JP2005257855A - Heat treatment apparatus and method of heat treatment for optical fiber reinforcement member, and optical fiber connection apparatus by fusion - Google Patents

Heat treatment apparatus and method of heat treatment for optical fiber reinforcement member, and optical fiber connection apparatus by fusion Download PDF

Info

Publication number
JP2005257855A
JP2005257855A JP2004067014A JP2004067014A JP2005257855A JP 2005257855 A JP2005257855 A JP 2005257855A JP 2004067014 A JP2004067014 A JP 2004067014A JP 2004067014 A JP2004067014 A JP 2004067014A JP 2005257855 A JP2005257855 A JP 2005257855A
Authority
JP
Japan
Prior art keywords
optical fiber
reinforcing member
heat
heat treatment
heating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004067014A
Other languages
Japanese (ja)
Inventor
Ryuichiro Sato
龍一郎 佐藤
Kazunari Hattori
一成 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2004067014A priority Critical patent/JP2005257855A/en
Publication of JP2005257855A publication Critical patent/JP2005257855A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat treatment apparatus and a method of heat treatment in which optical fiber reinforcement members of a various dimensions are adjusted to appropriate heating forms in the heat treatment of the optical fiber reinforcement members using a plane heat generation body, and the temperature rise of a non-contacted part is suppressed. <P>SOLUTION: The heating process is for heating and contracting the optical fiber reinforcement members 12 which protect the fused and connected part of an optical fiber, in which process a heating part is formed with a flexible plane heat generation body 13 of which the heating part is bent in U-shape, a clamping block 15 which clamps the upper part of the plane heat generation body 13 is adjustable in position, and the open gap or the bottom height of the U-shape is adjusted so that the plane heat generation body 13 is deformed and adjusted to fit to the shape of the optical fiber reinforcement members 12. Further, the heating temperature of the U-shaped side heating part of the heat generation part 13b of the plane heat generation body 13 is set at a temperature lower than that of the central heating part, or a soaking plate made of a metal plate is connected to the heat generation part 13b of the plane heat generation body 13. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、光ファイバの融着接続部をスリーブ状の保護部材で覆い、加熱収縮させることにより補強する光ファイバ補強部材の加熱処理装置及び加熱処理方法並びに光ファイバ融着接続装置に関する。   The present invention relates to a heat treatment apparatus and a heat treatment method for an optical fiber reinforcing member that covers and reinforces an optical fiber fusion spliced portion with a sleeve-shaped protective member and heat shrinks the optical fiber fusion splicing apparatus.

従来、光ファイバの融着接続は、接続端のファイバ被覆を除去して、露出されたガラスの裸ファイバ部の突合せ端部を加熱溶融して行なわれる。ファイバ被覆が除去され、融着接続された裸ファイバ部は、機械的な強度が弱いため補強部材により保護される。この補強部材は、通常、加熱により径方向に収縮する熱収縮性チューブ内に抗張力体(補強棒ともいう)を添えて、熱溶融性の接着樹脂からなる熱溶融性チューブを収納して構成されている(例えば、特許文献1参照)。   Conventionally, fusion splicing of optical fibers is performed by removing the fiber coating at the connection end and heating and melting the exposed butted end portion of the bare glass portion of the glass. The bare fiber part, from which the fiber coating has been removed and fusion-spliced, is protected by a reinforcing member because of its low mechanical strength. This reinforcing member is usually configured by attaching a strength member (also called a reinforcing bar) in a heat-shrinkable tube that shrinks in the radial direction by heating and housing a heat-melting tube made of a heat-melting adhesive resin. (For example, refer to Patent Document 1).

図7は、上記特許文献1に開示された従来の融着接続部の加熱処理方法を示す図で、図7(A)は一般的な補強部材の一例を説明する図、図7(B)はV溝のヒータ台で加熱処理する例を示す図、図7(C)はU溝のヒータ台で加熱処理する例を示す図である。図中、1は単心の光ファイバ心線、1’はテープ状の光ファイバ心線、2は融着接続部、3は熱収縮性チューブ、4は熱溶融性チューブ、5,5’は抗張力体、6,6’は補強部材、7はV溝加熱面、8はU溝加熱面、9,9’はヒータ台を示す。   FIG. 7 is a diagram showing a conventional heat treatment method for a fusion splicing part disclosed in Patent Document 1, and FIG. 7A is a diagram for explaining an example of a general reinforcing member, and FIG. FIG. 7 is a diagram showing an example of heat treatment using a V-groove heater base, and FIG. 7C is a diagram showing an example of heat treatment using a U-groove heater base. In the figure, 1 is a single-core optical fiber, 1 'is a tape-shaped optical fiber, 2 is a fusion splicing part, 3 is a heat-shrinkable tube, 4 is a heat-meltable tube, and 5 and 5' are Strength members, 6 and 6 'are reinforcing members, 7 is a V-groove heating surface, 8 is a U-groove heating surface, and 9 and 9' are heater stands.

