JP2005263869A - Resin composition for sealing optical semiconductor - Google Patents

Resin composition for sealing optical semiconductor Download PDF

Info

Publication number
JP2005263869A
JP2005263869A JP2004075078A JP2004075078A JP2005263869A JP 2005263869 A JP2005263869 A JP 2005263869A JP 2004075078 A JP2004075078 A JP 2004075078A JP 2004075078 A JP2004075078 A JP 2004075078A JP 2005263869 A JP2005263869 A JP 2005263869A
Authority
JP
Japan
Prior art keywords
group
silsesquioxane
composition
optical semiconductor
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004075078A
Other languages
Japanese (ja)
Inventor
Katsushi Suga
克司 菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagase Chemtex Corp
Original Assignee
Nagase Chemtex Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagase Chemtex Corp filed Critical Nagase Chemtex Corp
Priority to JP2004075078A priority Critical patent/JP2005263869A/en
Publication of JP2005263869A publication Critical patent/JP2005263869A/en
Pending legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a transfer-molded sealing composition which does not yellow, even when exposed to ultraviolet radiation, is capable of solving the problem of short life due to yellowing, can substitute a conventional epoxy resin, is excellent in durability and is suitable for a UV-blue optical semiconductor device. <P>SOLUTION: The resin composition for sealing the optical semiconductor formed to be a stage B comprises a functional group-containing silsesquioxane, an epoxy resin and a hardener, wherein the silsesquioxane has a ladder structure having at least two epoxy rings, a cage structure or a partially cleaved structure thereof (a cage structure wherein some of the silicon atoms are lacking or some of the silicon-oxygen bonds are cleaved). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、エポキシ環含有シルセスキオキサンからなりBステージ化されてなる光半導体封止用樹脂組成物に関し、とくに紫外乃至青色光半導体素子用に好適なトランスファー成形法による封止用樹脂組成物に関する。   The present invention relates to a resin composition for encapsulating an optical semiconductor comprising an epoxy ring-containing silsesquioxane and B-staged, and in particular, a resin composition for encapsulating by a transfer molding method suitable for ultraviolet to blue optical semiconductor elements. About.

紫外乃至青色光半導体素子は、光情報通信、光情報記録、ディスプレイ等の分野で研究開発が進んでおり、次世代型素子として注目されている。紫外乃至青色光半導体素子とは、紫外乃至青色の領域の光に関する光半導体素子をいい、典型的には、ピーク波長が350〜490nmの光に関する光半導体素子をいう。概ね、可視光線の短波長端である波長400nm程度未満の光は紫外線であり、光半導体素子に関する紫外線としては、300〜360nmの深紫外領域や波長360〜400nm程度の近紫外領域等が知られている。波長400〜435nm程度の光は紫、波長435〜490nm程度の光は青〜緑青色の可視光線であるが、便宜上、波長400〜490nm程度の光を本明細書では青色光という。光半導体素子には、各種レーザー、発光ダイオード、受光素子、複合光素子等がある。例えば、近紫外光半導体素子は、発光ダイオード(LED)、半導体レーザー(LD)及びこれらの発光源からの光を受光する各種半導体素子を含む。なかでも、近紫外LEDは、ピーク波長が概ね360〜400nm程度の近紫外線を発光するLEDである。   Ultraviolet to blue light semiconductor elements have been researched and developed in the fields of optical information communication, optical information recording, displays, and the like, and are attracting attention as next-generation type elements. The ultraviolet to blue light semiconductor element refers to an optical semiconductor element related to light in the ultraviolet to blue region, and typically refers to an optical semiconductor element related to light having a peak wavelength of 350 to 490 nm. Generally, light having a wavelength of less than about 400 nm, which is the short wavelength end of visible light, is ultraviolet light. As ultraviolet light related to an optical semiconductor element, a deep ultraviolet region of 300 to 360 nm, a near ultraviolet region of a wavelength of about 360 to 400 nm, and the like are known. ing. Light having a wavelength of about 400 to 435 nm is violet, and light having a wavelength of about 435 to 490 nm is visible light of blue to green-blue. For convenience, light having a wavelength of about 400 to 490 nm is referred to as blue light in this specification. Examples of the optical semiconductor element include various lasers, light emitting diodes, light receiving elements, and composite optical elements. For example, the near-ultraviolet semiconductor device includes a light emitting diode (LED), a semiconductor laser (LD), and various semiconductor devices that receive light from these light sources. Among these, the near-ultraviolet LED is an LED that emits near-ultraviolet light having a peak wavelength of approximately 360 to 400 nm.

従来、光半導体の樹脂封止には、固形のエポキシ樹脂等の固形封止材を用いるトランスファー成形、特に低圧トランスファー成形が主として使用されている。しかしながら、封止に使用されてきた透明エポキシ樹脂は、青色光や紫外線により経時的に黄変するため素子の寿命が短いという問題があった。特に近紫外線に照射されると急速に透過率が低下し、耐久性のある近紫外LEDの実装が困難であった。また、青色LEDにおいては、発光をより高輝度とする場合に、やはり黄変が問題となってくるのであって、この場合にも現実には紫外乃至近紫外用LEDと同レベルの耐久性が要求されている。   Conventionally, transfer molding using a solid sealing material such as a solid epoxy resin, particularly low-pressure transfer molding, is mainly used for resin sealing of an optical semiconductor. However, the transparent epoxy resin that has been used for sealing has a problem in that the lifetime of the element is short because it is yellowed over time by blue light or ultraviolet light. In particular, when irradiated with near-ultraviolet light, the transmittance rapidly decreased, and it was difficult to mount a durable near-ultraviolet LED. In addition, in blue LEDs, yellowing is also a problem when light emission is made to have a higher luminance. In this case as well, in reality, the same level of durability as ultraviolet to near-ultraviolet LEDs is used. It is requested.

一方、ケイ素を含んだネットワーク型オリゴマーであるシルセスキオキサンに関しては、例えば、オキセタン環含有シルセスキオキサンを硬化させてなる高分子膜を用いた光導波路素子(例えば、特許文献1参照。)や、水素シルセスキオキサンとコロイダルシリカからなる紫外線透過性樹脂コーティング(例えば、特許文献2参照。)等が知られている。しかしながら、これらの技術は光半導体素子用のトランスファー成形封止材として使用可能な技術ではない。すなわち、これらの従来技術は、いずれも光導波路を形成するものであるから、封止材に関する技術分野とは技術分野を異にし、また、封止材に要求される形成厚みを実現してエポキシ樹脂の代わりに使用することができるというものではない。また、一旦Bステージ化してトランスファー成形用樹脂組成物となしうるものでもない。なお、Bステージとは、ある種の熱硬化性樹脂の反応における第二のステージのことであって、樹脂が溶媒に可溶のままであるAステージの後に続き、かつ完全に硬化した状態であるCステージの前にあって、粘度増加過程として特徴づけられる、反応が適度に進み所謂半硬化の状態にあることをいう。   On the other hand, with respect to silsesquioxane which is a network-type oligomer containing silicon, for example, an optical waveguide device using a polymer film obtained by curing an oxetane ring-containing silsesquioxane (see, for example, Patent Document 1). In addition, an ultraviolet light transmissive resin coating made of hydrogen silsesquioxane and colloidal silica (for example, see Patent Document 2) is known. However, these techniques are not techniques that can be used as transfer molding encapsulants for optical semiconductor elements. That is, since these conventional technologies all form an optical waveguide, the technical field relating to the sealing material is different from that of the sealing material, and the formation thickness required for the sealing material is realized. It cannot be used instead of resin. Further, it cannot be made into a B-stage once to form a transfer molding resin composition. The B stage refers to the second stage in the reaction of a certain type of thermosetting resin, which follows the A stage where the resin remains soluble in the solvent and is in a completely cured state. Before a certain C stage, it means that the reaction proceeds moderately and is in a so-called semi-cured state, which is characterized as a viscosity increasing process.

特開2003−21735号公報JP 2003-21735 A 特開平11−106658号公報JP-A-11-106658

上述の現状に鑑みて、本発明は、紫外線にさらされても黄変せず、黄変による短寿命化を克服することができ、従来のエポキシ樹脂の代わりに使用することができて耐久性に優れ、紫外乃至青色光半導体素子に好適なトランスファー成形封止用組成物を提供することを目的とする。   In view of the above situation, the present invention does not turn yellow when exposed to ultraviolet rays, can overcome the shortening of life due to yellowing, and can be used in place of a conventional epoxy resin and has durability. An object of the present invention is to provide a composition for transfer molding and sealing that is excellent in UV and blue light semiconductor elements.

本発明者らは上記課題を解決するべく鋭意検討した結果、オキセタニル基、カルボニル基、窒素、イオウ等を含有する置換基を有するシルセスキオキサンは紫外線にさらすと早期に黄変するものの、特定種類の側鎖を有する反応性シルセスキオキサンの架橋物は紫外線の透過性を維持し得ることを見いだし、この知見に基づいて本発明を完成した。
すなわち、本発明は、エポキシ環を少なくとも2つ有するシルセスキオキサンからなりBステージ化されてなる光半導体封止用樹脂組成物である。
As a result of intensive studies to solve the above problems, the present inventors have found that silsesquioxanes having substituents containing oxetanyl group, carbonyl group, nitrogen, sulfur, etc., turn yellow when exposed to ultraviolet rays, but are specified. It was found that a cross-linked product of reactive silsesquioxane having various types of side chains can maintain ultraviolet light permeability, and the present invention was completed based on this finding.
That is, the present invention is a resin composition for encapsulating an optical semiconductor comprising a silsesquioxane having at least two epoxy rings and B-staged.

本発明の1態様は、置換基含有シルセスキオキサンが、一般式(1)で表される籠型構造体のシルセスキオキサンの少なくとも1種である。
(X−R−Si)・O(3n−m)/2(OH)m−a・(R′) (1)
式(1)中、nは4〜18の整数、mは0又はn+2以下の整数、ただし、mが0のときはnは6〜18の偶数である。aは0〜mの整数である。複数のRは、同一又は異なって、直接結合、ハロゲン置換基を有していてもよい炭素数1〜20のアルキレン基、炭素数5〜12のシクロアルキレン基、エーテル結合を含有する炭素数1〜20の2価の炭化水素基、エステル結合を含有する炭素数1〜20の2価の炭化水素基(エステル結合中の炭素原子を含まない。以下同じ。)、及び、置換基を有していてもよいオルガノシロキシ基を含有する炭素数1〜12の2価の炭化水素基(置換基中の炭素原子を含まない。以下同じ。)からなる群から選択された少なくとも1種である。複数のXは、少なくとも二つは、同一又は異なって、エポキシ基又は3,4−エポキシシクロヘキシル基であり、R′は、−O−R′′又は−O−Si(R′′)(R′′は水素原子であってもよい置換基。ただし、R′′が複数あるときは同一でも異なっていてもよい。)を表し、かつ、複数のX及びR′′のうち少なくとも二つは架橋点を形成し得るものである。ただし、R′が複数あるときは同一でも異なっていてもよい。
本発明の他の態様においては、さらに、エポキシ樹脂を、組成物全体に対して10〜50重量%含有する。
本発明の他の態様においては、さらに、硬化剤、又は、硬化剤及び硬化触媒を含有する。
本発明のさらに他の態様においては、さらに、架橋性官能基を持たないシルセスキオキサンを含有する。
本発明の別の態様は、ピーク波長が350〜490nmの光を、発光又は受光する、光半導体の封止用樹脂組成物である。
In one embodiment of the present invention, the substituent-containing silsesquioxane is at least one silsesquioxane having a cage structure represented by the general formula (1).
(X—R—Si) n · O (3 nm) / 2 (OH) m a (R ′) a (1)
In formula (1), n is an integer of 4-18, m is an integer of 0 or n + 2 or less, provided that when m is 0, n is an even number of 6-18. a is an integer of 0 to m. Plural Rs may be the same or different and have a direct bond, an alkylene group having 1 to 20 carbon atoms which may have a halogen substituent, a cycloalkylene group having 5 to 12 carbon atoms, an ether bond and 1 carbon atom. -20 divalent hydrocarbon group, C1-C20 divalent hydrocarbon group containing an ester bond (not including carbon atoms in the ester bond, the same shall apply hereinafter), and having a substituent It is at least 1 type selected from the group which consists of a C1-C12 bivalent hydrocarbon group (it does not contain the carbon atom in a substituent. The following is same) containing the organosiloxy group which may be. A plurality of Xs are the same or different and at least two are an epoxy group or a 3,4-epoxycyclohexyl group, and R ′ is —O—R ″ or —O—Si (R ″) 3 ( R ″ represents a substituent which may be a hydrogen atom (provided that when there are a plurality of R ″, they may be the same or different), and at least two of the plurality of X and R ″ Can form a crosslinking point. However, when there are a plurality of R ′, they may be the same or different.
In another embodiment of the present invention, the epoxy resin is further contained in an amount of 10 to 50% by weight based on the entire composition.
In another embodiment of the present invention, a curing agent or a curing agent and a curing catalyst are further contained.
In still another embodiment of the present invention, silsesquioxane having no crosslinkable functional group is further contained.
Another aspect of the present invention is a resin composition for sealing an optical semiconductor that emits or receives light having a peak wavelength of 350 to 490 nm.

