P偏波成分とS偏波成分とを有するランダムな偏波状態の光波として、偏波保持ファイバの出力端57から変調光を出射する。   The polarization separation coupler 55 combines the two return lights and emits modulated light from the output end 57 of the polarization maintaining fiber as a light wave in a random polarization state having a P polarization component and an S polarization component. To do.

図4のような光学素子を利用することにより、偏波分離手段と偏波合成手段とを一つの偏波分離カプラで兼用することができるだけでなく、光学機器全体をコンパクトなものとして構成することも可能となる。   By using the optical element as shown in FIG. 4, not only can the polarization separating means and the polarization synthesizing means be shared by a single polarization separating coupler, but also the entire optical device can be made compact. Is also possible.

図5は、偏波分離手段と偏波合成手段とを一つの偏波分離カプラで構成する場合の他の例を示す。
図5に示される光学素子の働きは、以下に述べる内容以外は、基本的に図4に示すものと同様である。
導波路52に関しては、導波路52の入力部に導入されたS偏波成分を有する光波は、Y分岐導波路で2つに分岐され、1/4波長板53を通過し、反射板(あるいは反射膜)54で反射し、再度1/4波長板53を通過して、P偏波成分の状態で同じ分岐導波路を逆方向に伝搬する。この逆方向に伝搬する際に、光波は、各分岐導波路おいて不図示の変調電極により、位相変調を受ける。
FIG. 5 shows another example in which the polarization separating means and the polarization synthesizing means are constituted by one polarization separating coupler.
The operation of the optical element shown in FIG. 5 is basically the same as that shown in FIG. 4 except for the contents described below.
With respect to the waveguide 52, the light wave having the S-polarized component introduced into the input portion of the waveguide 52 is branched into two by the Y-branch waveguide, passes through the quarter wavelength plate 53, and is reflected by the reflection plate (or Reflected by the reflective film 54, passes through the quarter-wave plate 53 again, and propagates in the reverse direction in the same branched waveguide in the state of the P polarization component. When propagating in the opposite direction, the light wave undergoes phase modulation by a modulation electrode (not shown) in each branch waveguide.

ただし、偏波依存性のある光学素子において導波路51と導波路52を同じ状態で変調するには、例えば図6(a)又は(b)に示すように、導波路51を伝搬する光波は、正方向(図5及び6の右方向)に伝搬する際に変調し、導波路52を伝搬する光波は逆方向に伝搬する際に所定期間Δtだけ遅延させて変調する必要がある。60,61及び62は変調電極を示す。
前記Δtは、導波路51と導波路52とが同形状で、導波路51に光波Aが導波路52に光波Bが同時に入射した場合、導波路51を正方向に伝搬する光波AがP点で変調変調電極の作用を受け始める時期から、導波路52を伝搬する光波Bが反射膜54で反射した後、Q点で変調電極の作用を受け始める時期までの期間である。
However, in order to modulate the waveguide 51 and the waveguide 52 in the same state in an optical element having polarization dependence, for example, as shown in FIG. It is necessary to modulate the light wave propagating in the forward direction (right direction in FIGS. 5 and 6) and to modulate the light wave propagating through the waveguide 52 with a delay of a predetermined period Δt when propagating in the reverse direction. Reference numerals 60, 61 and 62 denote modulation electrodes.
Δt is the same shape of the waveguide 51 and the waveguide 52, and when the light wave A enters the waveguide 51 and the light wave B simultaneously enters the waveguide 52, the light wave A propagating in the positive direction through the waveguide 51 is P point. In this period, the light wave B propagating through the waveguide 52 is reflected by the reflection film 54 and begins to receive the action of the modulation electrode at the point Q.