図7(A)に示す単心光ファイバの例において、互いに融着接続される双方の光ファイバ心線1は、接続端のファイバ被覆を除去して裸ファイバ部を露出し、その先端を突き合わせてアーク放電等により融着接続される。補強部材6は、裸ファイバ部の両側のファイバ被覆を所定範囲覆う長さを有し、熱収縮性チューブ3内に、熱溶融性の接着剤からなる熱溶融性チューブ4と半月状の抗張力体5を収納して構成される。融着接続された光ファイバ心線1は、熱溶融性チューブ4内に、融着接続部2が中央に位置するように挿入され、平坦なヒータ台9で加熱処理される。   In the example of the single-core optical fiber shown in FIG. 7A, both the optical fiber cores 1 that are fusion-spliced to each other remove the fiber coating at the connection end, expose the bare fiber portion, and butt the ends. Are fused and connected by arc discharge or the like. The reinforcing member 6 has a length that covers a predetermined range of the fiber coating on both sides of the bare fiber portion, and in the heat-shrinkable tube 3, a heat-meltable tube 4 made of a heat-meltable adhesive and a half-moon-shaped tensile body. 5 is configured. The spliced optical fiber core wire 1 is inserted into the heat-meltable tube 4 so that the fusion splicing portion 2 is located at the center, and is heated by a flat heater base 9.

図7(B)及び図7(C)では、多心テープ状の光ファイバ心線1’の融着接続部を補強する例である。この場合も、その補強部材6’は、図7(A)と同様に熱収縮性チューブ3内に、熱溶融性接着剤からなる熱溶融性チューブ4と抗張力体5’を収納して構成される。また、抗張力体5’の両側に光ファイバ心線1’を配して、複数の融着接続部を一括補強している。ヒータ台9’は、補強部材6’を収納載置する面が、図7(B)のようにV字形の断面を有するV溝7、或いは、図7(C)のようにU字形の断面を有するU溝8で形成されている。なお、図7(A)の単心光ファイバ心線1においても、V溝7又はU溝8のヒータ台9’を用いることもできる。   FIGS. 7B and 7C show examples in which the fusion spliced portion of the multi-fiber ribbon optical fiber core wire 1 ′ is reinforced. Also in this case, the reinforcing member 6 'is configured by housing the heat-meltable tube 4 made of a heat-meltable adhesive and the tensile body 5' in the heat-shrinkable tube 3 as in FIG. 7A. The Further, optical fiber cores 1 ′ are arranged on both sides of the strength member 5 ′ to collectively reinforce a plurality of fusion splicing portions. The heater base 9 ′ has a V-shaped groove 7 having a V-shaped cross section as shown in FIG. 7B or a U-shaped cross section as shown in FIG. 7C. It is formed of a U-groove 8 having In addition, also in the single-core optical fiber core wire 1 of FIG. 7 (A), the heater stand 9 'of the V-groove 7 or the U-groove 8 can be used.