本発明は上述の構成により、従来のエポキシ樹脂の代わりに、トランスファー成形で光半導体素子を封止することができ、紫外乃至青色領域の光を浴びても黄変せず、耐久性に優れた、紫外乃至青色光半導体素子に極めて好適な、光半導体封止用樹脂組成物を提供することができる。
以下、本発明を詳細に説明する。
With the above-described configuration, the present invention can seal an optical semiconductor element by transfer molding instead of a conventional epoxy resin, does not yellow even when exposed to light in the ultraviolet to blue region, and has excellent durability. It is possible to provide a resin composition for encapsulating an optical semiconductor that is extremely suitable for an ultraviolet or blue optical semiconductor element.
Hereinafter, the present invention will be described in detail.

シルセスキオキサンは、通常、ASiQ(Aは、水素原子、アルキル基、アルケニル基、アリール基、アラルキル基等、Qはハロゲン、アルコキシ基等)で表される3官能性有機ケイ素化合物の加水分解、重縮合により合成されるポリシロキサンであってASiO3/2単位を有する。シルセスキオキサンの分子配列の形状は、代表的には無定形構造、ラダー型構造、籠型(完全縮合ケージ型)構造又はその部分開裂構造体(籠型構造からケイ素原子のうちの一部が欠けた構造や籠型構造の一部のケイ素−酸素結合が切断された構造のもの)等が知られている。 Silsesquioxane is usually a hydrolyzed trifunctional organosilicon compound represented by ASiQ 3 (A is a hydrogen atom, alkyl group, alkenyl group, aryl group, aralkyl group, etc., Q is halogen, alkoxy group, etc.). A polysiloxane synthesized by decomposition and polycondensation and having ASiO 3/2 units. The shape of the molecular arrangement of silsesquioxane is typically an amorphous structure, a ladder structure, a cage structure (fully condensed cage structure) or a partially cleaved structure thereof (from a cage structure to a part of silicon atoms). In which a silicon-oxygen bond is partially broken in a structure lacking or a saddle type structure).

本発明におけるシルセスキオキサンは、これらのシルセスキオキサン化合物のうち、いずれの構造のものであってもよく、また、それらの混合物であってもよい。このようなシルセスキオキサンの具体的な構造体は、例えば、
(i)上記式(1)で表される籠型構造体のシルセスキオキサンにおいて、m及びaが0の場合の(X−R−SiO3/2で表される籠型構造体、
(ii)上記式(1)においてaが0の場合の(X−R−SiO3/2(O1/2H)で表される籠型構造体の部分開裂構造体、
(iii)ラダー型構造体、例えば、下記一般式で表される構造体、
The silsesquioxane in the present invention may have any structure among these silsesquioxane compounds, or a mixture thereof. A specific structure of such silsesquioxane is, for example,
(I) A cage structure represented by (X—R—SiO 3/2 ) n in the case where m and a are 0 in the silsesquioxane of the cage structure represented by the above formula (1) ,
(Ii) a partially cleaved structure of a cage structure represented by (X—R—SiO 3/2 ) n (O 1/2 H) m when a is 0 in the above formula (1),
(Iii) Ladder type structure, for example, a structure represented by the following general formula,

Figure 2005263869
Figure 2005263869

上記式中、Aは上記式(1)におけるX−R−又はBを表し、Bは上記式(1)におけるR′′を表す。ただし、少なくとも二つのAはX−R−を表す。複数のA及びBは、それぞれ、同一でも異なっていてもよい。平均重合度nは、保存安定性の観点から下限は好ましくは4であり、粘度の観点から上限は好ましくは15である。;及び、
(iv)無定形構造体、例えば、上記A及びBで表される基を有する無定形構造体。ただし、少なくとも二つのAはX−R−を表す。複数のA及びBは、それぞれ、同一でも異なっていてもよい;
等が挙げられる。
In the above formula, A represents X—R— or B in the above formula (1), and B represents R ″ in the above formula (1). However, at least two A represent XR-. A plurality of A and B may be the same or different. The lower limit of the average degree of polymerization n is preferably 4 from the viewpoint of storage stability, and the upper limit is preferably 15 from the viewpoint of viscosity. ;as well as,
(Iv) An amorphous structure, for example, an amorphous structure having the groups represented by A and B above. However, at least two A represent XR-. A plurality of A and B may be the same or different from each other;
Etc.

上記(i)で表される籠型構造体のシルセスキオキサンにおけるnの値は、6〜18の偶数であり、好ましくは6〜14、より好ましくは8、10又は12であり、さらに好ましくは、8である。具体例としては、例えば、nが6のものは三角柱型構造式を有し、nが8のものは6面体型構造式を有し、nが10のものは5角柱型構造式を有し、nが12のものは4角形4面と5角形4面とからなる8面体型構造式を有し、nが14のものは4角形3面と5角形6面とからなる9面体型構造式を有することが知られている。   The value of n in the silsesquioxane of the cage structure represented by the above (i) is an even number of 6 to 18, preferably 6 to 14, more preferably 8, 10 or 12, and further preferably. Is 8. As a specific example, for example, n = 6 has a triangular prism structural formula, n = 8 has a hexahedral structural formula, and n = 10 has a pentagonal structural formula. , N = 12 has an octahedral structure of tetragonal tetrahedral and pentagonal tetrahedral, and n = 14 has an octahedral structure composed of tetragonal trihedral and pentagonal six surfaces. It is known to have the formula

上記(ii)で表される籠型構造体の部分開裂構造体は、(ii−1)籠型構造からケイ素原子のうちの一部が欠けた構造又は(ii−2)籠型構造の一部のケイ素−酸素結合が切断された構造のものを表す。nの値は、4〜18であり、好ましくは4〜14である。籠型構造からケイ素原子のうちの一部が欠けた構造(ii−1)としては、例えば、n=6の完全縮合ケージ型構造の一つのケイ素原子が欠けた構造:(X−R−SiO3/26−1(O1/2H)、n=6の完全縮合ケージ型構造の二つのケイ素原子が欠けた構造:(X−R−SiO3/26−2(O1/2H)又は(X−R−SiO3/26−2(O1/2H)、n=8の完全縮合ケージ型構造の一つのケイ素原子が欠けた構造:(X−R−SiO3/28−1(O1/2H)、n=8の完全縮合ケージ型構造の二つのケイ素原子が欠けた構造:(X−R−SiO3/28−2(O1/2H)又は(X−R−SiO3/28−2(O1/2H)、n=10の完全縮合ケージ型構造の一つのケイ素原子が欠けた構造:(X−R−SiO3/210−1(O1/2H)、n=10の完全縮合ケージ型構造の二つのケイ素原子が欠けた構造:(X−R−SiO3/210−2(O1/2H)又は(X−R−SiO3/210−2(O1/2H)、n=10の完全縮合ケージ型構造の隣り合う三つのケイ素原子が欠けた構造:(X−R−SiO3/210−3(O1/2H)、n=12の完全縮合ケージ型構造の一つのケイ素原子が欠けた構造:(X−R−SiO3/212−1(O1/2H)、n=12の完全縮合ケージ型構造の二つのケイ素原子が欠けた構造:(X−R−SiO3/212−2(O1/2H)又は(X−R−SiO3/212−2(O1/2H)、n=12の完全縮合ケージ型構造の隣り合う三つのケイ素原子が欠けた構造:(X−R−SiO3/212−3(O1/2H)、n=14の完全縮合ケージ型構造の一つのケイ素原子が欠けた構造:(X−R−SiO3/214−1(O1/2H)、n=14の完全縮合ケージ型構造の二つのケイ素原子が欠けた構造:(X−R−SiO3/214−2(O1/2H)又は(X−R−SiO3/214−2(O1/2H)、n=14の完全縮合ケージ型構造の隣り合う三つのケイ素原子が欠けた構造:(X−R−SiO3/214−3(O1/2H)、n=14の完全縮合ケージ型構造の隣り合う四つのケイ素原子が欠けた構造:(X−R−SiO3/214−4(O1/2H)又は(X−R−SiO3/214−4(O1/2H)、等を挙げることができる。 The partially cleaved structure of the cage structure represented by (ii) above is (ii-1) a structure in which a part of silicon atoms is missing from the cage structure or (ii-2) one of the cage structures. This represents a structure in which the silicon-oxygen bond in part is broken. The value of n is 4-18, preferably 4-14. As the structure (ii-1) in which a part of silicon atoms is missing from the cage structure, for example, a structure in which one silicon atom of a fully condensed cage structure with n = 6 is missing: (X—R—SiO 3/2 ) 6-1 (O 1/2 H) 3 , n = 6 completely condensed cage structure lacking two silicon atoms: (X—R—SiO 3/2 ) 6-2 (O 1/2 H) 4 or (X—R—SiO 3/2 ) 6-2 (O 1/2 H) 6 , n = 8, a structure in which one silicon atom is missing: (X -R-SiO 3/2 ) 8-1 (O 1/2 H) 3 , n = 8, a fully condensed cage structure lacking two silicon atoms: (X—R—SiO 3/2 ) 8 -2 (O 1/2 H) 4 or (X—R—SiO 3/2 ) 8-2 (O 1/2 H) 6 , n = 10, a fully condensed cage structure Structure lacking one silicon atom: (X—R—SiO 3/2 ) 10-1 (O 1/2 H) 3 , n = 10 Two silicon atoms in a fully condensed cage structure Structure: (X—R—SiO 3/2 ) 10-2 (O 1/2 H) 4 or (X—R—SiO 3/2 ) 10-2 (O 1/2 H) 6 , n = 10 A structure in which three adjacent silicon atoms are missing in a fully condensed cage structure: (X—R—SiO 3/2 ) 10-3 (O 1/2 H) 5 , n = 12, a fully condensed cage structure Structure lacking two silicon atoms: (X—R—SiO 3/2 ) 12-1 (O 1/2 H) 3 , n = 12 Fully condensed cage structure lacking two silicon atoms: ( X-R-SiO 3/2) 12-2 (O 1/2 H) 4 or (X-R-SiO 3/2) 12-2 (O 1 2 H) 6, n = 12 for full condensation cage type three silicon atoms chipped structure adjacent the structure: (X-R-SiO 3/2 ) 12-3 (O 1/2 H) 5, n = The structure of 14 fully condensed cage structures lacking one silicon atom: (X—R—SiO 3/2 ) 14-1 (O 1/2 H) 3 , n = 14 of fully condensed cage structures 2 Structure lacking two silicon atoms: (X—R—SiO 3/2 ) 14-2 (O 1/2 H) 4 or (X—R—SiO 3/2 ) 14-2 (O 1/2 H) 6 , n = 14 fully condensed cage structure lacking three adjacent silicon atoms: (X—R—SiO 3/2 ) 14-3 (O 1/2 H) 5 , n = 14 complete A structure lacking four adjacent silicon atoms in a condensed cage structure: (X—R—SiO 3/2 ) 14-4 (O 1 / 2 H) 4 or (X-R-SiO 3/2) 14-4 (O 1/2 H) 6, and the like.

