JP2005262147A - Powder classifying apparatus - Google Patents

Powder classifying apparatus Download PDF

Info

Publication number
JP2005262147A
JP2005262147A JP2004081121A JP2004081121A JP2005262147A JP 2005262147 A JP2005262147 A JP 2005262147A JP 2004081121 A JP2004081121 A JP 2004081121A JP 2004081121 A JP2004081121 A JP 2004081121A JP 2005262147 A JP2005262147 A JP 2005262147A
Authority
JP
Japan
Prior art keywords
classification
rotor
classifier
powder
casing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004081121A
Other languages
Japanese (ja)
Inventor
Shingo Mukai
新悟 向井
Yasunori Kamigaki
恭典 神垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2004081121A priority Critical patent/JP2005262147A/en
Publication of JP2005262147A publication Critical patent/JP2005262147A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To carry out highly efficient classification at a high classification precision only by a carrier gas of a vertical type mill. <P>SOLUTION: A classifying apparatus casing 43 having an outlet 45 and an inlet 44 in the upper and lower faces and a coarse powder discharge outlet 46 in the outer circumferential wall is attached to the summit of a vertical mill I. A classification rotor 47 is housed in the inside of the classifying apparatus casing 43 in a rotating manner to compose the powder classifying apparatus 42. The classification rotor 47 is provided with a hollow part 48 for communicating the outer circumferential face part and a ring-like aperture 49 in the upper face, a large number of classification blades 50 inclined so as to set the inner circumferential side edge parts ahead in the rotation direction and attached to the outer circumferential rim part of the hollow part 48, and a large number of dispersion plates 52 inclined so as to set the upper ends more ahead than the lower ends in the rotation direction and installed radially in the lower face. A carrier gas 10 of the vertical mill I flowing through the inlet 44 and a crushed raw material 8a are swirled by rotation of the classification rotor 48 and a coarse powder 13 and a fine powder 12 are classified according to the balance between the centrifugal force changed depending on the particle diameter and the carrying resistance of the gas flow in the center direction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、竪型ミルの頂部に設けて該竪型ミルにて原料を粉砕して生成される原料粉砕物を所望粒度以下となる粉体と、所望する粒度よりも大きな粗粉とに分級するための粉体分級機に関するものである。   The present invention classifies a raw material pulverized product, which is provided at the top of a vertical mill and pulverizes the raw material in the vertical mill, into a powder having a desired particle size or less and a coarse powder larger than the desired particle size. The present invention relates to a powder classifier.

被粉砕物としての原料を粉砕する粉砕機の1つに竪型ミルがあり、これは、一般に、図3にその一例の概略を示す如き構成としてある。すなわち、図3に示す竪型ミルIは、円筒状のケーシング1内の下部位置に、回転テーブル2を回転自在に設置して、駆動装置としてのモータ3により減速機4を介して低速で回転できるようにしてある。該回転テーブル2上には、該回転テーブル2の回転に追従して転動される複数の粉砕ローラ5を設け、該各粉砕ローラ5は流体圧シリンダ6の作動により上記回転テーブル2の上面に所要の押付力で圧接されるようにしてある。これにより、外部よりケーシング1の側壁を通して上記回転テーブル2の中央部上方位置に達するよう設けてある原料供給装置7から上記回転テーブル2の中央部へ供給される原料8が、上記回転テーブル2と粉砕ローラ5との間で粉砕されようにしてある。   One of the pulverizers for pulverizing the raw material as the material to be pulverized is a vertical mill, which is generally configured as shown in FIG. That is, the vertical mill I shown in FIG. 3 has a rotary table 2 rotatably installed at a lower position in a cylindrical casing 1 and is rotated at a low speed via a speed reducer 4 by a motor 3 as a driving device. I can do it. A plurality of crushing rollers 5 that roll following the rotation of the turntable 2 are provided on the turntable 2, and each crushing roller 5 is placed on the upper surface of the turntable 2 by the operation of a fluid pressure cylinder 6. It is designed to be pressed with a required pressing force. Thereby, the raw material 8 supplied from the outside through the side wall of the casing 1 to the central portion of the rotary table 2 from the raw material supply device 7 provided so as to reach the upper position of the central portion of the rotary table 2 is It is intended to be pulverized with the pulverizing roller 5.

更に、上記回転テーブル2よりも下方位置となるケーシング1の下端部には、ガス入口9を設けて、該ガス入口9を通して図示しない供給部より導いた搬送ガス10を導入できるようにしてある。一方、上記ケーシング1の頂部には、粉体分級機11が備えてある。
これにより、上記回転テーブル2上にて原料8が粉砕されることで生成される原料粉砕物8aを、上記ガス入口9より導入される搬送ガス10の流れにより吹き上げて上記粉体分級機11へ導き、該粉体分級機11にて所望する粒度以下となる粉体としての微粉12と、上記所望粒度よりも大きな粗粉(半製品)13とを分級させるようにしてある。その後、分級された上記微粉12は、搬送ガス10に同伴させて下流側に設けてあるバグフィルタ等の製品捕集器14へ導いて回収させ、一方、上記粗粉13は、上記竪型ミルIの回転テーブル2上へ更に粉砕すべき原料として戻すようにしてある。
Further, a gas inlet 9 is provided at the lower end of the casing 1 that is positioned below the rotary table 2 so that the carrier gas 10 guided from a supply unit (not shown) can be introduced through the gas inlet 9. On the other hand, a powder classifier 11 is provided at the top of the casing 1.
As a result, the raw material pulverized product 8 a generated by pulverizing the raw material 8 on the rotary table 2 is blown up by the flow of the carrier gas 10 introduced from the gas inlet 9 to the powder classifier 11. The fine powder 12 as a powder having a desired particle size or less and the coarse powder (semi-finished product) 13 larger than the desired particle size are classified by the powder classifier 11. Thereafter, the classified fine powder 12 is brought together with the carrier gas 10 and collected to a product collector 14 such as a bag filter provided on the downstream side, while the coarse powder 13 is collected by the vertical mill. It is made to return on I rotating table 2 as a raw material which should be further crushed.

上記竪型ミルIの頂部に設ける粉体分級機11の一例としては、上記ケーシング1の頂部中央に、搬送ガス10と微粉12の排出口15を設け、該排出口15の下側に、外周部に分級羽根17を備えたセパレータ(分級ロータ)16を、モータ18により回転駆動できるよう設けてなる形式としたものがある。又、この場合、上記回転式のセパレータ16と上記回転テーブル2との間の位置には、コーン状のシュート19を設け、且つ該コーン状シュート19の傾斜面には、搬送ガス10によって吹き上げられる原料粉砕物8aが通過し得るスリット(図示せず)を備えた構成としてある。20は上記排出口15と下流側の製品捕集器14とを接続する微粉搬送ラインを示す。   As an example of the powder classifier 11 provided at the top of the vertical mill I, a discharge port 15 for the carrier gas 10 and fine powder 12 is provided at the center of the top of the casing 1, and an outer periphery is provided below the discharge port 15. There is a type in which a separator (classification rotor) 16 provided with classification blades 17 in a part is provided so as to be rotationally driven by a motor 18. In this case, a cone-like chute 19 is provided at a position between the rotary separator 16 and the rotary table 2, and the cone-shaped chute 19 is blown up by the carrier gas 10 on the inclined surface. It is set as the structure provided with the slit (not shown) which the raw material ground material 8a can pass. Reference numeral 20 denotes a fine powder conveyance line that connects the discharge port 15 and the downstream product collector 14.

かかる構成としてある粉体分級機11によれば、上記セパレータ16を回転駆動させた状態にて、上記搬送ガス10により吹き上げられる原料粉砕物8aがコーン状シュート19のスリットを通過して上記セパレータ16に達すると、該原料粉砕物8a中の粗粉13は、該セパレータ16の外周部の回転する分級羽根17により叩き落される。したがって、この分級羽根17の回転により粗粉13が除去された後の搬送ガス10と微粉12は上記排出口15へ導かれる。一方、上記セパレータ16にて叩き落された粗粉13は、上記コーン状シュート19により受けられた後、該コーン状シュート19の傾斜面に沿って落下させられて回転テーブル2上へ戻されることで分級が行なわれるようにしてある(たとえば、特許文献1参照)。   According to the powder classifier 11 having such a configuration, the raw material pulverized product 8a blown up by the carrier gas 10 passes through the slit of the cone-shaped chute 19 in a state where the separator 16 is rotationally driven, and passes through the slit of the cone chute 19. , The coarse powder 13 in the pulverized raw material 8a is knocked down by the rotating classification blade 17 on the outer peripheral portion of the separator 16. Therefore, the carrier gas 10 and the fine powder 12 after the coarse powder 13 is removed by the rotation of the classification blade 17 are guided to the discharge port 15. On the other hand, after the coarse powder 13 struck by the separator 16 is received by the cone-shaped chute 19, it is dropped along the inclined surface of the cone-shaped chute 19 and returned to the rotary table 2. Classification is performed in (see, for example, Patent Document 1).

ところで、粉体分級において分級精度及び能力の向上を図る場合には、分級対象となる粉体の分散性及び分級ゾーンでのガス流れに乱れ(偏り)がないこと、並びに、粉体に十分な遠心力を与えること、等が重要な要素となる。   By the way, when improving classification accuracy and capacity in powder classification, the dispersibility of the powder to be classified and the gas flow in the classification zone are not disturbed (biased), and the powder is sufficient. Giving centrifugal force is an important factor.

しかし、上記粉体分級機11のセパレータ16の分級羽根17は、該分級羽根17の回転により搬送ガス10と共にセパレータ16へ流入する原料粉砕物8a中の粗粉13を叩き落とすようにするためのものであることから、分級対象である原料粉砕物8aに対して十分な遠心力を与えるようにはなっていない。又、原料粉砕物8aを搬送ガス10によって吹き上げて上記セパレータ16へ導く際、該搬送ガス10中の原料粉砕物8aを均一に分散させる機構を備えた構成とはなっていないため、上記原料粉砕物8aは、搬送ガス10中における分散状態が不均一なまま分級ゾーンを形成する上記セパレータ16へ流入される虞が生じる。   However, the classification blade 17 of the separator 16 of the powder classifier 11 is for knocking down the coarse powder 13 in the pulverized raw material 8a flowing into the separator 16 together with the carrier gas 10 by the rotation of the classification blade 17. Therefore, sufficient centrifugal force is not applied to the pulverized raw material 8a to be classified. Further, when the pulverized raw material 8a is blown by the carrier gas 10 and guided to the separator 16, the pulverized raw material 8a is not provided with a mechanism for uniformly dispersing the pulverized raw material 8a in the carrier gas 10. The product 8a may flow into the separator 16 that forms a classification zone while the dispersion state in the carrier gas 10 is not uniform.