補強部材6’は、V溝7又はU溝8からなる凹状の壁面からの熱によって加熱され、熱収縮性チューブ3が熱収縮してチューブ内の空隙容積を減少する。同時に熱溶融性チューブ4が溶融して熱収縮性チューブ3内の空隙を埋め、露出されている融着接続部とその周辺部を包囲する。この後、溶融した熱溶融性チューブ4が固化し、熱収縮性チューブ3、抗張力体5’、融着接続部を含む光ファイバ心線1’が一体化され補強が完了する。補強部材6’の加熱に際して、図7(B)及び図7(C)に示すようにヒータ台9’の加熱面をV溝7又はU溝8からなる凹状の壁面とすることにより、図7(A)に示すような平坦な加熱面を有するヒータ台9で加熱するものと比べて、均一で効率のよい加熱ができるとされている。
特開平9−297243号公報(図4及び図6とその説明参照)
The reinforcing member 6 ′ is heated by heat from the concave wall surface formed by the V-groove 7 or the U-groove 8, and the heat-shrinkable tube 3 is thermally contracted to reduce the void volume in the tube. At the same time, the heat-meltable tube 4 is melted to fill the voids in the heat-shrinkable tube 3 and surround the exposed fusion splicing portion and its peripheral portion. Thereafter, the melted heat-meltable tube 4 is solidified, and the heat-shrinkable tube 3, the strength member 5 ′, and the optical fiber core wire 1 ′ including the fusion splicing portion are integrated to complete reinforcement. When the reinforcing member 6 ′ is heated, the heating surface of the heater base 9 ′ is formed as a concave wall surface formed of the V-groove 7 or the U-groove 8 as shown in FIGS. 7B and 7C. It is said that uniform and efficient heating can be performed as compared with the case of heating with a heater base 9 having a flat heating surface as shown in FIG.
JP-A-9-297243 (refer to FIGS. 4 and 6 and the description thereof)

しかしながら、光ファイバ心線の融着接続の補強は、単心の光ファイバ心線から多心のテープ状光ファイバ心線まで多岐にわたる。これに伴って補強部材の太さも異なり、例えば、単心の光ファイバ心線用では収縮前の補強部材の断面直径は4mm程度であるとすると、多心の16〜24心用の補強部材では断面直径が8mm程度となる。このため、凹状の加熱面の壁面と補強部材の接触位置、及び接触しない部分の離間距離等が異なり、全ての種類の補強部材について均一で効率のよい加熱処理を行なうことは困難である。全ての補強部材について最適な加熱処理を行なうには、種々の大きさの補強部材に適合する加熱凹部を有するヒータ形状のものを製作して準備しておく必要があるが、コスト、管理面での問題がある。   However, the fusion splicing of the optical fiber cores varies from a single optical fiber core to a multi-fiber ribbon optical fiber. Accordingly, the thickness of the reinforcing member is different. For example, when the cross-sectional diameter of the reinforcing member before contraction is about 4 mm for a single-core optical fiber, The cross-sectional diameter is about 8 mm. For this reason, the contact position between the wall surface of the concave heating surface and the reinforcing member, the separation distance between the non-contact portions, and the like are different, and it is difficult to perform uniform and efficient heat treatment for all types of reinforcing members. In order to perform the optimum heat treatment for all the reinforcing members, it is necessary to prepare and prepare heater-shaped ones having heating recesses suitable for reinforcing members of various sizes. There is a problem.

これに対し、可撓性のある面状発熱体をU字状に湾曲してヒータとし、補強部材の加熱処理に使用する例も報告されている。この可撓性のある面状発熱体を用いることにより、太さの異なる補強部材にも対応が可能となり、また、ヒータの構成としても比較的シンプルで有用性がある。しかし、この面状発熱体は、通常、有機樹脂フィルムの表面に発熱体を接合した形状のもので、単位面積当たりの熱容量は比較的小さい。このため、面状発熱体の発熱部分に対して、補強部材が適正に接触保持されている必要があり、補強部材の太さに対応する湾曲形状で使用されなければならない。   On the other hand, an example in which a flexible planar heating element is bent into a U shape to form a heater and used for heat treatment of the reinforcing member has been reported. By using this flexible planar heating element, it is possible to deal with reinforcing members having different thicknesses, and the heater configuration is relatively simple and useful. However, this planar heating element is usually in the form of a heating element bonded to the surface of an organic resin film, and the heat capacity per unit area is relatively small. For this reason, it is necessary for the reinforcing member to be appropriately contacted and held with respect to the heat generating portion of the planar heating element, and it must be used in a curved shape corresponding to the thickness of the reinforcing member.