籠型構造の一部のケイ素−酸素結合が切断された構造(ii−2)としては、例えば、n=6の完全縮合ケージ型構造の一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/2(O1/2H)、n=6の完全縮合ケージ型構造の二つのケイ素−酸素結合が切断された構造:(X−R−SiO3/2(O1/2H)、n=8の完全縮合ケージ型構造の一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/2(O1/2H)、n=8の完全縮合ケージ型構造の二つのケイ素−酸素結合が切断された構造:(X−R−SiO3/2(O1/2H)、n=10の完全縮合ケージ型構造の一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/210(O1/2H)、n=10の完全縮合ケージ型構造の二つのケイ素−酸素結合が切断された構造:(X−R−SiO3/210(O1/2H)、n=10の完全縮合ケージ型構造の三つのケイ素−酸素結合が切断された構造:(X−R−SiO3/210(O1/2H)、n=12の完全縮合ケージ型構造の一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/212(O1/2H)、n=12の完全縮合ケージ型構造の二つのケイ素−酸素結合が切断された構造:(X−R−SiO3/212(O1/2H)、n=12の完全縮合ケージ型構造の三つの一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/212(O1/2H)、n=14の完全縮合ケージ型構造の一つのケイ素−酸素結合が切断された構造:(X−R−SiO3/214(O1/2H)、n=14の完全縮合ケージ型構造の二つのケイ素−酸素結合が切断された構造:(X−R−SiO3/214(O1/2H)、n=14の完全縮合ケージ型構造の三つのケイ素−酸素結合が切断された構造:(X−R−SiO3/214(O1/2H)、等を挙げることができる。 As the structure (ii-2) in which a part of the silicon-oxygen bond in the cage structure is cut, for example, a structure in which one silicon-oxygen bond in the fully condensed cage structure of n = 6 is cut: (X -R-SiO 3/2 ) 6 (O 1/2 H) 2 , a structure in which two silicon-oxygen bonds in a fully condensed cage structure of n = 6 are broken: (X—R—SiO 3/2 ) A structure in which one silicon-oxygen bond of a fully condensed cage structure of 6 (O 1/2 H) 4 , n = 8 is broken: (X—R—SiO 3/2 ) 8 (O 1/2 H) 2 , n = 8 complete condensation cage structure in which two silicon-oxygen bonds are broken: (X—R—SiO 3/2 ) 8 (O 1/2 H) 4 , n = 10 complete condensation Cage-type structure in which one silicon-oxygen bond is broken: (X—R—SiO 3/2 ) 10 (O 1 / 2 H) 2 , n = 10 fully condensed cage structure in which two silicon-oxygen bonds are broken: (X—R—SiO 3/2 ) 10 (O 1/2 H) 4 , n = 10 A structure in which three silicon-oxygen bonds of the fully condensed cage structure are broken: (X—R—SiO 3/2 ) 10 (O 1/2 H) 6 , n = 12. Two silicon-oxygen bonds are cleaved: ( XR —SiO 3/2 ) 12 (O 1/2 H) 2 , n = 12 Structure: (X—R—SiO 3/2 ) 12 (O 1/2 H) 4 , n = 12, a structure in which one of three silicon-oxygen bonds is broken: (X— R-SiO 3/2 ) 12 (O 1/2 H) 6 , n = 14 Structure in which one silicon-oxygen bond is broken: ( XR —SiO 3/2 ) 14 (O 1/2 H) 2 , two silicon-oxygen bonds in a fully condensed cage structure with n = 14 are broken Structure: (X—R—SiO 3/2 ) 14 (O 1/2 H) 4 , n = 14, a structure in which three silicon-oxygen bonds in the fully condensed cage structure are broken: (X—R -SiO 3/2) 14 (O 1/2 H ) 6, and the like.

また、式(1)においいてm及びaが0でない場合に該当する、上記(ii)における部分開裂構造体のSi原子に直結する水酸基の一部又は全部が−O−又は−O−Si−構造を含有する置換基で置換された部分開裂構造体であってもよい。   In addition, in the formula (1), when m and a are not 0, a part or all of the hydroxyl groups directly bonded to the Si atom of the partially cleaved structure in the above (ii) are —O— or —O—Si—. It may be a partially cleaved structure substituted with a substituent containing a structure.

本発明において、シルセスキオキサンは、エポキシ官能基を少なくとも2つ、好ましくは少なくとも4つ、より好ましくは少なくとも6つ、有する(以下、単にシルセスキオキサンという)。ここにいう官能基は、シルセスキオキサンの架橋物を形成するために必要な反応性置換基であって、適切な架橋剤との組み合わせにより、又は、自己縮合的若しくは自己付加的に、架橋物を形成することができる、架橋点となり得る官能基をいう。なお、架橋物とは、架橋剤分子により架橋されたもの、及び、架橋剤を使用することなしに自己縮合的又は自己付加的にシルセスキオキサン同士が相互に結合した硬化物をいう。本発明において上記シルセスキオキサンは、エポキシ環以外の官能基を有していてもよい。ただし、上記エポキシ環以外の官能基としては、本発明においては、オキセタニル基、カルボニル基(ただし、エステルに含まれるC=Oは含まない)、窒素、イオウ等を含有する置換基以外の特定の種類の官能基を有する。具体的には、脂肪族不飽和結合基、及び、Si−H結合を有する置換されているシリル基からなる群から選択された少なくとも1種の官能基等を挙げることができる。上記エポキシ官能基及びエポキシ環以外の官能基としては、好ましくは、上記式(1)におけるX−R−において、複数のRは、同一又は異なって、直接結合、ハロゲン置換基を有していてもよい炭素数1〜20のアルキレン基、炭素数5〜12のシクロアルキレン基、エーテル結合を含有する炭素数1〜20の2価の炭化水素基、エステル結合を含有する炭素数1〜20の2価の炭化水素基、及び、置換基を有していてもよいオルガノシロキシ基を含有する炭素数1〜12の2価の炭化水素基からなる群から選択された少なくとも1種である。複数のXは、同一又は異なって、エポキシ基又は3,4−エポキシシクロヘキシル基の少なくとも2つとともに、ビニル基、及び、Rとともにヒドロシリル基を構成している水素原子からなる群から選択される少なくとも1種であってよい。上記XとRとは上述の基のいずれの組み合わせであってもよい。   In the present invention, the silsesquioxane has at least 2, preferably at least 4, more preferably at least 6, epoxy functional groups (hereinafter simply referred to as silsesquioxane). The functional group here is a reactive substituent necessary for forming a cross-linked product of silsesquioxane, which is crosslinked in combination with an appropriate cross-linking agent, or in a self-condensing or self-addition manner. A functional group that can form a product and can serve as a crosslinking point. The cross-linked product refers to a product cross-linked by a cross-linking agent molecule and a cured product in which silsesquioxanes are bonded to each other in a self-condensing or self-addition manner without using a cross-linking agent. In the present invention, the silsesquioxane may have a functional group other than an epoxy ring. However, as the functional group other than the epoxy ring, in the present invention, a specific group other than a substituent containing an oxetanyl group, a carbonyl group (but not including C═O contained in an ester), nitrogen, sulfur and the like. Has various functional groups. Specific examples include at least one functional group selected from the group consisting of an aliphatic unsaturated bond group and a substituted silyl group having a Si—H bond. As the functional group other than the epoxy functional group and the epoxy ring, preferably, in X—R— in the above formula (1), plural Rs are the same or different and have a direct bond and a halogen substituent. C1-C20 alkylene group, C5-C12 cycloalkylene group, C1-C20 divalent hydrocarbon group containing an ether bond, C1-C20 containing an ester bond It is at least one selected from the group consisting of a divalent hydrocarbon group having 1 to 12 carbon atoms and containing a divalent hydrocarbon group and an organosiloxy group which may have a substituent. The plurality of Xs are the same or different and are selected from the group consisting of at least two of an epoxy group or a 3,4-epoxycyclohexyl group, a vinyl group, and a hydrogen atom constituting a hydrosilyl group together with R. There may be one. X and R may be any combination of the above groups.

また、本発明においてシルセスキオキサンは、その水酸基の一部又はすべてが置換基R′で置換された構造であってもよく、その置換基R′は、−O−R′′又は−O−Si(R′′)(R′′は水素原子であってもよい置換基。ただし、R′′が複数あるときは同一でも異なっていてもよい。)を表す。ただし、R′が複数あるときは同一でも異なっていてもよい。 In the present invention, silsesquioxane may have a structure in which a part or all of the hydroxyl groups are substituted with a substituent R ′, and the substituent R ′ may be —O—R ″ or —O—. —Si (R ″) 3 (R ″ is a substituent which may be a hydrogen atom. However, when there are a plurality of R ″, they may be the same or different). However, when there are a plurality of R ′, they may be the same or different.

本発明において、シルセスキオキサンは、複数のX及びR′′のうち少なくとも二つは架橋点を形成し得るものである。   In the present invention, silsesquioxane is one in which at least two of the plurality of X and R ″ can form a crosslinking point.

上記ハロゲンとしては、例えば、塩素、フッ素等を挙げることができる。   Examples of the halogen include chlorine and fluorine.

炭素数1〜20のアルキレン基としては特に限定されず、例えば、メチレン、エチレン、トリメチレン、テトラメチレン等が挙げられる。   It does not specifically limit as a C1-C20 alkylene group, For example, a methylene, ethylene, trimethylene, tetramethylene, etc. are mentioned.

炭素数5〜12のシクロアルキレン基としては、例えば、シクロペンチレン、シクロヘキシレン、ノルボルニレン、トリシクロドデシレン等が挙げられる。   Examples of the cycloalkylene group having 5 to 12 carbon atoms include cyclopentylene, cyclohexylene, norbornylene, and tricyclododecylene.

エステル結合を含有する炭素数1〜20の2価の炭化水素基としては、例えば、−(C=O)−O−CH−、−(C=O)−O−(CH−、−CH−(C=O)−、−(CH−(C=O)−O−、−(CH−(C=O)−O−(CH−等が挙げられる。 Examples of the divalent hydrocarbon group having 1 to 20 carbon atoms containing an ester bond, for example, - (C = O) -O -CH 2 -, - (C = O) -O- (CH 2) 2 - , —CH 2 — (C═O) —, — (CH 2 ) 2 — (C═O) —O—, — (CH 2 ) 2 — (C═O) —O— (CH 2 ) 2 — and the like. Is mentioned.

置換基を有していてもよいオルガノシロキシ基を含有する炭素数1〜12の2価の炭化水素基としては、例えば、メチレン、エチレン、トリメチレン、テトラメチレン等に置換基を有していてもよいオルガノシロキシ基が結合した基等があげられる。   As a C1-C12 bivalent hydrocarbon group containing the organosiloxy group which may have a substituent, even if it has a substituent in methylene, ethylene, trimethylene, tetramethylene, etc., for example. Examples include a group having a good organosiloxy group bonded thereto.

R′′は、水素原子又はメチル、エチル、シクロヘキシル、フェネチル等の置換基である。   R ″ is a hydrogen atom or a substituent such as methyl, ethyl, cyclohexyl, phenethyl and the like.