また、このような遅延する電気信号(RF信号)を印加するには、図6(a)のように光波Aの正方向に印加した電気信号を光波Bの逆方向に引き続き導入する構造を用いる方法や、図6(b)のように、光波Aと光波Bに別々の電極を用い、Δtずれた電気信号を個別に印加する構成にすることもできる。   In order to apply such a delayed electric signal (RF signal), a structure in which an electric signal applied in the positive direction of the light wave A is continuously introduced in the opposite direction of the light wave B as shown in FIG. Alternatively, as shown in FIG. 6B, separate electrodes may be used for the light wave A and the light wave B, and electrical signals shifted by Δt may be applied individually.

本発明は、以上説明したものに限られるものではなく、必要に応じて当該技術分野における公知の技術を適用可能であることは、言うまでも無い。   The present invention is not limited to what has been described above, and it is needless to say that known techniques in the technical field can be applied as necessary.

以上、説明したように、本発明によれば、部品点数が少なく、製造も容易な偏波無依存型光学機器を提供することができる。   As described above, according to the present invention, it is possible to provide a polarization-independent optical device that has a small number of components and is easy to manufacture.

従来の偏波無依存型光学機器の一例を示す図である。It is a figure which shows an example of the conventional polarization independent optical apparatus. 本発明に係る偏波無依存型光学機器の実施例を示す図である。It is a figure which shows the Example of the polarization independent optical apparatus which concerns on this invention. 本発明に係る偏波保持ファイバと支持部材との関係を示す図である。It is a figure which shows the relationship between the polarization maintaining fiber which concerns on this invention, and a supporting member. 本発明に係る偏波無依存型光学機器であり、偏波分離手段と偏波合成手段とを共通化する実施例を示す図である。It is a polarization-independent optical apparatus according to the present invention, and is a diagram showing an embodiment in which a polarization separating unit and a polarization combining unit are shared. 本発明に係る偏波無依存型光学機器であり、偏波分離手段と偏波合成手段とを共通化する他の実施例を示す図である。It is a polarization independent optical apparatus according to the present invention, and is a diagram showing another embodiment in which the polarization separating means and the polarization combining means are shared. 図4又は5の光学素子における変調電極の構造を説明する図であり、(a)は共通の変調電極を用いるもの、(b)は個別の変調電極を用いるものを示す。FIGS. 6A and 6B are diagrams illustrating a structure of a modulation electrode in the optical element of FIG. 4 or 5, in which FIG. 4A illustrates a structure using a common modulation electrode, and FIG.

符号の説明Explanation of symbols

20 光学素子
24 偏波分離手段
25,26,27,28,30,31,32,33 偏波保持ファイバの端部
29 偏波合成手段
40 支持部材
53 1/4波長板
54 反射板
60,61,62 変調電極
DESCRIPTION OF SYMBOLS 20 Optical element 24 Polarization separating means 25, 26, 27, 28, 30, 31, 32, 33 Ends of polarization maintaining fiber 29 Polarization combining means 40 Support member 53 1/4 wavelength plate 54 Reflecting plates 60, 61 62 modulation electrode

Claims (5)