また、面状発熱体で加熱するに際して、補強部材と接触する部分と補強部材に接触しない部分があると、補強部材と接触する部分は伝熱作用によって比較的低い温度で一定となるが、補強部材に接触しない部分では伝熱による熱放散がないため、耐熱温度以上の温度となって焼損する等の問題もある。
本発明は、上述した実情に鑑みてなされたもので、面状発熱体を用いた光ファイバ補強部材の加熱処理で、種々の大きさの光ファイバ補強部材に対して、適正な加熱形状に調整することができ、また、非接触部分の温度上昇を抑制した加熱処理装置及び加熱処理方法の提供を課題とする。
In addition, when heating with a planar heating element, if there is a part in contact with the reinforcing member and a part not in contact with the reinforcing member, the part in contact with the reinforcing member becomes constant at a relatively low temperature due to the heat transfer action. Since there is no heat dissipation due to heat transfer in the portion not in contact with the member, there is a problem that the temperature is higher than the heat resistance temperature and burns out.
The present invention has been made in view of the above-described circumstances, and is adjusted to an appropriate heating shape for optical fiber reinforcing members of various sizes by heat treatment of the optical fiber reinforcing member using a planar heating element. It is another object of the present invention to provide a heat treatment apparatus and a heat treatment method that can suppress the temperature increase of the non-contact portion.

本発明による光ファイバ補強部材の加熱処理装置又は加熱処理方法は、光ファイバの融着接続部を保護する光ファイバ補強部材を加熱収縮する加熱処理であって、加熱部をU字状に湾曲された可撓性の面状発熱体で形成し、面状発熱体の上端部を把持する把持ブロックを位置調整可能として、U字状の開き間隔或いは底部高さを調整し、面状発熱体を光ファイバ補強部材の形状にならうように変形調節する。また、面状発熱体の発熱部分におけるU字状の側方発熱部分の発熱温度が中央発熱部分の発熱温度より低くなるようにするか、或いは、面状発熱体の発熱部分に金属板からなる均熱板を接合する。   The heat treatment apparatus or heat treatment method for an optical fiber reinforcing member according to the present invention is a heat treatment for heating and shrinking an optical fiber reinforcing member that protects a fusion splicing portion of an optical fiber, and the heating portion is curved in a U shape. Formed with a flexible planar heating element, the position of the grip block for gripping the upper end of the planar heating element can be adjusted, the U-shaped opening interval or bottom height is adjusted, and the planar heating element is The deformation is adjusted so as to follow the shape of the optical fiber reinforcing member. Further, the heating temperature of the U-shaped side heating portion in the heating portion of the planar heating element is made lower than the heating temperature of the central heating portion, or the heating portion of the planar heating element is made of a metal plate. Join the soaking plate.

面状発熱体の上部を把持する把持ブロックを位置調整可能な構成とすることにより、U字状の開き間隔或いは底部高さを光ファイバ補強部材の形状に応じて調整することができ、光ファイバ補強部材の形状に係らず均一で、消費電力を低減して効率のよい加熱処理を行なうことができる。また、面状発熱体の光ファイバ補強部材が接触しない部分の発熱量を少なくするか、又は、面状発熱体の発熱部分に金属板からなる均熱板を接合することで、光ファイバ補強部材と接触する部分と接触しない部分の温度差を小さくできる。この結果、光ファイバ補強部材が接触しない部分の温度上昇を抑制し、面状発熱体が耐熱温度以上に上昇するのを回避することができる。   By adopting a configuration in which the position of the gripping block for gripping the upper portion of the planar heating element can be adjusted, the U-shaped opening interval or bottom height can be adjusted according to the shape of the optical fiber reinforcing member. Regardless of the shape of the reinforcing member, the heat treatment can be performed uniformly and with reduced power consumption. Further, by reducing the amount of heat generated in the portion where the optical fiber reinforcing member of the planar heating element does not contact, or by joining a heat equalizing plate made of a metal plate to the heating portion of the planar heating element, the optical fiber reinforcing member The temperature difference between the portion in contact with and the portion not in contact with can be reduced. As a result, it is possible to suppress the temperature rise in the portion where the optical fiber reinforcing member does not contact, and to prevent the planar heating element from rising above the heat resistant temperature.