そこで、より高い分級精度及び能力を達成できるようにするための竪型ミル用の粉体分級機として、図4に示す如く、粒子に作用する遠心力と、粒子がガス中を流れる際に発生する抗力との相互作用により粒子径に応じた分級作用を生じさせ、これにより、理論的な分級点を求めることができるようにした形式の粉体分級機21が従来提案されている(たとえば、特許文献2参照)。すなわち、図4に示した粉体分級機21は、図3に示したと同様に、原料供給装置7より供給される原料8を回転テーブル2と粉砕ローラ5にて粉砕した後、生成される原料粉砕物8aを、ケーシング1下端のガス入口9より導入する搬送ガス10にて吹き上げることができるようにしてある竪型ミルIの円筒状ケーシング1内の上部位置に、中央部に搬送ガス10と原料粉砕物8aの入口23となる開口部を備えた隔壁22を気密に取り付けて、該隔壁22よりも上側に、略円筒状の分級機ケーシング24が形成してある。該分級機ケーシング24の外周壁の上下方向中間部には、分級ガス導入口25を設けて、図示しないガス供給部より導かれる分級ガス26を導入できるようにしてある。更に、上記分級機ケーシング24における外周壁の上端部所要個所には、微粉搬送ライン20を介して製品捕集器14が接続してあり、該製品捕集器14の下流側には誘引送風を行なう排風機27が接続してある。一方、外周壁の下端部には、途中位置にロータリーバルブ29を備えた粗粉戻し管28の一端側を接続すると共に、該粗粉戻し管28の他端側を上記原料供給装置7の途中位置に接続するようにしてある。   Therefore, as a powder classifier for vertical mills to achieve higher classification accuracy and capacity, as shown in Fig. 4, centrifugal force acting on the particles and generated when the particles flow in the gas Conventionally, a powder classifier 21 of a type in which a classifying action corresponding to the particle diameter is generated by the interaction with the drag force, and a theoretical classification point can be obtained thereby (for example, Patent Document 2). That is, the powder classifier 21 shown in FIG. 4, as shown in FIG. 3, pulverizes the raw material 8 supplied from the raw material supply device 7 with the rotary table 2 and the pulverizing roller 5, and then the generated raw material. The pulverized product 8a can be blown up by the carrier gas 10 introduced from the gas inlet 9 at the lower end of the casing 1 at the upper position in the cylindrical casing 1 of the vertical mill I. A partition wall 22 having an opening serving as an inlet 23 for the raw pulverized material 8 a is attached in an airtight manner, and a substantially cylindrical classifier casing 24 is formed above the partition wall 22. A classification gas introduction port 25 is provided in the middle part of the outer peripheral wall of the classifier casing 24 in the vertical direction so that the classification gas 26 guided from a gas supply unit (not shown) can be introduced. Further, a product collector 14 is connected to a required portion of the upper end of the outer peripheral wall of the classifier casing 24 via a fine powder conveying line 20, and an induced air is sent downstream of the product collector 14. A ventilator 27 is connected. On the other hand, one end side of the coarse powder return pipe 28 provided with the rotary valve 29 is connected to the lower end portion of the outer peripheral wall, and the other end side of the coarse powder return pipe 28 is connected to the raw material supply device 7 in the middle. Connect to the position.

又、上記分級機ケーシング24の内部には、モータ31により回転駆動可能にしてある分級ロータ30が収納してある。上記分級ロータ30は、分級機ケーシング24の上下方向の内法寸法に対応した所要厚さの円盤状とし且つ外周面に上端部より下端部に達するU字型の溝32aを周方向に形成してなるロータ本体32の上記溝32aの内側に、外周面に周方向に延びるU形溝37aを形成してあるリング状の外部ロータ37を配置して、該外部ロータ37の内周側の表面と、上記ロータ本体32の溝32aの内面との間に、上端部及び下端部が外部に連通(開口)する略コの字状断面の微粉流路33を形成してあり、更に、該微粉流路33の下部の開口周縁部に、放射方向の分級羽根34を配置すると共に、該分級羽根34の上端部と下端部を、それぞれ上記外部ロータ37とロータ本体32に取り付けて、該分級羽根34を介し上記ロータ本体32と外部ロータ37を一体とするようにしてある。更に又、上記ロータ本体32の下端面における上記分級羽根34の中央部と対応する径方向所要個所には、上記微粉流路33内と連通するリング状の粉体導入開口35を設けた構成としてある。かかる分級ロータ30は、上記外部ロータ37の外周面に設けてあるU形溝37aの上部が上記分級ガス導入口25に臨むよう分級機ケーシング24内に収納してある。   A classifying rotor 30 that can be driven to rotate by a motor 31 is housed in the classifier casing 24. The classifying rotor 30 is formed in a disk shape having a required thickness corresponding to the internal dimension in the vertical direction of the classifier casing 24, and a U-shaped groove 32a reaching the lower end from the upper end to the outer peripheral surface is formed in the circumferential direction. A ring-shaped external rotor 37 in which a U-shaped groove 37a extending in the circumferential direction is formed on the outer peripheral surface is disposed inside the groove 32a of the rotor main body 32, and the inner peripheral surface of the external rotor 37 is disposed. Between the rotor body 32 and the inner surface of the groove 32a of the rotor body 32, a fine powder flow path 33 having a substantially U-shaped cross-section with the upper and lower ends communicating (opened) to the outside is formed. A radial classification blade 34 is disposed at the opening peripheral edge of the lower portion of the flow path 33, and an upper end portion and a lower end portion of the classification blade 34 are attached to the external rotor 37 and the rotor body 32, respectively. 34 and the rotor body 32 through the outside It is to be integrated with the over 37 other. Furthermore, a ring-shaped powder introduction opening 35 communicating with the inside of the fine powder flow path 33 is provided at a required position in the radial direction corresponding to the central portion of the classification blade 34 on the lower end surface of the rotor body 32. is there. The classifying rotor 30 is housed in the classifier casing 24 so that the upper part of the U-shaped groove 37 a provided on the outer peripheral surface of the external rotor 37 faces the classifying gas inlet 25.

更に、上記分級ロータ30のロータ本体32の下面中央部には、隔壁22の入口23より分級機ケーシング24内へ流入する搬送ガス10と原料粉砕物8aを周方向に分散させるための分岐円錐体36が取り付けてある。一方、上記隔壁22の上側面には、上記入口23より流入する搬送ガス10と原料粉砕物8aを、上記分級ロータ30の下面に沿わせて粉体導入開口35まで導くための凹部23aが形成してある。   Further, a branch cone for dispersing the carrier gas 10 and the raw material pulverized material 8a flowing into the classifier casing 24 from the inlet 23 of the partition wall 22 in the center of the lower surface of the rotor body 32 of the classifying rotor 30 in the circumferential direction. 36 is attached. On the other hand, on the upper side surface of the partition wall 22, a recess 23 a is formed for guiding the carrier gas 10 and the pulverized raw material 8 a flowing from the inlet 23 to the powder introduction opening 35 along the lower surface of the classification rotor 30. It is.

かかる構成としてあることにより、上記粉体分級機21によれば、モータ31により分級ロータ30を回転させた状態にて、分級ガス導入口25より分級ガス26を供給すると、該分級ガス26は、分級ロータ30における外部ロータ37のU形溝37aに沿って分級機ケーシング24の下端外周部に一旦導かれた後、矢印の如く、分級羽根34が設けてある微粉流路33の下部より該微粉流路33内に流れ、その後、該微粉流路33内を上部へ流れて外向き(放射方向)の流れとなって上部の開口より分級機ケーシング24の上端外周部へ排出され、しかる後、微粉搬送ライン20、製品捕集器14を経て排風機27へ導かれるようになる。   With this configuration, according to the powder classifier 21, when the classification gas 26 is supplied from the classification gas inlet 25 while the classification rotor 30 is rotated by the motor 31, the classification gas 26 is After being once guided to the outer periphery of the lower end of the classifier casing 24 along the U-shaped groove 37a of the external rotor 37 in the classifying rotor 30, the fine powder from the lower part of the fine powder flow path 33 provided with the classifying blades 34 as indicated by arrows. It flows into the flow path 33, and then flows upward in the fine powder flow path 33 to become an outward (radial direction) flow and is discharged from the upper opening to the outer periphery of the upper end of the classifier casing 24. The fine powder conveying line 20 and the product collector 14 are led to the exhaust fan 27.