以下エポキシ環含有のX−R−の具体例を示す。
(1)エポキシ環を含有し、エーテル結合を有していてもよい炭素数1〜10の炭化水素基、例えば、下記の(2)〜(10)で表される基等が挙げられる。
Specific examples of the X-R- containing an epoxy ring are shown below.
(1) The C1-C10 hydrocarbon group which contains an epoxy ring and may have an ether bond, for example, group represented by following (2)-(10), etc. are mentioned.

Figure 2005263869
Figure 2005263869

(2)エポキシ環を含有するシリルオキシ基、例えば、下記(11)〜(19)で表される基等が挙げられる。   (2) Silyloxy groups containing an epoxy ring, for example, groups represented by the following (11) to (19), and the like.

Figure 2005263869
Figure 2005263869

以下、エポキシ環を含有しないX−R−の具体例を示す。
(1)炭素−炭素不飽和結合を含有する炭素数1〜12の炭化水素基、例えば、ビニル基、アリル基、3−ブテニル基、3−シクロヘキセニル基、5−(ビシクロヘプテニル基、シクロペンテニル基、CH=CH−(CH−等を挙げることができる。
Hereinafter, specific examples of X—R— containing no epoxy ring are shown.
(1) C1-C12 hydrocarbon group containing a carbon-carbon unsaturated bond, for example, vinyl group, allyl group, 3-butenyl group, 3-cyclohexenyl group, 5- (bicycloheptenyl group, cyclohexane pentenyl group, CH 2 = CH- (CH 2 ) 8 - , and the like.

(2)脂肪族不飽和結合を有するシリルオキシ基、例えば、ジメチルビニルシリルオキシ基、アリルジメチルシリルオキシ基、CH=CH−(CH−Si(Me)−O−等が挙げられる。 (2) A silyloxy group having an aliphatic unsaturated bond, for example, dimethylvinylsilyloxy group, allyldimethylsilyloxy group, CH 2 ═CH— (CH 2 ) 8 —Si (Me) 2 —O— and the like. .

(3)H−Si(Me)−O−で表される基等。
ただし、上記において式中のMeはメチル基を表す。
(3) A group represented by H—Si (Me) 2 —O—.
In the above, Me in the formula represents a methyl group.

本発明において、シルセスキオキサンは、上記エポキシ官能基及びエポキシ環以外の官能基以外に、脂肪族不飽和結合を有していない炭素数1〜20の炭化水素基を有していてもよい。このような炭化水素基としては特に限定されず、例えば、メチル基、イソブチル基、オクチル基、フェニル基、フェネチル基、シクロヘキシル基、シクロペンチル基、アダマンチル基、アダマンチルエチル基等を挙げることができる。   In this invention, silsesquioxane may have a C1-C20 hydrocarbon group which does not have an aliphatic unsaturated bond other than the said epoxy functional group and functional groups other than an epoxy ring. . Such a hydrocarbon group is not particularly limited, and examples thereof include a methyl group, an isobutyl group, an octyl group, a phenyl group, a phenethyl group, a cyclohexyl group, a cyclopentyl group, an adamantyl group, and an adamantylethyl group.

上記籠型シルセスキオキサンの合成法としては、籠型シルセスキオキサンの骨格構造(すなわち、籠型シルセスキオキサン構造及びその部分開裂構造体構造)を合成したものに置換基を導入する方法、又は、置換基を有する3官能有機ケイ素モノマーの加水分解による方法、等が知られているが、そのいずれの方法を用いてもよい。籠型シルセスキオキサン類の骨格構造は、各種の方法で合成でき、例えば、Chem.Rev.1995,95,1431やJ.Am.Chem.Soc.1989,111,1741あるいはOrganometallics1991,10,2526等の方法で合成することができることが報告されている。また、例えば、6面体の各頂点がケイ素で各辺が酸素でできたオクタキス(ヒドリドシルセスキオキサン)にヒドロシリル化反応を利用して頂点のケイ素上にアルキル基を導入することができることが知られている(例えば、特許第3020164号公報参照)。   As a method of synthesizing the above-mentioned caged silsesquioxane, a substituent is introduced into the synthesized skeleton structure of the caged silsesquioxane (that is, the caged silsesquioxane structure and its partial cleavage structure). A method, a method by hydrolysis of a trifunctional organosilicon monomer having a substituent, and the like are known, and any of these methods may be used. Skeletal structures of cage silsesquioxanes can be synthesized by various methods, for example, see Chem. Rev. 1995, 95, 1431 and J.H. Am. Chem. Soc. It has been reported that it can be synthesized by a method such as 1989, 111, 1741 or Organometallics 1991, 10, 2526. In addition, for example, it is known that an alkyl group can be introduced onto the silicon at the apex by using a hydrosilylation reaction to octakis (hydridosilsesquioxane) in which each apex of the hexahedron is made of silicon and each side is made of oxygen. (For example, refer to Japanese Patent No. 3020164).

また、籠状シルセスキオキサンの部分開裂構造体の合成法としては、完全縮合型の籠型シルセスキオキサン類を製造する際に同時に生成することが報告されている。また、完全縮合型シルセスキオキサンをトリフルオロメタンスルフォン酸やテトラエチルアンモニウムヒドロキサイドによって部分切断することでも合成できることが知られている。   Further, as a method for synthesizing a partially-cleavage structure of cage silsesquioxane, it has been reported that it is produced simultaneously with the production of fully condensed cage silsesquioxanes. It is also known that the fully condensed silsesquioxane can be synthesized by partial cleavage with trifluoromethanesulfonic acid or tetraethylammonium hydroxide.

一方、置換基を有する3官能有機ケイ素モノマーの加水分解による方法は、例えば、置換基X−R−を有するX−R−SiZ(Zはハロゲン原子又はアルコキシ基)を原料として、上記の籠状シルセスキオキサン及びその部分開裂構造体と同様の合成法により合成することができる。 On the other hand, the method of hydrolysis of a trifunctional organosilicon monomer having a substituent is, for example, the above-described method using X—R—SiZ 3 (Z is a halogen atom or an alkoxy group) having a substituent X—R— as a raw material. It can be synthesized by the same synthesis method as for the silsesquioxane-like and its partially cleaved structure.

また、置換基を有する籠型シルセスキオキサンが市場にて入手可能であるものもあり、例えば、POSS(登録商標)シリーズのシルセスキオキサン(ハイブリッドプラスチックス社製)等を使用してもよい。   In addition, some cage-type silsesquioxanes having a substituent are available on the market. For example, a POSS (registered trademark) series silsesquioxane (manufactured by Hybrid Plastics Co., Ltd.) may be used. Good.

ラダー構造体の製造方法としてはとくに限定されず、例えば、特開平6−306173号公報に記載の方法等により製造することができる。すなわち、トリアルコキシシラン又はトリクロロシランを共加水分解縮合して製造する方法等が知られており、これを利用することができ、架橋性反応基含有トリアルコキシシラン又はトリクロロシランを用いて官能基を導入することができる。また、架橋性反応基を形成しうる架橋性反応基前駆体を有するポリオルガノシロキサンをまず製造し、このポリオルガノシロキサンの架橋性反応基前駆体を高分子反応により架橋性反応基とすることで製造することもできる。反応温度としては、例えば、20〜100℃であり、反応時間は1〜24時間である。ラダー構造の規則性を高めるために、最初の加水分解反応を20〜60℃の比較的低温で0.5〜1時間おこなってから、引き続き昇温して70〜90℃で1〜23時間反応させることが好ましい。この条件でない場合は、無定形物の出現が増加する。また、有機ケイ素モノマーを加水分解した後縮合させる方法で製造することもできる。この場合は、加水分解を行うpHと縮合反応を行うpHとを調節することにより、ラダー型シルセスキオキサンの重合度を調節することができる。   The method for producing the ladder structure is not particularly limited, and for example, it can be produced by the method described in JP-A-6-306173. That is, a method of producing by cohydrolyzing and condensing trialkoxysilane or trichlorosilane is known, and this can be used, and a functional group is formed using a crosslinkable reactive group-containing trialkoxysilane or trichlorosilane. Can be introduced. In addition, a polyorganosiloxane having a crosslinkable reactive group precursor capable of forming a crosslinkable reactive group is first manufactured, and the crosslinkable reactive group precursor of the polyorganosiloxane is converted into a crosslinkable reactive group by a polymer reaction. It can also be manufactured. As reaction temperature, it is 20-100 degreeC, for example, and reaction time is 1 to 24 hours. In order to improve the regularity of the ladder structure, the first hydrolysis reaction is performed at a relatively low temperature of 20 to 60 ° C. for 0.5 to 1 hour, and then the temperature is continuously raised to react at 70 to 90 ° C. for 1 to 23 hours. It is preferable to make it. If this condition is not met, the appearance of amorphous materials will increase. Moreover, it can also manufacture by the method of condensing after hydrolyzing an organosilicon monomer. In this case, the polymerization degree of the ladder-type silsesquioxane can be adjusted by adjusting the pH at which the hydrolysis is performed and the pH at which the condensation reaction is performed.

本発明において、シルセスキオキサンは、架橋物を形成して硬化するのであるが、この硬化は、シルセスキオキサンの自己縮合反応又は自己付加反応によるものであってもよい。このような反応は、相互に反応可能な基同士の組み合わせによって可能となり、例えば、エポキシ環を含有する炭化水素基同士、エポキシ環を含有する炭化水素基とシラノール基との反応等がその典型例であるが、該当する場合にはビニル基とSi原子に直結した水素原子とのヒドロシリル化反応、籠型構造体シルセスキオキサンの部分開裂体におけるシラノール基同士の加水分解・縮合も可能である。このような反応が自己触媒的に進行する場合は、特に触媒を加えなくても反応が進行するので、貯蔵安定性を増すためには、低温保管が好ましい。また、逆に、加温や促進剤添加等により硬化反応を促進することが、例えば、エポキシ環とシラノール基との反応のためには好ましい。この場合には、アニオン重合触媒として弱酸(CHCOOH、Si−OH等)のアルカリ金属(例えば、K、Na、Li等。Kが最も好ましく、つぎにNaが好ましく、そのつぎにLiが好ましい。)塩を使用することが好ましい。さらに、エポキシ環のカチオン重合が、カチオン重合触媒(ルイス酸触媒、例えば、ハロゲン化金属(BF、AlCl等)、有機金属化合物(CAlCl等)等)の使用により行うことができる。 In the present invention, silsesquioxane is cured by forming a cross-linked product, but this curing may be due to a self-condensation reaction or a self-addition reaction of silsesquioxane. Such a reaction is made possible by a combination of groups capable of reacting with each other, for example, a reaction between a hydrocarbon group containing an epoxy ring, a reaction between a hydrocarbon group containing an epoxy ring and a silanol group, and the like. However, if applicable, hydrosilylation reaction between a vinyl group and a hydrogen atom directly bonded to a Si atom, and hydrolysis / condensation of silanol groups in a partially cleaved structure of a cage structure silsesquioxane are also possible. . When such a reaction proceeds in an autocatalytic manner, the reaction proceeds even without adding a catalyst. Therefore, low temperature storage is preferable in order to increase storage stability. Conversely, it is preferable to accelerate the curing reaction by heating, addition of an accelerator, or the like, for example, for the reaction between an epoxy ring and a silanol group. In this case, an alkali metal (for example, K, Na, Li, etc.) of a weak acid (CH 3 COOH, Si—OH, etc.) as an anionic polymerization catalyst, K is most preferred, Na is then preferred, and Li is then preferred. .) It is preferred to use a salt. Furthermore, the cationic polymerization of the epoxy ring is carried out by using a cationic polymerization catalyst (Lewis acid catalyst, for example, metal halide (BF 3 , AlCl 3 etc.), organometallic compound (C 2 H 5 AlCl 2 etc.), etc.). Can do.