図により本発明の実施の形態を説明する。図1は本発明の概略を説明する図、図2は本発明の加熱処理装置の一例を示す図、図3は図2の一部を除去して断面構造で示した図である。図中、10は加熱処理装置、11は光ファイバ心線、12は補強部材、13は面状発熱体、13aは非発熱部分、13bは発熱部分、14はベース部、15は発熱体把持ブロック、15aは把持面、16はクランプ台部、16aは溝部、17はクランプ部片、17aは取手部、17bはクランプパッド、18は水平移動ブロック、19は垂直移動ブロック、20は押え部材、21はカバー、22は回路基板を示す。   Embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram for explaining the outline of the present invention, FIG. 2 is a diagram showing an example of a heat treatment apparatus of the present invention, and FIG. 3 is a diagram showing a sectional structure with a part of FIG. 2 removed. In the figure, 10 is a heat treatment device, 11 is an optical fiber core, 12 is a reinforcing member, 13 is a planar heating element, 13a is a non-heating part, 13b is a heating part, 14 is a base part, and 15 is a heating element gripping block. 15a is a gripping surface, 16 is a clamp base, 16a is a groove, 17 is a clamp piece, 17a is a handle, 17b is a clamp pad, 18 is a horizontal movement block, 19 is a vertical movement block, 20 is a pressing member, 21 Indicates a cover, and 22 indicates a circuit board.

本発明による加熱処理は、図1(A)に示すように、単心又は多心テープ状の光ファイバ心線11の融着接続部、及び、その近傍を保護するように配された補強部材12を、U字状に湾曲した面状発熱体13内に収納支持させて行なわれる。補強部材12は、図7で示したのと同様に熱収縮性チューブ内に、ホットメルト接着樹脂からなる熱溶融性チューブと、ステンレスまたはガラス、セラミック等で形成された抗張力体(補強棒ともいう)を収納して成るものである。面状発熱体13の詳細については後述するが、耐熱性のポリイミドフィルム等に発熱素子(例えば、抵抗線材)を接合した構成のものである。また、この面状発熱体13は、中央部に発熱素子を埋設した発熱部分13bが形成され、その両側に支持固定のための非発熱部分13aが形成されて、全体が湾曲可能な可撓性を有しているものが用いられる。   As shown in FIG. 1 (A), the heat treatment according to the present invention is a reinforcing member disposed so as to protect the fusion spliced portion of the optical fiber core wire 11 in the form of a single-core or multi-core tape and the vicinity thereof. 12 is housed and supported in a planar heating element 13 curved in a U-shape. In the same manner as shown in FIG. 7, the reinforcing member 12 is a heat-shrinkable tube made of hot-melt adhesive resin and a tensile body (also called a reinforcing bar) formed of stainless steel, glass, ceramic, or the like. ). Although details of the planar heating element 13 will be described later, a heating element (for example, a resistance wire) is bonded to a heat-resistant polyimide film or the like. Further, the planar heating element 13 is formed with a heat generating portion 13b in which a heat generating element is embedded in the central portion, and non-heat generating portions 13a for supporting and fixing are formed on both sides thereof. What has is used.

U字状に湾曲された面状発熱体13は、その非発熱部分13aの上端部を、例えば、断面L字状にした発熱体把持ブロック15の把持面15aに載置し、上方から押え部材20で押えることにより支持される。補強部材12は、面状発熱体13のU字状に湾曲された発熱部分13bの中央部分で囲われ、或いは、この部分に接触するように収納載置されて加熱される。補強部材12は、図1(B)に示すように光ファイバの心数が多いと太径となるが、この場合は、発熱体把持ブロック15を水平方向に移動させて、その把持間隔を広げる。しかし、補強部材12は、図1(C)に示すように光ファイバの心数が少ないと小径となり、この場合は、発熱体把持ブロック15の開き間隔を狭めて、補強部材12に対する加熱面の湾曲形状を最適なものとする。これにより、補強部材12の形状に係らず効率のよい加熱を行なうことができ、消費電力を低減することができる。   The sheet heating element 13 curved in a U-shape is mounted on the gripping surface 15a of the heating element gripping block 15 having an L-shaped cross section, for example, by placing the upper end portion of the non-heating part 13a on the pressing member from above. It is supported by pressing at 20. The reinforcing member 12 is surrounded by the central portion of the heat generating portion 13b that is curved in a U shape of the planar heat generating element 13, or is housed and heated so as to be in contact with this portion. As shown in FIG. 1B, the reinforcing member 12 has a large diameter when the number of optical fiber cores is large. In this case, the heating element gripping block 15 is moved in the horizontal direction to widen the gripping interval. . However, as shown in FIG. 1C, the reinforcing member 12 has a small diameter when the number of optical fibers is small. In this case, the opening interval of the heating element gripping block 15 is narrowed to reduce the heating surface of the reinforcing member 12. The curved shape is optimized. Thereby, efficient heating can be performed regardless of the shape of the reinforcing member 12, and power consumption can be reduced.