偏波依存性を有する光学素子と、複数の偏波成分を有する単一の入射光を異なる偏波成分を有する複数の光波に分離する偏波分離手段と、同一の偏波成分を有する複数の光波を複数の偏波成分を有する単一の出射光に合成する偏波合成手段とを有し、該偏波分離手段からの光波を該光学素子に導入すると共に、該光学素子からの光波を該偏波合成手段に導入するよう構成された偏波無依存型光学機器において、
該偏波分離手段又は該偏波合波手段が、2つの偏波保持ファイバを用いた偏波分離カプラで構成されていることを特徴とする偏波無依存型光学機器。
An optical element having polarization dependency, polarization separating means for separating a single incident light having a plurality of polarization components into a plurality of light waves having different polarization components, and a plurality of components having the same polarization component Polarization combining means for combining the light wave into a single outgoing light having a plurality of polarization components, and introducing the light wave from the polarization separation means into the optical element, and the light wave from the optical element In a polarization-independent optical instrument configured to be introduced into the polarization combining means,
A polarization-independent optical apparatus, characterized in that the polarization separation means or the polarization multiplexing means is composed of a polarization separation coupler using two polarization maintaining fibers.
請求項1に記載の偏波無依存型光学機器において、該偏波分離手段と該偏波合成手段とを、一つの偏波分離カプラで構成することを特徴とする偏波無依存型光学機器。   2. The polarization independent optical apparatus according to claim 1, wherein the polarization separating means and the polarization synthesizing means are constituted by a single polarization separating coupler. . 請求項1又は2に記載の偏波無依存型光学機器において、該偏波分離カプラの一方の偏波保持ファイバの一端が所定の角度に回転調整されていることを特徴とする偏波無依存型光学機器。   3. The polarization independent optical device according to claim 1, wherein one end of one polarization maintaining fiber of the polarization separating coupler is rotationally adjusted to a predetermined angle. Type optical equipment. 請求項1乃至3のいずれかに記載の偏波無依存型光学機器において、該偏波分離カプラの光波の入射側又は出射側の少なくとも一方の側で、2つの偏波保持ファイバの端部を固定保持する支持部材を設けることを特徴とする偏波無依存型光学機器。   The polarization independent optical device according to any one of claims 1 to 3, wherein the ends of the two polarization maintaining fibers are provided on at least one of the light wave incident side and the light exit side of the polarization separating coupler. A polarization-independent optical apparatus, characterized in that a support member for fixing and holding is provided. 請求項1乃至4のいずれかに記載の偏波無依存型光学機器において、該光学素子が導波路型光変調素子であることを特徴とする偏波無依存型光学機器。
5. The polarization-independent optical apparatus according to claim 1, wherein the optical element is a waveguide-type light modulation element.
JP2004079223A 2004-03-18 2004-03-18 Polarization-independent optical equipment Expired - Fee Related JP4500074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004079223A JP4500074B2 (en) 2004-03-18 2004-03-18 Polarization-independent optical equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004079223A JP4500074B2 (en) 2004-03-18 2004-03-18 Polarization-independent optical equipment

Publications (2)

Publication Number Publication Date
JP2005266362A true JP2005266362A (en) 2005-09-29
JP4500074B2 JP4500074B2 (en) 2010-07-14

Family

ID=35090966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004079223A Expired - Fee Related JP4500074B2 (en) 2004-03-18 2004-03-18 Polarization-independent optical equipment

Country Status (1)

Country Link
JP (1) JP4500074B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006292562A (en) * 2005-04-12 2006-10-26 Fujikura Ltd Surface plasmon sensor
JPWO2006013928A1 (en) * 2004-08-04 2008-05-01 古河電気工業株式会社 Optical circuit device
JP2009229592A (en) * 2008-03-19 2009-10-08 Fujitsu Ltd Optical device
JP2010503049A (en) * 2006-09-20 2010-01-28 アルカテル−ルーセント ユーエスエー インコーポレーテッド Light modulator
JP2010237592A (en) * 2009-03-31 2010-10-21 Sumitomo Osaka Cement Co Ltd Structure for splicing optical element with optical fiber
JP2014038173A (en) * 2012-08-14 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2016142809A (en) * 2015-01-30 2016-08-08 住友大阪セメント株式会社 Optical modulator
JP2018205338A (en) * 2017-05-30 2018-12-27 日本電信電話株式会社 Excitation light regeneration device independent of polarization, and light relay amplifier