本発明においては、シルセスキオキサンの架橋物を形成するために、硬化剤を使用してもよい。このような硬化剤としては、エポキシ樹脂の硬化に使用される硬化系を使用することができ、アミン系硬化剤、フェノール系硬化剤、酸無水物等のいずれであってもよいが、エポキシ基と酸無水物との組み合わせを好適に使用することができる。   In the present invention, a curing agent may be used to form a crosslinked product of silsesquioxane. As such a curing agent, a curing system used for curing an epoxy resin can be used, and any of an amine-based curing agent, a phenol-based curing agent, an acid anhydride, and the like can be used. A combination of an acid anhydride and an acid anhydride can be preferably used.

このような硬化剤としては、例えば、無水フタル酸、無水マレイン酸、無水トリメリット酸、無水ピロメリット酸、ヘキサヒドロ無水フタル酸、3−メチル−ヘキサヒドロ無水フタル酸、4−メチル−ヘキサヒドロ無水フタル酸、あるいは3−メチル−ヘキサヒドロ無水フタル酸と4−メチル−ヘキサヒドロ無水フタル酸との混合物、テトラヒドロ無水フタル酸、無水ナジック酸、無水メチルナジック酸、ノルボルナン−2,3−ジカルボン酸無水物、メチルノルボルナン−2,3−ジカルボン酸無水物等を挙げることができ、アミン系硬化剤としては、例えば、メタメェニレンジアミン、ジメチルジフェニルメタン、ジアミノジフェニルスルホン、m−キシレンジアミン、プロピルアミン等を挙げることができる。硬化剤の配合量は、エポキシ基1モルに対して0.4〜1.2モルが好ましく、より好ましくは0.5〜0.9モルである。   Examples of such curing agents include phthalic anhydride, maleic anhydride, trimellitic anhydride, pyromellitic anhydride, hexahydrophthalic anhydride, 3-methyl-hexahydrophthalic anhydride, 4-methyl-hexahydrophthalic anhydride. Or a mixture of 3-methyl-hexahydrophthalic anhydride and 4-methyl-hexahydrophthalic anhydride, tetrahydrophthalic anhydride, nadic anhydride, methyl nadic anhydride, norbornane-2,3-dicarboxylic anhydride, methyl norbornane -2,3-dicarboxylic acid anhydrides can be mentioned, and examples of the amine-based curing agent include metamethylenediamine, dimethyldiphenylmethane, diaminodiphenylsulfone, m-xylenediamine, and propylamine. . As for the compounding quantity of a hardening | curing agent, 0.4-1.2 mol is preferable with respect to 1 mol of epoxy groups, More preferably, it is 0.5-0.9 mol.

本発明においては、シルセスキオキサンの架橋物を形成するために、硬化剤とともに硬化触媒を使用してもよい。このような硬化触媒としては、4級ホスホニウム塩、例えば、テトラフェニルホスホニウムブロミド、テトラブチルホスホニウムブロミド、メチルトリフェニルホスホニウムブロミド、エチルトリフェニルホスホニウムブロミド、n−ブチルトリフェニルホスホニウムブロミド;イミダゾール類、3級アミン、4級アンモニウム塩、1,8−ジアザビシクロ(5,4,0)ウンデセン−7などの双環式アミジン類とその誘導体、2−メチルイミダゾール、2−フェニル−4−メチルイミダゾールなどのイミダゾール類、などが一般的であるが、硬化性がよく、着色がないものであれば、何ら限定されるものではなく、単独でも2種以上用いても差し支えない。特に1,8−ジアザビシクロ(5,4,0)ウンデセン−7などの双環式アミジン類、およびイミダゾール類は、少量の添加量でもエポキシ樹脂に対して高い活性を示し、比較的低い硬化温度でも短時間で、例えば、150℃程度でも90秒位で硬化することができ、より好ましい。また、テトラフェニルホスホニウムブロミドも好ましい。   In the present invention, a curing catalyst may be used together with a curing agent in order to form a crosslinked product of silsesquioxane. Such curing catalysts include quaternary phosphonium salts such as tetraphenylphosphonium bromide, tetrabutylphosphonium bromide, methyltriphenylphosphonium bromide, ethyltriphenylphosphonium bromide, n-butyltriphenylphosphonium bromide; imidazoles, tertiary Bicyclic amidines such as amines, quaternary ammonium salts, 1,8-diazabicyclo (5,4,0) undecene-7 and derivatives thereof, and imidazoles such as 2-methylimidazole and 2-phenyl-4-methylimidazole However, it is not limited as long as it has good curability and is not colored, and it may be used alone or in combination of two or more. In particular, bicyclic amidines such as 1,8-diazabicyclo (5,4,0) undecene-7 and imidazoles exhibit high activity against epoxy resins even with a small addition amount, and even at relatively low curing temperatures. It can be cured in a short time, for example, at about 150 ° C. in about 90 seconds, and is more preferable. Tetraphenylphosphonium bromide is also preferable.

このような硬化触媒の配合量は、組成物中、0.05〜3phrが好ましく、より好ましくは0.1〜1.5phrである。   0.05-3 phr is preferable in a composition, and, as for the compounding quantity of such a curing catalyst, More preferably, it is 0.1-1.5 phr.

本発明の組成物には、また、上記シルセスキオキサンとともに、エポキシ樹脂を配合することができる。上記エポキシ樹脂としては特に限定されず、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂などのビスフェノール型エポキシ樹脂、およびビフェニル型エポキシ樹脂、水素化添加ビスフェノールA型エポキシ樹脂等の2個のエポキシ基を有するエポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、アルキル変性トリフェノールメタン型エポキシ樹脂、トリグリシジルイソシアヌレートのなどの多官能複素環式エポキシ樹脂、ポリ(エポキシ化シクロヘキセンオキサイド)などの多官能脂環式エポキシ樹脂等の3個以上のエポキシ基を有するエポキシ樹脂などが好ましく挙げられる。これらのうち、透明性の観点から着色の少ない、ビスフェノール型エポキシ樹脂や複素環式エポキシ樹脂を用いることがより好ましく、複素環式エポキシ樹脂の中でもトリグリシジルイソシアヌレートが好ましい。これらエポキシ樹脂は、単独もしくは2種以上用いても何ら差し支えない。   An epoxy resin can be blended with the silsesquioxane in the composition of the present invention. The epoxy resin is not particularly limited, and examples thereof include bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, biphenyl type epoxy resin, and hydrogenated bisphenol A type epoxy resin. Polyfunctional heterocyclic epoxy resins such as epoxy resins having two epoxy groups, such as phenol novolac type epoxy resins, cresol novolac type epoxy resins, alkyl-modified triphenol methane type epoxy resins, triglycidyl isocyanurate, poly ( Preferred examples include epoxy resins having three or more epoxy groups, such as polyfunctional alicyclic epoxy resins such as epoxidized cyclohexene oxide). Among these, from the viewpoint of transparency, it is more preferable to use a bisphenol type epoxy resin or a heterocyclic epoxy resin that is less colored, and among the heterocyclic epoxy resins, triglycidyl isocyanurate is preferable. These epoxy resins may be used alone or in combination of two or more.

上記エポキシ樹脂の配合量は、本発明の組成物中、10〜50重量%が好ましく、15〜30重量%がより好ましい。   10-50 weight% is preferable in the composition of this invention, and, as for the compounding quantity of the said epoxy resin, 15-30 weight% is more preferable.

上記エポキシの硬化剤、硬化触媒は、上述のものが使用される。   The above-mentioned epoxy curing agent and curing catalyst are used.

本発明の封止材には、本発明の目的を阻害しないかぎり、その他の添加剤を使用することができる。このような添加剤としては、シランカップリング剤、ヒンダードアミン系光安定化剤、ヒンダードフェノール系酸化防止剤等が挙げられる。シランカップリングとしては、例えば、γ−グリシドキシプロピルトリメトキシシラン、γ−グリシドキシプロピルトリエトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリメトキシシラン、β−(3,4−エポキシシクロヘキシル)エチルトリエトキシシラン、ビルニトリメトキシシラン、ビルニトリエトキシシラン等が挙げられる。ヒンダードアミン系光安定化剤としては、例えば、TINUVIN(登録商標)770、TINUVIN(登録商標)622LD(いずれもチバスペシャルティーケミカルズ社製)、アデカスタブ(登録商標)LA−57(旭電化工業社製)等が挙げられる。ヒンダードフェノール系酸化防止剤としては、例えば、IRGANOX(登録商標)1010(チバスペシャルテーケミカルズ社製)、ノクラックNS−30(商品名)(大内新興化学工業社製)、トミノックスTT(商品名)(吉豊ファインケミカル社製)等が挙げられる。
ただし、溶剤は使用しないことが好ましい。
また、本発明において、上記シルセスキオキサン以外に、非反応性添加剤として反応性置換基を含有しないシルセスキオキサンを配合することができる。
Other additives can be used for the sealing material of the present invention as long as the object of the present invention is not impaired. Examples of such additives include silane coupling agents, hindered amine light stabilizers, hindered phenol antioxidants, and the like. Examples of the silane coupling include γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, β- (3,4- (Epoxycyclohexyl) ethyltriethoxysilane, bilnitrimethoxysilane, bilnitriethoxysilane and the like. Examples of the hindered amine light stabilizer include TINUVIN (registered trademark) 770, TINUVIN (registered trademark) 622LD (both manufactured by Ciba Specialty Chemicals), Adekastab (registered trademark) LA-57 (manufactured by Asahi Denka Kogyo Co., Ltd.) Etc. Examples of the hindered phenol antioxidant include IRGANOX (registered trademark) 1010 (manufactured by Ciba Special Te Chemicals), NOCRACK NS-30 (trade name) (manufactured by Ouchi Shinsei Chemical Co., Ltd.), Tominox TT (product) Name) (manufactured by Yoshitoyo Fine Chemical Co., Ltd.).
However, it is preferable not to use a solvent.
Moreover, in this invention, the silsesquioxane which does not contain a reactive substituent as a non-reactive additive other than the said silsesquioxane can be mix | blended.

上記シランカップリング剤の配合量は、組成物中、0.1〜5phrが好ましく、より好ましくは0.5〜2phrである。
上記ヒンダードアミン系光安定化剤の配合量は、組成物中、0.1〜5phrが好ましく、より好ましくは0.5〜3phrである。
上記ヒンダードフェノール系酸化防止剤の配合量は、組成物中、0.1〜5phrが好ましく、より好ましくは0.5〜3phrである。
上記反応性置換基を含有しないシルセスキオキサンの配合量は、組成物中、10〜400phrが好ましく、より好ましくは50〜200phrである。
The amount of the silane coupling agent is preferably 0.1 to 5 phr, more preferably 0.5 to 2 phr in the composition.
The blending amount of the hindered amine light stabilizer is preferably 0.1 to 5 phr, more preferably 0.5 to 3 phr in the composition.
0.1-5 phr is preferable in a composition, and, as for the compounding quantity of the said hindered phenolic antioxidant, More preferably, it is 0.5-3 phr.
As for the compounding quantity of the silsesquioxane which does not contain the said reactive substituent, 10-400 phr is preferable in a composition, More preferably, it is 50-200 phr.

本発明の組成物の製造方法としては特に限定されず、例えば、以下の方法等を用いることができる。第一の方法は、本発明におけるシルセスキオキサン、又は、好ましくはこれに硬化剤及び硬化触媒を、該当する場合は、さらにエポキシ樹脂を加えて、溶融混合し、加熱下で硬化反応を途中まで進行させ、Bステージ化する。Bステージ化の目安は、150℃におけるゲル化時間が好ましくは10〜70秒、より好ましくは10〜40秒になるように設定する。つぎに、Bステージ化した組成物を室温に冷却した後、公知の手法で粉砕し、必要に応じて打錠する。なお、Bステージ化した後、組成物を溶解可能な有機溶媒に一旦溶解し、混合を均一化してもよい。第二の方法は、各成分を有機溶媒に溶解し、溶液中で加熱下に硬化反応を進行させてBステージ化し、有機溶媒を除去して冷却した後、粉砕する。第三の方法は、各成分を有機溶媒に溶解したのち、加熱せずに有機溶媒を揮散除去し、その後に低温加熱してBステージ化する方法である。   It does not specifically limit as a manufacturing method of the composition of this invention, For example, the following methods etc. can be used. The first method is silsesquioxane in the present invention, or preferably a curing agent and a curing catalyst, and, if applicable, an epoxy resin is further added, melt-mixed, and the curing reaction is performed under heating. To B stage. The standard of B-stage is set so that the gelation time at 150 ° C. is preferably 10 to 70 seconds, more preferably 10 to 40 seconds. Next, the B-staged composition is cooled to room temperature, then pulverized by a known method, and tableted as necessary. After the B-stage, the composition may be once dissolved in an organic solvent that can be dissolved to make the mixing uniform. In the second method, each component is dissolved in an organic solvent, and a curing reaction is allowed to proceed under heating in a solution to form a B stage. After the organic solvent is removed and cooled, it is pulverized. The third method is a method in which each component is dissolved in an organic solvent, and then the organic solvent is volatilized and removed without heating.

本発明の封止用組成物を使用してトランスファー成形することができる。トランスファー成形は、一般的手法としては、Bステージ化した成形材料を余熱室で余熱軟化してからプランジャによって小さな穴を通して封止用金型のキャビティに送り、そこで硬化させる。成形機には、補助ラム式成形機、スライド式成形機、二重ラム式形成機、低圧封入用成形機等があるが、いずれでもよい。   The sealing composition of the present invention can be used for transfer molding. In the transfer molding, as a general method, the B-staged molding material is softened in the preheating chamber, and then sent by a plunger through a small hole to the cavity of the sealing mold, where it is cured. Examples of the molding machine include an auxiliary ram type molding machine, a slide type molding machine, a double ram type molding machine, and a low pressure sealing molding machine.

以下に実施例を示して、本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited thereto.

製造例1
エポキシ環を有する籠型シルセスキオキサンの合成
撹拌機及び温度計を設置した反応容器に、イソフロパノール150g、水酸化テトラメチルアンモニウムの10%水溶液5.4g(水270mmol、水酸化テトラメチルアンモニウム5.93mmol)、水12gを仕込んだ後、γ−グリシドキシプロピルトリメトキシシラン42.5g(180mmol)を徐々に加え、室温で20時間撹拌放置した。
Production Example 1
In a reaction vessel equipped with a synthetic stirrer and thermometer of a cage silsesquioxane having an epoxy ring, 150 g of isoflupanol, 5.4 g of 10% aqueous solution of tetramethylammonium hydroxide (270 mmol of water, 5. 5% of tetramethylammonium hydroxide). 93 mmol) and 12 g of water were added, 42.5 g (180 mmol) of γ-glycidoxypropyltrimethoxysilane was gradually added, and the mixture was left stirring at room temperature for 20 hours.

反応終了後、系内にトルエン200gを加え、減圧してイソフロパノールを除去し、分液ロートを用いて反応溶液を蒸留水により水洗した。分液ロートの水層が中性になるまで水洗を繰り返した後、有機層を分取し、無水硫酸ナトリウムで脱水した後、減圧下でトルエンを留去して目的の化合物(SQ−1)を得た。エポキシ当量170g/eqであった。   After completion of the reaction, 200 g of toluene was added to the system, the pressure was reduced to remove isoflopanol, and the reaction solution was washed with distilled water using a separatory funnel. After repeating washing with water until the aqueous layer of the separatory funnel becomes neutral, the organic layer is separated and dehydrated with anhydrous sodium sulfate, and then toluene is distilled off under reduced pressure to obtain the target compound (SQ-1). Got. The epoxy equivalent was 170 g / eq.

実施例1、2及び比較例1、2
表1に示す各成分及び組成でそれぞれ配合して加熱溶融混練した後、エポキシ樹脂の硬化反応を進ませ、温度150℃におけるゲル化時間が約30秒のBステージ化した樹脂を粉砕し、粉状のエポキシ樹脂組成物を得た。この粉状のエポキシ樹脂組成物をタブレット状に成形し、これを用いて150℃/5分のトランスファー成形を行った後、更に120℃において10時間硬化させて、厚み1mmの硬化物を得た。
この硬化物を試験片として、以下の方法で、メタリングウエザーメーターの曝露の前後における近紫外〜青色光の透過率の変化を求めて、メタリングウエザーメーター曝露による紫外線照射の影響を調べ、耐UV特性を測定した。結果をそれぞれ表1に示した。なお、表中の略号は以下のとおりである。
YX−8034:水素添加ビスフェノールA型エポキシ樹脂(エポキシ当量290g/eq)(ジャパンエポキシレジン社製)
エピコート1001:ビスフェノールA型エポキシ樹脂(エポキシ当量470g/eq)(ジャパンエポキシレジン社製)
MH−700G:メチルヘキサヒドロ無水フタル酸−ヘキサヒドロ無水フタル酸混合物(新日本理化社製)
2MZ−P:2−メチルイミダゾール(四国化成社製)
TPP:トリフェニルフォスフィン(北興化学社製)
Examples 1 and 2 and Comparative Examples 1 and 2
After blending each component and composition shown in Table 1 and heat-melting and kneading, the epoxy resin is allowed to cure, and the B-staged resin having a gelation time of about 30 seconds at a temperature of 150 ° C. is pulverized. An epoxy resin composition was obtained. This powdery epoxy resin composition was molded into a tablet, and after using this, transfer molding was performed at 150 ° C./5 minutes, and further cured at 120 ° C. for 10 hours to obtain a cured product having a thickness of 1 mm. .
Using this cured product as a test piece, the following method was used to determine the change in the transmittance of near-ultraviolet to blue light before and after exposure to the metering weather meter. The UV characteristics were measured. The results are shown in Table 1, respectively. The abbreviations in the table are as follows.
YX-8034: Hydrogenated bisphenol A type epoxy resin (epoxy equivalent 290 g / eq) (manufactured by Japan Epoxy Resin Co., Ltd.)
Epicoat 1001: Bisphenol A type epoxy resin (epoxy equivalent 470 g / eq) (manufactured by Japan Epoxy Resin Co., Ltd.)
MH-700G: Methylhexahydrophthalic anhydride-hexahydrophthalic anhydride mixture (manufactured by Shin Nippon Chemical Co., Ltd.)
2MZ-P: 2-methylimidazole (manufactured by Shikoku Chemicals)
TPP: Triphenylphosphine (Hokuko Chemical Co., Ltd.)

評価方法
耐UV特性:1mm厚の試験片の400、450及び500nm光の初期透過率t(%)、及び、メタリングウエザーメーター(スガ試験機社製M6T)48h曝露(83℃、相対湿度20%)(放射照度1.24kW/m(紫外部))後の400、450及び500nm光の透過率t(%)を求め、耐UV特性=(t/t)×100(%)とした。
Evaluation method UV resistance: Initial transmittance t 0 (%) of 400 mm, 450 nm and 500 nm light of a test piece having a thickness of 1 mm, and a metering weather meter (M6T manufactured by Suga Test Instruments Co., Ltd.) 48 h exposure (83 ° C., relative humidity) 20%) (transmittance t 1 (%) of 400, 450 and 500 nm light after (irradiance 1.24 kW / m 2 (ultraviolet part)) was obtained, and UV resistance property = (t 1 / t 0 ) × 100 ( %).

Figure 2005263869
Figure 2005263869

上記実施例から、シルセスキオキサンエポキシを酸無水物で硬化した実施例1及び2の硬化物は、UV曝露を受けた後も透過率が殆ど低下しないことがわかった。
一方、従来の典型的な透明エポキシ樹脂硬化物である比較例1及び2の場合は、UV曝露を受けた後の透過率が著しく低下していた。
このように、本発明の組成物の硬化物は、従来の典型的なLED封止材では殆ど実用に耐えないようなUV曝露を受ける条件でも、殆ど透過率の低下がなく、極めて優れた耐UV特性を有するものであることが確認された。また、本発明の組成物からなる形成物の厚さも従来のエポキシ樹脂と同様に厚くすることができ、数ミクロン乃至十数ミクロン程度が限界とされる従来技術の水素シルセスキオキサン樹脂膜では実現困難である封止材用途に有利に適用できることが確認された。
なお、メタリングウエザーメーターにおける曝露試験は、一般のサンシャインウェザオメーターの約10倍の耐候促進能力があるので、48時間の曝露は480時間のサンシャインウェザオメーター曝露にほぼ相当する。
From the above examples, it was found that the cured products of Examples 1 and 2 in which silsesquioxane epoxy was cured with an acid anhydride showed almost no decrease in transmittance even after receiving UV exposure.
On the other hand, in the case of Comparative Examples 1 and 2 which are conventional typical transparent epoxy resin cured products, the transmittance after being subjected to UV exposure was significantly reduced.
As described above, the cured product of the composition of the present invention has almost no reduction in transmittance even under conditions of UV exposure that is almost unusable with conventional typical LED encapsulants, and has extremely excellent resistance. It was confirmed to have UV characteristics. In addition, the thickness of the formed product made of the composition of the present invention can be increased as in the case of the conventional epoxy resin, and in the conventional hydrogen silsesquioxane resin film which is limited to about several microns to tens of microns or less. It was confirmed that it can be advantageously applied to a sealing material application that is difficult to realize.
In addition, since the exposure test in the metering weather meter has the ability to accelerate the weather resistance about 10 times that of a general sunshine weatherometer, exposure for 48 hours is almost equivalent to exposure for 480 hours of sunshine weatherometer.

本発明は、従来のエポキシ樹脂系封止剤の欠点を克服し従来のエポキシ樹脂に代わる、トランスファー成形用の紫外乃至青色光半導体素子用封止材として極めて好適である。   The present invention overcomes the disadvantages of conventional epoxy resin-based encapsulants and is extremely suitable as an encapsulant for ultraviolet or blue light semiconductor elements for transfer molding, which replaces conventional epoxy resins.

Claims (8)

エポキシ環を少なくとも2つ有するシルセスキオキサンからなりBステージ化されてなる光半導体封止用樹脂組成物。 A resin composition for encapsulating an optical semiconductor comprising a silsesquioxane having at least two epoxy rings and B-staged. シルセスキオキサンは、一般式(1)で表される籠型構造体のシルセスキオキサンの少なくとも1種である請求項1記載の組成物。
(X−R−Si)・O(3n−m)/2(OH)m−a・(R′) (1)
(式(1)中、nは4〜18の整数、mは0又はn+2以下の整数、ただし、mが0のときはnは6〜18の偶数である。aは0〜mの整数である。複数のRは、同一又は異なって、直接結合、ハロゲン置換基を有していてもよい炭素数1〜20のアルキレン基、炭素数5〜12のシクロアルキレン基、エーテル結合を含有する炭素数1〜20の2価の炭化水素基、エステル結合を含有する炭素数1〜20の2価の炭化水素基、及び、置換基を有していてもよいオルガノシロキシ基を含有する炭素数1〜12の2価の炭化水素基からなる群から選択された少なくとも1種である。複数のXは、少なくとも二つは、同一又は異なって、エポキシ基又は3,4−エポキシシクロヘキシル基であり、R′は、−O−R′′又は−O−Si(R′′)(R′′は水素原子であってもよい置換基。ただし、R′′が複数あるときは同一でも異なっていてもよい。)を表し、かつ、複数のX及びR′′のうち少なくとも二つは架橋点を形成し得るものである。ただし、R′が複数あるときは同一でも異なっていてもよい。)
The composition according to claim 1, wherein the silsesquioxane is at least one silsesquioxane having a cage structure represented by the general formula (1).
(X—R—Si) n · O (3 nm) / 2 (OH) m a (R ′) a (1)
(In Formula (1), n is an integer of 4 to 18, m is an integer of 0 or n + 2 or less, provided that when m is 0, n is an even number of 6 to 18. a is an integer of 0 to m. A plurality of Rs are the same or different and are a direct bond, a C1-C20 alkylene group optionally having a halogen substituent, a C5-C12 cycloalkylene group, or a carbon containing an ether bond. 1 to 20 carbon atoms containing a divalent hydrocarbon group having 1 to 20 carbon atoms, a divalent hydrocarbon group having 1 to 20 carbon atoms containing an ester bond, and an organosiloxy group optionally having a substituent. And at least one selected from the group consisting of divalent hydrocarbon groups of ˜12, wherein the plurality of Xs are the same or different and are an epoxy group or a 3,4-epoxycyclohexyl group, R ′ represents —O—R ″ or —O—Si (R ″). 3 (R ″ is a substituent which may be a hydrogen atom, provided that when there are a plurality of R ″, they may be the same or different), and at least one of a plurality of X and R ″ Two are capable of forming a crosslinking point, provided that when there are a plurality of R's, they may be the same or different.)
さらに、エポキシ樹脂を、組成物全体に対して10〜50重量%含有する請求項1又は2記載の組成物。 Furthermore, the composition of Claim 1 or 2 which contains an epoxy resin 10 to 50weight% with respect to the whole composition. さらに、硬化剤を含有してなる請求項1〜3のいずれか記載の組成物。 Furthermore, the composition in any one of Claims 1-3 formed by containing a hardening | curing agent. さらに、硬化触媒を含有してなる請求項4記載の組成物。 Furthermore, the composition of Claim 4 containing a curing catalyst. さらに、反応性置換基を持たないシルセスキオキサンを含有してなる請求項3〜5記載の組成物。 Furthermore, the composition of Claims 3-5 formed by containing the silsesquioxane which does not have a reactive substituent. ピーク波長が350〜490nmの光を発光する光半導体素子用の封止材である請求項1〜6のいずれか記載の組成物。 The composition according to claim 1, which is a sealing material for an optical semiconductor element that emits light having a peak wavelength of 350 to 490 nm. ピーク波長が350〜490nmの光を受光する光半導体素子用の封止材である請求項1〜6のいずれか記載の組成物。 The composition according to claim 1, which is a sealing material for an optical semiconductor element that receives light having a peak wavelength of 350 to 490 nm.
JP2004075078A 2004-03-16 2004-03-16 Resin composition for sealing optical semiconductor Pending JP2005263869A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004075078A JP2005263869A (en) 2004-03-16 2004-03-16 Resin composition for sealing optical semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004075078A JP2005263869A (en) 2004-03-16 2004-03-16 Resin composition for sealing optical semiconductor

Publications (1)

Publication Number Publication Date
JP2005263869A true JP2005263869A (en) 2005-09-29

Family

ID=35088752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004075078A Pending JP2005263869A (en) 2004-03-16 2004-03-16 Resin composition for sealing optical semiconductor

Country Status (1)

Country Link
JP (1) JP2005263869A (en)

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007326988A (en) * 2006-06-09 2007-12-20 Chisso Corp Epoxy resin composition
JP2007332211A (en) * 2006-06-13 2007-12-27 Univ Kansai Thermosetting polymer composition and its cured product
JP2008202008A (en) * 2007-02-22 2008-09-04 Nagase Chemtex Corp Sealing resin composition for optical element
JP2008274260A (en) * 2007-04-06 2008-11-13 Nippon Shokubai Co Ltd Resin composition and optical member
KR100882533B1 (en) 2007-12-31 2009-02-06 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
EP2083038A1 (en) 2008-01-28 2009-07-29 Shin-Etsu Chemical Co., Ltd. Diglycidylisocyanuryl-modified organopolysiloxane and composition containing the same
WO2009101753A1 (en) * 2008-02-14 2009-08-20 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
EP2151460A1 (en) 2008-07-29 2010-02-10 Shin-Etsu Chemical Co., Ltd. Resin composition for encapsulating optical semiconductor element
JP2010138380A (en) * 2008-11-14 2010-06-24 Shin-Etsu Chemical Co Ltd Thermosetting resin composition
KR20100121435A (en) 2009-05-08 2010-11-17 신에쓰 가가꾸 고교 가부시끼가이샤 Resin composition for encapsulating optical semiconductor element
KR20100133898A (en) 2009-06-12 2010-12-22 신에쓰 가가꾸 고교 가부시끼가이샤 Resin composition for sealing an optical semiconductor device
US7879405B2 (en) 2004-06-02 2011-02-01 Asahi Kasei Chemicals Corporation Resin composition for sealing light emitting device
JP2011088947A (en) * 2009-10-20 2011-05-06 Sumitomo Metal Mining Co Ltd Epoxy group-containing adhesive resin composition and adhesive for optical semiconductor prepared by using the same
JP2011111550A (en) * 2009-11-27 2011-06-09 Sumitomo Metal Mining Co Ltd Epoxy resin adhesive composition and adhesive for optical semiconductor using the same
WO2011105192A1 (en) * 2010-02-25 2011-09-01 ダイセル化学工業株式会社 Resin composition for sealing an optical semiconductor and optical semiconductor device using said resin composition
WO2011111673A1 (en) 2010-03-09 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition
US8026332B2 (en) 2007-03-28 2011-09-27 Lintec Corporation Sealing material for optical element and sealed optical element
US8319242B2 (en) 2010-07-08 2012-11-27 Shin-Etsu Chemical Co., Ltd. Light-emitting semiconductor device, mounted substrate, and fabrication method thereof
US8481669B2 (en) 2007-06-29 2013-07-09 Lintec Corporation Molding material comprising polysilsesquioxane compound, sealing material, and sealed optical element
JP2013177552A (en) * 2012-02-02 2013-09-09 Arakawa Chem Ind Co Ltd Epoxy resin modified with epoxy group-containing silsesquioxane, curable resin composition, cured material and coating agent
WO2013141360A1 (en) 2012-03-23 2013-09-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
US8710158B2 (en) 2010-04-07 2014-04-29 Shin-Etsu Chemical Co., Ltd. Epoxy composition for encapsulating an optical semiconductor element
WO2014069508A1 (en) 2012-10-30 2014-05-08 リンテック株式会社 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like
US8728624B2 (en) 2008-03-26 2014-05-20 Lintec Corporation Fixing material comprising silane compound polymer and photonic device sealed body
WO2014133103A1 (en) 2013-02-28 2014-09-04 リンテック株式会社 Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
WO2015041341A1 (en) 2013-09-20 2015-03-26 リンテック株式会社 Curable composition, curing product, and method for using curable composition
WO2015041342A1 (en) 2013-09-20 2015-03-26 リンテック株式会社 Curable composition, curing product, and method for using curable composition
KR20170007296A (en) 2014-05-07 2017-01-18 린텍 가부시키가이샤 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition, etc.
KR20170008218A (en) 2014-05-07 2017-01-23 린텍 가부시키가이샤 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
KR20170033272A (en) 2014-07-23 2017-03-24 린텍 가부시키가이샤 Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
KR20170045213A (en) 2014-08-26 2017-04-26 린텍 가부시키가이샤 Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
KR20170045212A (en) 2014-08-26 2017-04-26 린텍 가부시키가이샤 Curable composition, method of producing curable composition, cured material, method of using curable composition, and optical device
KR20170046650A (en) 2014-08-26 2017-05-02 린텍 가부시키가이샤 Curable composition, method of producing curable composition, cured material, method of using curable composition, and optical device
KR20170046648A (en) 2014-08-26 2017-05-02 린텍 가부시키가이샤 Curable composition, cured product, method for using curable composition, and optical device
KR20180097619A (en) 2015-12-22 2018-08-31 린텍 가부시키가이샤 CURABLE COMPOSITION, METHOD FOR PRODUCING CURABLE COMPOSITION, CURVE, METHOD FOR USE OF CURABLE COMPOSITION, AND OPTICAL DEVICE
KR20180098292A (en) 2015-12-22 2018-09-03 린텍 가부시키가이샤 CURABLE COMPOSITION, METHOD FOR PRODUCING CURABLE COMPOSITION, METHOD FOR USE OF CURED MATERIAL, AND CURABLE COMPOSITION
KR20200131228A (en) 2018-03-12 2020-11-23 린텍 가부시키가이샤 Curable composition, cured product, method of producing cured product, and method of using curable composition
KR20210066800A (en) 2018-09-28 2021-06-07 린텍 가부시키가이샤 Curable polysilsesquioxane compound, curable composition, cured product, and method of using curable composition
KR20210066801A (en) 2018-09-28 2021-06-07 린텍 가부시키가이샤 Curable compositions, cured products, and methods of using the curable compositions
KR20210070269A (en) 2018-09-28 2021-06-14 린텍 가부시키가이샤 Curable compositions, cured products, and methods of using the curable compositions
KR20210145119A (en) 2019-03-26 2021-12-01 린텍 가부시키가이샤 Curable composition, cured product, and method of using the curable composition
KR20210148069A (en) 2019-03-26 2021-12-07 린텍 가부시키가이샤 Curable composition, cured product, and method of using the curable composition
US11315899B2 (en) 2019-04-18 2022-04-26 Lintec Corporation Die bonding material, light-emitting device, and method for producing light-emitting device
KR20220068952A (en) 2019-09-27 2022-05-26 린텍 가부시키가이샤 Curable compositions, cured products and methods of using the curable compositions
KR20220074817A (en) 2019-09-27 2022-06-03 린텍 가부시키가이샤 Curable compositions, cured products and methods of using the curable compositions