したがって、この状態において、下方の竪型ミルIより原料粉砕物8aが搬送ガス10により吹き上げられて上記粉体分級機21の入口23へ達すると、該原料粉砕物8aと搬送ガス10は、分岐円錐体36に沿って周方向へ分散された状態で入口23より進入した後、隔壁22の上面の凹部23aを経て、分級ロータ30の粉体導入開口35より微粉流路33の下部へ流入させられる。この際、該微粉流路33の下部における上記粉体導入開口35と対応する位置には、上述したように分級ロータ30のロータ本体32及び外部ロータ37と一体に回転する放射方向の分級羽根34が設けてあるため、上記微粉流路33の下部に流入する上記原料粉砕物8aに対しては、上記分級羽根34の回転に伴い遠心力{(π/6)・D ・ρ・(V /R)}が付与され、同時に、該微粉流路33内へ下部より流入する分級ガス26、及び、微粉流路33内へ下部より原料粉砕物8aと共に進入する搬送ガス10のガス流れによる抗力(3πμV)が作用するようになる。
ここで、D:粒子の平均径、ρ:粒子の密度、V:円周方向の風速、V:半径方向の風速、R:分級点の半径距離、μ:空気の粘性径数、である。
Therefore, in this state, when the raw material pulverized product 8a is blown up by the carrier gas 10 from the lower vertical mill I and reaches the inlet 23 of the powder classifier 21, the raw material pulverized material 8a and the carrier gas 10 are branched. After entering from the inlet 23 in a state of being distributed in the circumferential direction along the cone 36, it flows into the lower part of the fine powder flow path 33 from the powder introduction opening 35 of the classification rotor 30 through the recess 23 a on the upper surface of the partition wall 22. It is done. At this time, a radial classification blade 34 that rotates integrally with the rotor body 32 and the external rotor 37 of the classification rotor 30 is located at a position corresponding to the powder introduction opening 35 in the lower part of the fine powder flow path 33 as described above. Therefore, the centrifugal force {(π / 6) · D p 3 · ρ p · with the rotation of the classification blade 34 is applied to the raw material pulverized product 8a flowing into the lower part of the fine powder flow path 33. (V o 2 / R)} is given, and at the same time, the classification gas 26 that flows into the fine powder flow path 33 from the lower part and the carrier gas 10 that enters the fine powder flow path 33 together with the raw material pulverized material 8a from the lower part. The drag (3πμV r D p ) due to the gas flow comes to act.
Where D p : average particle diameter, ρ p : particle density, V o : circumferential wind speed, V r : radial wind speed, R: radial distance of classification point, μ: air viscosity diameter number .

よって、上記原料粉砕物8a中の各粒子のうち、遠心力>抗力の関係が成り立つ粗粉13は、上記微粉流路33の下部をガス流れに抗して外周方向へ送られて、分級機ケーシング24の下端外周部へ集められる。一方、原料粉砕物8a中の遠心力<抗力の関係が成り立つ微粉12は、分級ガス26及び搬送ガス10のガス流れにより微粉流路33の下部を内向きに搬送されるようになる。したがって、上記原料粉砕物8a中の微粉12と粗粉13は、粒子径に応じて変化する上記遠心力と抗力との大小関係に基づいて精度よく分離されるようになる。   Therefore, among the particles in the raw material pulverized product 8a, the coarse powder 13 satisfying the relationship of centrifugal force> drag is sent in the outer peripheral direction against the gas flow in the lower part of the fine powder flow path 33, and is classified. Collected on the outer periphery of the lower end of the casing 24. On the other hand, the fine powder 12 in the raw material pulverized product 8 a satisfying the relationship of centrifugal force <drag is conveyed inward in the lower part of the fine powder flow path 33 by the gas flow of the classification gas 26 and the carrier gas 10. Accordingly, the fine powder 12 and the coarse powder 13 in the pulverized raw material 8a are accurately separated based on the magnitude relationship between the centrifugal force and the drag force that change according to the particle diameter.

上記粉体分級機21では、微粉流路33の下部にて粗粉13より分級された微粉12は、分級ガス26及び搬送ガス10と共に微粉流路33の下部と上部を経て分級機ケーシング24の上端外周部へ送られるため、その後、微粉搬送ライン20を介し製品捕集器14へ搬送して回収させることができるようにしてある。一方、分級機ケーシング24の下端外周部へ集められた粗粉13は、ロータリーバルブ29の作動によりシール状態を維持したまま粗粉戻し管28を経て原料供給装置7の途中位置へ戻し、竪型ミルIへ粉砕すべき原料として再度供給させるようにしてある。なお、図4における符号38は、原料供給装置7の上流側に設けた原料貯槽である。   In the powder classifier 21, the fine powder 12 classified from the coarse powder 13 in the lower part of the fine powder flow path 33 passes through the lower part and the upper part of the fine powder flow path 33 together with the classification gas 26 and the carrier gas 10, and then the classifier casing 24. Since it is sent to the outer periphery of the upper end, it can be subsequently transported to the product collector 14 via the fine powder transport line 20 for recovery. On the other hand, the coarse powder 13 collected on the outer periphery of the lower end of the classifier casing 24 is returned to the intermediate position of the raw material supply device 7 through the coarse powder return pipe 28 while maintaining the sealed state by the operation of the rotary valve 29, and the vertical shape. It is made to supply again to the mill I as a raw material which should be grind | pulverized. In addition, the code | symbol 38 in FIG. 4 is the raw material storage tank provided in the upstream of the raw material supply apparatus 7. FIG.

なお、単体の粉体分級機としては、図5(イ)(ロ)に示す如く、上記図4に示した竪型ミルIの頂部に設ける粉体分級機21を上下に反転させた構成とほぼ同様の構成を有し、更に、以下のような構成をも含んだ形式の粉体分級機が従来開発されてきている(たとえば、特許文献3参照)。   As a single powder classifier, as shown in FIGS. 5A and 5B, the powder classifier 21 provided at the top of the vertical mill I shown in FIG. 4 is vertically inverted. Conventionally, a powder classifier having a configuration similar to that of the following type has been developed (see, for example, Patent Document 3).

すなわち、図5(イ)(ロ)に示す粉体分級機では、図4に示した分級ロータ30と同様のロータ本体32と外部ロータ37を、それぞれ上下に2分割された上部と下部のロータ部材よりなる組立構造のロータ本体32及び外部ロータ37として分級ロータ30を形成してある。又、分級ロータ30における分級機ケーシング24の入口23側に臨む一端面部(上面部)に、中央の分岐円錐体36の近傍位置より放射方向に所要寸法延びる分散羽根39を、周方向所要間隔で多数突設してなる構成としてある。これにより、入口23より流入して上記分級ロータ30の一端面部に沿って粉体導入開口35へ導かれる分級対象となる粉体と搬送ガスを、上記各分散羽根39間を通過する間に分級ロータ30の軸心を中心とする放射方向にほぼ均一に分割させるようにすると共に、分級ロータ30の回転に伴い該各分散羽根39の外周端部より外方に放出されるガス流れを二次分散させるようにしてある。   That is, in the powder classifier shown in FIGS. 5 (a) and 5 (b), the rotor main body 32 and the external rotor 37 similar to the classifying rotor 30 shown in FIG. The classification rotor 30 is formed as the rotor main body 32 and the external rotor 37 having an assembly structure composed of members. Further, on one end surface (upper surface) facing the inlet 23 side of the classifier casing 24 in the classifying rotor 30, dispersion vanes 39 extending in the radial direction from the position in the vicinity of the central branch cone 36 are disposed at a required interval in the circumferential direction. A large number of protrusions are provided. As a result, the powder to be classified and the carrier gas flowing from the inlet 23 and guided to the powder introduction opening 35 along the one end surface of the classification rotor 30 are classified while passing between the dispersion blades 39. In addition to being divided substantially uniformly in the radial direction centered on the axis of the rotor 30, the gas flow discharged outward from the outer peripheral end of each dispersion blade 39 as the classifying rotor 30 rotates is secondary. It is made to disperse.

又、分級ロータ30の外部ロータ37に設けてあるU形溝37aにおける反分級ガス導入口25側の外周縁部には、周方向所要間隔で放射方向の複数の補助羽根40を設けた構成としてある。これにより、分級ロータ30が回転するときに、上記各補助羽根30により分級ガス26に回転方向の流れを与えて、上記分級ガス26を旋回させた状態で分級ロータ30の微粉流路33へ導入できるようにして、該微粉流路33へ流入する分級ガス26を周方向に均一に分散させることができるようにしてある。   In addition, a plurality of radial auxiliary blades 40 are provided at a circumferential interval at the outer peripheral edge of the U-shaped groove 37a provided on the outer rotor 37 of the classification rotor 30 on the side of the anti-classification gas inlet 25. is there. As a result, when the classification rotor 30 rotates, the auxiliary blades 30 give the classification gas 26 a flow in the rotational direction, and the classification gas 26 is swirled and introduced into the fine powder flow path 33 of the classification rotor 30. In this way, the classified gas 26 flowing into the fine powder flow path 33 can be uniformly dispersed in the circumferential direction.

更に、微粉流路33の入口側開口周縁部に設ける分級羽根34を、粉体導入開口35の位置で内周側と外周側に2分割された分級羽根34a,34bとする構成や、上記微粉流路33における出口側の開口周縁部に、多数の羽根41を放射状に配置して、該羽根41の上端部と下端部を、それぞれ上記外部ロータ37の下部ロータ部材とロータ本体32の下部ロータ部材に一体に取り付ける構成とすることも提案されている。   Further, the classification blade 34 provided at the inlet side opening peripheral portion of the fine powder flow path 33 is classified into two classification blades 34a and 34b divided into the inner peripheral side and the outer peripheral side at the position of the powder introduction opening 35, and the fine powder described above. A large number of blades 41 are radially arranged at the opening peripheral edge of the outlet side in the flow path 33, and the upper and lower ends of the blades 41 are respectively connected to the lower rotor member of the external rotor 37 and the lower rotor of the rotor body 32. It has also been proposed to be configured to be integrally attached to the member.

なお、図5(イ)(ロ)において、図4に示したものと対応するものには同一符号が付してある。   5 (A) and 5 (B), components corresponding to those shown in FIG.

更に又、上記図5(イ)(ロ)に示したと同様の構成において、分級ロータ30の微粉流路33の入口側開口周縁部に設ける分級羽根34a,34b、及び、外部ロータ37の外周面のU字溝37aに設ける補助羽根40を、いずれも内周側端部が外周側端部よりも回転方向へ先行するよう放射方向より所要角度傾斜させるようにした形式の粉体分級機も従来提案されている(たとえば特許文献4参照)。   Furthermore, in the same configuration as shown in FIGS. 5A and 5B, the classification blades 34a and 34b provided on the peripheral edge of the inlet opening of the fine powder flow path 33 of the classification rotor 30 and the outer peripheral surface of the external rotor 37 Conventionally, a powder classifier of the type in which the auxiliary blades 40 provided in the U-shaped groove 37a are inclined at a required angle from the radial direction so that the inner peripheral side end part precedes the outer peripheral side end part in the rotational direction is also known. It has been proposed (see, for example, Patent Document 4).

