JP2005264294A - Steel having reduced variation in material and having excellent toughness in weld heat affected zone - Google Patents

Steel having reduced variation in material and having excellent toughness in weld heat affected zone Download PDF

Info

Publication number
JP2005264294A
JP2005264294A JP2004082469A JP2004082469A JP2005264294A JP 2005264294 A JP2005264294 A JP 2005264294A JP 2004082469 A JP2004082469 A JP 2004082469A JP 2004082469 A JP2004082469 A JP 2004082469A JP 2005264294 A JP2005264294 A JP 2005264294A
Authority
JP
Japan
Prior art keywords
less
steel
toughness
affected zone
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004082469A
Other languages
Japanese (ja)
Inventor
Yukio Shinpo
幸雄 真保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004082469A priority Critical patent/JP2005264294A/en
Publication of JP2005264294A publication Critical patent/JP2005264294A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide steel having reduced variation in material and having excellent toughness in the weld heat affected zone. <P>SOLUTION: The steel has a composition comprising, by mass, ≤0.004% C, ≤0.6% Si, ≤0.5% Mn, ≤0.03% P, ≤0.02% S, ≤0.2% Al, ≤0.004% N and 0.0007 to 0.004% B and a bainite single phase structure. The steel preferably comprises one or two metals selected from Ti and Zr in such a manner that (Ti+0.53×Zr) satisfies ≤0.025%, and also, by mass ratio, (Ti+0.53×Zr)/N satisfies ≥3.4, and comprises one or two metals selected from Nb and Ta in such a manner that Nb+0.51×Ta satisfies 0.04 to 0.3%. Further, preferably, one or more metals selected from ≤1% Cu, ≤1.5% Ni, ≤0.6% Cr, ≤0.6% Mo and ≤0.6% V are added thereto. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は建築、橋梁、船舶、海洋構造物、ラインパイプ、タンクおよび圧力容器などに用いられる、材質のばらつきが少なく溶接部熱影響部の靱性に優れた鋼材に関する。   The present invention relates to a steel material that is used in buildings, bridges, ships, offshore structures, line pipes, tanks, pressure vessels, and the like and has excellent toughness in a welded heat affected zone with little material variation.

従来、鋼材は、主に変態強化、析出強化またはそれらの複合により強化される0.01〜0.5wt%程度の炭素を含有する炭素鋼と呼ばれているものが一般的である。   Conventionally, steel materials are generally called carbon steel containing about 0.01 to 0.5 wt% of carbon that is mainly strengthened by transformation strengthening, precipitation strengthening, or a combination thereof.

変態強化は高温安定相であるオーステナイトから低温相であるフェライトに変態する際に生ずるマルテンサイトやベイナイトなどの変態相を利用するものである。析出強化は炭化物の鋼中の溶解度が、温度が低下するとともに低下することを利用して、高温に加熱して炭化物を鋼中に溶解させ、その後の冷却過程において微細な炭化物を鋼中で析出させて鋼材を強化するものである。   The transformation strengthening utilizes a transformation phase such as martensite or bainite that is generated when transformation from austenite, which is a high-temperature stable phase, to ferrite, which is a low-temperature phase. Precipitation strengthening takes advantage of the fact that the solubility of carbides in steel decreases with decreasing temperature, heating them to a high temperature to dissolve the carbides in the steel, and then precipitating fine carbides in the steel during the subsequent cooling process. To strengthen the steel.

したがって、変態強化、析出強化を主たる強化機構とする炭素鋼においては、冷却速度によって変態相(パーライト、ベイナイト、マルテンサイトなど)および炭化物の析出形態が大きく異なり、強度や靱性などの特性が冷却速度によって大きく変わる。   Therefore, in carbon steel, whose main strengthening mechanism is transformation strengthening and precipitation strengthening, the transformation phase (perlite, bainite, martensite, etc.) and carbide precipitation form differ greatly depending on the cooling rate, and properties such as strength and toughness are the cooling rate. It varies greatly depending on.

このため、炭素鋼はその製造過程においてオーステナイト温度域から冷却する際に、冷却速度の厳密な管理を必要とする。しかし、冷却速度は鋼材の板厚、形状などの影響を受けるほか、冷却水の温度や水量、さらには気温などの影響をうけるため、冷却速度を厳密に管理することは実際上、かなり困難である。   For this reason, carbon steel requires strict control of the cooling rate when it is cooled from the austenite temperature range in the production process. However, since the cooling rate is affected by the thickness and shape of the steel material, and is also affected by the temperature, amount, and temperature of the cooling water, it is practically difficult to strictly control the cooling rate. is there.

また、板厚の厚い鋼材の場合には鋼材の表面近くと内側とでは必然的に冷却速度が異なる。このため、材質も表面と内側で異なるものとなる。したがって、冷却速度に特性が敏感な鋼材では、各鋼材間、あるいは鋼材内の位置による特性のばらつきが大きくなるため、強度、靱性などが規格範囲をはずれる割合が高くなり、歩留まりの低下が避けられない。   Further, in the case of a steel material with a large plate thickness, the cooling rate is inevitably different between near and inside the surface of the steel material. For this reason, the material is also different between the surface and the inside. Therefore, in steel materials whose characteristics are sensitive to the cooling rate, there is a large variation in properties depending on the position of each steel material or in the steel material, so the ratio of strength, toughness, etc. that deviates from the standard range increases, and a decrease in yield can be avoided. Absent.

特許文献1に製造時の冷却速度による材質ばらつきを少なくする目的で、製造過程における冷却速度による強度の変化を少なくした鋼材が開示されている。Mn、Nb、Bを適量添加することにより焼入れ性を高めて冷却速度の広い範囲でベイナイト単相組織が生ずるようにし、C量を低く制限することでベイナイト中の炭化物の析出を抑制して冷却速度による強度変化を小さくしたものである。   Patent Document 1 discloses a steel material in which a change in strength due to a cooling rate in a manufacturing process is reduced for the purpose of reducing material variations due to a cooling rate during manufacturing. By adding appropriate amounts of Mn, Nb, and B, hardenability is enhanced so that a bainite single-phase structure is formed in a wide range of cooling rate, and by limiting the amount of C to be low, precipitation of carbides in bainite is suppressed and cooling is performed. Intensity change due to speed is reduced.

また、鋼材はその目的により種々の溶接方法により接合されて建築構造物、船舶、橋梁などに組み立てられる。したがって、溶接熱影響部の靱性は溶接構造物の特性をきめる重要な要素の一つである。   Moreover, steel materials are joined by various welding methods according to their purposes and assembled into building structures, ships, bridges, and the like. Therefore, the toughness of the weld heat affected zone is one of the important factors that determine the characteristics of the welded structure.

