JP2005259641A - Electrolytic solution and electrode for lithium secondary battery, lithium secondary battery, and manufacturing method of those - Google Patents

Electrolytic solution and electrode for lithium secondary battery, lithium secondary battery, and manufacturing method of those Download PDF

Info

Publication number
JP2005259641A
JP2005259641A JP2004072628A JP2004072628A JP2005259641A JP 2005259641 A JP2005259641 A JP 2005259641A JP 2004072628 A JP2004072628 A JP 2004072628A JP 2004072628 A JP2004072628 A JP 2004072628A JP 2005259641 A JP2005259641 A JP 2005259641A
Authority
JP
Japan
Prior art keywords
electrode
secondary battery
lithium secondary
electrolytic solution
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004072628A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Tasaka
佳之 田坂
Yasuhiro Akita
靖浩 秋田
Katsuaki Kobayashi
克明 小林
Tsutomu Hashimoto
勉 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004072628A priority Critical patent/JP2005259641A/en
Publication of JP2005259641A publication Critical patent/JP2005259641A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic solution, an electrode, and a lithium secondary battery for a lithium secondary battery superior in cycle stability and with no possibility of liquid leakage, and their manufacturing method. <P>SOLUTION: The electrolytic solution in which isocyanate compound of a low molecular weight such as hexamethylene diisocyanate is blended, and an electrode active material are made to be reacted by a chemical method or an electrochemical method, and making a reaction layer of the low molecular weight isocyanate form on an active material surface, thereby the lithium secondary battery superior in durability is provided. A blending amount of the isocyanate compound to the electrolytic solution is within a range of 0.01 wt% to 5 wt%. After the reaction layer of the isocyanate is formed on the active material surface, or simultaneously when the reaction layer is formed, by gelatinizing the electrolytic solution in which isocyanate, polyol, and urethane formation catalyst are blended, gel electrolyte is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はサイクル安定性に優れ、液洩れの恐れがないリチウム二次電池用の電解液、電極、リチウム二次電池およびこれらの製造方法に関する。   The present invention relates to an electrolytic solution, an electrode, a lithium secondary battery, and a method for producing the same for a lithium secondary battery having excellent cycle stability and no risk of liquid leakage.

現在、市販されているリチウム二次電池は一般に、正極活物質としてコバルト酸リチウム、マンガン酸リチウムなどが、負極活物質として黒鉛などの炭素材料が、また、電解液としてリチウム塩を炭酸エチレンや炭酸プロピレンなどの有機溶媒に溶解したものが採用されており、このリチウム二次電池は他のニッケル水素二次電池、ニッケルカドミウム二次電池、鉛二次電池などに比べて優れたエネルギー密度を有している。   Currently, lithium secondary batteries that are commercially available generally include lithium cobaltate and lithium manganate as a positive electrode active material, carbon materials such as graphite as a negative electrode active material, and lithium salts as ethylene carbonate and carbonic acid as an electrolyte. What is dissolved in an organic solvent such as propylene is used, and this lithium secondary battery has superior energy density compared to other nickel hydrogen secondary batteries, nickel cadmium secondary batteries, lead secondary batteries, etc. ing.

高いエネルギー密度を有するリチウム二次電池は、ビデオカメラ、携帯電話、デジタルカメラ、ノートパソコンなどの携帯機器用の電源として広く採用されている。これらの携帯機器が普及した近年は、その情報処理量の増大に伴う機器の電力消費量の増大と稼動時間延長のニーズから、二次電池の更なる高容量化や長寿命化が強く望まれている。   A lithium secondary battery having a high energy density is widely used as a power source for portable devices such as a video camera, a mobile phone, a digital camera, and a laptop computer. In recent years when these portable devices have become widespread, there is a strong demand for higher secondary battery capacity and longer life due to the need for increased power consumption and extended operating time due to increased information processing. ing.

またリチウム二次電池は電気自動車用の電源、電力貯蔵装置用の電源への応用も検討されており、これらの比較的大容量の二次電池には長寿命化と同時に高い安全性も要求されている。   Lithium secondary batteries are also being considered for use in power sources for electric vehicles and power storage devices. These relatively large-capacity secondary batteries are required to have long life and high safety. ing.

このようなリチウム二次電池の更なる高エネルギー密度化、長寿命化、安全性向上に対する要請から個々の構成材料の改良や新規な高性能物質の探索について精力的に研究開発が続けられている。   Due to the demand for higher energy density, longer life, and improved safety of such lithium secondary batteries, research and development has continued energetically to improve individual constituent materials and search for new high-performance materials. .

本発明が改良しようとするリチウム二次電池の電解液としては一般にLiPF6、LiBF4、LiClO4、CF3SO3Liなどのリチウム塩を炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、γ―ブチルラクトンなどの有機溶媒に溶解したものが用いられる。電解液は正極や負極の種類によって様々な電解質と電解液の組み合わせの中から適正な電解液が選ばれる。 As an electrolyte for a lithium secondary battery to be improved by the present invention, lithium salts such as LiPF 6 , LiBF 4 , LiClO 4 , CF 3 SO 3 Li are generally used as ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, γ- Those dissolved in an organic solvent such as butyl lactone are used. As the electrolytic solution, an appropriate electrolytic solution is selected from a combination of various electrolytes and electrolytic solutions depending on the type of the positive electrode or the negative electrode.

例えば炭酸エチレンや炭酸プロピレンなどの有機電解液を黒鉛負極と電気化学的に反応させてその表面にSEI(Solid Electrolyte Interface:固体電解質界面)と呼ばれる皮膜を形成することにより、サイクル安定性が増すことが知られている。   For example, an organic electrolyte such as ethylene carbonate or propylene carbonate is electrochemically reacted with a graphite negative electrode to form a film called SEI (Solid Electrolyte Interface) on the surface, thereby increasing cycle stability. It has been known.

また、電解液に少量の添加剤を添加することによりリチウム二次電池の性能を改善する方法が知られている。   A method for improving the performance of a lithium secondary battery by adding a small amount of an additive to an electrolytic solution is also known.

これらの添加剤としては例えばメチルフラン、ベンゼン、塩化エチルトリメチルアンモニウム、ポリエチレングリコールジメチルエーテル、AlI3、SnI2、CO2などが挙げられる。これらの添加剤は負極表面上に良好なSEIを形成し、電解液の分解などの副反応やデンドライトの生成を抑制する効果があると言われている。 Examples of these additives include methyl furan, benzene, ethyl trimethyl ammonium chloride, polyethylene glycol dimethyl ether, AlI 3 , SnI 2 , CO 2 and the like. These additives are said to form good SEI on the negative electrode surface and to suppress side reactions such as decomposition of the electrolytic solution and generation of dendrite.

また、液洩れの恐れがある電解液を固体化あるいはゲル状に半固体化する試みがなされており、ポリエチレンオキサイドやポリアクリロニトリルなどの高分子成分に電解液を含浸してゲル状にした電解質を用いた軽量で薄型のリチウム二次電池が開発されている。   In addition, attempts have been made to solidify or semi-solidize electrolytes that may leak, and to make electrolytes impregnated with electrolytes into polymer components such as polyethylene oxide and polyacrylonitrile. A lightweight and thin lithium secondary battery used has been developed.

特開2003−217340号公報JP 2003-217340 A 特開2002−187925号公報JP 2002-187925 A 特開2001−185216号公報JP 2001-185216 A

本発明は、サイクル安定性に優れて長寿命であるとともに安全性の高いリチウム二次電池に使用して好適な電解液、電極、リチウム二次電池、およびそれらの製造方法を提供することを課題としている。   An object of the present invention is to provide an electrolytic solution, an electrode, a lithium secondary battery, and a method for producing them suitable for use in a lithium secondary battery having excellent cycle stability and a long life and high safety. It is said.

リチウム二次電池のサイクル安定性に関しては充放電で活物質にリチウムイオンが出入りする反応を円滑に進めることが重要であり、この反応を円滑に進めるには活物質表面に形成される界面反応層を電池の充放電反応に対して安定であり、電解液と活物質との間のリチウムイオンの通過に対して抵抗が低いようにする必要がある。   Regarding the cycle stability of a lithium secondary battery, it is important to smoothly advance a reaction in which lithium ions enter and exit the active material by charging and discharging, and an interfacial reaction layer formed on the active material surface in order to facilitate this reaction Must be stable to the charge / discharge reaction of the battery and have low resistance to the passage of lithium ions between the electrolyte and the active material.

本発明者らは活物質表面に形成される界面反応層について、電解液に活物質と反応して安定なSEIを形成すると考えられる種々の反応物質を添加して、電気化学的に反応させて界面反応層を形成する実験を行い、充放電性能を評価して適正な反応物質について鋭意検討した結果、イソシアネート基を有する低分子化合物が優れた界面反応層を形成し、優れたサイクル安定性を有することを見い出した。   For the interfacial reaction layer formed on the active material surface, the present inventors added various reactants that are considered to react with the active material to form a stable SEI in the electrolytic solution, and reacted electrochemically. As a result of conducting experiments to form an interfacial reaction layer, evaluating charge / discharge performance, and diligently examining appropriate reactants, low molecular weight compounds having an isocyanate group formed an excellent interfacial reaction layer, resulting in excellent cycle stability. Found to have.

更に電解液中でイソシアネート基とポリオールを反応させて形成されるゲル電解質は従来の電解液と同等の充放電特性を示し、洩液の恐れのないリチウム二次電池を得ることができ、本発明に至った。   Furthermore, the gel electrolyte formed by reacting an isocyanate group and a polyol in the electrolytic solution exhibits charge / discharge characteristics equivalent to those of the conventional electrolytic solution, and a lithium secondary battery free from the risk of leakage can be obtained. It came to.

すなわち、本発明は、イソシアネート基を有する低分子化合物を溶解したリチウム二次電池用の非水電解液を提供する。   That is, the present invention provides a nonaqueous electrolytic solution for a lithium secondary battery in which a low molecular compound having an isocyanate group is dissolved.

また、本発明は、前記電解液と化学的に若しくは電気化学的に反応させることによって、リチウムイオンを可逆に挿入および脱離可能な電極を提供する。   In addition, the present invention provides an electrode capable of reversibly inserting and desorbing lithium ions by chemically or electrochemically reacting with the electrolytic solution.

この場合、前記電解液に、前記電極を浸漬して、化学的に反応させることができ、また、前記電解液に前記電極を浸漬して電圧をかけ、電気化学的に反応させることができる。   In this case, the electrode can be immersed and chemically reacted in the electrolytic solution, and the electrode can be immersed and electrochemically reacted in the electrolytic solution.

更に、本発明は、イソシアネート基を有する低分子化合物を溶解した電解液に、ポリオールとウレタン化触媒を配合し、加熱してゲル化させて得たゲル電解質を提供する。   Furthermore, this invention provides the gel electrolyte obtained by mix | blending a polyol and a urethanization catalyst with the electrolyte solution which melt | dissolved the low molecular compound which has an isocyanate group, and making it gelatinize by heating.

このゲル電解質を用いて液洩れの恐れがないリチウム二次電池を提供できる。   By using this gel electrolyte, it is possible to provide a lithium secondary battery that is free from the risk of liquid leakage.

以上説明した本発明によれば、長寿命化が可能で、サイクル安定性の優れた非水電解液、ゲル電解質、電極、リチウム二次電池およびそれらの製造方法が提供される。   According to the present invention described above, a nonaqueous electrolytic solution, a gel electrolyte, an electrode, a lithium secondary battery, and a method for producing them can be provided that can extend the life and have excellent cycle stability.

本発明で開示された方法により製造されるリチウム電池は優れたサイクル安定性を示し、ゲル電解質を用いたものは漏液の恐れがなく、産業的に価値が高い。   The lithium battery produced by the method disclosed in the present invention exhibits excellent cycle stability, and those using a gel electrolyte have no fear of leakage and are industrially valuable.

低分子量のイソシアネート化合物は、ヘキサメチレンジイソシアネート、ジフェニルメタンジイソシアネート、ジシクロヘキシルメタンジイソシアネート、ターシャルブチルイソシアネート、イソプロピルイソシアネート、ブチルイソシアネート、シクロヘキシルイソシアネート、オクタデシルイソシアネート、フェニルイソシアネート、プロピルイソシアネート、フロロフェニルイソシアネート、ヘキシルイソシアネート、トルエンジイソシアネート、キシレンジイソシアネート、トリレンジイソシアネートなどが挙げられる。イソシアネート化合物の分子量は500以下が好ましい。   The low molecular weight isocyanate compounds are hexamethylene diisocyanate, diphenylmethane diisocyanate, dicyclohexylmethane diisocyanate, tertiary butyl isocyanate, isopropyl isocyanate, butyl isocyanate, cyclohexyl isocyanate, octadecyl isocyanate, phenyl isocyanate, propyl isocyanate, fluorophenyl isocyanate, hexyl isocyanate, toluene diisocyanate. , Xylene diisocyanate, tolylene diisocyanate and the like. The molecular weight of the isocyanate compound is preferably 500 or less.

電解液への低分子量のイソシアネート化合物の配合量は0.01重量%から5重量%の範囲が好ましい。   The blending amount of the low molecular weight isocyanate compound in the electrolytic solution is preferably in the range of 0.01 wt% to 5 wt%.

イソシアネート化合物の配合量が0.01重量%より少ないと活物質表面に十分な反応層が形成できず、サイクル安定性の面で顕著な添加効果が得られない。   When the blending amount of the isocyanate compound is less than 0.01% by weight, a sufficient reaction layer cannot be formed on the active material surface, and a remarkable addition effect cannot be obtained in terms of cycle stability.

イソシアネート化合物の配合量が5重量%より多いと、活物質表面に必要以上に反応層が形成され、サイクル安定性は優れるものの活物質の容量が十分に引き出せないなどの問題を生じる。   When the compounding amount of the isocyanate compound is more than 5% by weight, a reaction layer is formed more than necessary on the surface of the active material, and the cycle stability is excellent, but the capacity of the active material cannot be sufficiently extracted.

電解液に溶解した低分子量のイソシアネートと電極活物質とを反応させて活物質表面に低分子量イソシアネートの反応層を形成させる方法としては、化学的方法と電気化学的方法がある。   There are a chemical method and an electrochemical method as a method for forming a reaction layer of low molecular weight isocyanate on the surface of the active material by reacting the low molecular weight isocyanate dissolved in the electrolytic solution with the electrode active material.

低分子量のイソシアネートと活物質とを化学的に反応させる方法は、低分子量のイソシアネートを溶解した電解液中に活物質をコーティングした電極を浸漬して行われる。室温ではこの反応は数日を要するが、40℃から60℃に加熱することにより、数時間でこの反応を完結させることができる。   A method of chemically reacting a low molecular weight isocyanate and an active material is performed by immersing an electrode coated with the active material in an electrolytic solution in which a low molecular weight isocyanate is dissolved. Although this reaction takes several days at room temperature, the reaction can be completed in several hours by heating from 40 ° C to 60 ° C.

低分子量のイソシアネートと活物質とを電気化学的に反応させる方法は、低分子量のイソシアネートを溶解した電解液中に活物質をコーティングした電極を浸漬し、該電極に電位を印加して行われる。界面反応層の形成は正極と負極とを夫々単独で低分子量のイソシアネートと反応させることにより達成されるが、両極を同時に低分子量のイソシアネートの溶解した電解液に浸漬し、両極に3V以上の電位差をかけることによっても達成される。   A method of electrochemically reacting a low molecular weight isocyanate and an active material is performed by immersing an electrode coated with the active material in an electrolytic solution in which a low molecular weight isocyanate is dissolved, and applying a potential to the electrode. The formation of the interfacial reaction layer is achieved by reacting the positive electrode and the negative electrode independently with low molecular weight isocyanate, but both electrodes are immersed in an electrolyte solution in which low molecular weight isocyanate is dissolved at the same time, and a potential difference of 3 V or more is applied to both electrodes. It is also achieved by applying.

すなわち、より簡単には通常の電解液を用いたリチウム二次電池を組み立てる方法において、低分子量のイソシアネート化合物が溶解した電解液を用いて該電池を組み立て、正極と負極とに3V以上の電位差をかけて初期の充電反応により活物質と低分子量のイソシアネート化合物を反応させることができる。   More specifically, in a method of assembling a lithium secondary battery using a normal electrolyte solution, the battery is assembled using an electrolyte solution in which a low molecular weight isocyanate compound is dissolved, and a potential difference of 3 V or more is generated between the positive electrode and the negative electrode. The active material and the low molecular weight isocyanate compound can be reacted by the initial charging reaction.

また、本発明では活物質表面に低分子量のイソシアネートを反応させた層を形成した後に、あるいは反応層を形成すると同時に、ポリオールとウレタン化触媒とを配合してゲル電解質を形成する。   In the present invention, a gel electrolyte is formed by blending a polyol and a urethanization catalyst after forming a layer obtained by reacting a low molecular weight isocyanate on the active material surface or simultaneously with forming a reaction layer.

ポリオールとしては分子量1000から5000の2官能あるいは3官能のポリオールが望ましい。   As the polyol, a bifunctional or trifunctional polyol having a molecular weight of 1000 to 5000 is desirable.

ウレタン化触媒としては代表的にはスズ化合物が用いられる。   As the urethanization catalyst, a tin compound is typically used.

電解液中に低分子量のイソシアネートとポリオールと微量のスズ化合物とを溶解し、40℃から80℃の温度で数時間から数十時間加熱することによりゲル電解質を得ることができる。   A gel electrolyte can be obtained by dissolving a low molecular weight isocyanate, a polyol and a trace amount of a tin compound in an electrolytic solution and heating at a temperature of 40 ° C. to 80 ° C. for several hours to several tens of hours.

電解液中のゲル化剤の配合量としては5重量%から20重量%が好ましい。   The blending amount of the gelling agent in the electrolytic solution is preferably 5 to 20% by weight.

電解液中のゲル化剤の配合量が5重量%よりも少ない場合は、ゲルが形成し難しくなる。   When the blending amount of the gelling agent in the electrolytic solution is less than 5% by weight, a gel is difficult to form.

電解液中のゲル化剤の配合量が20重量%よりも多い場合は、ゲル電解質のイオン伝導度が低下し、活物質の容量が十分に引き出せなくなる。   When the blending amount of the gelling agent in the electrolytic solution is more than 20% by weight, the ionic conductivity of the gel electrolyte is lowered and the capacity of the active material cannot be sufficiently extracted.

低分子量のイソシアネートとポリオールとの配合割合はイソシアネート基のモル数とポリオールのOH基のモル数が当量となるように配合することが好ましい。   The blending ratio of the low molecular weight isocyanate and the polyol is preferably blended so that the number of moles of isocyanate groups and the number of moles of OH groups of the polyol are equivalent.

ウレタン化触媒の配合量は0.01重量%から0.1重量%の範囲が好ましい。
ウレタン化触媒の配合量が0.01重量%よりも少ないと、ゲル化反応が進み難くなる問題があり、逆に、ウレタン化触媒の配合量が0.1重量%よりも多いと、触媒を不必要に多く加えることになり、多量の触媒が電池の充放電反応に悪影響を及ぼす恐れがある。
The blending amount of the urethanization catalyst is preferably in the range of 0.01% by weight to 0.1% by weight.
If the blending amount of the urethanization catalyst is less than 0.01% by weight, there is a problem that the gelation reaction is difficult to proceed. Conversely, if the blending amount of the urethanization catalyst is more than 0.1% by weight, the catalyst An unnecessarily large amount is added, and a large amount of catalyst may adversely affect the charge / discharge reaction of the battery.

電解液を用いたリチウム二次電池を組み立てる通常の方法で、低分子量のイソシアネート化合物とポリオールとウレタン化触媒とが溶解した電解液を用いて電池を組み立て、40℃から80℃の温度で数時間から数十時間加熱することにより、漏液の恐れのないリチウム電池を製造することができる。   A battery is assembled using an electrolytic solution in which a low molecular weight isocyanate compound, a polyol, and a urethanization catalyst are dissolved in a usual method for assembling a lithium secondary battery using an electrolytic solution, and is heated at a temperature of 40 ° C. to 80 ° C. for several hours. By heating for several tens of hours, it is possible to manufacture a lithium battery with no risk of leakage.

電解質としてのLiPF6を1モル/L(以下、1Mと記載)の濃度でプロピレンカーボネート(PC)とエチレンカーボネート(EC)の1:1(体積比)混合溶媒に溶解したものを電解液として用い、これにヘキサメチレンジイソシアネートを1重量%となるように添加した。 A solution obtained by dissolving LiPF 6 as an electrolyte in a 1: 1 (volume ratio) mixed solvent of propylene carbonate (PC) and ethylene carbonate (EC) at a concentration of 1 mol / L (hereinafter referred to as 1M) is used as an electrolytic solution. To this, hexamethylene diisocyanate was added to 1% by weight.

この溶液に黒鉛負極を浸漬し、40℃で6時間加熱して反応させた。   A graphite negative electrode was immersed in this solution and reacted by heating at 40 ° C. for 6 hours.

黒鉛負極を取り出し、マンガン酸リチウム正極とセパレータを挟んで電池を組み立て、1M−LiPF6/PC:EC電解液を注入した。 A graphite negative electrode was taken out, a battery was assembled with a lithium manganate positive electrode and a separator in between, and 1M-LiPF 6 / PC: EC electrolyte was injected.

ヘキサメチレンジイソシアネートを1重量%含む1M−LiPF6/PC:EC電解液にマンガン酸リチウム正極を浸漬して、40℃で6時間加熱して反応させた。   1M-LiPF6 / PC containing 1% by weight of hexamethylene diisocyanate: A lithium manganate positive electrode was immersed in an EC electrolyte, and reacted by heating at 40 ° C. for 6 hours.

マンガン酸リチウム正極を取り出し、黒鉛負極とセパレータを挟んで電池を組み立て、1M−LiPF6/PC:EC電解液を注入した。   A lithium manganate positive electrode was taken out, a battery was assembled with a graphite negative electrode and a separator in between, and 1M-LiPF6 / PC: EC electrolyte was injected.

マンガン酸リチウム正極と黒鉛負極との間にセパレータを挟んで電池を組み立て、ヘキサメチレンジイソシアネートを1重量%含む1M−LiPF6/PC:EC電解液を注入した。   A battery was assembled with a separator sandwiched between a lithium manganate positive electrode and a graphite negative electrode, and 1M-LiPF6 / PC: EC electrolyte containing 1% by weight of hexamethylene diisocyanate was injected.

この電池を40℃で6時間加熱した。   The battery was heated at 40 ° C. for 6 hours.

マンガン酸リチウム正極と黒鉛負極との間にセパレータを挟んで電池を組み立て、ヘキサメチレンジイソシアネートを1重量%含む1M−LiPF6/PC:EC電解液を注入した。   A battery was assembled with a separator sandwiched between a lithium manganate positive electrode and a graphite negative electrode, and 1M-LiPF6 / PC: EC electrolyte containing 1% by weight of hexamethylene diisocyanate was injected.

この電池を時間率0.1C(Cは定格容量を電流値で除して求まる時間の逆数)の一定電流で上限電位4Vまで充電し、上限電位に到達した後は4V一定電位で、電流値が時間率1Cの0.1%に低下するまで充電した。   This battery is charged to a maximum potential of 4V with a constant current at a time rate of 0.1C (C is the reciprocal of the time obtained by dividing the rated capacity by the current value). After reaching the upper limit potential, the current value is constant at 4V. The battery was charged until the time rate dropped to 0.1% of 1C.

1M−LiPF6/PC:EC電解液にヘキサメチレンジイソシアネートを1重量%となるように添加した。 1M-LiPF 6 / PC: Hexamethylene diisocyanate was added to the EC electrolyte so as to be 1% by weight.

この溶液に黒鉛負極とリチウム金属を浸漬し、短絡させて反応させた。   A graphite negative electrode and lithium metal were immersed in this solution and reacted by short-circuiting.

黒鉛負極を取り出し、マンガン酸リチウム正極とセパレータを挟んで電池を組み立て、電解質として1M−LiPF6/PC:ECを注入した。 The graphite negative electrode was taken out, a battery was assembled with the lithium manganate positive electrode and the separator interposed therebetween, and 1M-LiPF 6 / PC: EC was injected as an electrolyte.

1M−LiPF6/PC:EC電解液にヘキサメチレンジイソシアネートを1重量%となるように添加した。 1M-LiPF 6 / PC: Hexamethylene diisocyanate was added to the EC electrolyte so as to be 1% by weight.

この溶液にマンガン酸リチウム正極とリチウム金属を浸漬し、時間率0.1Cの一定電流で上限電位4Vまで充電し、上限電位に到達した後は4V一定電位で、電流値が時間率1Cの0.1%に低下するまで充電した。   A lithium manganate positive electrode and lithium metal are immersed in this solution, charged to a maximum potential of 4 V at a constant current of 0.1 C time, and after reaching the maximum potential, the current value is 0 at a constant potential of 4 V and a current value of 0 C of 1 C. The battery was charged until it dropped to 1%.

マンガン酸リチウム正極を取り出し、黒鉛負極とセパレータを挟んで電池を組み立て、電解質として1M−LiPF6/PC:ECを注入した。 A lithium manganate positive electrode was taken out, a battery was assembled with a graphite negative electrode and a separator interposed therebetween, and 1M-LiPF 6 / PC: EC was injected as an electrolyte.

ヘキサメチレンジイソシアネートを1重量%含む1M−LiPF6/PC:EC電解液に黒鉛負極を浸漬して、40℃で6時間加熱して反応させ、黒鉛負極を取り出した。   A graphite negative electrode was immersed in 1M-LiPF6 / PC: EC electrolyte containing 1% by weight of hexamethylene diisocyanate and heated at 40 ° C. for 6 hours to take out the graphite negative electrode.

ヘキサメチレンジイソシアネート7重量%、分子量2400の2官能ポリオールを43重量%、分子量2800の3官能ポリオールを50重量%、ウレタン化触媒を0.1重量%の割合で1M−LiPF6/PC:EC電解液にゲル化剤が10重量%となるように配合した。   1M-LiPF6 / PC: EC electrolyte solution in a ratio of 7% by weight of hexamethylene diisocyanate, 43% by weight of a bifunctional polyol having a molecular weight of 2400, 50% by weight of a trifunctional polyol having a molecular weight of 2800, and 0.1% by weight of a urethanization catalyst The gelling agent was blended so as to be 10% by weight.

黒鉛負極とマンガン酸リチウム正極の間にセパレータを挟んで電池を組み立て、ゲル化剤を10重量%含む電解質を注入した。   A battery was assembled with a separator sandwiched between a graphite negative electrode and a lithium manganate positive electrode, and an electrolyte containing 10% by weight of a gelling agent was injected.

電池を60℃で24時間加熱して、電池内部の電解液をゲル化させた。   The battery was heated at 60 ° C. for 24 hours to gel the electrolyte inside the battery.

ヘキサメチレンジイソシアネートを1重量%含む1M−LiPF6/PC:EC電解液にマンガン酸リチウム正極を浸漬して、40℃で6時間加熱して反応させ、正極を取り出した。   1M-LiPF6 / PC containing 1% by weight of hexamethylene diisocyanate: A lithium manganate positive electrode was immersed in an EC electrolytic solution, heated at 40 ° C. for 6 hours to react, and the positive electrode was taken out.

ヘキサメチレンジイソシアネート7重量%、分子量2400の2官能ポリオールを43重量%、分子量2800の3官能ポリオールを50重量%、ウレタン化触媒を0.1重量%の割合で1M−LiPF6/PC:EC電解液にゲル化剤が10重量%となるように配合した。   1M-LiPF6 / PC: EC electrolyte solution in a ratio of 7% by weight of hexamethylene diisocyanate, 43% by weight of a bifunctional polyol having a molecular weight of 2400, 50% by weight of a trifunctional polyol having a molecular weight of 2800, and 0.1% by weight of a urethanization catalyst The gelling agent was blended so as to be 10% by weight.

黒鉛負極とマンガン酸リチウム正極の間にセパレータを挟んで電池を組み立て、ゲル化剤を10重量%含む電解質を注入した。   A battery was assembled with a separator sandwiched between a graphite negative electrode and a lithium manganate positive electrode, and an electrolyte containing 10% by weight of a gelling agent was injected.

電池を60℃で24時間加熱して、電池内部の電解液をゲル化させた。   The battery was heated at 60 ° C. for 24 hours to gel the electrolyte inside the battery.

ヘキサメチレンジイソシアネートを1重量%含む1M−LiPF6/PC:EC電解液に黒鉛負極とリチウム金属を浸漬し、短絡して反応させ、黒鉛負極を取り出した。   A graphite negative electrode and lithium metal were immersed in a 1M-LiPF6 / PC: EC electrolyte containing 1% by weight of hexamethylene diisocyanate and short-circuited to obtain a graphite negative electrode.

ヘキサメチレンジイソシアネート7重量%、分子量2400の2官能ポリオールを43重量%、分子量2800の3官能ポリオールを50重量%、ウレタン化触媒を0.1重量%の割合で1M−LiPF6/PC:EC電解液にゲル化剤が10重量%となるように配合した。   1M-LiPF6 / PC: EC electrolyte solution in a ratio of 7% by weight of hexamethylene diisocyanate, 43% by weight of a bifunctional polyol having a molecular weight of 2400, 50% by weight of a trifunctional polyol having a molecular weight of 2800, and 0.1% by weight of a urethanization catalyst The gelling agent was blended so as to be 10% by weight.

黒鉛負極とマンガン酸リチウム正極の間にセパレータを挟んで電池を組み立て、ゲル化剤を10重量%含む電解質を注入した。   A battery was assembled with a separator sandwiched between a graphite negative electrode and a lithium manganate positive electrode, and an electrolyte containing 10% by weight of a gelling agent was injected.

電池を60℃で24時間加熱して、電池内部の電解液をゲル化させた。   The battery was heated at 60 ° C. for 24 hours to gel the electrolyte inside the battery.

ヘキサメチレンジイソシアネートを1重量%含む1M−LiPF6/PC:EC電解液にマンガン酸リチウム正極とリチウム金属を浸漬し、時間率0.1Cの一定電流で上限電位4Vまで充電し、上限電位に到達した後は4V一定電位で、電流値が時間率1Cの0.1%に低下するまで充電し、正極を取り出した。   1M-LiPF6 / PC containing 1% by weight of hexamethylene diisocyanate: A lithium manganate positive electrode and lithium metal were immersed in an EC electrolyte, charged to a maximum potential of 4 V at a constant current of 0.1 C, and reached the maximum potential. Thereafter, the battery was charged at a constant potential of 4 V until the current value decreased to 0.1% of the time rate of 1 C, and the positive electrode was taken out.

ヘキサメチレンジイソシアネート7重量%、分子量2400の2官能ポリオールを43重量%、分子量2800の3官能ポリオールを50重量%、ウレタン化触媒を0.1重量%の割合で1M−LiPF6/PC:EC電解液にゲル化剤が10重量%となるように配合した。   1M-LiPF6 / PC: EC electrolyte solution in a ratio of 7% by weight of hexamethylene diisocyanate, 43% by weight of a bifunctional polyol having a molecular weight of 2400, 50% by weight of a trifunctional polyol having a molecular weight of 2800, and 0.1% by weight of a urethanization catalyst The gelling agent was blended so as to be 10% by weight.

黒鉛負極とマンガン酸リチウム正極の間にセパレータを挟んで電池を組み立て、ゲル化剤を10重量%含む電解質を注入した。   A battery was assembled with a separator sandwiched between a graphite negative electrode and a lithium manganate positive electrode, and an electrolyte containing 10% by weight of a gelling agent was injected.

電池を60℃で24時間加熱して、電池内部の電解液をゲル化させた。
以上の実施例1から10まで作製した電池を80°Cの温度で時間率1/2Cの充放電条件でサイクル試験にかけた。その結果として、初期容量を100%として100サイクル後の容量を百分率で表1に示す。
〔比較例1〕
The battery was heated at 60 ° C. for 24 hours to gel the electrolyte inside the battery.
The batteries prepared in Examples 1 to 10 were subjected to a cycle test at a temperature of 80 ° C. under charge / discharge conditions at a time rate of ½ C. As a result, assuming that the initial capacity is 100%, the capacity after 100 cycles is shown in Table 1 as a percentage.
[Comparative Example 1]

黒鉛負極とマンガン酸リチウム正極との間にセパレータを挟んで電池を組み立て、1M−LiPF6/PC:EC電解液を注入した。   A battery was assembled with a separator sandwiched between a graphite negative electrode and a lithium manganate positive electrode, and 1M-LiPF6 / PC: EC electrolyte was injected.

比較例1で作製した電池を80℃の温度で時間率1/2Cの充放電条件でサイクル試験にかけた。その結果として、初期容量を100%として100サイクル後の容量を百分率で表1に示す。   The battery prepared in Comparative Example 1 was subjected to a cycle test at a temperature of 80 ° C. under charge / discharge conditions at a time rate of ½ C. As a result, assuming that the initial capacity is 100%, the capacity after 100 cycles is shown in Table 1 as a percentage.

Figure 2005259641
Figure 2005259641

低分子量のイソシアネート化合物を含まない一般的な電解液を用いた比較例1のリチウム二次電池の容量が100サイクル後に初期容量の89%に低下するのに対して、本発明の低分子量のソシアネートを反応させた電極を用いた実施例1〜10のリチウム二次電池はいずれも100サイクル後の容量が高く維持され、サイクル安定性が優れることが明らかである。これは、電解液に配合した低分子量のイソシアネート化合物が電極活物質と反応して形成されるSEIが充放電反応に対して非常に安定である為と考えられる。
The capacity of the lithium secondary battery of Comparative Example 1 using a general electrolytic solution containing no low molecular weight isocyanate compound is reduced to 89% of the initial capacity after 100 cycles, whereas the low molecular weight socyanate of the present invention is used. It is clear that all the lithium secondary batteries of Examples 1 to 10 using the electrode reacted with the above are kept high in capacity after 100 cycles and have excellent cycle stability. This is presumably because the SEI formed by the reaction of the low molecular weight isocyanate compound blended in the electrolytic solution with the electrode active material is very stable against the charge / discharge reaction.

Claims (10)

リチウム二次電池の電解液において、イソシアネート基を有する低分子化合物を溶解したことを特徴とする電解液。 An electrolyte solution comprising an electrolyte solution of a lithium secondary battery in which a low molecular compound having an isocyanate group is dissolved. 請求項1に記載の電解液と化学的に若しくは電気化学的に反応させることによって、該電解液中のリチウムイオンを可逆に挿入および脱離可能とすることを特徴とする電極。 An electrode characterized in that lithium ions in the electrolytic solution can be reversibly inserted and desorbed by chemically or electrochemically reacting with the electrolytic solution according to claim 1. 前記電解液に前記電極を浸漬することによって、界面反応層を前記電極上に形成することを特徴とする請求項2に記載の電極の製造方法。 The method for producing an electrode according to claim 2, wherein an interface reaction layer is formed on the electrode by immersing the electrode in the electrolytic solution. 前記電解液に前記電極を浸漬しながら該電極に電圧を印加し、該電解液と該電極とを電気化学的に反応させることによって、界面反応層を前記電極上に形成することを特徴とする請求項2に記載の電極の製造方法。 An interface reaction layer is formed on the electrode by applying a voltage to the electrode while immersing the electrode in the electrolyte and causing the electrolyte to react electrochemically with the electrode. The manufacturing method of the electrode of Claim 2. 請求項1に記載の電解液を使用したことを特徴とするリチウム二次電池。 A lithium secondary battery using the electrolytic solution according to claim 1. 前記電解液と前記電極を、化学的にまたは電気化学的に反応させることを特徴とする請求項5に記載のリチウム二次電池の製造方法。 6. The method of manufacturing a lithium secondary battery according to claim 5, wherein the electrolytic solution and the electrode are reacted chemically or electrochemically. 請求項3若しくは請求項4に記載の電極製造方法を適用したことを特徴とするリチウム二次電池の製造方法。 A method for manufacturing a lithium secondary battery, wherein the electrode manufacturing method according to claim 3 or 4 is applied. リチウム二次電池の電解液において、請求項1に記載の電解液にポリオールとウレタン化触媒とを配合した後、加熱することによってゲル化させた電解液であることを特徴とする電解液。 An electrolyte solution for a lithium secondary battery, wherein the electrolyte solution according to claim 1 is gelled by heating after blending a polyol and a urethanization catalyst. 請求項8に記載の電解液を用いたことを特徴とするリチウム二次電池。 A lithium secondary battery using the electrolytic solution according to claim 8. 請求項1に記載の電解液にポリオールとウレタン化触媒とを配合した後、加熱することによって該電解液をゲル化させることを特徴とするリチウム二次電池の製造方法。
A method for producing a lithium secondary battery, comprising mixing a polyol and a urethanization catalyst in the electrolyte solution according to claim 1 and then heating the gel to gel the electrolyte solution.
JP2004072628A 2004-03-15 2004-03-15 Electrolytic solution and electrode for lithium secondary battery, lithium secondary battery, and manufacturing method of those Withdrawn JP2005259641A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004072628A JP2005259641A (en) 2004-03-15 2004-03-15 Electrolytic solution and electrode for lithium secondary battery, lithium secondary battery, and manufacturing method of those

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004072628A JP2005259641A (en) 2004-03-15 2004-03-15 Electrolytic solution and electrode for lithium secondary battery, lithium secondary battery, and manufacturing method of those

Publications (1)

Publication Number Publication Date
JP2005259641A true JP2005259641A (en) 2005-09-22

Family

ID=35085136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004072628A Withdrawn JP2005259641A (en) 2004-03-15 2004-03-15 Electrolytic solution and electrode for lithium secondary battery, lithium secondary battery, and manufacturing method of those

Country Status (1)

Country Link
JP (1) JP2005259641A (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164759A (en) * 2004-12-07 2006-06-22 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolyte for electrochemical device
WO2006112640A1 (en) 2005-04-20 2006-10-26 Lg Chem, Ltd. Lithium secondary battery having improved stability to overcharge
WO2006137534A1 (en) * 2005-06-23 2006-12-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and nonaqueous electrolyte solution
JP2007242411A (en) * 2006-03-08 2007-09-20 Sony Corp Battery and electrolyte composition
JP2009508309A (en) * 2005-09-16 2009-02-26 サンヨー・コンポーネント・ヨーロッパ・ゲーエムベーハー Method for manufacturing lithium secondary battery
JP2010245017A (en) * 2009-03-19 2010-10-28 Equos Research Co Ltd Manufacturing method of electrode for lithium ion battery, and electrode for lithium ion battery
JP2010282728A (en) * 2009-06-02 2010-12-16 Asahi Kasei E-Materials Corp Lithium ion secondary battery
JP2011014532A (en) * 2009-06-04 2011-01-20 Asahi Kasei E-Materials Corp Electrolyte and lithium ion secondary battery
US20110052953A1 (en) * 2009-08-26 2011-03-03 Sony Corporation Negative electrode, nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2011249271A (en) * 2010-05-31 2011-12-08 Asahi Kasei E-Materials Corp Electrolytic solution and lithium ion secondary battery
JP2012043586A (en) * 2010-08-17 2012-03-01 Asahi Kasei E-Materials Corp Electrolytic solution and lithium ion secondary battery
WO2012105404A1 (en) 2011-01-31 2012-08-09 三菱化学株式会社 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
WO2012108505A1 (en) 2011-02-10 2012-08-16 三菱化学株式会社 Non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery using same
WO2012108270A1 (en) 2011-02-10 2012-08-16 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous-electrolyte secondary battery using same
WO2013005502A1 (en) * 2011-07-04 2013-01-10 日本電気株式会社 Method for producing secondary battery
WO2014034078A1 (en) * 2012-08-31 2014-03-06 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
US8728670B2 (en) * 2007-08-23 2014-05-20 Kabushiki Kaisha Toshiba Nonaqueous-electrolyte battery containing a negative electrode with a coating film formed by an isocyanate-containing compound in the nonaqueous electrolyte
CN104508868A (en) * 2013-07-10 2015-04-08 株式会社Lg化学 Electrode improving battery lifespan and lithium secondary battery having same
WO2015060156A1 (en) * 2013-10-22 2015-04-30 三洋化成工業株式会社 Additive for lithium ion secondary batteries, electrode and electrolyte solution each using same, and lithium ion secondary battery
WO2015107832A1 (en) * 2014-01-16 2015-07-23 株式会社カネカ Nonaqueous electrolyte secondary battery and battery pack of same
WO2015111954A1 (en) * 2014-01-24 2015-07-30 애경유화 주식회사 Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery using same
JP2015144104A (en) * 2014-01-31 2015-08-06 株式会社デンソー Nonaqueous electrolyte secondary battery
KR20150135278A (en) 2013-03-27 2015-12-02 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
CN105655642A (en) * 2016-03-30 2016-06-08 宁德时代新能源科技股份有限公司 Electrolyte and high-nickel anode lithium ion battery containing same
US9666905B2 (en) 2013-03-04 2017-05-30 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US10062926B2 (en) 2014-03-27 2018-08-28 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
US10243242B2 (en) 2013-12-20 2019-03-26 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164759A (en) * 2004-12-07 2006-06-22 Tomiyama Pure Chemical Industries Ltd Nonaqueous electrolyte for electrochemical device
WO2006112640A1 (en) 2005-04-20 2006-10-26 Lg Chem, Ltd. Lithium secondary battery having improved stability to overcharge
KR100773247B1 (en) 2005-04-20 2007-11-05 주식회사 엘지화학 Lithium Secondary Battery Having Improved Stability to Overcharge
US8673504B2 (en) 2005-06-23 2014-03-18 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and non-aqueous electrolyte
WO2006137534A1 (en) * 2005-06-23 2006-12-28 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery and nonaqueous electrolyte solution
US8206853B2 (en) 2005-06-23 2012-06-26 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery and non-aqueous electrolyte
JP5222555B2 (en) * 2005-06-23 2013-06-26 三洋電機株式会社 Non-aqueous electrolyte secondary battery and non-aqueous electrolyte
JP2009508309A (en) * 2005-09-16 2009-02-26 サンヨー・コンポーネント・ヨーロッパ・ゲーエムベーハー Method for manufacturing lithium secondary battery
JP2007242411A (en) * 2006-03-08 2007-09-20 Sony Corp Battery and electrolyte composition
US8728670B2 (en) * 2007-08-23 2014-05-20 Kabushiki Kaisha Toshiba Nonaqueous-electrolyte battery containing a negative electrode with a coating film formed by an isocyanate-containing compound in the nonaqueous electrolyte
CN104953174A (en) * 2007-08-23 2015-09-30 株式会社东芝 Nonaqueous-electrolyte battery
JP2010245017A (en) * 2009-03-19 2010-10-28 Equos Research Co Ltd Manufacturing method of electrode for lithium ion battery, and electrode for lithium ion battery
JP2010282728A (en) * 2009-06-02 2010-12-16 Asahi Kasei E-Materials Corp Lithium ion secondary battery
JP2011014532A (en) * 2009-06-04 2011-01-20 Asahi Kasei E-Materials Corp Electrolyte and lithium ion secondary battery
JP2011048987A (en) * 2009-08-26 2011-03-10 Sony Corp Negative electrode, nonaqueous electrolyte secondary battery, and its manufacturing method
US9153843B2 (en) 2009-08-26 2015-10-06 Sony Corporation Negative electrode including solid electrolyte interface coating containing crosslinked isocyanate compound, nonaqueous electrolyte secondary battery and method for manufacturing the same
US20110052953A1 (en) * 2009-08-26 2011-03-03 Sony Corporation Negative electrode, nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2011249271A (en) * 2010-05-31 2011-12-08 Asahi Kasei E-Materials Corp Electrolytic solution and lithium ion secondary battery
JP2012043586A (en) * 2010-08-17 2012-03-01 Asahi Kasei E-Materials Corp Electrolytic solution and lithium ion secondary battery
US9653753B2 (en) 2011-01-31 2017-05-16 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
WO2012105404A1 (en) 2011-01-31 2012-08-09 三菱化学株式会社 Non-aqueous electrolytic solution, and non-aqueous electrolyte secondary battery using same
KR20140040284A (en) 2011-01-31 2014-04-02 미쓰비시 가가꾸 가부시키가이샤 Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
US8846247B2 (en) 2011-02-10 2014-09-30 Mitsubishi Chemical Corporation Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery employing the same
US10476106B2 (en) 2011-02-10 2019-11-12 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
US9923238B2 (en) 2011-02-10 2018-03-20 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
WO2012108270A1 (en) 2011-02-10 2012-08-16 三菱化学株式会社 Nonaqueous electrolyte and nonaqueous-electrolyte secondary battery using same
US11791499B2 (en) 2011-02-10 2023-10-17 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
US11205802B2 (en) 2011-02-10 2021-12-21 Mitsubishi Chemical Corporation Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery employing the same
EP3758124A1 (en) 2011-02-10 2020-12-30 Mitsubishi Chemical Corporation Non-aqueous electrolyte secondary battery
WO2012108505A1 (en) 2011-02-10 2012-08-16 三菱化学株式会社 Non-aqueous electrolyte for secondary battery, and non-aqueous electrolyte secondary battery using same
KR20140040285A (en) 2011-02-10 2014-04-02 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte and nonaqueous-electrolyte secondary battery using same
WO2013005502A1 (en) * 2011-07-04 2013-01-10 日本電気株式会社 Method for producing secondary battery
JPWO2013005502A1 (en) * 2011-07-04 2015-02-23 日本電気株式会社 Manufacturing method of secondary battery
WO2014034078A1 (en) * 2012-08-31 2014-03-06 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary batteries, method for producing same, and nonaqueous electrolyte secondary battery
JPWO2014034078A1 (en) * 2012-08-31 2016-08-08 三洋電機株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
US9666905B2 (en) 2013-03-04 2017-05-30 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium ion secondary battery, and module
US9947965B2 (en) 2013-03-27 2018-04-17 Mitsubishi Chemical Corporation Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
KR20200138438A (en) 2013-03-27 2020-12-09 미쯔비시 케미컬 주식회사 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
KR20150135278A (en) 2013-03-27 2015-12-02 미쓰비시 가가꾸 가부시키가이샤 Nonaqueous electrolyte solution and nonaqueous electrolyte battery using same
US9837664B2 (en) 2013-07-10 2017-12-05 Lg Chem, Ltd. Electrode with enhanced cycle life and lithium secondary battery including the same
EP2999030A4 (en) * 2013-07-10 2016-08-24 Lg Chemical Ltd Electrode improving battery lifespan and lithium secondary battery having same
CN104508868A (en) * 2013-07-10 2015-04-08 株式会社Lg化学 Electrode improving battery lifespan and lithium secondary battery having same
WO2015060156A1 (en) * 2013-10-22 2015-04-30 三洋化成工業株式会社 Additive for lithium ion secondary batteries, electrode and electrolyte solution each using same, and lithium ion secondary battery
US10243242B2 (en) 2013-12-20 2019-03-26 Daikin Industries, Ltd. Electrolytic solution, electrochemical device, lithium-ion secondary cell, and module
US10283760B2 (en) 2014-01-16 2019-05-07 Kaneka Corporation Nonaqueous electrolyte secondary battery and battery pack of same
WO2015107832A1 (en) * 2014-01-16 2015-07-23 株式会社カネカ Nonaqueous electrolyte secondary battery and battery pack of same
WO2015111954A1 (en) * 2014-01-24 2015-07-30 애경유화 주식회사 Anode active material for lithium secondary battery, method for manufacturing same, and lithium secondary battery using same
JP2015144104A (en) * 2014-01-31 2015-08-06 株式会社デンソー Nonaqueous electrolyte secondary battery
US10062926B2 (en) 2014-03-27 2018-08-28 Daikin Industries, Ltd. Electrolyte solution, electrochemical device, lithium ion secondary battery, and module
CN105655642A (en) * 2016-03-30 2016-06-08 宁德时代新能源科技股份有限公司 Electrolyte and high-nickel anode lithium ion battery containing same

Similar Documents

Publication Publication Date Title
JP2005259641A (en) Electrolytic solution and electrode for lithium secondary battery, lithium secondary battery, and manufacturing method of those
CN105474452B (en) Nonaqueous electrolyte for battery and lithium secondary battery
JP4368823B2 (en) Composite polymer electrolyte for lithium secondary battery containing lithium single ion conductive inorganic additive and method for producing the same
TWI323951B (en) Electrolytes, cells and methods of forming passivation layers
JP5219401B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery using the same
CN105409050B (en) Lithium secondary battery for the nonaqueous electrolytic solution of lithium secondary battery and containing it
CN101682080B (en) Non-aqueous electrolyte and electrochemical device having the same
CN109792085A (en) For the electrolyte of lithium secondary battery and including lithium secondary battery of electrolyte
EP3509152B1 (en) Lithium secondary battery
CN103378371A (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery including same
CN105474450A (en) Nonaqueous-electrolyte secondary battery and manufacturing method therefor
JP4711639B2 (en) Nonaqueous electrolyte and lithium secondary battery using the same
US10446826B2 (en) Method for making lithium ionic energy storage element
CN105580167A (en) Electrode for lithium ion secondary batteries, and lithium ion secondary battery
CN1287480C (en) Nonaqueous electrlyte for lithium battery and lithium ion secondary battery
JP2001223024A (en) Electrolyte for lithium secondary battery
KR101768452B1 (en) Anode, all solid lithium secondary batteries including the same and manufacturing method for the same
CN100433444C (en) Electrolyte for lithium secondary battery and lithium secondary battery comprising same
JP2017045503A (en) Additive for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, electrolyte for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4369084B2 (en) Lithium secondary battery manufacturing method and lithium secondary battery
CN105720265A (en) Carbon nanotube polymer lithium ion battery and preparation method thereof
CN102637876A (en) Lithium battery anode material and method for improving cycle performance of battery
CN104577186A (en) lithium battery comprising tricynoalkylborate electrolyte additive.
CN112216867B (en) Electrolyte additive, lithium ion high-voltage electrolyte and lithium ion battery
CN109964346A (en) Active material, positive electrode and the battery cell of positive electrode for battery cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605