特開2002−186868号公報JP 2002-186868 A 特開平7−185375号公報JP-A-7-185375 特公昭57−11296号公報Japanese Patent Publication No.57-11296 特公平4−62794号公報Japanese Examined Patent Publication No. 4-62794

ところが、上記図4に示した竪型ミル用の粉体分級機21によれば、粒子の粒径に応じて変化する遠心力と、内向きのガス流れの抗力との大小関係に基づいて、原料粉砕物8aの分級を行なうことができるため、分級精度及び能力を高めることができる。しかし、上記粉体分級機21では、外部より分級ガス26を供給するようにしてあるため、該粉体分級機21より下流側へ排出されるガス量が多くなってしまう。   However, according to the powder classifier 21 for the vertical mill shown in FIG. 4 above, based on the magnitude relationship between the centrifugal force that changes according to the particle size of the particles and the drag force of the inward gas flow, Since the raw material pulverized product 8a can be classified, classification accuracy and ability can be improved. However, since the powder classifier 21 supplies the classification gas 26 from the outside, the amount of gas discharged downstream from the powder classifier 21 increases.

更に、分級ロータ30の内部に、略コの字状断面の微粉流路33を形成しなければならず、構造が複雑になってしまうというのが実状である。すなわち、上記微粉流路33は、ロータ本体32の外周部の溝32aの内側に、外部ロータ37を配置して、該ロータ本体32の溝32aの内面と外部ロータ37の内周側表面との間の隙間として形成させるようにしてあり、この外部ロータ37は、分級羽根34を連結用の部材として介在させることでロータ本体32に一体に取り付ける必要があることから構造が複雑化している。   Further, the fine powder flow path 33 having a substantially U-shaped cross section must be formed inside the classification rotor 30, and the actual situation is that the structure becomes complicated. That is, in the fine powder flow path 33, the outer rotor 37 is disposed inside the groove 32 a on the outer peripheral portion of the rotor body 32, and the inner surface of the groove 32 a of the rotor body 32 and the inner peripheral surface of the outer rotor 37 are arranged. The external rotor 37 has a complicated structure because the external rotor 37 needs to be integrally attached to the rotor body 32 by interposing the classifying blades 34 as connecting members.

更には、分級機ケーシング24の外周壁に分級ガス導入口25を設けることによっても構造の複雑化につながっている。   Furthermore, providing the classification gas inlet 25 on the outer peripheral wall of the classifier casing 24 also leads to a complicated structure.

上記特許文献3及び4に記載された粉体分級機においても上記と同様に、構造が複雑なものとなっている。更に、特許文献3及び4に記載された粉体分級機では、ロータ本体32と外部ロータ37のそれぞれの下部ロータ部材同士を一体にするために、両者の間に羽根41を設けるようにしていることから、更に構造が複雑化している。   The powder classifiers described in Patent Documents 3 and 4 also have a complicated structure as described above. Furthermore, in the powder classifiers described in Patent Documents 3 and 4, in order to integrate the lower rotor members of the rotor main body 32 and the external rotor 37, blades 41 are provided between them. This further complicates the structure.

そこで、本発明は、竪型ミルで使用される搬送ガスのみを用いて分級精度及び能力の高い分級作業を実施でき、且つ構成をよりシンプルなものとすることができる粉体分級機を提供しようとするものである。   Accordingly, the present invention is to provide a powder classifier capable of carrying out classification work with high classification accuracy and high performance using only the carrier gas used in the vertical mill and having a simpler configuration. It is what.

本発明は、上記課題を解決するために、請求項1に係る発明に対応して、下面中央部に入口を、又、上面に出口をそれぞれ有し且つ外周壁の所要個所に粗粉排出口を有する略円筒状の分級機ケーシングと、上面に上記分級機ケーシングの出口に通じるリング状の開口部を有し、且つ外周縁部に周方向に所要間隔で多数の分級羽根を設けて該分級羽根の内側に上記上面の開口部へ連通するようにしてある空洞部を形成してなる分級ロータとからなり、該分級ロータを分級機ケーシング内に回転駆動できるように収納して、下方より搬送ガスにより搬送されて該搬送ガスとともに上記分級機ケーシングの入口からケーシング内に入る原料粉砕物を粗粉と微粉に分級して微粉と上記搬送ガスを、分級ロータの分級羽根、空洞部、開口部を経てケーシングの出口へ流通できるようにした構成とする。   In order to solve the above-mentioned problem, the present invention has an inlet at the center of the lower surface and an outlet at the upper surface corresponding to the invention according to claim 1, and a coarse powder outlet at a required portion of the outer peripheral wall. A substantially cylindrical classifier casing having a ring-shaped opening on the upper surface leading to the outlet of the classifier casing, and a large number of classifying blades are provided at required intervals in the circumferential direction on the outer peripheral edge. The classifying rotor is formed by forming a hollow portion communicating with the opening on the upper surface inside the blade, and the classifying rotor is housed in a classifier casing so as to be rotationally driven and conveyed from below. The raw material pulverized material that is conveyed by gas and enters the casing from the inlet of the classifier casing together with the carrier gas is classified into coarse powder and fine powder, and the fine powder and the carrier gas are classified into the classification blade, the cavity, and the opening of the classification rotor. Through the case A structure in which to be able to flow into the grayed outlet.

又、上記請求項1に係る発明における分級ロータの空洞部の外周縁部にある各分級羽根を、内周側端部が外周側端部よりも分級ロータの回転方向に先行するよう該分級ロータの法線方向より所要角度傾斜させるようにした構成とする。   Further, in each of the classification blades in the outer peripheral edge portion of the cavity portion of the classification rotor according to the first aspect of the present invention, the classification rotor is arranged so that the inner peripheral side end portion precedes the outer peripheral side end portion in the rotation direction of the classification rotor. It is set as the structure which made it incline by a required angle from the normal line direction.

請求項1又は2に係る発明における分級ロータの下面に多数の分散板を設けて、該各分散板を、上端部が下端部よりも分級ロータの回転方向に先行するよう垂直方向より所要角度傾斜させるようにした構成とする。   A plurality of dispersion plates are provided on the lower surface of the classification rotor in the invention according to claim 1 or 2, and each dispersion plate is inclined at a required angle from the vertical direction so that the upper end portion precedes the rotation direction of the classification rotor than the lower end portion. It is set as the structure made to do.

請求項1、2又は3に係る発明における分級ロータの上面に設けるリング状の開口部の外径を、分級羽根内端部径よりも小さい径となるようにした構成とする。   The outer diameter of the ring-shaped opening provided on the upper surface of the classifying rotor in the invention according to claim 1, 2, or 3 is configured to be smaller than the classifying blade inner end diameter.

請求項1、2、3又は4に係る発明における分級ロータのリング状の開口部よりも外周側の上面に、分級機ケーシングの天井面近傍位置まで突出するリング状のシール用突部を、径方向所要間隔で同心円状に複数設け、且つ分級機ケーシングの天井面における上記分級ロータのシール用突部と径方向に交互配置となる位置に、上記分級ロータの上端面近傍位置まで突出するリング状のシール用突部を、同心円状に複数設けるようにした構成とする。   A ring-shaped sealing projection projecting to a position near the ceiling surface of the classifier casing on the upper surface on the outer peripheral side of the ring-shaped opening of the classifying rotor in the invention according to claim 1, 2, 3, or 4, A plurality of concentric circles at required intervals in the direction, and a ring shape that protrudes to a position near the upper end surface of the classifying rotor at a position alternately arranged in the radial direction with the sealing projections of the classifying rotor on the ceiling surface of the classifier casing A plurality of seal projections are provided concentrically.

請求項1、2、3、4又は5に係る発明における分級機ケーシングの外周壁に設ける粗粉排出口を、分級ロータの回転方向に沿う接線方向に向くものとした構成とする。   The coarse powder discharge port provided in the outer peripheral wall of the classifier casing in the invention according to claim 1, 2, 3, 4 or 5 is configured to be directed in a tangential direction along the rotation direction of the classifying rotor.

本発明の粉体分級機によれば、以下の如き優れた効果を発揮する。
(1)下面中央部に入口を、又、上面に出口をそれぞれ有し且つ外周壁の所要個所に粗粉排出口を有する略円筒状の分級機ケーシングと、上面に上記分級機ケーシングの出口に通じるリング状の開口部を有し、且つ外周縁部に周方向に所要間隔で多数の分級羽根を設けて該分級羽根の内側に上記上面の開口部へ連通するようにしてある空洞部を形成してなる分級ロータとからなり、該分級ロータを分級機ケーシング内に回転駆動できるように収納して、下方より搬送ガスにより搬送されて該搬送ガスとともに上記分級機ケーシングの入口からケーシング内に入る原料粉砕物を粗粉と微粉に分級して微粉と上記搬送ガスを、分級ロータの分級羽根、空洞部、開口部を経てケーシングの出口へ流通できるようにした構成としてあるので、分級機ケーシング内へ入口より流入する原料粉砕物及びその搬送ガスを、分級ロータ下方のケーシング下端部を通してケーシングの外周部へ導いて、該ケーシングの外周部に導かれた原料粉砕物及び搬送ガスに、回転する分級ロータの分級羽根により旋回力を付与することができ、このために、上記原料粉砕物中の各粒子に十分な遠心力を与えることができる。したがって、回転する分級ロータの分級羽根を経て空洞部を外周側より中心方向に向かうガス流れ中にて、粒子径に応じて変化する遠心力とガス流れの搬送抗力とのバランスに基づいて、上記分級対象となる原料粉砕物中の所望粒度以下の微粉と、所望する粒度よりも大きな粒径を有する粗粉とを分級することができると共に、この分級を行う際の分級精度及び能力の向上を図ることができる。
(2)上記原料粉砕物の分級は、竪型ミルより導かれる搬送ガスのガス流れに基づいて行なうことができるため、外部より別途分級用のガスを導入する必要をなくすことができて、下流側へ排出されるガス量が多くなることを防止できる。
(3)分級ロータの構成を、よりシンプルなものとすることができる。
(4)上記(1)の構成における分級ロータの空洞部の外周縁部にある各分級羽根を、内周側端部が外周側端部よりも分級ロータの回転方向に先行するよう該分級ロータの法線方向より所要角度傾斜させるようにした構成とすることにより、万一、遠心力とガス流れの搬送抗力とのバランスで理論的に決定される限界粒子径以上の粒子が上記分級ロータの空洞部の外周縁部における分級羽根を設けてあるゾーンへ紛れ込んだとしても、該限界粒子径以上の粒子を回転する分級羽根に衝突させることで、ケーシングの外周部に形成される原料粉砕物及びその搬送ガスの旋回流れへ戻すことが可能となる。
(5)請求項1又は2に係る発明における分級ロータの下面に多数の分散板を設けて、該各分散板を、上端部が下端部よりも分級ロータの回転方向に先行するよう垂直方向より所要角度傾斜させるようにした構成とすることにより、ケーシングの入口よりケーシング下端部を通してケーシングの外周部へ導かれる原料粉砕物及びその搬送ガスを、回転する分級ロータの下面の分散板により、ケーシングの外周部の全面に分散させることができる。
この際、分級ロータと一体に回転する各分散板により、分級ロータの下面の全面に、分級対象となる原料粉砕物を分散させて、均一な分散状態として分散性を高めることができることから、ケーシングの外周部へ導かれる原料粉砕物の搬送ガス中における粉体濃度の均一化を図ることができる。又、ケーシング外周部におけるガス流れを周方向に均等化することができる。
(6)請求項1、2又は3に係る発明における分級ロータの上面に設けるリング状の開口部の外径を、分級羽根内端部径よりも小さい径となるようにした構成とすることにより、ガス流れの搬送抗力に基づいて分級ロータの空洞部を外周側より中心方向へ向かうことで一旦分級された微粉が、分級羽根の設けてあるゾーンへ後戻りする虞を防止できる。
(7)請求項1、2、3又は4に係る発明における分級ロータのリング状の開口部よりも外周側の上面に、分級機ケーシングの天井面近傍位置まで突出するリング状のシール用突部を、径方向所要間隔で同心円状に複数設け、且つ分級機ケーシングの天井面における上記分級ロータのシール用突部と径方向に交互配置となる位置に、上記分級ロータの上端面近傍位置まで突出するリング状のシール用突部を、同心円状に複数設けるようにした構成とすることにより、分級ロータの上端面と分級機ケーシングの天井面との隙間を通って分級作用を受けていない粉体が、上記ケーシングの出口側へ漏れる虞を防止できる。したがって、回収すべき所望粒度以下の微粉に、上記分級作用を受けていない粉体が混入する虞を未然に防止できる。
(8)請求項1、2、3、4又は5に係る発明における分級機ケーシングの外周壁に設ける粗粉排出口を、分級ロータの回転方向に沿う接線方向に向くものとした構成とすることにより、遠心力がガス流れの搬送抗力よりも大となることでケーシング外周部に移動される粗粉を、分級ロータの回転に伴って形成される旋回流に乗せて粗粉排出口へ容易に搬送することができる。
According to the powder classifier of the present invention, the following excellent effects are exhibited.
(1) A substantially cylindrical classifier casing having an inlet at the center of the lower surface and an outlet at the upper surface and having a coarse powder outlet at a required portion of the outer peripheral wall, and an outlet of the classifier casing on the upper surface. A ring-shaped opening that communicates with each other, and a large number of classification blades are provided at a required interval in the circumferential direction on the outer peripheral edge, and a cavity is formed inside the classification blade so as to communicate with the opening on the upper surface. The classifying rotor is housed in a classifier casing so as to be rotationally driven. The classifying rotor is conveyed by a carrier gas from below and enters the casing from the inlet of the classifier casing together with the carrier gas. The pulverized raw material is classified into coarse powder and fine powder so that the fine powder and the above carrier gas can be distributed to the outlet of the casing through the classification blade, cavity, and opening of the classification rotor. The raw material crushed material and its carrier gas flowing from the inlet into the sink are guided to the outer periphery of the casing through the lower end of the casing below the classification rotor, and rotated to the raw material pulverized material and the carrier gas guided to the outer periphery of the casing. A swirling force can be imparted by the classifying blades of the classifying rotor, and sufficient centrifugal force can be imparted to each particle in the pulverized material. Therefore, based on the balance between the centrifugal force that changes according to the particle diameter and the conveyance drag of the gas flow in the gas flow from the outer peripheral side toward the center direction through the classification blade of the rotating classification rotor, the above It is possible to classify fine powder having a particle size equal to or smaller than the desired particle size in the pulverized raw material to be classified and coarse powder having a particle size larger than the desired particle size, and improve classification accuracy and ability when performing this classification. Can be planned.
(2) Since the classification of the pulverized raw material can be performed based on the gas flow of the carrier gas introduced from the vertical mill, it is possible to eliminate the need for introducing a classification gas from the outside, and The amount of gas discharged to the side can be prevented from increasing.
(3) The configuration of the classifying rotor can be made simpler.
(4) The classifying rotor in the outer peripheral edge of the cavity of the classifying rotor in the configuration of (1) is arranged so that the inner peripheral side end precedes the rotating direction of the classifying rotor more than the outer peripheral side end. In the unlikely event that the required angle is inclined with respect to the normal line direction, particles having a particle diameter larger than the limit particle diameter theoretically determined by the balance between centrifugal force and gas flow conveyance drag are Even if the particles are mixed into the zone where the classification blades are provided at the outer peripheral edge of the hollow portion, the raw material pulverized material formed on the outer peripheral portion of the casing by colliding with the rotating classification blades with particles larger than the limit particle diameter, and It becomes possible to return to the swirling flow of the carrier gas.
(5) A number of dispersing plates are provided on the lower surface of the classifying rotor in the invention according to claim 1 or 2, and each dispersing plate is arranged in the vertical direction so that the upper end portion precedes the rotating direction of the classifying rotor rather than the lower end portion. By adopting a configuration in which the required angle is inclined, the raw material crushed material guided to the outer peripheral portion of the casing from the inlet of the casing to the outer peripheral portion of the casing and the transport gas thereof are dispersed by the dispersion plate on the lower surface of the rotating classification rotor. It can be dispersed on the entire surface of the outer periphery.
At this time, each dispersion plate that rotates integrally with the classifying rotor can disperse the pulverized raw material to be classified over the entire lower surface of the classifying rotor, thereby improving the dispersibility in a uniform dispersed state. It is possible to make the powder concentration uniform in the carrier gas of the pulverized raw material guided to the outer periphery of the material. Moreover, the gas flow in a casing outer peripheral part can be equalized in the circumferential direction.
(6) By setting the outer diameter of the ring-shaped opening provided on the upper surface of the classifying rotor in the invention according to claim 1, 2, or 3 to be smaller than the classifying blade inner end diameter. Further, it is possible to prevent the fine powder once classified by moving the cavity portion of the classification rotor from the outer peripheral side toward the center based on the conveyance drag of the gas flow, and returning to the zone where the classification blades are provided.
(7) A ring-shaped sealing projection that protrudes to a position near the ceiling surface of the classifier casing on the upper surface on the outer peripheral side of the ring-shaped opening of the classifying rotor in the invention according to claim 1, 2, 3, or 4. Are arranged concentrically at required intervals in the radial direction, and project to a position near the upper end surface of the classifying rotor at a position alternately arranged in the radial direction with the sealing projections of the classifying rotor on the ceiling surface of the classifier casing. By providing a plurality of concentric ring-shaped sealing protrusions, the powder does not receive a classification action through the gap between the upper end surface of the classifying rotor and the ceiling surface of the classifier casing. However, the possibility of leakage to the outlet side of the casing can be prevented. Therefore, it is possible to prevent the possibility that the powder not subjected to the classification action is mixed into the fine powder having a desired particle size or less to be collected.
(8) The coarse powder discharge port provided on the outer peripheral wall of the classifier casing in the invention according to claim 1, 2, 3, 4 or 5 is configured to be directed in a tangential direction along the rotation direction of the classifying rotor. As a result, the centrifugal force is larger than the drag force of the gas flow, so that the coarse powder moved to the outer periphery of the casing is easily put on the swirl flow formed with the rotation of the classification rotor to the coarse powder discharge port. Can be transported.

以下、本発明を実施するための最良の形態を図面を参照して説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1(イ)(ロ)(ハ)及び図2は本発明の粉体分級機の実施の一形態を示すもので、以下のような構成としてある。すなわち、本発明の粉体分級機42は、下端面の中央部に原料粉砕物8aと搬送ガス10の入口44を設け、且つ頂部の中央部に微粉12と搬送ガス10の出口45を備えた略円筒形の分級機ケーシング43を有する。更に、該ケーシング43の下端の外周部を、図3に示したと同様に、原料供給装置7より供給される原料8を回転テーブル2と粉砕ローラ5にて粉砕した後、生成される原料粉砕物8aを、ケーシング下端部のガス入口9より導入する搬送ガス10にて吹き上げることができるようにしてある竪型ミルIの円筒状ケーシング1の上端部に気密に取り付ける。   1 (a), (b), (c) and FIG. 2 show an embodiment of the powder classifier of the present invention, which has the following configuration. That is, the powder classifier 42 of the present invention is provided with the raw material pulverized product 8a and the inlet 44 of the carrier gas 10 at the center of the lower end surface, and with the fine powder 12 and the outlet 45 of the carrier gas 10 at the center of the top. It has a substantially cylindrical classifier casing 43. Further, the outer peripheral portion of the lower end of the casing 43 is crushed the raw material 8 supplied from the raw material supply device 7 by the rotary table 2 and the pulverizing roller 5 in the same manner as shown in FIG. 8a is airtightly attached to the upper end portion of the cylindrical casing 1 of the vertical mill I which can be blown up by the carrier gas 10 introduced from the gas inlet 9 at the lower end portion of the casing.

又、上記分級機ケーシング43の外周壁の所要個所には、内部に回転駆動可能に収納する後述する分級ロータ47の回転方向に沿う接線方向に向けて粗粉排出口46を設けて、該粗粉排出口46を、図4に示したと同様のロータリーバルブ29付きの粗粉戻し管28を介在させて原料供給装置7の途中位置に接続する。   Further, a coarse powder discharge port 46 is provided at a required portion of the outer peripheral wall of the classifier casing 43 in a tangential direction along the rotation direction of a classifying rotor 47 (described later) that is housed so as to be rotationally driven. The powder discharge port 46 is connected to a middle position of the raw material supply device 7 with a coarse powder return pipe 28 with a rotary valve 29 similar to that shown in FIG.

上記分級機ケーシング43内に収納する分級ロータ47は、上記ケーシング43の内径よりも所要寸法小径としてある所要厚みの円盤状としてあって、その外周面部より軸心方向に延びる空洞部48を設けてなる構成としてあり、且つ該空洞部48の内周側端部が、上端面における径方向の中間部に設けるリング状の開口部49に滑らかに連通するようにしてある。   The classifying rotor 47 accommodated in the classifier casing 43 has a disk shape with a required thickness that is smaller than the inner diameter of the casing 43 and has a cavity 48 that extends in the axial direction from the outer peripheral surface. The inner peripheral side end portion of the cavity portion 48 is configured to smoothly communicate with a ring-shaped opening portion 49 provided at a radially intermediate portion on the upper end surface.

更に、上記空洞部48の外周縁部における周方向所要間隔の多数個所に、上下方向に延びる板状の分級羽根50を、内周側端部が外周側端部よりも分級ロータ47の回転方向に先行した配置となるよう法線方向(放射方向)より所要角度傾斜させて配置し、該各分級羽根50の上端部と下端部が、上記空洞部48の天井面及び内底面に一体に取り付けるようにしてある。   Furthermore, plate-shaped classification blades 50 extending in the vertical direction are arranged at a plurality of circumferentially required intervals at the outer peripheral edge of the cavity 48, and the rotation direction of the classification rotor 47 is such that the inner peripheral end is more than the outer peripheral end. The upper and lower end portions of the classification blades 50 are integrally attached to the ceiling surface and the inner bottom surface of the cavity 48 so that the arrangement is preceded by the normal direction (radial direction). It is like that.

なお、上記において、分級ロータ47の上端面に設ける開口部49は、該開口部49の外径が上記各分級羽根50の内周側端部径よりも小さくなるようにする。これにより、一旦分級された微粉12が、分級羽根50の設けてあるゾーンへ後戻りする虞を防止できるようにしてある。   In the above description, the opening 49 provided on the upper end surface of the classification rotor 47 is configured such that the outer diameter of the opening 49 is smaller than the inner peripheral side end diameter of each of the classification blades 50. Thereby, the fine powder 12 once classified can be prevented from returning to the zone where the classification blade 50 is provided.

上記分級ロータ47の下面中央部には分岐円錐体51を取り付ける。更に、該分級ロータ30の下側に、上記分岐円錐体51の傾斜面部より放射方向に所要寸法延びると共に上端部が下端部よりも分級ロータ47の回転方向に先行するように垂直方向より所要角度傾斜させた分散板52を、周方向に所要間隔で多数配置し、該各分散板52の上端部を、分級ロータ30の下面に一体に取り付ける。   A branch cone 51 is attached to the center of the lower surface of the classifying rotor 47. Further, a required angle from the vertical direction is extended below the classifying rotor 30 in a radial direction from the inclined surface portion of the branch cone 51 so that the upper end precedes the rotation direction of the classifying rotor 47 rather than the lower end. A large number of inclined dispersion plates 52 are arranged at a required interval in the circumferential direction, and the upper end portions of the respective dispersion plates 52 are integrally attached to the lower surface of the classification rotor 30.

分級ロータ47の回転軸53は、該分級ロータ47の上方へ所要寸法突出させるように上記分級機ケーシング43の出口45の中心部に配置してあり、該出口45の周縁部に放射方向の複数の支持部材55を介して取り付けてある軸受54に回転自在に支持させるようにしてある。上記該軸受54よりも上方に突出させた上記回転軸53の突出端部は、たとえば、上記出口45の上側に取り付けて該出口45より排出されるガス流れ方向を一側方向に変えるための排気カバー56の頂部に取り付けてあるモータ57の出力軸(図示せず)に接続するようにする。これにより、該モータ57の回転駆動力により、上記回転軸と一体に上記分級ロータ47を、図1(ハ)における時計方向へ回転させることができるようにしてある。   The rotating shaft 53 of the classifying rotor 47 is disposed at the center of the outlet 45 of the classifier casing 43 so as to project the required dimension above the classifying rotor 47, and a plurality of radial directions are arranged at the periphery of the outlet 45. The bearing 54 attached via the support member 55 is rotatably supported. The projecting end portion of the rotating shaft 53 projecting upward from the bearing 54 is attached to the upper side of the outlet 45, for example, so as to change the gas flow direction discharged from the outlet 45 to one side direction. It connects with the output shaft (not shown) of the motor 57 currently attached to the top part of the cover 56. FIG. Thereby, the classifying rotor 47 can be rotated in the clockwise direction in FIG. 1C by the rotational driving force of the motor 57 integrally with the rotating shaft.

更に、上記分級ロータ47の開口部49よりも外周側の上端面には、分級機ケーシング43の天井面近傍位置まで突出する全周方向のリング状のシール用突部58を、径方向に所要間隔で複数(図では2つ)設ける。一方、分級機ケーシング43の天井面には、上記分級ロータ47の各シール用突部58と内外方向に交互配置となるよう径方向に所要間隔の複数個所(図では2個所)に、分級ロータ47の上端面近傍位置まで突出する全周方向のリング状のシール用突部59を設ける。これにより、上記分級機ケーシング43の天井面のシール用突部59と、分級ロータ47のシール用突部58が交互に係合されることで、分級ロータ47の上端面と分級機ケーシング43の天井面との間の隙間を通って分級作用を受けていない竪型ミルIの原料粉砕物8aが、該ケーシング43の出口45側へ漏れる虞を防止して、回収される微粉12に、上記分級作用を受けていない原料粉砕物8aが混入する虞を未然に防止できるようにしてある。   Further, a ring-shaped sealing projection 58 in the circumferential direction that protrudes to the position near the ceiling surface of the classifier casing 43 is required on the upper end surface on the outer peripheral side of the opening 49 of the classifying rotor 47 in the radial direction. A plurality (two in the figure) are provided at intervals. On the other hand, on the ceiling surface of the classifier casing 43, the classifying rotor is provided at a plurality of locations (two locations in the figure) at required intervals in the radial direction so as to be alternately arranged in the inner and outer directions with the sealing protrusions 58 of the classifying rotor 47. 47 is provided with a ring-shaped sealing projection 59 in the entire circumferential direction that projects to a position near the upper end surface of 47. As a result, the sealing projection 59 on the ceiling surface of the classifier casing 43 and the sealing projection 58 of the classifying rotor 47 are alternately engaged, so that the upper end surface of the classifying rotor 47 and the classifier casing 43 The raw material pulverized product 8a of the vertical mill I which has not been subjected to the classification action through the gap between the ceiling surface is prevented from leaking to the outlet 45 side of the casing 43, and the recovered fine powder 12 is The possibility that the pulverized raw material 8a not subjected to the classification action is mixed can be prevented in advance.

なお、符号60は分級機ケーシング43内における分級ロータ47の外周側に形成される分級ゾーンを示す。又、排気カバー56の下流側には微粉搬送ライン20を介して製品捕集器14が接続してある。その他、図3に示したものと同一のものには同一符号が付してある。   Reference numeral 60 denotes a classification zone formed on the outer peripheral side of the classification rotor 47 in the classifier casing 43. The product collector 14 is connected to the downstream side of the exhaust cover 56 via the fine powder conveyance line 20. Other components that are the same as those shown in FIG.

本発明の粉体分級機42を装備した竪型ミルIを用いて粉砕処理を行なう場合は、該粉体分級機42の分級ロータ47を、モータ57により回転駆動させ、又、排風機27による誘引送風を行わせるようにしておく。   When pulverization is performed using the vertical mill I equipped with the powder classifier 42 of the present invention, the classification rotor 47 of the powder classifier 42 is driven to rotate by a motor 57, and the exhaust fan 27 is used. Try to induce air.

この状態において、従来と同様に、上記竪型ミルIにて原料供給装置7より供給される原料8を、回転テーブル2と粉砕ローラ5により粉砕し、生成される原料粉砕物8aが、ケーシング下端部のガス入口9より導入される搬送ガス10により吹き上げられて上記本発明の粉体分級機42の入口44に達すると、上記搬送ガス10及び原料粉砕物8aは、先ず、分岐円錐体51により軸心対称に周方向へ分散されながら上記入口44より分級機ケーシング43内へ流入させられた後、該ケーシング43の下端部を通して分級ゾーン60へ一旦送られる。この際、上記分級ロータ47の下面には、周方向に多数の分散板52が設けてあるため、上記分級機ケーシング43の下端部を通して分級ゾーン60へ導かれる上記搬送ガス10中の原料粉砕物8aは、該分級ゾーン60に全面に分散されるようになる。この際、上記各分散板52は、上端部が回転方向に先行するように傾斜させてあることから、該各分散板52が回転することにより、分級ロータ47の下面水平部の全面に、原料粉砕物8aが分散されるようになり、分級ゾーン60に進入する原料粉砕物8aは、搬送ガス10中における粉体濃度の均一化が図られるようになる。   In this state, the raw material 8 supplied from the raw material supply device 7 by the vertical mill I is pulverized by the rotary table 2 and the pulverizing roller 5 in the same manner as in the prior art. When the carrier gas 10 is blown up by the carrier gas 10 introduced from the gas inlet 9 and reaches the inlet 44 of the powder classifier 42 of the present invention, the carrier gas 10 and the raw material pulverized product 8a are first separated by the branch cone 51. After being distributed axially symmetrically in the circumferential direction, it is introduced into the classifier casing 43 from the inlet 44 and then once sent to the classification zone 60 through the lower end of the casing 43. At this time, since a large number of dispersion plates 52 are provided in the circumferential direction on the lower surface of the classifying rotor 47, the pulverized raw material in the carrier gas 10 guided to the classifying zone 60 through the lower end of the classifier casing 43. 8a is dispersed throughout the classification zone 60. At this time, since each of the dispersion plates 52 is inclined so that the upper end portion precedes the rotation direction, the rotation of each dispersion plate 52 causes the entire surface of the lower horizontal portion of the classifying rotor 47 to have a raw material. The pulverized product 8 a is dispersed, and the raw material pulverized product 8 a entering the classification zone 60 is made uniform in the powder concentration in the carrier gas 10.