溶接には1回の溶接パスで溶接が完了する1層溶接と複数回の溶接パスを重ねる多層溶接とがある。多層溶接では溶接熱影響部は複数回の溶接熱サイクルを受けるため複雑で、種々の組織が形成される。   There are two types of welding: one-layer welding in which welding is completed in one welding pass and multi-layer welding in which a plurality of welding passes are overlapped. In multilayer welding, the weld heat affected zone is complicated because it undergoes multiple welding heat cycles, and various structures are formed.

第1熱サイクルによって1150℃以上に加熱されることにより結晶粒が粗大化した組織が第2熱サイクルで2相域(Ac1点以上Ac3点以下の温度域)に再加熱された部分はICCGHAZ(Inter-critically Coarse Grain Heat Affected Zone)と呼ばれる熱影響部で靱性が極めて低い。   The structure in which the crystal grains are coarsened by heating to 1150 ° C or higher by the first thermal cycle is reheated to the two-phase region (temperature range from Ac1 to Ac3) by the second thermal cycle. Inter-critically Coarse Grain Heat Affected Zone).

特許文献2に、ICCGHAZの靱性を改善した鋼の製造方法が開示されている。C量を低く抑えることにより島状マルテンサイトの生成を抑制し、強度を確保するため、Nbを0.2%程度添加し、圧延後の冷却過程においてNbCを微細析出させ析出強化するものである。
特開平8−144019号公報 特開平9−111337号公報
Patent Document 2 discloses a steel manufacturing method with improved ICCGHAZ toughness. In order to suppress the formation of island martensite by keeping the amount of C low and secure strength, about 0.2% of Nb is added, and NbC is finely precipitated and strengthened by precipitation in the cooling process after rolling. .
JP-A-8-144019 JP-A-9-111337

しかしながら、特許文献1に開示されている鋼材および特許文献2に開示されている鋼材のようにNbを含有し、C量の少ない鋼材は多層溶接における溶接熱影響部において局部的に著しい粒界脆化を引き起こすことが知られている。   However, the steel materials disclosed in Patent Document 1 and the steel materials disclosed in Patent Document 2 that contain Nb and have a small amount of C are notably grain boundary brittle locally in the weld heat affected zone in multilayer welding. It is known to cause oxidization.

このような粒界脆化は、多層溶接において第1熱サイクルによってオーステナイト域まで加熱、急冷されたあと、第2熱サイクルで600℃程度に再加熱される部分(以下、この部分を再熱部と呼ぶ)で生ずる。   Such intergranular embrittlement is a part that is heated to the austenite region by the first thermal cycle and rapidly cooled in multilayer welding and then reheated to about 600 ° C. in the second thermal cycle (hereinafter, this part is referred to as a reheat part). Is called).

なお、再熱部はオーステナイト域まで加熱、急冷されたあとフェライト単相域(Ac1点以下)である650℃程度に再加熱される部分であり、2相域(Ac1点以上、Ac3点以下の温度域)に再加熱されるICCGHAZとは本質的に異なる。   The reheat part is the part that is reheated to about 650 ° C, which is the ferrite single-phase region (Ac1 point or less) after being heated and quenched to the austenite region, and the two-phase region (Ac1 point or more and Ac3 point or less) It is essentially different from ICCGHAZ which is reheated to the temperature range.

本発明は、製造時における熱履歴に材質があまり影響を受けず、厳密な温度、冷却速度管理をしなくても安定した材質が得られ、単層溶接における熱影響部の靱性が優れることはもちろんのこと、多層溶接における上記再熱部での靱性低下が生じない鋼材を提供することを目的とする。   In the present invention, the material is not significantly affected by the thermal history during production, a stable material can be obtained without strict temperature and cooling rate control, and the toughness of the heat affected zone in single layer welding is excellent. Of course, it aims at providing the steel materials which the toughness fall in the said reheating part in multilayer welding does not arise.

本発明者は上記の課題を解決すべく鋭意研究を行い、極低C系に高焼入れ性元素を添加して冷却速度の広い範囲でベイナイト単相組織が生ずるようにした鋼材においては、再熱部の靱性低下を以下の手段により回避できることを知見した。   The present inventor has intensively studied to solve the above-mentioned problems, and in a steel material in which a highly hardenable element is added to an extremely low C system so that a bainite single phase structure is formed in a wide range of cooling rate, reheating is performed. It has been found that a reduction in toughness of the part can be avoided by the following means.

まず、C量を従来よりも一段と少ない0.004%以下とする。C量を少なくすると強度が低下するため、高焼入れ性元素であるNbとBなどを添加して焼入れ性を上げて強度を確保する。   First, the C amount is set to 0.004% or less, which is much smaller than the conventional amount. If the amount of C is decreased, the strength is lowered. Therefore, Nb and B, which are highly hardenable elements, are added to increase the hardenability and ensure the strength.

さらに,Nを0.004%以下とし、かつ窒化物生成元素であるTiなどを添加してNを窒化物として完全に固定する。これらに加え、Mn量も通常の鋼材よりも少ない0.5%以下に制限する。以上の方策により多層溶接における再熱部の靱性低下を防止し、発明を完成した。   Further, N is set to 0.004% or less, and Ti or the like which is a nitride forming element is added to completely fix N as nitride. In addition to these, the amount of Mn is also limited to 0.5% or less, which is smaller than that of ordinary steel materials. By the above measures, the toughness reduction of the reheated part in multilayer welding was prevented, and the invention was completed.

第1の発明は、質量%で、C:0.004%以下、Si:0.6%以下、Mn:0.5%以下、P:0.03%以下、S:0.02%以下、Al:0.2%以下、N:0.004%以下、B:0.0007〜0.004%を含有し、更に、Ti、Zrの1種または2種を、(Ti+0.53×Zr)が0.025%以下、かつ、質量比で(Ti+0.53×Zr)/Nが3.4以上含有し、Nb、Taの1種または2種を、Nb+0.51×Taが0.04〜0.3%で含有し、残部が実質的にFeからなる鋼材。   1st invention is the mass%, C: 0.004% or less, Si: 0.6% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.02% or less, Al: 0.2% or less, N: 0.004% or less, B: 0.0007 to 0.004%, and further, one or two of Ti and Zr, (Ti + 0.53 × Zr) Is 0.025% or less, and (Ti + 0.53 × Zr) / N is 3.4 or more by mass ratio, and one or two of Nb and Ta are contained, and Nb + 0.51 × Ta is 0.04˜ A steel material containing 0.3% and the balance being substantially made of Fe.

第2の発明は、第1の発明の成分組成に、更に、質量%で、Cu:1%以下、Ni:1.5%以下、Cr:0.6%以下、Mo:0.6%以下、V:0.6%以下の1種または2種以上を含有する残部が実質的にFeからなる鋼材。   In the second invention, the composition of the first invention further includes, in mass%, Cu: 1% or less, Ni: 1.5% or less, Cr: 0.6% or less, Mo: 0.6% or less. V: A steel material in which the balance containing one or more of 0.6% or less substantially consists of Fe.

本発明はC:0.004%以下と極低C化し、焼入れ性の高い元素を含有させて焼入れ性を上げてオーステナイト域からの冷却速度によらず常にベイナイト単相組織となるようにして高強度を得、さらにN:0.004%以下とし、Mn量を0.5%以下に制限することで再熱部での靱性低下を防止した。   In the present invention, C: 0.004% or less is extremely low C, an element having high hardenability is contained to improve hardenability, and a high bainite single phase structure is obtained regardless of the cooling rate from the austenite region. Strength was obtained, and N: 0.004% or less, and the Mn content was limited to 0.5% or less to prevent toughness reduction in the reheat zone.

本発明により、製造工程における冷却速度のばらつきによる強度ばらつきを少なくでき、歩留まりの向上が図れる。また、多層溶接部の靱性低下がないため、溶接構造物の溶接部の信頼性が高まるので、産業上極めて有用である。   According to the present invention, the intensity variation due to the variation in the cooling rate in the manufacturing process can be reduced, and the yield can be improved. Further, since there is no reduction in toughness of the multilayer welded portion, the reliability of the welded portion of the welded structure is increased, which is extremely useful industrially.

本発明は、極低C系とした鋼材に、焼入れ性の高い元素としてNb,Taの1種または2種を含有し、窒化物形成元素としてTi,Zrの1種または2種を含有した成分組成とする。以下、成分組成の限定理由を詳細に説明する。   The present invention includes an extremely low C steel material containing one or two kinds of Nb and Ta as elements having high hardenability and one or two kinds of Ti and Zr as nitride forming elements. The composition. Hereinafter, the reasons for limiting the component composition will be described in detail.

C:0.004%以下
CはNbと反応してNbCを生成し、特に再熱部において粗大なNbCが粒界に析出するため、再熱部の靱性を著しく低下させる。このためCは少ないほど望ましいが、経済性の観点から0.004%以下に制限する。
C: 0.004% or less C reacts with Nb to form NbC, and particularly coarse NbC precipitates at the grain boundary in the reheated portion, so that the toughness of the reheated portion is remarkably lowered. For this reason, the smaller C is, the better, but it is limited to 0.004% or less from the viewpoint of economy.

Si:0.6%以下
Siは強化元素として有効であり安価な溶鋼の脱酸元素としても有用であるが、0.6%を超えると溶接熱影響部の靱性が劣化するため0.6%以下とする。
Si: 0.6% or less Si is effective as a strengthening element and is useful as a deoxidizing element for cheap molten steel. However, if it exceeds 0.6%, the toughness of the weld heat affected zone deteriorates, so 0.6% The following.

Mn:0.5%以下
Mnは強化元素として有効な上、焼入れ性を高めてベイナイト単相組織とするために有効である。しかし、過剰の添加は再熱部の靱性を著しく損なうため0.5%以下に制限する。Mnが再熱部の靱性を低下させる原因は不明であるが、NbC、NbS、NbBC、Nb−Fe金属間化合物などの粒界析出を促進するためと推定される。
Mn: 0.5% or less Mn is effective as a strengthening element, and is effective for improving the hardenability and obtaining a bainite single phase structure. However, excessive addition significantly limits the toughness of the reheat zone, so it is limited to 0.5% or less. The reason why Mn lowers the toughness of the reheated part is unknown, but it is presumed to promote grain boundary precipitation of NbC, NbS, NbBC, Nb—Fe intermetallic compounds, and the like.

P:0.03%以下
Pは溶接熱影響部および母材の靱性の観点から0.03%以下に限定した。不純物としてのPは低いほうが望ましいが、経済性も考慮して0.03%以下とした。
P: 0.03% or less P is limited to 0.03% or less from the viewpoint of the weld heat-affected zone and the toughness of the base material. Although it is desirable that P as an impurity is low, it is set to 0.03% or less in consideration of economy.

S:0.02%以下
Sは溶接熱影響部および母材の靱性の観点から0.02%以下に限定した。不純物としてのSは低いほうが望ましいが、経済性も考慮して0.02%以下とした。
S: 0.02% or less S is limited to 0.02% or less from the viewpoint of the weld heat-affected zone and the toughness of the base material. Low S as an impurity is desirable, but it is set to 0.02% or less in consideration of economy.

Al:0.2%以下
AlもSiと同様、脱酸の目的で添加する。過剰の添加は溶接熱影響部および母材の靱性を損なうため0.2%以下とする。また脱酸の目的には、その一部または全てをSi、Tiなどで代えることもできる。
Al: 0.2% or less Al is also added for the purpose of deoxidation in the same manner as Si. Excessive addition impairs the weld heat-affected zone and the toughness of the base metal, so 0.2% or less. Further, for the purpose of deoxidation, part or all of it can be replaced with Si, Ti or the like.

N:0.004%以下
Nは再熱部において、Nbと反応して粗大なNbNまたはNbCNを粒界に析出させるため再熱部の靱性を著しく低下させる。この弊害はTiを含有することによりNをTi窒化物として固定することで除くことができるが、Nが多いとTi窒化物が粗大化してしまい、溶接熱影響部の靱性を低下させる。このため0.004%以下に制限する。
N: 0.004% or less N reacts with Nb in the reheated portion to precipitate coarse NbN or NbCN at the grain boundaries, so that the toughness of the reheated portion is significantly reduced. This adverse effect can be eliminated by fixing N as Ti nitride by containing Ti. However, if N is large, Ti nitride becomes coarse and the toughness of the heat affected zone is lowered. For this reason, it is limited to 0.004% or less.

B:0.0007〜0.004%
BもC,N量が極めて少ない本発明鋼材に高い焼入れ性を与えてベイナイト単相組織とし、強度上昇を図るうえでNbとならび重要な元素である。Bが少ないと強度上昇が少ないため0.0007%以上とした。
B: 0.0007 to 0.004%
B is also an important element along with Nb for imparting high hardenability to the steel material of the present invention having a very small amount of C and N to give a bainite single-phase structure and increasing the strength. When B is small, the increase in strength is small, so it was made 0.0007% or more.