Cited By (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7879405B2 (en) 2004-06-02 2011-02-01 Asahi Kasei Chemicals Corporation Resin composition for sealing light emitting device
JP2007326988A (en) * 2006-06-09 2007-12-20 Chisso Corp Epoxy resin composition
JP2007332211A (en) * 2006-06-13 2007-12-27 Univ Kansai Thermosetting polymer composition and its cured product
JP2008202008A (en) * 2007-02-22 2008-09-04 Nagase Chemtex Corp Sealing resin composition for optical element
US8470953B2 (en) 2007-03-28 2013-06-25 Lintec Corporation Sealing material for optical element and sealed optical element
US8026332B2 (en) 2007-03-28 2011-09-27 Lintec Corporation Sealing material for optical element and sealed optical element
JP2008274260A (en) * 2007-04-06 2008-11-13 Nippon Shokubai Co Ltd Resin composition and optical member
US8481669B2 (en) 2007-06-29 2013-07-09 Lintec Corporation Molding material comprising polysilsesquioxane compound, sealing material, and sealed optical element
KR100882533B1 (en) 2007-12-31 2009-02-06 제일모직주식회사 Epoxy resin composition for encapsulating semiconductor device and semiconductor device using the same
EP2083038A1 (en) 2008-01-28 2009-07-29 Shin-Etsu Chemical Co., Ltd. Diglycidylisocyanuryl-modified organopolysiloxane and composition containing the same
US7985806B2 (en) 2008-01-28 2011-07-26 Shin-Etsu Chemical Co., Ltd. Diglycidylisocyanuryl-modified organopolysiloxane and composition containing the same
KR101524058B1 (en) * 2008-02-14 2015-05-29 린텍 가부시키가이샤 Molding material composed of polyorganosiloxane compouind, sealing material, and sealed optical device
US8507044B2 (en) 2008-02-14 2013-08-13 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
JP5400624B2 (en) * 2008-02-14 2014-01-29 リンテック株式会社 Molding material, sealing material and optical element sealing body comprising polyorganosiloxane compound
WO2009101753A1 (en) * 2008-02-14 2009-08-20 Lintec Corporation Molding material composed of polyorganosiloxane compound, sealing material, and sealed optical device
US8728624B2 (en) 2008-03-26 2014-05-20 Lintec Corporation Fixing material comprising silane compound polymer and photonic device sealed body
KR101530742B1 (en) * 2008-03-26 2015-06-22 린텍 가부시키가이샤 Fixing material comprising silane compound polymer and photonic device sealed body
US8133957B2 (en) 2008-07-29 2012-03-13 Shin-Etsu Chemical Co., Ltd. Resin composition for encapsulating optical semiconductor element
EP2151460A1 (en) 2008-07-29 2010-02-10 Shin-Etsu Chemical Co., Ltd. Resin composition for encapsulating optical semiconductor element
JP2013082939A (en) * 2008-11-14 2013-05-09 Shin-Etsu Chemical Co Ltd Thermosetting resin composition
JP2010138380A (en) * 2008-11-14 2010-06-24 Shin-Etsu Chemical Co Ltd Thermosetting resin composition
KR20100121435A (en) 2009-05-08 2010-11-17 신에쓰 가가꾸 고교 가부시끼가이샤 Resin composition for encapsulating optical semiconductor element
KR20100133898A (en) 2009-06-12 2010-12-22 신에쓰 가가꾸 고교 가부시끼가이샤 Resin composition for sealing an optical semiconductor device
JP2011088947A (en) * 2009-10-20 2011-05-06 Sumitomo Metal Mining Co Ltd Epoxy group-containing adhesive resin composition and adhesive for optical semiconductor prepared by using the same
JP2011111550A (en) * 2009-11-27 2011-06-09 Sumitomo Metal Mining Co Ltd Epoxy resin adhesive composition and adhesive for optical semiconductor using the same
JP2011174023A (en) * 2010-02-25 2011-09-08 Daicel Chemical Industries Ltd Resin composition for optical semiconductor sealing and optical semiconductor device produced by using the same
WO2011105192A1 (en) * 2010-02-25 2011-09-01 ダイセル化学工業株式会社 Resin composition for sealing an optical semiconductor and optical semiconductor device using said resin composition
US8703880B2 (en) 2010-03-09 2014-04-22 Lintec Corporation Curable composition, cured product, and method for using of curable composition
WO2011111673A1 (en) 2010-03-09 2011-09-15 リンテック株式会社 Curable composition, hardened material, and method for using curable composition
US8710158B2 (en) 2010-04-07 2014-04-29 Shin-Etsu Chemical Co., Ltd. Epoxy composition for encapsulating an optical semiconductor element
US8319242B2 (en) 2010-07-08 2012-11-27 Shin-Etsu Chemical Co., Ltd. Light-emitting semiconductor device, mounted substrate, and fabrication method thereof
JP2013177552A (en) * 2012-02-02 2013-09-09 Arakawa Chem Ind Co Ltd Epoxy resin modified with epoxy group-containing silsesquioxane, curable resin composition, cured material and coating agent
WO2013141360A1 (en) 2012-03-23 2013-09-26 リンテック株式会社 Curable composition, cured product, and method for using curable composition
KR20140135763A (en) 2012-03-23 2014-11-26 린텍 가부시키가이샤 Curable composition, cured product, and method for using curable composition
US9359533B2 (en) 2012-03-23 2016-06-07 Lintec Corporation Curable composition, cured product, and method for using curable composition
KR20150081302A (en) 2012-10-30 2015-07-13 린텍 가부시키가이샤 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like
WO2014069508A1 (en) 2012-10-30 2014-05-08 リンテック株式会社 Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or like
US9487627B2 (en) 2012-10-30 2016-11-08 Lintec Corporation Curable polysilsesquioxane compound, method for producing same, curable composition, cured product, and method for using curable composition or the like
WO2014133103A1 (en) 2013-02-28 2014-09-04 リンテック株式会社 Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
KR20150122223A (en) 2013-02-28 2015-10-30 린텍 가부시키가이샤 Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
US9783715B2 (en) 2013-02-28 2017-10-10 Lintec Corporation Curable composition, cured product, method for using curable composition, photoelement sealing body and method for producing photoelement sealing body
KR20160058788A (en) 2013-09-20 2016-05-25 린텍 가부시키가이샤 Curable composition, curing product, and method for using curable composition
KR20160058789A (en) 2013-09-20 2016-05-25 린텍 가부시키가이샤 Curable composition, curing product, and method for using curable composition
WO2015041342A1 (en) 2013-09-20 2015-03-26 リンテック株式会社 Curable composition, curing product, and method for using curable composition
WO2015041341A1 (en) 2013-09-20 2015-03-26 リンテック株式会社 Curable composition, curing product, and method for using curable composition
US9540490B2 (en) 2013-09-20 2017-01-10 Lintec Corporation Curable composition, curing product, and method for using curable composition
US9670326B2 (en) 2013-09-20 2017-06-06 Lintec Corporation Curable composition, curing product, and method for using curable composition
KR20170008218A (en) 2014-05-07 2017-01-23 린텍 가부시키가이샤 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
KR20170007296A (en) 2014-05-07 2017-01-18 린텍 가부시키가이샤 Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition, etc.
US10370498B2 (en) 2014-05-07 2019-08-06 Lintec Corporation Curable polysilsesquioxane compound, production method thereof, curable composition, cured product and use method of curable composition
US10113035B2 (en) 2014-05-07 2018-10-30 Lintec Corporation Curable polysilsesquioxane compound, production method therefor, curable composition, cured product and use method of curable composition
US10308850B2 (en) 2014-07-23 2019-06-04 Lintec Corporation Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
KR20170033272A (en) 2014-07-23 2017-03-24 린텍 가부시키가이샤 Curable composition, method for manufacturing curable composition, cured product, method for using curable composition, and optical device
US9963624B2 (en) 2014-08-26 2018-05-08 Lintec Corporation Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
KR20170046648A (en) 2014-08-26 2017-05-02 린텍 가부시키가이샤 Curable composition, cured product, method for using curable composition, and optical device
US10266734B2 (en) 2014-08-26 2019-04-23 Lintec Corporation Curable composition, cured product, method for using curable composition, and optical device
US10294398B2 (en) 2014-08-26 2019-05-21 Lintec Corporation Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
KR20170046650A (en) 2014-08-26 2017-05-02 린텍 가부시키가이샤 Curable composition, method of producing curable composition, cured material, method of using curable composition, and optical device
KR20170045212A (en) 2014-08-26 2017-04-26 린텍 가부시키가이샤 Curable composition, method of producing curable composition, cured material, method of using curable composition, and optical device
US10774249B2 (en) 2014-08-26 2020-09-15 Lintec Corporation Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
KR20170045213A (en) 2014-08-26 2017-04-26 린텍 가부시키가이샤 Curable composition, method for producing curable composition, cured object, method for using curable composition, and optical device
US10920117B2 (en) 2015-12-22 2021-02-16 Lintec Corporation Curable composition, method for producing curable composition, cured product, use of curable composition, and optical device
KR20180097619A (en) 2015-12-22 2018-08-31 린텍 가부시키가이샤 CURABLE COMPOSITION, METHOD FOR PRODUCING CURABLE COMPOSITION, CURVE, METHOD FOR USE OF CURABLE COMPOSITION, AND OPTICAL DEVICE
KR20180098292A (en) 2015-12-22 2018-09-03 린텍 가부시키가이샤 CURABLE COMPOSITION, METHOD FOR PRODUCING CURABLE COMPOSITION, METHOD FOR USE OF CURED MATERIAL, AND CURABLE COMPOSITION
US10745559B2 (en) 2015-12-22 2020-08-18 Lintec Corporation Curable composition, method for producing curable composition, cured product, and use of curable composition
KR20200131228A (en) 2018-03-12 2020-11-23 린텍 가부시키가이샤 Curable composition, cured product, method of producing cured product, and method of using curable composition
KR20210066800A (en) 2018-09-28 2021-06-07 린텍 가부시키가이샤 Curable polysilsesquioxane compound, curable composition, cured product, and method of using curable composition
KR20210066801A (en) 2018-09-28 2021-06-07 린텍 가부시키가이샤 Curable compositions, cured products, and methods of using the curable compositions
KR20210070269A (en) 2018-09-28 2021-06-14 린텍 가부시키가이샤 Curable compositions, cured products, and methods of using the curable compositions
KR20210145119A (en) 2019-03-26 2021-12-01 린텍 가부시키가이샤 Curable composition, cured product, and method of using the curable composition
KR20210148069A (en) 2019-03-26 2021-12-07 린텍 가부시키가이샤 Curable composition, cured product, and method of using the curable composition
US11315899B2 (en) 2019-04-18 2022-04-26 Lintec Corporation Die bonding material, light-emitting device, and method for producing light-emitting device
KR20220068952A (en) 2019-09-27 2022-05-26 린텍 가부시키가이샤 Curable compositions, cured products and methods of using the curable compositions
KR20220074817A (en) 2019-09-27 2022-06-03 린텍 가부시키가이샤 Curable compositions, cured products and methods of using the curable compositions

Similar Documents

Publication Publication Date Title
JP2005263869A (en) Resin composition for sealing optical semiconductor
JP4734832B2 (en) Encapsulant for optical element
EP2289998B1 (en) White heat-curable silicone/epoxy hybrid resin composition for optoelectronic use, making method, premolded package, and LED device
US9200133B2 (en) Curable epoxy resin composition
JP5549789B1 (en) Thermosetting resin composition, method for producing the same, method for producing resin cured product, and method for generating self-polymerization of epoxy compound
WO2013005633A1 (en) Compound comprising isocyanuric skeleton, epoxy groups, and organopolysiloxane or silsesquioxane skeleton having sih groups, thermosetting resin composition comprising compound as agent for imparting adhesion, cured product, and sealing member for optical semiconductor
KR101500757B1 (en) Optical semiconductor device encapsulating epoxy-silicone hybrid resin composition and tablet for transfer molding containing the same
WO2014046095A1 (en) Epoxy and alkoxy silyl group-containing silsesquioxane and composition thereof
KR101408006B1 (en) Epoxy silicone condensate, curable composition comprising epoxy silicone condensate, and cured product thereof
JP2011132416A (en) Thermocurable resin composition and organic-inorganic composite resin
US20110201763A1 (en) Thermosetting resin composition for optical-semiconductor element encapsulation and cured material thereof, and optical-semiconductor device obtained using the same
JP2008101171A (en) Epoxy resin composition and epoxy resin cured product
JP4088697B2 (en) Modified polysiloxane and curable resin composition using the same
EP2722366B1 (en) Curable composition
TW201139493A (en) Optical semiconductor sealing resin composition and optical semiconductor device using the same
CN102939313A (en) Curable resin composition and cured product thereof
JP2007056146A (en) Optical device encapsulation resin composition
JP6048367B2 (en) White thermosetting epoxy / silicone hybrid resin composition for LED reflector, and pre-mold package comprising a molded cured product of the resin composition
KR101784019B1 (en) Epoxy resin composition for optical semiconductor device and optical semiconductor device using the same
JP2007016128A (en) Optical resin
JP4841529B2 (en) Modified polysiloxane
JP2017193610A (en) Thermosetting epoxy-silicone hybrid resin composition for encapsulation of optical semiconductor element, and optical semiconductor device using the same
JP6299328B2 (en) Thermosetting resin composition, method for producing the same, method for producing resin cured product, and method for generating self-polymerization of epoxy compound
JP6706219B2 (en) White thermosetting epoxy-silicone hybrid resin composition and optical semiconductor device
JP6710175B2 (en) White thermosetting epoxy-silicone hybrid resin composition and optical semiconductor device