又、分級ロータ47と一体に回転する上記各分散板52により、分級機ケーシング43の下端部を通過する上記搬送ガス10及び原料粉砕物8aに対しては、旋回力が付与され、分級ロータ47の周速と同一の旋回速度の気流とされて上記分級ゾーン60へ流入させられる。このために、該分級ゾーン60におけるガス流れは周方向に均等化される。   Further, the dispersion plate 52 that rotates integrally with the classifying rotor 47 applies a turning force to the carrier gas 10 and the raw material pulverized material 8 a that pass through the lower end of the classifier casing 43, and the classifying rotor 47. The air flow having the same turning speed as that of the peripheral speed is introduced into the classification zone 60. For this reason, the gas flow in the classification zone 60 is equalized in the circumferential direction.

その後、上記分級ゾーン60の搬送ガス10は、回転する分級ロータ47の空洞部48、開口部49を通って分級機ケーシング43の出口45へ向かうようになるため、上記分級ゾーン60より分級ロータ47の空洞部48へ進入する搬送ガス10のガス流れ、すなわち、中心方向へ向かうガス流れが生じることとなる。これにより、上記搬送ガス10中の原料粉砕物8aの各粒子に対しては、上記ガス流れの搬送抗力が作用されるようになる。   Thereafter, the carrier gas 10 in the classification zone 60 goes to the outlet 45 of the classifier casing 43 through the cavity 48 and the opening 49 of the rotating classification rotor 47, and therefore the classification rotor 47 from the classification zone 60. The gas flow of the carrier gas 10 entering the cavity 48, that is, the gas flow toward the center direction is generated. Thereby, the conveyance drag of the said gas flow comes to act with respect to each particle | grain of the raw material ground material 8a in the said carrier gas 10. FIG.

又、同時に、上述したように、上記分級ゾーン60へ流入される搬送ガス10に対しては、回転する分散板52による旋回力が付与されており、更に、分級ロータ47の各分級羽根50の間を通過して空洞部48へ進入しようとする搬送ガス10に対しては、各分級羽根50の回転による旋回力が付与される。このため、該旋回する搬送ガス10中の原料粉砕物8aの各粒子に対しては、遠心力が作用することとなる。   At the same time, as described above, the carrier gas 10 flowing into the classification zone 60 is given a turning force by the rotating dispersion plate 52, and further, each of the classification blades 50 of the classification rotor 47 is provided. A swirl force due to the rotation of each classification blade 50 is applied to the carrier gas 10 that is about to enter the cavity 48 through the space. For this reason, a centrifugal force will act on each particle | grain of the raw material ground material 8a in this carrier gas 10 to rotate.

したがって、図4に示した粉体分級機21と同様の原理により、上記原料粉砕物8a中の各粒子のうち、遠心力>抗力の関係が成り立つ粗粉13は、搬送ガス10のガス流れに抗して分級機ケーシング43の外周方向へ移動させられる。一方、遠心力<抗力の関係が成り立つ微粉12は、搬送ガス10のガス流れにより分級ロータ47の空洞部48、開口部49を通してケーシング出口45まで搬送される。これにより原料粉砕物8a中の微粉12と粗粉13は、粒子径に応じて変化する上記遠心力と抗力との大小関係に基づいて精度よく分離されるようになる。   Therefore, of the particles in the raw material pulverized material 8 a, the coarse powder 13 satisfying the relationship of centrifugal force> drag is formed in the gas flow of the carrier gas 10 according to the same principle as the powder classifier 21 shown in FIG. The classifier casing 43 is moved against the outer periphery. On the other hand, the fine powder 12 satisfying the relationship of centrifugal force <drag is conveyed to the casing outlet 45 through the cavity 48 and the opening 49 of the classification rotor 47 by the gas flow of the carrier gas 10. As a result, the fine powder 12 and the coarse powder 13 in the pulverized raw material 8a are accurately separated based on the magnitude relationship between the centrifugal force and the drag force that change according to the particle diameter.

上述したような分級作用が原料粉砕物8aの各粒子に作用する際、万一、遠心力とガス流れの搬送抗力とのバランスで理論的に決定される限界粒子径以上の粒子が上記分級ロータ47の分級羽根50を設けてあるゾーンへ紛れ込んだとしても、上記分級ロータ47の各分級羽根50は、内周側端部が回転方向に先行し、外周側端部が回転方向に後退するよう該分級ロータ47の法線方向より所要角度傾斜させてあるため、回転する分級羽根50に衝突させることで、上記限界粒粒子径以上の粒子は、外周側の分級ゾーン60の搬送ガス10及び原料粉砕物8aの旋回流れへ戻すことが可能となる。   When the classification action as described above acts on each particle of the raw material pulverized material 8a, the particle having a particle diameter larger than the limit particle diameter theoretically determined by the balance between the centrifugal force and the gas flow conveyance drag should be Even if the 47 classification blades 50 are mixed into the zone where the classification blades 50 are provided, the classification blades 50 of the classification rotor 47 are arranged so that the inner peripheral side ends precede the rotational direction and the outer peripheral side ends recede in the rotational direction. Since the required angle is inclined from the normal direction of the classification rotor 47, the particles larger than the above limit particle diameter are caused to collide with the rotating classification blade 50, so that the carrier gas 10 and the raw material in the classification zone 60 on the outer peripheral side. It becomes possible to return to the swirl flow of the pulverized product 8a.

上記分級機ケーシング43の出口45に達した搬送ガス10及び微粉12は、その後、排気カバー56、微粉搬送ライン20を経て製品捕集器14へ導かれ、該製品捕集器14にて微粉12の回収が行なわれる。   The carrier gas 10 and the fine powder 12 reaching the outlet 45 of the classifier casing 43 are then guided to the product collector 14 through the exhaust cover 56 and the fine powder carrier line 20, and the fine powder 12 is supplied to the product collector 14. Is collected.

一方、ガス流れの抗力よりも遠心力の方が大となることで上記分級機ケーシング43内にて外周方向へ移動される粗粉13は、該ケーシング43の外周壁に、分級ロータ47の回転方向、すなわち、該分級ロータ47の回転に伴って形成される旋回流の旋回方向に沿う接線方向に粗粉排出口46が設けてあるため、該粗粉排出口46まで、上記旋回流に乗せて容易に搬送されるようになる。その後、上記粗粉取出口46より取り出される粗粉13は、ロータリーバルブ29によりシール状態を維持したまま粗粉戻し管28を経て原料供給装置7の途中位置へ送られ、更に粉砕処理すべき原料として再度竪型ミルIへ供給される。   On the other hand, when the centrifugal force is larger than the drag force of the gas flow, the coarse powder 13 moved in the outer peripheral direction in the classifier casing 43 is rotated on the outer peripheral wall of the casing 43 by the rotation of the classification rotor 47. Since the coarse powder discharge port 46 is provided in the direction, that is, the tangential direction along the swirl direction of the swirl flow formed as the classification rotor 47 rotates, the coarse powder discharge port 46 is placed on the swirl flow. Can be easily transported. After that, the coarse powder 13 taken out from the coarse powder outlet 46 is sent to the middle position of the raw material supply device 7 through the coarse powder return pipe 28 while maintaining the sealed state by the rotary valve 29, and further raw material to be pulverized. Is again supplied to the vertical mill I.

このように、本発明の粉体分級機42によれば、分級処理対象となる原料粉砕物8aを均一な分散状態として分散性を高め、且つ搬送ガス10のガス流れを周方向に均一にした状態にて、上記原料粉砕物8aの各粒子に十分な遠心力を与えることができ、更に、粒子に作用する遠心力と、粒子がガス中を流れる際に発生する抗力との相互作用により粒子径に応じた分級作用に基づいた分級を行なうことができるため、分級精度及び能力の向上を図ることができる。   As described above, according to the powder classifier 42 of the present invention, the raw material pulverized product 8a to be classified is made into a uniform dispersed state to improve dispersibility, and the gas flow of the carrier gas 10 is made uniform in the circumferential direction. In this state, a sufficient centrifugal force can be applied to each particle of the raw material pulverized product 8a, and further, the particle is generated by the interaction between the centrifugal force acting on the particle and the drag generated when the particle flows in the gas. Since classification based on the classification action according to the diameter can be performed, classification accuracy and ability can be improved.

又、上記搬送ガス10及び原料粉砕物8aに旋回力を付与するための分級ロータ47の内部に設ける空洞部48は、外周面部より上端面の開口部49に連通するよう設ければよいため、図4に示した粉体分級機21に比して、構成をよりシンプルなものとすることができる。   Further, the cavity 48 provided inside the classification rotor 47 for applying a turning force to the carrier gas 10 and the pulverized material 8a may be provided so as to communicate with the opening 49 on the upper end surface from the outer peripheral surface portion. Compared with the powder classifier 21 shown in FIG. 4, the configuration can be made simpler.

しかも、上記原料粉砕物8aの分級は、竪型ミルIで用いる搬送ガス10のガス流れのみに基づいて行なうことができるため、図4に示した粉体分級機21のように、外部より分級ガス26を導入する必要をなくすことができて、下流側へ排出されるガス量が多くなることを防止できる。   Moreover, since the pulverized raw material 8a can be classified based only on the gas flow of the carrier gas 10 used in the vertical mill I, it is classified from the outside like the powder classifier 21 shown in FIG. The need to introduce the gas 26 can be eliminated, and an increase in the amount of gas discharged downstream can be prevented.