しかしながら、Bを過剰に含有することは粗大なNbB、NbBC、NbFeB、FeBCなどの粒界析出を招き、溶接熱影響部、とくに再熱部での靱性を低下させるので上限を0.004%とした。また、Bが焼入れ性を高めるためにはBが固溶Bとして存在することが必要である。   However, excessive inclusion of B causes grain boundary precipitation of coarse NbB, NbBC, NbFeB, FeBC, etc., and lowers the toughness in the weld heat affected zone, particularly the reheat zone, so the upper limit is 0.004%. did. Moreover, in order for B to improve hardenability, B needs to exist as solid solution B.

Nが存在するとBとNが反応してBNを生成し、焼入れ性を向上させるのに有効な固溶Bが減少する。このためにNをTiによりTi窒化物として固定しておく必要がある。   In the presence of N, B and N react to produce BN, and the solid solution B effective for improving the hardenability decreases. For this purpose, it is necessary to fix N as Ti nitride with Ti.

Ti、Zrの1種または2種
TiはNと反応してTi窒化物を生成しNを固定する。Nは数ppm程度のごく微量であってもNbと反応してNbN、NbCNなどを生成すると再熱部の靱性を著しく損なうので完全にTi窒化物として固定する必要がある。
One or two types of Ti and Zr Ti react with N to form Ti nitride and fix N. Since N reacts with Nb to produce NbN, NbCN, etc. even if it is a very small amount of about several ppm, the toughness of the reheated portion is remarkably impaired, so it is necessary to completely fix it as Ti nitride.

TiとZrは周期律表で同じ族に属し、化学的性質がほぼ同じであるためTiの一部または全てをZrで置き換えてもよい。置き換える場合にはTiの含有量の範囲と原子量%で同じになるようにTaの質量%に0.53を乗じて換算する。   Since Ti and Zr belong to the same group in the periodic table and have almost the same chemical properties, some or all of Ti may be replaced with Zr. In the case of replacement, conversion is performed by multiplying the mass% of Ta by 0.53 so that the atomic content% is the same as the Ti content range.

Ti、Zrの1種または2種を含有する場合は、(Ti+0.53×Zr)が0.025%以下、かつ、質量比で(Ti+0.53×Zr)/Nが3.4以上とする。但し、含有しない元素は0とする。   In the case of containing one or two of Ti and Zr, (Ti + 0.53 × Zr) is 0.025% or less and (Ti + 0.53 × Zr) / N is 3.4 or more in mass ratio. . However, the element not contained is 0.

化学量論比のTiNやZrNが生成するものとすれば(Ti+0.53×Zr)/Nの重量比で3.4以上を含有することが最低限必要である。しかし、過剰に含有することは粗大なTiN、TiS、TiCN、TiBCなどを析出して再熱部の靱性を低下させるので、(Ti+0.53×Zr)を0.025%以下とする。   If a stoichiometric ratio of TiN or ZrN is generated, it is at least necessary to contain 3.4 or more by weight ratio of (Ti + 0.53 × Zr) / N. However, excessive inclusion causes coarse TiN, TiS, TiCN, TiBC and the like to precipitate and lowers the toughness of the reheated portion, so (Ti + 0.53 × Zr) is made 0.025% or less.

Nb、Taの1種または2種
NbはC,N量が極めて少ない本発明鋼材に高い焼入れ性を与えてベイナイト組織とし強度上昇を図るうえでBとならび重要な元素である。
One or two Nb of Nb and Ta is an important element along with B in order to give high hardenability to the steel material of the present invention having a very small amount of C and N to increase the strength of the bainite structure.

また、NbとTaは周期律表で同じ族に属し、化学的性質がほぼ同じであるためNbの一部または全てをTaで置き換えてもよい。置き換える場合にはNbの含有量の範囲と原子量%で同じになるようにTaの質量%に0.51を乗じて換算する。   Further, since Nb and Ta belong to the same group in the periodic table and have almost the same chemical properties, part or all of Nb may be replaced with Ta. In the case of replacement, conversion is performed by multiplying the mass% of Ta by 0.51 so that the atomic weight% is the same as the Nb content range.

Nb、Taの1種または2種を含有する場合は、(Nb+0.51×Ta):0.04〜0.3%とする。但し、含有しない元素は0とする。含有量が少ないと強度上昇が少ないため0.04%以上とする。しかしながら、Nb、Taの過剰な添加は粗大なNbC、NbS、NbBC、Nb−Fe金属間化合物などの粒界析出を招き、溶接熱影響部、とくに再熱部での靱性を低下させるので上限を0.3%とした。   In the case of containing one or two of Nb and Ta, (Nb + 0.51 × Ta): 0.04 to 0.3%. However, the element not contained is 0. If the content is small, the increase in strength is small, so 0.04% or more. However, excessive addition of Nb and Ta leads to grain boundary precipitation of coarse NbC, NbS, NbBC, Nb-Fe intermetallic compounds, etc., and lowers the toughness in the weld heat affected zone, particularly in the reheat zone. 0.3%.

また、残部が実質的にFeとは、以上に記載した本願発明の鋼材が含有する元素の働きを阻害しない範囲で、これらの元素以外の元素を含むことができることを意味する。   Moreover, the balance being substantially Fe means that elements other than these elements can be contained within a range not impeding the function of the elements contained in the steel material of the present invention described above.

以上が本発明鋼の基本成分であるが、更に特性を向上させるため、Cu:1%以下、Ni:1.5%以下、Cr:0.6%以下、Mo:0.6%以下、V:0.6%以下のうち1種または2種以上を含有することができる。   The above are the basic components of the steel of the present invention. In order to further improve the characteristics, Cu: 1% or less, Ni: 1.5% or less, Cr: 0.6% or less, Mo: 0.6% or less, V : It can contain 1 type (s) or 2 or more types among 0.6% or less.

Cu:1%以下
Cuは鋼材の強度を向上させるため有効であるが1%を超えると溶接熱影響部の靱性低下させるため1%を上限とした。
Cu: 1% or less Cu is effective for improving the strength of the steel material. However, if it exceeds 1%, the toughness of the weld heat affected zone is lowered, so 1% was made the upper limit.

Ni:1.5%以下、
Niは鋼材の強度、靱性を向上させるため有効であるが、Niは高価な元素であり、コスト増につながり、過剰に含有しても効果が飽和するため1.5%を上限とした。
Ni: 1.5% or less,
Ni is effective for improving the strength and toughness of the steel material, but Ni is an expensive element, leading to an increase in cost, and even if contained excessively, the effect is saturated, so 1.5% was made the upper limit.

Cr:0.6%以下
Crは焼入れ性を向上させ母材の強度を向上させるが、過剰に含有すると溶接熱影響部の靱性を低下させるので0.6%以下とする。
Cr: 0.6% or less Cr improves the hardenability and improves the strength of the base metal, but if contained excessively, the toughness of the weld heat affected zone is lowered, so the content is made 0.6% or less.

Mo:0.6%以下
Moは焼入れ性を向上させ母材の強度を向上させるが、過剰に含有すると溶接熱影響部の靱性を低下させるので0.6%以下とする。
Mo: 0.6% or less Mo improves the hardenability and improves the strength of the base metal. However, if excessively contained, the toughness of the weld heat affected zone is lowered, so the content is made 0.6% or less.

V:0.6%以下
Vは焼入れ性を向上させ母材の強度を向上させるが、過剰に含有すると溶接熱影響部の靱性を低下させるので0.6%以下とする。
V: 0.6% or less V improves the hardenability and improves the strength of the base metal. However, if excessively contained, the toughness of the weld heat affected zone is lowered, so the content is made 0.6% or less.

本発明鋼として最も好ましい成分組成は、質量%で、C:0.004%以下、Si:0.6%以下、Mn:0.5%以下、P:0.03%以下、S:0.02%以下、Al:0.2%以下、N:0.004%以下、Nb:0.04〜0.3%、B:0.0007〜0.0040%、Ti:0.025%以下、Ti/N≧3.4、残部が実質的にFeである。   The most preferable component composition for the steel of the present invention is mass%, C: 0.004% or less, Si: 0.6% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.00. 02% or less, Al: 0.2% or less, N: 0.004% or less, Nb: 0.04-0.3%, B: 0.0007-0.0040%, Ti: 0.025% or less, Ti / N ≧ 3.4, the balance being substantially Fe.

本発明鋼は、常法の製鋼工程により溶解、鋳造し、鋳片とした後、本質的に熱履歴に特性が不敏感であることから、特段の配慮をすることなく常法の圧延工程によって製品とすることができる。   Since the steel of the present invention is melted, cast and made into a slab by a conventional steelmaking process, the characteristics are essentially insensitive to the heat history, so that the conventional rolling process can be used without special consideration. It can be a product.

すなわち鋳片を1000℃〜1250℃程度に加熱し、700℃〜1000℃程度の圧延完了温度で熱間圧延する。圧延は厚板ミルで行い厚板(プレート)とすることもでき、また、タンデムミルで圧延して熱延コイルとすることもできる。   That is, the slab is heated to about 1000 ° C. to 1250 ° C. and hot-rolled at a rolling completion temperature of about 700 ° C. to 1000 ° C. Rolling can be performed with a thick plate mill to form a thick plate (plate), or rolled with a tandem mill to form a hot rolled coil.

圧延後の冷却も特段の配慮をする必要はない。空冷から水冷による加速冷却まで、どのような冷却速度を採用しても、本発明鋼材の特性として、強度や靱性などの機械的性質に差はほとんどない。   There is no need for special consideration for cooling after rolling. No matter what cooling rate is adopted from air cooling to accelerated cooling by water cooling, there is almost no difference in mechanical properties such as strength and toughness as the characteristics of the steel material of the present invention.

表1に示す種々の成分組成に調整した鋳片を1200℃に加熱後、熱間圧延を行い、仕上げ温度950℃で圧延を完了し厚み15mmの鋼板を製造した。圧延後の冷却は空冷とした。   The slabs adjusted to various component compositions shown in Table 1 were heated to 1200 ° C. and then hot-rolled to complete rolling at a finishing temperature of 950 ° C. to produce a steel plate having a thickness of 15 mm. Cooling after rolling was air cooling.

かくして得られた各鋼板について引張り試験およびシャルピー試験を行い、その機械的性質を調べた。また、オーステナイト域まで加熱、急冷されたあとフェライト単相域(Ac1点以下)である650℃程度に再加熱される前述した再熱部の靱性を調べるため、再熱部を模擬する熱処理として以下の熱処理(R)を施した。   Each steel plate thus obtained was subjected to a tensile test and a Charpy test to investigate its mechanical properties. In order to investigate the toughness of the above-mentioned reheated part that is reheated to about 650 ° C, which is the ferrite single phase area (Ac1 point or less) after being heated and quenched to the austenite region, The heat treatment (R) was performed.

熱処理(R):1200℃で30分加熱の後、水冷し、その後、再び650℃で30分加熱して空冷する。この熱処理は、実際の多層溶接の熱履歴では再熱される時間が長くとも数秒程度であることを考えると厳しすぎる試験ではあるが、実験が容易であり、再熱による脆化をよく再現できるため採用した。   Heat treatment (R): Heated at 1200 ° C. for 30 minutes, then cooled with water, then heated again at 650 ° C. for 30 minutes for air cooling. Although this heat treatment is a test that is too strict considering that the reheating time is about several seconds at the longest in the heat history of actual multilayer welding, the experiment is easy and the embrittlement due to reheating can be reproduced well. Adopted.

Figure 2005264294
Figure 2005264294

表2に圧延ままの鋼板の引張特性(降伏強さ(以下YSとする。),引張強さ(以下TSとする。),伸び(以下ELとする。)および靱性(シャルピー衝撃試験の試験温度0℃での吸収エネルギー(vE0))、および、熱処理(R)後の靱性を示す。シャルピー衝撃試験片は2mmVノッチシャルピー試験片で厚み10mmのものであり、3本づつ試験した。表2中の吸収エネルギー(vE0)は3本の平均値である。   Table 2 shows the tensile properties (yield strength (hereinafter referred to as YS), tensile strength (hereinafter referred to as TS), elongation (hereinafter referred to as EL), and toughness (Charpy impact test temperature) of the as-rolled steel sheet. The absorption energy (vE0) at 0 ° C. and the toughness after heat treatment (R) are shown.Charpy impact test pieces were 2 mm V notch Charpy test pieces having a thickness of 10 mm, and were tested in triplicate. The absorbed energy (vE0) is an average value of three.

Figure 2005264294
Figure 2005264294

鋼A1〜A6、B1〜B6、C1〜C6、D1〜D6はMnをそれぞれ0.2%、0.4%、0.6%、1.6%とし、Nbを0から0.4%まで添加量を変化させた鋼板である。   Steels A1 to A6, B1 to B6, C1 to C6, and D1 to D6 have Mn of 0.2%, 0.4%, 0.6%, and 1.6%, respectively, and Nb from 0 to 0.4% It is a steel plate in which the addition amount is changed.

図1に、これらの鋼板のTSに対するNb量による変化を示す。極低C鋼であるこれらの鋼板ではNbを含有しない場合にはTSが300MPa程度しかないが、Nbを含有することにより著しく強化され、本発明のNb添加量範囲では400〜700MPa程度のTSとなることが分かる。   In FIG. 1, the change by Nb amount with respect to TS of these steel plates is shown. In these steel sheets, which are extremely low C steels, when Nb is not contained, TS is only about 300 MPa, but by containing Nb, the steel is remarkably strengthened, and in the Nb addition range of the present invention, the TS is about 400 to 700 MPa. I understand that

また、Mnの含有量が多いほど強度が高いことが分かる。図2に鋼A1〜A6、B1〜B6、C1〜C6、D1〜D6の熱処理(R)後の靱性のNb量による変化を示す。Nb含有量が増すに従い、靱性が低下することが分かる。   Moreover, it turns out that intensity | strength is so high that there is much content of Mn. FIG. 2 shows changes in toughness after heat treatment (R) of steels A1 to A6, B1 to B6, C1 to C6, and D1 to D6 depending on the amount of Nb. It can be seen that the toughness decreases as the Nb content increases.

また、Mn含有量が増加するに従い、靱性が低下することが分かるが、Mn含有量が0.6%、1.6%の場合には靱性の低下が著しく、Nbを0.05%含有する場合でも靱性が低下して実用に耐えない。   Further, it can be seen that as the Mn content increases, the toughness decreases. However, when the Mn content is 0.6% and 1.6%, the toughness is remarkably reduced, and 0.05% of Nb is contained. Even in such a case, the toughness is lowered and cannot be practically used.

したがって、Nbを含有させることにより高強度を得た上に、再熱部の靱性が優れるためには、Mn含有量を制限する必要があることが分かる。本発明のMn含有量が0.5%以下では再熱部の靱性に優れている。   Therefore, it can be seen that it is necessary to limit the Mn content in order to obtain high strength by containing Nb and to improve the toughness of the reheated portion. When the Mn content of the present invention is 0.5% or less, the toughness of the reheated portion is excellent.

鋼E1〜E5、F1〜F6はMn含有量をそれぞれ0.1%、0.3%とし、B含有量を0.0001%から0.0045%まで添加量を変化させた鋼板である。図3にB含有量による、これらの鋼板のTSの変化を示す。Bを含有させることにより著しく強化され、本発明のB含有量の範囲では400MPa程度以上のTSとなることが分かる。   Steels E1 to E5 and F1 to F6 are steel plates in which the Mn content is 0.1% and 0.3%, respectively, and the B content is changed from 0.0001% to 0.0045%. FIG. 3 shows changes in TS of these steel sheets depending on the B content. It can be seen that by containing B, the TS is remarkably strengthened, and the TS is about 400 MPa or more in the range of the B content of the present invention.

また、Bが0.0028%含有するがNbを含有しない鋼A1のTSが300MPa程度しかないことを併せて考えると、Bによる強化は、Nbを同時に含有する場合に発現することが明らかである。したがって、本発明のように極低C鋼を強化するためにはBとNbの同時に含有させることが必要である。   Further, considering that the TS of steel A1 containing 0.0028% of B but not containing Nb is only about 300 MPa, it is clear that strengthening by B appears when Nb is contained at the same time. . Therefore, in order to strengthen the extremely low C steel as in the present invention, it is necessary to contain B and Nb at the same time.

図4に鋼E1〜E5、F1〜F6の熱処理(R)後の靱性に対するB含有量による変化を示す。B含有量が増すに従い、靱性が低下することが分かる。したがって、B含有量が本発明の上限を超えた場合には靱性が著しく低いことが分かる。   FIG. 4 shows changes due to B content with respect to toughness after heat treatment (R) of steels E1 to E5 and F1 to F6. It can be seen that the toughness decreases as the B content increases. Therefore, it can be seen that the toughness is remarkably low when the B content exceeds the upper limit of the present invention.

鋼G1〜G5はTi含有量を0.005から0.030%まで変化させた鋼板である。Tiは強度にはほとんど影響せず、これらの鋼板のTSは530〜580MPa程度である。図5は鋼G1〜G5の熱処理(R)後の靱性に対するTi含有量による変化を示す。Ti含有量が3.4×N(%)未満(この場合には0.007%)では靱性が低いが、それ以上含有させた場合は優れた靱性を示し、さらに含有量を増やしていくと靱性が低下する。したがって、Ti含有量が本発明の範囲を超えた場合には靱性が著しく低いことが分かる。   Steels G1 to G5 are steel plates in which the Ti content is changed from 0.005 to 0.030%. Ti hardly affects the strength, and the TS of these steel sheets is about 530 to 580 MPa. FIG. 5 shows changes due to Ti content with respect to toughness after heat treatment (R) of steels G1 to G5. When the Ti content is less than 3.4 × N (%) (in this case, 0.007%), the toughness is low, but when it is contained more than that, excellent toughness is exhibited, and when the content is further increased. Toughness decreases. Therefore, it can be seen that the toughness is remarkably low when the Ti content exceeds the range of the present invention.

さらに、表1中の幾つかの鋼板について、オーステナイト温度域からの冷却速度による強度の変化を調べるため、以下の2種類の熱処理(Q,A)を施した。   Furthermore, the following two types of heat treatments (Q, A) were performed on some of the steel plates in Table 1 in order to examine changes in strength due to the cooling rate from the austenite temperature range.

Qは1200℃で30分加熱の後、水冷する熱処理であり、Aは1200℃で30分加熱の後、空冷する熱処理である。また、溶接熱影響部の靱性をより正確に評価するため、実際の溶接熱履歴を模擬した熱サイクルを加えた。   Q is a heat treatment in which water is cooled after heating at 1200 ° C. for 30 minutes, and A is a heat treatment in which air is cooled after heating at 1200 ° C. for 30 minutes. In addition, in order to more accurately evaluate the toughness of the weld heat affected zone, a thermal cycle simulating actual welding heat history was added.

熱サイクル1は単層溶接を模擬したもので1450℃まで加熱した後、800℃から500℃までの冷却時間を50sとなるようにして冷却する単一の熱サイクルである(溶接入熱50kJ/cmで1層溶接したときのHAZ(溶接熱影響部)の熱履歴に相当)。   Thermal cycle 1 simulates single-layer welding, and is a single thermal cycle in which the cooling time from 800 ° C. to 500 ° C. is 50 s after heating to 1450 ° C. (welding heat input 50 kJ / (corresponding to the thermal history of HAZ (welding heat affected zone) when one layer is welded in cm).