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566362A (en) * 1991-09-09 1993-03-19 Kyocera Corp Polarization independent type optical isolator
JPH0777669A (en) * 1993-09-07 1995-03-20 Kyocera Corp Polarization independent optical isolator
JPH07325276A (en) * 1994-05-30 1995-12-12 Nippon Telegr & Teleph Corp <Ntt> Polarization-independent optical control element
JP2000131554A (en) * 1998-10-22 2000-05-12 Furukawa Electric Co Ltd:The Optical multiplexing/demultiplexing module
JP2001021750A (en) * 1999-07-12 2001-01-26 Furukawa Electric Co Ltd:The Optical multiplexer/demultiplexer module
JP2003270591A (en) * 2002-03-18 2003-09-25 Sumitomo Osaka Cement Co Ltd Polarization-independent optical equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0566362A (en) * 1991-09-09 1993-03-19 Kyocera Corp Polarization independent type optical isolator
JPH0777669A (en) * 1993-09-07 1995-03-20 Kyocera Corp Polarization independent optical isolator
JPH07325276A (en) * 1994-05-30 1995-12-12 Nippon Telegr & Teleph Corp <Ntt> Polarization-independent optical control element
JP2000131554A (en) * 1998-10-22 2000-05-12 Furukawa Electric Co Ltd:The Optical multiplexing/demultiplexing module
JP2001021750A (en) * 1999-07-12 2001-01-26 Furukawa Electric Co Ltd:The Optical multiplexer/demultiplexer module
JP2003270591A (en) * 2002-03-18 2003-09-25 Sumitomo Osaka Cement Co Ltd Polarization-independent optical equipment

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2006013928A1 (en) * 2004-08-04 2008-05-01 古河電気工業株式会社 Optical circuit device
JP2006292562A (en) * 2005-04-12 2006-10-26 Fujikura Ltd Surface plasmon sensor
JP2010503049A (en) * 2006-09-20 2010-01-28 アルカテル−ルーセント ユーエスエー インコーポレーテッド Light modulator
JP2009229592A (en) * 2008-03-19 2009-10-08 Fujitsu Ltd Optical device
US7826689B2 (en) * 2008-03-19 2010-11-02 Fujitsu Limited Optical device which outputs independently modulated light beams in respective TE and TM polarization modes
JP2010237592A (en) * 2009-03-31 2010-10-21 Sumitomo Osaka Cement Co Ltd Structure for splicing optical element with optical fiber
JP2014038173A (en) * 2012-08-14 2014-02-27 Nippon Telegr & Teleph Corp <Ntt> Optical modulator
JP2016142809A (en) * 2015-01-30 2016-08-08 住友大阪セメント株式会社 Optical modulator
JP2018205338A (en) * 2017-05-30 2018-12-27 日本電信電話株式会社 Excitation light regeneration device independent of polarization, and light relay amplifier

Also Published As

Publication number Publication date
JP4500074B2 (en) 2010-07-14

Similar Documents

Publication Publication Date Title
JP5182049B2 (en) Polarization conversion device and polarization multiplexing modulator
CN104981727B (en) Optical modulator
JP5589926B2 (en) Light modulator
JP5659631B2 (en) Polarization controller
JP5673283B2 (en) Polarization synthesizer
JP6769378B2 (en) Light modulator
JP4500074B2 (en) Polarization-independent optical equipment
JP6233366B2 (en) Light modulator
JPH11119275A (en) Wavelength converter
US20050174919A1 (en) Optical polarization controller
JP2001523017A (en) Optical wavelength converter
US6832053B2 (en) Delayed interference wavelength converter and/or 2R regenerator
JP2002365682A (en) All-optical wavelength converter, all-optical regenerator, all-optical signal processing element, and all-optical conversion method
JP4092986B2 (en) Light switch
JP2007003708A (en) Optical integrated circuit
JP2003270591A (en) Polarization-independent optical equipment
JPS6134128B2 (en)
JP6848451B2 (en) Polarization coupling device and optical modulation device
JPS61112123A (en) Depolarizer
JPH0979861A (en) Optical fiber gyro and optical integrated circuit
JP2001004851A (en) Optical circuit
JP3287158B2 (en) Nonlinear optical device
JP3245976B2 (en) Optical multiplexer
JP2000241841A (en) Wavelength converting device
JPH07162370A (en) Method and device for receiving polarization modulated light and light receiving equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090616

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090908

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100316

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100416

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130423

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140423

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees