JP2005260677A - Underwater transmitter - Google Patents

Underwater transmitter Download PDF

Info

Publication number
JP2005260677A
JP2005260677A JP2004070799A JP2004070799A JP2005260677A JP 2005260677 A JP2005260677 A JP 2005260677A JP 2004070799 A JP2004070799 A JP 2004070799A JP 2004070799 A JP2004070799 A JP 2004070799A JP 2005260677 A JP2005260677 A JP 2005260677A
Authority
JP
Japan
Prior art keywords
layer
cylindrical elastic
cylindrical
layered structure
common
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004070799A
Other languages
Japanese (ja)
Inventor
Uji Kaiho
宇治 海法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2004070799A priority Critical patent/JP2005260677A/en
Publication of JP2005260677A publication Critical patent/JP2005260677A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Transducers For Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an underwater transmitter that can be used underwater and uses an electrostatic microactuator. <P>SOLUTION: A plurality of cylindrical elastic bodies 1 formed by providing cylindrical electrodes 2 and 4 on the inner side and the outer side of a cylindrical insulated elastic body 3, providing an inner insulating coating layer 5 on the inner circumferential surface of the inner electrode and providing an outer insulating coating layer 6 on the outer circumferential surface of the outer electrode are arranged parallel to form a layer 7. A plurality of the layers are piled up to form a multilayer, and the cylindrical elastic bodies adjacent to each other are connected to form a layered structure 8. All of the inner electrodes of the respective cylindrical elastic bodies in the layered structure are connected in common, the outer electrodes of the cylindrical elastic bodies on each layer are respectively connected in common, terminals are respectively connected so as to apply a direct current voltage between the inner electrodes connected in common and outer electrodes connected in common on every other layer of one side, terminals are respectively connected so as to apply an alternating current voltage between the inner electrodes connected in common and outer electrodes connected in common on every other layer of the other side, and the layered structure is covered with a mold 11 being a watertight insulating member. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超音波の水中送波器、更に詳しくは静電マイクロアクチュエーターを利用した水中送波器に関するものである。   The present invention relates to an ultrasonic underwater transmitter, and more particularly to an underwater transmitter using an electrostatic microactuator.

マイクロマシンを駆動するアクチュエーターについては、近年いくつかの提案がなされている。この中で、静電気の作用を利用した静電マイクロアクチュエーターがある。
かかる従来の静電マイクロアクチュエーターは、最外周面に絶縁体を配した円筒形動体を有する微細円筒弾性体を複数個隣接配置し、これらを+電極に接続する層と、−電極に接続する層に分け、これを交互に積層した構造である。
そして、これら電極に電圧を印加すると、層間が静電引力によって、引き合って変形し、電圧を除去すれば、微細円筒弾性体の弾性力によって復元することを利用し、駆動力を得るというものである。かかる構成の静電マイクロアクチュエーターは、層数を増やせば、それだけ大きなストロークを得られるという特徴がある(例えば、特許文献1参照。)。
Several proposals have recently been made on actuators for driving micromachines. Among these, there is an electrostatic microactuator using the action of static electricity.
Such a conventional electrostatic microactuator has a plurality of fine cylindrical elastic bodies having a cylindrical moving body with an insulator disposed on the outermost peripheral surface, adjacent to each other, and a layer connected to the + electrode and a layer connected to the − electrode. This is a structure in which these are alternately stacked.
Then, when a voltage is applied to these electrodes, the layers are attracted and deformed by electrostatic attraction, and if the voltage is removed, it is restored by the elastic force of the fine cylindrical elastic body to obtain a driving force. is there. The electrostatic microactuator having such a configuration is characterized in that a larger stroke can be obtained by increasing the number of layers (see, for example, Patent Document 1).

特開平05−252760号公報(第1頁、図1)JP 05-252760 A (first page, FIG. 1)