なお、本発明は上記実施の形態のみに限定されるものではなく、分級ロータ47の周方向に設ける分級羽根50の数、分散板52の数は、それぞれ分級ロータ47のサイズ等に応じて適宜増減してもよい。分級羽根50や分散板52の縦横比やサイズは、それぞれ分級ロータ47のサイズ等に応じて適宜変更してよい。分級羽根50の分級ロータの法線方向からの傾斜角度、分散板52の垂直方向からの傾斜角度は、それぞれ図示した角度に限定されるものではなく、自在に設定してよい。その他本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The present invention is not limited only to the above-described embodiment, and the number of classification blades 50 and the number of dispersion plates 52 provided in the circumferential direction of the classification rotor 47 are appropriately determined according to the size of the classification rotor 47 and the like. It may be increased or decreased. The aspect ratio and size of the classification blades 50 and the dispersion plate 52 may be appropriately changed according to the size of the classification rotor 47 and the like. The inclination angle of the classification blade 50 from the normal direction of the classification rotor and the inclination angle of the dispersion plate 52 from the vertical direction are not limited to the illustrated angles, and may be set freely. Of course, various changes can be made without departing from the scope of the present invention.

本発明の粉体分級機の実施の一形態を示すもので、(イ)は概略切断側面図、(ロ)は分級ロータを拡大して示す側面図、(ハ)は(イ)のA−A方向矢視図である。1 shows an embodiment of a powder classifier of the present invention, in which (A) is a schematic cut side view, (B) is an enlarged side view showing a classification rotor, and (C) is an A- It is an A direction arrow directional view. 図1の粉体分級機を竪型ミルに装備させた状態を示す概要図である。It is a schematic diagram which shows the state which equip | installed the vertical mill with the powder classifier of FIG. 従来の竪型ミルの一例を示す概略切断側面図である。It is a general | schematic cutting side view which shows an example of the conventional vertical mill. 従来の別の形式の粉体分級機を備えた竪型ミルを示す概略切断側面図である。It is a general | schematic cutting side view which shows the vertical mill provided with the conventional powder classification machine of another type. 従来提案されている粉体分級機を示すもので、(イ)は概略切断側面図、(ロ)はその分級ロータの平面図である。The conventional powder classifier is shown, (A) is a schematic cut side view, and (B) is a plan view of the classification rotor.

符号の説明Explanation of symbols

I 竪型ミル
8a 原料粉砕物
10 搬送ガス
12 微粉
13 粗粉
43 分級機ケーシング
44 入口
45 出口
46 粗粉排出口
47 分級ロータ
48 空洞部
49 開口部
50 分級羽根
52 分散板
58 シール用突部
59 シール用突部
I Vertical mill 8a Raw material pulverized material 10 Carrier gas 12 Fine powder 13 Coarse powder 43 Classifier casing 44 Inlet 45 Outlet 46 Coarse powder outlet 47 Classifying rotor 48 Cavity 49 Opening 50 Classifying blade 52 Dispersing plate 58 Protrusion 59 for sealing 59 Protrusion for seal

Claims (6)

下面中央部に入口を、又、上面に出口をそれぞれ有し且つ外周壁の所要個所に粗粉排出口を有する略円筒状の分級機ケーシングと、上面に上記分級機ケーシングの出口に通じるリング状の開口部を有し、且つ外周縁部に周方向に所要間隔で多数の分級羽根を設けて該分級羽根の内側に上記上面の開口部へ連通するようにしてある空洞部を形成してなる分級ロータとからなり、該分級ロータを分級機ケーシング内に回転駆動できるように収納して、下方より搬送ガスにより搬送されて該搬送ガスとともに上記分級機ケーシングの入口からケーシング内に入る原料粉砕物を粗粉と微粉に分級して微粉と上記搬送ガスを、分級ロータの分級羽根、空洞部、開口部を経てケーシングの出口へ流通できるようにしたことを特徴とする粉体分級機。   A substantially cylindrical classifier casing having an inlet at the center of the lower surface and an outlet at the upper surface and a coarse powder outlet at a required portion of the outer peripheral wall, and a ring shape leading to the outlet of the classifier casing on the upper surface A plurality of classification blades are provided at a required interval in the circumferential direction on the outer peripheral edge portion, and a hollow portion is formed inside the classification blade so as to communicate with the opening portion on the upper surface. Raw material crushed material comprising a classifying rotor, housed in a classifier casing so as to be rotationally driven, and transported by a carrier gas from below and entering the casing from the inlet of the classifier casing together with the carrier gas A powder classifier characterized in that the fine powder and the carrier gas can be circulated to the outlet of the casing through the classification blade, the cavity, and the opening of the classification rotor. 分級ロータの空洞部の外周縁部にある各分級羽根を、内周側端部が外周側端部よりも分級ロータの回転方向に先行するよう該分級ロータの法線方向より所要角度傾斜させるようにした請求項1記載の粉体分級機。   Each classifying blade at the outer peripheral edge of the cavity of the classifying rotor is inclined at a required angle from the normal direction of the classifying rotor so that the inner peripheral end is ahead of the outer peripheral end in the rotational direction of the classifying rotor. The powder classifier according to claim 1. 分級ロータの下面に多数の分散板を設けて、該各分散板を、上端部が下端部よりも分級ロータの回転方向に先行するよう垂直方向より所要角度傾斜させるようにした請求項1又は2記載の粉体分級機。   3. A plurality of dispersion plates are provided on the lower surface of the classification rotor, and each dispersion plate is inclined at a required angle from the vertical direction so that the upper end portion precedes the rotation direction of the classification rotor than the lower end portion. The powder classifier described. 分級ロータの上面に設けるリング状の開口部の外径を、分級羽根内端部径よりも小さい径となるようにした請求項1、2又は3記載の粉体分級機。   The powder classifier according to claim 1, 2, or 3, wherein an outer diameter of a ring-shaped opening provided on an upper surface of the classification rotor is smaller than a diameter of the inner end of the classification blade. 分級ロータのリング状の開口部よりも外周側の上面に、分級機ケーシングの天井面近傍位置まで突出するリング状のシール用突部を、径方向所要間隔で同心円状に複数設け、且つ分級機ケーシングの天井面における上記分級ロータのシール用突部と径方向に交互配置となる位置に、上記分級ロータの上端面近傍位置まで突出するリング状のシール用突部を、同心円状に複数設けるようにした請求項1、2、3又は4記載の粉体分級機。   A plurality of ring-shaped sealing projections that protrude to the position near the ceiling surface of the classifier casing are provided on the upper surface on the outer peripheral side of the ring-shaped opening of the classifying rotor in a concentric manner at a required radial distance, and the classifier A plurality of concentric ring-shaped sealing protrusions projecting to the position near the upper end surface of the classification rotor are provided at positions alternately arranged in the radial direction with the sealing protrusions of the classification rotor on the ceiling surface of the casing. The powder classifier according to claim 1, 2, 3 or 4. 分級機ケーシングの外周壁に設ける粗粉排出口を、分級ロータの回転方向に沿う接線方向に向くものとした請求項1、2、3、4又は5記載の粉体分級機。   The powder classifier according to claim 1, 2, 3, 4, or 5, wherein the coarse powder outlet provided on the outer peripheral wall of the classifier casing is directed in a tangential direction along a rotation direction of the classifying rotor.
JP2004081121A 2004-03-19 2004-03-19 Powder classifying apparatus Pending JP2005262147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081121A JP2005262147A (en) 2004-03-19 2004-03-19 Powder classifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081121A JP2005262147A (en) 2004-03-19 2004-03-19 Powder classifying apparatus

Publications (1)

Publication Number Publication Date
JP2005262147A true JP2005262147A (en) 2005-09-29

Family

ID=35087235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081121A Pending JP2005262147A (en) 2004-03-19 2004-03-19 Powder classifying apparatus

Country Status (1)

Country Link
JP (1) JP2005262147A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884349B1 (en) 2007-09-12 2009-03-16 한국생산기술연구원 Centrifugal powder classifier
WO2015151187A1 (en) * 2014-03-31 2015-10-08 ホソカワミクロン株式会社 Classifier
CN105396784A (en) * 2015-12-07 2016-03-16 宜兴市泰和机械有限公司 Classifier impeller
CN112471040A (en) * 2020-12-10 2021-03-12 浙江海洋大学 Sea fish classified screening device
WO2022249830A1 (en) * 2021-05-24 2022-12-01 パナソニックIpマネジメント株式会社 Classifier and classifying method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100884349B1 (en) 2007-09-12 2009-03-16 한국생산기술연구원 Centrifugal powder classifier
WO2015151187A1 (en) * 2014-03-31 2015-10-08 ホソカワミクロン株式会社 Classifier
JPWO2015151187A1 (en) * 2014-03-31 2017-04-13 ホソカワミクロン株式会社 Classifier
CN105396784A (en) * 2015-12-07 2016-03-16 宜兴市泰和机械有限公司 Classifier impeller
CN112471040A (en) * 2020-12-10 2021-03-12 浙江海洋大学 Sea fish classified screening device
WO2022249830A1 (en) * 2021-05-24 2022-12-01 パナソニックIpマネジメント株式会社 Classifier and classifying method

Similar Documents

Publication Publication Date Title
US5094391A (en) Pneumatic classifier
US5366095A (en) Air classification system
JP6570270B2 (en) Crusher with classification function
JP2005262147A (en) Powder classifying apparatus
JP2019535514A (en) mill
JPS62168556A (en) Centrifugal air separator
JPH0751629A (en) Classifier for vertical roller mill
JP2018079424A (en) Solid fuel pulverizer and operation method thereof
JP2823099B2 (en) Fine grinding equipment
KR101513054B1 (en) Two stage vertical centrifugal classifier
JPS641182B2 (en)
JP3482669B2 (en) Classifier
WO2016084447A1 (en) Vertical roller mill
JP2839116B2 (en) Vertical crusher
KR100389288B1 (en) centrifugal classifier in crusher system
JP2008086875A (en) Pneumatic fine powder manufacturing apparatus
JPH02207852A (en) Pulverizer
JPS6024477Y2 (en) Classifier for powder and granular materials
JP6514656B2 (en) Pulverizer with classification function
JPH0739772A (en) Roller mill having rotary classifier built therein
JP2007222741A (en) Classifier
JP2855211B2 (en) Vertical mill
JP2009095717A (en) Crusher
JP2839117B2 (en) Vertical crusher
JPH01270982A (en) Air separator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090518

A131 Notification of reasons for refusal

Effective date: 20090526

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091013