熱サイクル2は多層溶接における再熱部を再現したもので前記の単一熱サイクルを加えた後、650℃まで再加熱して1秒保持してのち5℃/秒で冷却する再熱サイクルである(溶接入熱50kJ/cmで多層溶接したときの再熱HAZの熱履歴に相当)。   Thermal cycle 2 is a reheat cycle that reproduces the reheated part in multi-layer welding. After adding the single heat cycle, it is reheated to 650 ° C, held for 1 second, and then cooled at 5 ° C / second. Yes (corresponding to the thermal history of reheated HAZ when multilayer welding is performed with a welding heat input of 50 kJ / cm).

表3に結果を示す。本発明の鋼板はオーステナイト温度域から水冷(Q)したものと空冷(A)したものとで強度差が少ないことが分かる。また、1層溶接および多層溶接再熱部の溶接熱影響部の靱性にも優れていることが分かる。比較例である鋼C4は再熱HAZの靱性が劣る(これは熱処理Rによる評価と同じである)。   Table 3 shows the results. It can be seen that the steel sheet of the present invention has a small difference in strength between the water-cooled (Q) and air-cooled (A) steel sheets from the austenite temperature range. Moreover, it turns out that it is excellent also in the toughness of the welding heat affected zone of a 1 layer welding and a multilayer welding reheat part. Steel C4 as a comparative example is inferior in toughness of reheated HAZ (this is the same as the evaluation by heat treatment R).

Figure 2005264294
Figure 2005264294

表4に示す種々の成分組成に調整した鋳片を1200℃に加熱後、熱間圧延を行い、仕上げ温度950℃で圧延を完了し厚み15mmの鋼板を製造した。圧延後の冷却は空冷とした。かくして得られた各鋼板について引張り試験およびシャルピー試験を行い、その機械的性質を調べた。また再熱部の靱性を調べるため、再熱部を模擬する熱処理として実施例1と同様に熱処理(R)を施した。   The slabs adjusted to various component compositions shown in Table 4 were heated to 1200 ° C. and then hot-rolled to complete rolling at a finishing temperature of 950 ° C. to produce a steel plate having a thickness of 15 mm. Cooling after rolling was air cooling. Each steel plate thus obtained was subjected to a tensile test and a Charpy test to investigate its mechanical properties. Further, in order to examine the toughness of the reheated portion, heat treatment (R) was performed in the same manner as in Example 1 as a heat treatment for simulating the reheated portion.

Figure 2005264294
Figure 2005264294

表5に圧延ままの鋼板の引張特性(YS,TS,EL)および靱性(シャルピー衝撃試験の試験温度0℃での吸収エネルギー(vE0))、および、熱処理(R)後の靱性を示す。シャルピー衝撃試験片は2mmVノッチシャルピー試験片で厚み10mmのものであり、3本づつ試験した。表5中の吸収エネルギー(vE0)は3本の平均値である。   Table 5 shows the tensile properties (YS, TS, EL) and toughness (absorbed energy (vE0) at 0 ° C. of Charpy impact test) and toughness after heat treatment (R) of the as-rolled steel sheet. The Charpy impact test pieces were 2 mm V-notch Charpy test pieces having a thickness of 10 mm, and three pieces were tested each. The absorbed energy (vE0) in Table 5 is an average value of three.

Figure 2005264294
Figure 2005264294

鋼IはNbの一部をTaで置換したものであり、鋼JはNbを全てTaで置換したものである。また、鋼KはTiの一部をZrで置換したものであり、鋼LはTiを全てZrで置換したものである。表5に示すように、Nbの一部または全部をTaで置換、あるいは、Tiの一部または全部をZrで置換しても特性に変わりなく、優れた強度および再熱部靱性を示すことが分かる。   Steel I is obtained by replacing part of Nb with Ta, and steel J is obtained by replacing Nb with Ta. Steel K is obtained by replacing part of Ti with Zr, and steel L is obtained by replacing all Ti with Zr. As shown in Table 5, even if part or all of Nb is replaced with Ta, or part or all of Ti is replaced with Zr, the properties do not change, and excellent strength and reheat zone toughness are exhibited. I understand.

表6に示す種々の成分組成に調整した鋳片を1200℃に加熱後、熱間圧延を行い、仕上げ温度950℃で圧延を完了し厚み15mmの鋼板を製造した。圧延後の冷却は空冷とした。かくして得られた各鋼板について引張り試験およびシャルピー試験を行い、その機械的性質を調べた。   The slabs adjusted to various component compositions shown in Table 6 were heated to 1200 ° C. and then hot-rolled to complete rolling at a finishing temperature of 950 ° C. to produce a steel plate having a thickness of 15 mm. Cooling after rolling was air cooling. Each steel plate thus obtained was subjected to a tensile test and a Charpy test to investigate its mechanical properties.

また、溶接熱影響部の靱性を評価するため、実施例1で行ったと同様の単一熱サイクルおよび再熱サイクルを加えて、シャルピー試験を行った。シャルピー衝撃試験片は2mmVノッチシャルピー試験片で厚み10mmのものであり、3本づつ試験した。   In addition, in order to evaluate the toughness of the weld heat affected zone, a Charpy test was performed by adding the same single heat cycle and reheat cycle as those performed in Example 1. The Charpy impact test pieces were 2 mm V-notch Charpy test pieces having a thickness of 10 mm, and three pieces were tested each.

Figure 2005264294
Figure 2005264294

表7に結果を示す。表7中の吸収エネルギー(vE0)は3本の平均値である。本発明の鋼は高い強度を示すとともに、一層溶接の熱影響部、多層溶接の再熱部とも高い靱性を示すことが分かる。比較例は一層溶接の熱影響部の靱性は優れているものの再熱部の靱性が劣ることが分かる。   Table 7 shows the results. The absorbed energy (vE0) in Table 7 is an average value of three. It can be seen that the steel of the present invention exhibits high strength and high toughness in both the heat-affected zone of single layer welding and the reheat zone of multilayer welding. The comparative example shows that although the toughness of the heat-affected zone of welding is superior, the toughness of the reheat zone is inferior.

Figure 2005264294
Figure 2005264294

Nb含有量と鋼板の引張強さ(TS)との関係を示す図である。It is a figure which shows the relationship between Nb content and the tensile strength (TS) of a steel plate. Nb含有量と鋼板の熱処理(R)後の靱性(シャルピー吸収エネルギー)を示す図である。It is a figure which shows the toughness (Charpy absorbed energy) after heat processing (R) of Nb content and a steel plate. B含有量と鋼板の引張強さ(TS)との関係を示す図である。It is a figure which shows the relationship between B content and the tensile strength (TS) of a steel plate. B含有量と鋼板の熱処理(R)後の靱性(シャルピー吸収エネルギー)を示す図である。It is a figure which shows the toughness (Charpy absorbed energy) after heat processing (R) of B content and a steel plate. Ti含有量と鋼板の熱処理(R)後の靱性(シャルピー吸収エネルギー)を示す図である。It is a figure which shows the toughness (Charpy absorbed energy) after heat processing (R) of Ti content and a steel plate.

Claims (2)

質量%で、C:0.004%以下、Si:0.6%以下、Mn:0.5%以下、P:0.03%以下、S:0.02%以下、Al:0.2%以下、N:0.004%以下、B:0.0007〜0.004%を含有し、更に、Ti、Zrの1種または2種を、(Ti+0.53×Zr)が0.025%以下、かつ、質量比で(Ti+0.53×Zr)/Nが3.4以上含有し、Nb、Taの1種または2種を、(Nb+0.51×Ta)が0.04〜0.3%で含有し、残部が実質的にFeからなる鋼材。 In mass%, C: 0.004% or less, Si: 0.6% or less, Mn: 0.5% or less, P: 0.03% or less, S: 0.02% or less, Al: 0.2% Hereinafter, N: 0.004% or less, B: 0.0007-0.004%, and further, one or two of Ti and Zr, (Ti + 0.53 × Zr) is 0.025% or less In addition, (Ti + 0.53 × Zr) / N is contained in a mass ratio of 3.4 or more, and one or two of Nb and Ta are contained, and (Nb + 0.51 × Ta) is 0.04 to 0.3%. The steel material which contains by and substantially consists of Fe. 請求項1記載の成分組成に、更に、質量%で、Cu:1%以下、Ni:1.5%以下、Cr:0.6%以下、Mo:0.6%以下、V:0.6%以下の1種または2種以上を含有する残部が実質的にFeからなる鋼材。
In addition to the component composition according to claim 1, Cu: 1% or less, Ni: 1.5% or less, Cr: 0.6% or less, Mo: 0.6% or less, V: 0.6 %, And the balance containing 1 type or 2 types or less substantially consists of Fe.
JP2004082469A 2004-03-22 2004-03-22 Steel having reduced variation in material and having excellent toughness in weld heat affected zone Pending JP2005264294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004082469A JP2005264294A (en) 2004-03-22 2004-03-22 Steel having reduced variation in material and having excellent toughness in weld heat affected zone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004082469A JP2005264294A (en) 2004-03-22 2004-03-22 Steel having reduced variation in material and having excellent toughness in weld heat affected zone

Publications (1)

Publication Number Publication Date
JP2005264294A true JP2005264294A (en) 2005-09-29

Family

ID=35089145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004082469A Pending JP2005264294A (en) 2004-03-22 2004-03-22 Steel having reduced variation in material and having excellent toughness in weld heat affected zone

Country Status (1)

Country Link
JP (1) JP2005264294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102259A1 (en) * 2010-02-18 2011-08-25 住友金属工業株式会社 Steel plate exhibiting little welding deformation and excellent corrosion resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011102259A1 (en) * 2010-02-18 2011-08-25 住友金属工業株式会社 Steel plate exhibiting little welding deformation and excellent corrosion resistance
JP5392397B2 (en) * 2010-02-18 2014-01-22 新日鐵住金株式会社 Steel sheet with small welding deformation and excellent corrosion resistance
KR101442366B1 (en) 2010-02-18 2014-09-17 신닛테츠스미킨 카부시키카이샤 Steel plate exhibiting little welding deformation and excellent corrosion resistance

Similar Documents

Publication Publication Date Title
JP4358900B1 (en) High-strength steel sheet and steel pipe excellent in low-temperature toughness and method for producing them
JP5574059B2 (en) High-strength H-section steel with excellent low-temperature toughness and method for producing the same
KR100920536B1 (en) High tensile and fire-resistant steel excellent in weldability and gas cutting property and method for production thereof
JP5659758B2 (en) TMCP-Temper type high-strength steel sheet with excellent drop weight characteristics after PWHT that combines excellent productivity and weldability
JP4926447B2 (en) Manufacturing method of high strength steel with excellent weld crack resistance
JPWO2016114146A1 (en) Thick, high toughness, high strength steel plate and method for producing the same
JP7411072B2 (en) High-strength, extra-thick steel material with excellent low-temperature impact toughness and method for producing the same
JP5630322B2 (en) High-tensile steel plate with excellent toughness and manufacturing method thereof
WO2014175122A1 (en) H-shaped steel and method for producing same
JP5114743B2 (en) High strength rolled steel for fireproofing and method for producing the same
KR101546154B1 (en) Oil tubular country goods and method of manufacturing the same
JP4770415B2 (en) High tensile steel plate excellent in weldability and method for producing the same
JP2005126819A (en) HIGH TENSILE STRENGTH STEEL SHEET HAVING REDUCED ACOUSTIC ANISOTROPY, EXCELLENT WELDABILITY AND TENSILE STRENGTH IN &gt;=570 MPa CLASS, AND ITS PRODUCTION METHOD
JP4038166B2 (en) Steel plate excellent in earthquake resistance and weldability and manufacturing method thereof
JP4882246B2 (en) Refractory steel with excellent toughness of weld heat affected zone
JP5552967B2 (en) Thick high-strength steel sheet with excellent low-temperature toughness of welds and method for producing the same
JP4250113B2 (en) Steel plate manufacturing method with excellent earthquake resistance and weldability
JP5223295B2 (en) Refractory H-shaped steel with excellent reheat embrittlement resistance and method for producing the same
JP2007302977A (en) Method for manufacturing high-strength steel of tensile strength of 570 mpa class having excellent toughness of weld heat affected zone
JP2005264294A (en) Steel having reduced variation in material and having excellent toughness in weld heat affected zone
JP2005272854A (en) Method for producing high-tensile steel excellent in refractoriness and toughness in welded heat affected part
JP3756795B2 (en) High-tensile steel with excellent toughness of weld heat-affected zone subjected to multiple thermal cycles
JP2004162076A (en) Steel plate excellent in weldability and earthquake resistance, and its production method
JPH07268457A (en) Production of thick steel plate for line pipe, having high strength and high toughness
JP4770293B2 (en) Manufacturing method of high-tensile steel sheet

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Effective date: 20060921

Free format text: JAPANESE INTERMEDIATE CODE: A7421