従来の静電マイクロアクチュエーターは、最外周面に絶縁体を配した円筒形導体を有する微細円筒弾性体を複数個隣接配置し、これらを+電極に接続する層と、−電極に接続する層に分け、これを交互に積層し、これら電極に電圧を印加すると、層間が静電引力によって、引き合って変形し、電圧を除去すれば、微細円筒弾性体の弾性力によって復元することを利用し、駆動力を得るようにしたものであり、変形から戻る際は弾性力だけに頼る構造となっているため、例えば水中の水深の深い所では、大きな水圧がかかるため、復元力が充分に得られない可能性があるものであった。また、構造上も水密構造になっていないものであった。
従って、かかる静電マイクロアクチュエーターを水中での超音波送波器として利用することができないという問題があった。
A conventional electrostatic microactuator has a plurality of fine cylindrical elastic bodies having a cylindrical conductor with an insulator disposed on the outermost peripheral surface, and these are arranged in a layer connected to a + electrode and a layer connected to a − electrode. When the voltage is applied to these electrodes, the layers are attracted and deformed by electrostatic attraction, and if the voltage is removed, it is restored by the elastic force of the fine cylindrical elastic body. It is designed to obtain a driving force, and since it has a structure that relies only on elastic force when returning from deformation, for example, at a deep water depth, a large water pressure is applied, so a sufficient restoring force can be obtained. There was no possibility. Also, the structure was not a watertight structure.
Therefore, there is a problem that such an electrostatic microactuator cannot be used as an ultrasonic transmitter in water.

本発明に係る水中送波器は、円筒状の絶縁弾性体の内側と外側に円筒状の電極を設け、内側の電極の内周面に絶縁被膜層を設け、外側の電極の外周面に絶縁被膜層を設けて形成した円筒弾性体を複数並列配置して層を形成し、該層を複数積み上げて多層を形成し、隣接する円筒弾性体同士を連結して層状構造体を形成し、層状構造体における各円筒弾性体の内側電極をすべて共通接続し、各層の円筒弾性体の外側電極をそれぞれ共通接続し、共通接続された内側電極と一方の層一つ置きの共通接続された外側電極との間に直流電圧が印加されるように端子を引出し線を介してそれぞれ接続し、共通接続された内側電極と他方の層一つ置きの共通接続された外側電極との間に交流電圧が印加されるように端子を引出し線を介してそれぞれ接続し、前記各円筒弾性体の内側電極及び外側電極と前記引出し線との接続部分を含む層状構造体を水密絶縁部材で覆って構成したものである。   The underwater transmitter according to the present invention is provided with cylindrical electrodes on the inner and outer sides of a cylindrical insulating elastic body, an insulating coating layer is provided on the inner peripheral surface of the inner electrode, and the outer peripheral surface of the outer electrode is insulated. A plurality of cylindrical elastic bodies formed by providing a coating layer are arranged in parallel to form a layer, a plurality of the layers are stacked to form a multilayer, and adjacent cylindrical elastic bodies are connected to form a layered structure. All the inner electrodes of each cylindrical elastic body in the structure are connected in common, the outer electrodes of the cylindrical elastic bodies in each layer are connected in common, and the commonly connected inner electrode and every other layer are connected in common. Are connected to each other via a lead wire so that a DC voltage is applied between them and an AC voltage is connected between the commonly connected inner electrode and every other outer commonly connected electrode. Connect the terminals via the lead wires so that they are applied. The one in which a layered structure comprising a connecting portion between the lead wire and the inner and outer electrodes of the cylindrical elastic bodies is constituted covered with watertight insulating member.

以上のように本発明によれば、円筒状の内側電極と外側電極を有する円筒弾性体を複数並列配置して層を形成し、該層を複数積み上げて多層を形成した層状構造体における各円筒弾性体の内側電極をすべて共通接続し、各層の円筒弾性体の外側電極をそれぞれ共通接続し、共通接続された内側電極と一方の層一つ置きの共通接続された外側電極との間に直流電圧を印加し、共通接続された内側電極と他方の層一つ置きの共通接続された外側電極との間に交流電圧を印加するようにしたので、各円筒弾性体は交流電圧の−電圧で静電引力により縮み、交流電圧の+電圧で静電斥力により伸び、振動を起こして音波を発生し、各円筒弾性体の内側電極及び外側電極と前記引出し線との接続部分を含む層状構造体を水密絶縁部材で覆っているため、水中送波器として使用することができるという効果がある。   As described above, according to the present invention, each cylinder in a layered structure in which a plurality of cylindrical elastic bodies having a cylindrical inner electrode and an outer electrode are arranged in parallel to form a layer, and a plurality of the layers are stacked to form a multilayer. All the inner electrodes of the elastic body are connected in common, the outer electrodes of the cylindrical elastic bodies of each layer are connected in common, and a direct current is connected between the commonly connected inner electrode and every other layer's commonly connected outer electrode. Since a voltage was applied and an AC voltage was applied between the commonly connected inner electrode and the other layer commonly connected outer electrode, each cylindrical elastic body had a negative voltage of the AC voltage. A layered structure that contracts by electrostatic attraction, expands by electrostatic repulsion at an AC voltage + voltage, generates vibration and generates sound waves, and includes a connection portion between the inner electrode and outer electrode of each cylindrical elastic body and the lead wire Is covered with a watertight insulating member, There is an effect that can be used as a medium-wave transmitter.

実施の形態1.
図1は本発明の実施の形態1の送波器の層間に同じ電圧を印加した状態を示す構成図、図2は同送波器の層間に正負電圧を印加した状態を示す構成図、図3は同送波器の円筒弾性体の断面図、図4は同送波器の円筒弾性体の端部の断面図である。
図3に示すように、円筒弾性体1は、円筒状の内側電極導体2の外周面側に円筒状で厚肉の例えばポリエチレンの絶縁弾性体3を介して円筒状の外側電極導体4を設け、内側電極導体2の内周面側に例えばポリエチレンの内側絶縁被覆層5を設け、外側電極導体4の外周面側に例えばポリエチレンの外側絶縁被覆層6を設けて形成されている。
Embodiment 1 FIG.
1 is a configuration diagram showing a state in which the same voltage is applied between layers of the transmitter according to the first embodiment of the present invention, and FIG. 2 is a configuration diagram showing a state in which positive and negative voltages are applied between the layers of the transmitter. 3 is a cross-sectional view of the cylindrical elastic body of the transmitter, and FIG. 4 is a cross-sectional view of the end of the cylindrical elastic body of the transmitter.
As shown in FIG. 3, the cylindrical elastic body 1 is provided with a cylindrical outer electrode conductor 4 on the outer peripheral surface side of the cylindrical inner electrode conductor 2 via a cylindrical thick insulating elastic body 3 made of polyethylene, for example. For example, a polyethylene inner insulating coating layer 5 is provided on the inner peripheral surface side of the inner electrode conductor 2, and a polyethylene outer insulating coating layer 6 is provided on the outer peripheral surface side of the outer electrode conductor 4.

この円筒弾性体1を例えば4個並列配置して層7を形成し、互いに隣接する円筒弾性体1はその外側絶縁被覆層6同士が融着され、層7全体が一体に形成されている。
そして、かかる層7を例えば4段に積み上げて4つの層7を形成し、積み上げた方向で互いに隣接する円筒弾性体1はその外側絶縁被覆層6同士が融着され、4つの層7全体が一体の層状構造体8が形成される。
層状構造体8における各層7の円筒弾性体1の内側電極導体2はすべて端子Cに共通に接続され、各層7の円筒弾性体1の外側電極導体4は共通接続され、2層と4層の外側電極導体4は端子Aに接続され、1層と3層の外側電極導体4は端子Bに接続されている。
For example, four cylindrical elastic bodies 1 are arranged in parallel to form a layer 7, and the cylindrical insulating bodies 1 adjacent to each other are fused to each other, and the entire layer 7 is integrally formed.
Then, the layers 7 are stacked, for example, in four stages to form four layers 7, and the cylindrical elastic bodies 1 adjacent to each other in the stacked direction are fused together with the outer insulating coating layers 6. An integral layered structure 8 is formed.
The inner electrode conductors 2 of the cylindrical elastic body 1 of each layer 7 in the layered structure 8 are all connected in common to the terminal C, and the outer electrode conductors 4 of the cylindrical elastic body 1 of each layer 7 are connected in common to form two layers and four layers. The outer electrode conductor 4 is connected to the terminal A, and the first and third outer electrode conductors 4 are connected to the terminal B.

層状構造体8における各円筒弾性体1の内側電極導体2と外側電極導体4に対する引出し線10の接続は、図4に示すように、例えば内側電極導体2の端部の内側絶縁被覆層5及び外側電極導体4の端部の外側絶縁被覆層6を剥いで引出し線10の線材をそれぞれ半田付け、或いは導電接着剤で接着する。なお、それ以外の接続方法としては、内側電極導体2に内側絶縁被覆層5を、外側電極導体4に外側絶縁被覆層6を設ける際に銅線を1本沿わせておき、この銅線に引出し線10の線材を半田付けするやり方もある。   As shown in FIG. 4, the connection of the lead wire 10 to the inner electrode conductor 2 and the outer electrode conductor 4 of each cylindrical elastic body 1 in the layered structure 8 is, for example, the inner insulating covering layer 5 at the end of the inner electrode conductor 2 and The outer insulating coating layer 6 at the end of the outer electrode conductor 4 is peeled off, and the wires of the lead wires 10 are soldered or bonded with a conductive adhesive. As another connection method, when the inner insulating coating layer 5 is provided on the inner electrode conductor 2 and the outer insulating coating layer 6 is provided on the outer electrode conductor 4, one copper wire is placed along the copper wire. There is also a method of soldering the wire of the lead wire 10.

かかる内側電極導体2の端部及び外側電極導体4の端部に引き出し線10の線材を接続した部分は、合成樹脂によりモールド11して密封されている。なお、円筒弾性体1で引出し線10が接続された端部と円筒弾性体1で引出し線10が接続されていない端部も合成樹脂によりモールド11して密封されるので、通常は円筒弾性体1の内部は空気が封入されることとなるが、耐水圧性を考慮する場合には油等を封入するようにしてもよい。
このようにして各円筒弾性体1の内側電極導体2と外側電極導体4は合成樹脂によりモールド11して密封され、絶縁状態が保たれる水密構造となった4つの層7から成る層状構造体8は剛体である金属板12の上に接着剤により接着されている。
The ends of the inner electrode conductor 2 and the outer electrode conductor 4 connected to the end of the lead wire 10 are molded 11 with a synthetic resin and sealed. Since the end portion of the cylindrical elastic body 1 to which the lead wire 10 is connected and the end portion of the cylindrical elastic body 1 to which the lead wire 10 is not connected are also molded and sealed with a synthetic resin, the cylindrical elastic body is usually used. The inside of 1 is filled with air, but oil or the like may be sealed when considering the water pressure resistance.
In this way, the inner electrode conductor 2 and the outer electrode conductor 4 of each cylindrical elastic body 1 are sealed by molding 11 with a synthetic resin, and a layered structure composed of four layers 7 having a watertight structure in which an insulating state is maintained. 8 is bonded to the rigid metal plate 12 by an adhesive.

次に、本発明の実施の形態1の水中送波器の動作を説明する。
端子Cを0Vとし、端子A、Bに同じ電圧(+V)をかけると、円筒弾性体1同士は静電気斥力によって反発しあうので、周囲の水圧に抗し、図1に示すように各円筒弾性体1は円筒状態を保持する。
次に、端子Cを0Vとし、端子Aに+電圧、端子Bに−電圧を加えると、層間は静電気引力によって引き付けあうので、図2に示すように各層7の積層方向(上下方向)につぶれて変形する。
層状構造体8の下には金属板12があり、その金属板12で動きを制限しているため、層状構造体8の全体の動きは電圧が同じか、異なるかによって、金属板12を基準にして層状構造体8全体は上方への延び縮みとなる。
Next, the operation of the underwater transmitter according to the first embodiment of the present invention will be described.
When the terminal C is set to 0V and the same voltage (+ V) is applied to the terminals A and B, the cylindrical elastic bodies 1 repel each other due to electrostatic repulsion, so that each cylindrical elastic body resists the surrounding water pressure as shown in FIG. The body 1 maintains a cylindrical state.
Next, when the terminal C is set to 0 V, a positive voltage is applied to the terminal A, and a negative voltage is applied to the terminal B, the layers are attracted by electrostatic attraction, so that the layers 7 collapse in the stacking direction (vertical direction) as shown in FIG. And deform.
Since the metal plate 12 is located under the layered structure 8 and the movement is limited by the metal plate 12, the entire movement of the layered structure 8 is based on the metal plate 12 depending on whether the voltage is the same or different. Thus, the entire layered structure 8 is expanded and contracted upward.

したがって、端子Aには+の直流電圧を加えておき、Bに交流電圧を加えると、−電圧で縮み、+電圧で伸びる振動を行うことになり、この運動によって、周囲の水を駆動し、音波を発生するため、層状構造体8を水中送波器として使用することができる。
この実施の形態1では、4つの円筒弾性体1で層7を形成し、かかる層7を4段に積み上げて4層の層状構造体8を形成しているが、各層7の円筒弾性体1の数や、層7の積層数を増やすことでストロークを大きくとることができ、ストロークの大きな水中送波器を得ることができる。
Therefore, if a positive DC voltage is applied to the terminal A and an alternating voltage is applied to the B, the vibration is shrunk at a negative voltage and extended at a positive voltage. This movement drives the surrounding water, In order to generate sound waves, the layered structure 8 can be used as an underwater transmitter.
In the first embodiment, the layer 7 is formed by the four cylindrical elastic bodies 1 and the layers 7 are stacked in four stages to form the four-layer structure 8, but the cylindrical elastic body 1 of each layer 7 is formed. By increasing the number of layers and the number of layers 7, the stroke can be increased, and an underwater transmitter with a large stroke can be obtained.

本発明の水中送波器の円筒弾性体1の製造例について説明する。
1)まず、円筒状の内側絶縁被覆層5を生成する。
2)次に、内側絶縁被覆層5の外周面に、蒸着、導電性塗料を塗布する等の方法で内側電極導体2を形成する。
3)その内側電極導体2の外周面に円筒状で厚肉の絶縁弾性体3を生成する。
4)その絶縁弾性体3の外周面に、蒸着、導電性塗料を塗布する等の方法で外側電極導体4を形成する。
5)その外側電極導体4の外周面に外側絶縁被覆層6を生成し、円筒弾性体1が生成される。
A production example of the cylindrical elastic body 1 of the underwater transmitter of the present invention will be described.
1) First, the cylindrical inner insulating coating layer 5 is generated.
2) Next, the inner electrode conductor 2 is formed on the outer peripheral surface of the inner insulating coating layer 5 by a method such as vapor deposition or applying a conductive paint.
3) A thick cylindrical insulating elastic body 3 is formed on the outer peripheral surface of the inner electrode conductor 2.
4) The outer electrode conductor 4 is formed on the outer peripheral surface of the insulating elastic body 3 by a method such as vapor deposition or applying a conductive paint.
5) The outer insulating coating layer 6 is generated on the outer peripheral surface of the outer electrode conductor 4, and the cylindrical elastic body 1 is generated.

実施の形態2.
図5は本発明の実施の形態2の送波器を示す斜視図である。
図において、本発明の実施の形態2の送波器において、実施の形態1と同様の構成は同一符号を付して重複した構成の説明を省略する。
本発明の実施の形態1が4個の円筒弾性体1を並列配置して形成した層7を重ね合わせるように4段に積み上げて4層を形成したのに対し、この実施の形態2は図5に示すように4個の円筒弾性体1を並列配置して形成した層7を、円筒弾性体1の筒軸方向が交互にクロスするように4段に積み上げて4つの層7からなる層状構造体8を形成したものである。
Embodiment 2. FIG.
FIG. 5 is a perspective view showing a wave transmitter according to the second embodiment of the present invention.
In the figure, in the transmitter according to the second embodiment of the present invention, the same components as those in the first embodiment are denoted by the same reference numerals, and the description of the overlapping components is omitted.
Whereas the first embodiment of the present invention forms four layers by stacking four layers so that the layers 7 formed by arranging the four cylindrical elastic bodies 1 in parallel are stacked, this second embodiment is shown in FIG. As shown in FIG. 5, the layer 7 formed by arranging the four cylindrical elastic bodies 1 in parallel is stacked in four stages so that the cylinder axis directions of the cylindrical elastic bodies 1 are alternately crossed, and the layer 7 is formed of four layers 7. The structure 8 is formed.

そして、層状構造体8における4つの層7を積み上げた方向で互いに隣接する円筒弾性体1はその外側絶縁被覆層6同士が融着され、4つの層7からなる層状構造体8が一体に形成される。
また、層状構造体8における各層7の円筒弾性体1の内側電極導体2はすべて端子Cに共通に接続され、各層7の円筒弾性体1の外側電極導体4は共通接続され、2層と4層の外側電極導体4は端子Aに接続され、1層と3層の外側電極導体4は端子Bに接続されている。
The cylindrical elastic bodies 1 adjacent to each other in the direction in which the four layers 7 in the layered structure 8 are stacked are fused to each other, and the layered structure 8 including the four layers 7 is integrally formed. Is done.
In the layered structure 8, all the inner electrode conductors 2 of the cylindrical elastic body 1 of each layer 7 are commonly connected to the terminal C, and the outer electrode conductors 4 of the cylindrical elastic body 1 of each layer 7 are commonly connected, so that the two layers 4 The outer electrode conductor 4 of the layer is connected to the terminal A, and the outer electrode conductors 4 of the first and third layers are connected to the terminal B.

この実施の形態2は、4個の円筒弾性体1を並列配置して形成した層7を、層7の円筒弾性体1の筒軸方向が交互にクロスするように4段に積み上げて4つの層7からなる層状構造体8を形成したので、全体として強度的に安定した構造となり、各部位が均一に延び縮みするため、端子Aには+の直流電圧を加えておき、Bに交流電圧を加えると、安定して音波を発生する。   In the second embodiment, a layer 7 formed by arranging four cylindrical elastic bodies 1 in parallel is stacked in four stages so that the cylinder axis directions of the cylindrical elastic bodies 1 of the layers 7 cross alternately. Since the layered structure 8 composed of the layer 7 is formed, the structure as a whole is stable in strength, and each part uniformly expands and contracts. Therefore, a positive DC voltage is applied to the terminal A, and an AC voltage is applied to B. When it is added, sound waves are generated stably.

上記実施の形態では、絶縁弾性体2、内側絶縁被覆層5、外側絶縁被覆層5はいずれもポリエチレンで形成されているが、ポリエチレン以外では高分子材料で絶縁性を有するものであればよいこというまでもない。
また、上記実施の形態では、金属板11の上に接着された層状構造体8は絶縁状態が保たれる水密構造となっているが、より一層の絶縁状態を確保するために、金属板11の上に接着されている層状構造体8を絶縁体の袋状のシートで覆い、袋からの引出し線の引出し部をモールドすることにより、2重に防水することもできる。
In the said embodiment, although the insulating elastic body 2, the inner side insulation coating layer 5, and the outer side insulation coating layer 5 are all formed from polyethylene, what is necessary is just to have an insulating property with a polymer material other than polyethylene. Not too long.
Moreover, in the said embodiment, although the layered structure 8 adhere | attached on the metal plate 11 becomes a watertight structure with which an insulation state is maintained, in order to ensure a further insulation state, the metal plate 11 is maintained. It is also possible to double waterproof by covering the layered structure 8 bonded on the top with an insulating bag-like sheet and molding the lead-out portion of the lead wire from the bag.

本発明の実施の形態1の送波器の層間に同じ電圧を印加した状態を示す構成図である。It is a block diagram which shows the state which applied the same voltage between the layers of the transmitter of Embodiment 1 of this invention. 同送波器の層間に正負電圧を印加した状態を示す構成図である。It is a block diagram which shows the state which applied the positive / negative voltage between the layers of the same transmitter. 同送波器の円筒弾性体の断面図である。It is sectional drawing of the cylindrical elastic body of the same wave transmitter. 同送波器の円筒弾性体の端部の断面図である。It is sectional drawing of the edge part of the cylindrical elastic body of the same wave transmitter. 本発明の実施の形態2の送波器の斜視図である。It is a perspective view of the transmitter of Embodiment 2 of this invention.

符号の説明Explanation of symbols

1 円筒弾性体、2 内側電極導体、3 絶縁弾性体、4 外側電極導体、5 内側絶縁被覆層、6 外側絶縁被覆層、7 層、10 引出し線、11 モールド、12 金属板。
DESCRIPTION OF SYMBOLS 1 Cylindrical elastic body, 2 Inner electrode conductor, 3 Insulating elastic body, 4 Outer electrode conductor, 5 Inner insulating coating layer, 6 Outer insulating coating layer, 7 layers, 10 Lead wire, 11 Mold, 12 Metal plate.

Claims (3)

円筒状の絶縁弾性体の内側と外側に円筒状の電極を設け、内側の電極の内周面に絶縁被膜層を設け、外側の電極の外周面に絶縁被膜層を設けて形成した円筒弾性体を複数並列配置して層を形成し、該層を複数積み上げて多層を形成し、隣接する円筒弾性体同士を連結して層状構造体を形成し、
層状構造体における各円筒弾性体の内側電極をすべて共通接続し、各層の円筒弾性体の外側電極をそれぞれ共通接続し、
共通接続された内側電極と一方の層一つ置きの共通接続された外側電極との間に直流電圧が印加されるように端子を引出し線を介してそれぞれ接続し、
共通接続された内側電極と他方の層一つ置きの共通接続された外側電極との間に交流電圧が印加されるように端子を引出し線を介してそれぞれ接続し、
前記各円筒弾性体の内側電極及び外側電極と前記引出し線との接続部分を含む層状構造体を水密絶縁部材で覆ったことを特徴とする水中送波器。
A cylindrical elastic body formed by providing cylindrical electrodes inside and outside a cylindrical insulating elastic body, providing an insulating coating layer on the inner peripheral surface of the inner electrode, and providing an insulating coating layer on the outer peripheral surface of the outer electrode. Are arranged in parallel to form a layer, a plurality of the layers are stacked to form a multilayer, and adjacent cylindrical elastic bodies are connected to form a layered structure,
All the inner electrodes of each cylindrical elastic body in the layered structure are connected in common, and the outer electrodes of the cylindrical elastic bodies in each layer are connected in common,
Terminals are respectively connected via lead wires so that a DC voltage is applied between the commonly connected inner electrode and every other layer commonly connected outer electrode,
Terminals are respectively connected via lead wires so that an AC voltage is applied between the commonly connected inner electrode and the other outer electrode connected in common with the other layer,
A submerged wave transmitter characterized in that a layered structure including a connection portion between the inner electrode and outer electrode of each cylindrical elastic body and the lead wire is covered with a watertight insulating member.
前記層状構造体は前記円筒弾性体を複数並列配置して層を形成し、該層を円筒弾性体の筒軸方向が交互にクロスするように複数積み上げて多層を形成し、隣接する円筒弾性体同士を連結したことを特徴とする請求項1記載の水中送波器。   The layered structure includes a plurality of cylindrical elastic bodies arranged in parallel to form a layer, and a plurality of the layers are stacked so that the cylinder axis directions of the cylindrical elastic bodies cross alternately to form a multilayer, and adjacent cylindrical elastic bodies The underwater transmitter according to claim 1, wherein the two are connected to each other. 前記層状構造体を板状の剛体に取り付けたことを特徴とする請求項1又は2記載の水中送波器。
The underwater transmitter according to claim 1 or 2, wherein the layered structure is attached to a plate-like rigid body.
JP2004070799A 2004-03-12 2004-03-12 Underwater transmitter Withdrawn JP2005260677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070799A JP2005260677A (en) 2004-03-12 2004-03-12 Underwater transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070799A JP2005260677A (en) 2004-03-12 2004-03-12 Underwater transmitter

Publications (1)

Publication Number Publication Date
JP2005260677A true JP2005260677A (en) 2005-09-22

Family

ID=35085965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070799A Withdrawn JP2005260677A (en) 2004-03-12 2004-03-12 Underwater transmitter

Country Status (1)

Country Link
JP (1) JP2005260677A (en)

Similar Documents

Publication Publication Date Title
US11101745B2 (en) Electrostatic actuator
KR100664395B1 (en) Polymer actuator capable of fine control of contractive displacement, and control method thereof
JP5713417B2 (en) Gel actuator and manufacturing method thereof
US20160027995A1 (en) Method for producing a multilayer electromechanical transducer
US11863087B2 (en) Stackable actuating element with profiled insulated electrode structures
US11888412B2 (en) Stackable actuating element with profiled insulated electrode structures
US20140375170A1 (en) Electromechanical transducer device
CN108638049A (en) One kind being based on electrically driven (operated) PVC-gel flexible manipulators
JP2009077618A (en) Electric expansion mechanism and actuator
JP2007259663A (en) Multilayer electrostatic actuator
JP6073697B2 (en) Actuator element and method of manufacturing actuator element
JP2008211922A (en) Polymer electrostatic actuator
KR101797398B1 (en) Method for manufacturing monolithic stack type dielectric elastomer actuator and monolithic stack type dielectric elastomer actuator
JP2020145768A (en) Actuator
JP5129998B2 (en) Electrostrictive element
JP5134431B2 (en) Pronunciation
JP2005260677A (en) Underwater transmitter
JP6278619B2 (en) Vibration generator
JP2009032773A (en) Fibrous polymeric actuator and method of manufacturing the same, and polymeric actuator comprising aggregate of many fibrous polymeric actuators
JP2007252132A (en) Actuator
JP2007259665A (en) Twisted electrostatic actuator
JP2011176962A (en) Driver
JP4063300B2 (en) Electrostrictive polymer actuator
JP2014230398A (en) Electrostatic transformer
KR102233018B1 (en) Ultrasonic sensor having laminaged type piezoelectric ceramic layer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605