図2は上述の加熱処理を行なうのに用いられる加熱処理装置10の一例で、その本体部は、ベース部14上に面状発熱体13を支持するための一対の発熱体把持ブロック15を備え、ベース部14の両端に光ファイバ心線11を把持するクランプ台部16を備えている。発熱体把持ブロック15は、上部に把持面15aを有するフレームで形成され、ベース部14上に平行に並べて設置される。面状発熱体13は、U字状に湾曲されて両側の非発熱部分13aの上端部を、発熱体把持ブロック15の把持面15aを載せ、上から断面L字状に形成された押え部材20で押えることにより固定される。面状発熱体13のU字状に湾曲された発熱部分13bは、発熱体把持ブロック15間に吊下げられ形態で配置され、このU字状に湾曲された発熱部分13bに補強部材12が収納載置される。   FIG. 2 shows an example of the heat treatment apparatus 10 used for performing the heat treatment described above, and its main body portion includes a pair of heating element gripping blocks 15 for supporting the planar heating element 13 on the base portion 14. The base 14 is provided with clamp bases 16 for holding the optical fiber core wire 11 at both ends. The heating element gripping block 15 is formed of a frame having a gripping surface 15 a on the upper portion, and is arranged side by side on the base portion 14 in parallel. The planar heating element 13 is curved in a U-shape, and the upper end of the non-heating part 13a on both sides is placed on the gripping surface 15a of the heating element gripping block 15, and the holding member 20 formed in an L-shaped cross section from above. It is fixed by pressing with The heating part 13b curved in a U shape of the planar heating element 13 is arranged in a suspended form between the heating element gripping blocks 15, and the reinforcing member 12 is accommodated in the heating part 13b curved in the U shape. Placed.

補強部材12の両端から延びている光ファイバ心線11は、クランプ台部16の溝部16aから引出される。クランプ台部16には、クランプ部片17が回動可能に設けられていて、取手部17aを掴んで操作される。光ファイバ心線11をクランプする部分には、光ファイバ心線11を確実に保持でき、且つ、傷つけないような弾性体を用いたクランプパッド17bが取付けられている。また、クランプ部片17は、マグネットを用いた吸着で固定する構成とすることができる。なお、クランプ部片17を閉じたときに、光ファイバ心線11が、融着接続部を含めてほぼ直線状に成るように保持されることが好ましい。また、クランプ部片17を閉じて光ファイバ心線11の支持を固定するまでは、光ファイバ心線11に一定の張力を加える構成(図示せず)を付加するようにしてもよい。   The optical fiber core wire 11 extending from both ends of the reinforcing member 12 is drawn out from the groove portion 16 a of the clamp base portion 16. The clamp base part 16 is provided with a clamp part piece 17 so as to be rotatable, and is operated by gripping the handle part 17a. A clamp pad 17b using an elastic body that can securely hold the optical fiber core 11 and does not damage it is attached to a portion that clamps the optical fiber core 11. Moreover, the clamp part piece 17 can be set as the structure fixed by adsorption | suction using a magnet. When the clamp piece 17 is closed, the optical fiber core wire 11 is preferably held so as to be substantially linear including the fusion spliced portion. Further, a configuration (not shown) for applying a constant tension to the optical fiber core 11 may be added until the clamp portion 17 is closed and the support of the optical fiber core 11 is fixed.

発熱体把持ブロック15は、図3の断面構造で示すようにベース部14上を水平方向に移動する水平移動ブロック18、更に上下方向に移動される垂直移動ブロック19により構成され、その把持面15aの位置が調整可能とされている。水平移動ブロック18は、ガイドレール(例えば、蟻溝形状)等で、矢印Xで示すように水平方向に移動可能に形成され、これにより面状発熱体13のU字状の間隔(開き形状)を調整することができる。垂直移動ブロック19は、例えば、上端に面状発熱体13の端部を把持する把持面15aを一体に有するように形成され、ガイドレール(例えば、蟻溝形状)等で、矢印Yで示すように垂直方向に移動可能に形成され、これにより面状発熱体13のU字状の底部位置を調整することができる。なお、U字状の底部位置を調整で、光ファイバ心線11が、融着接続部を含めてほぼ直線状とする調整ができる。   As shown in the cross-sectional structure of FIG. 3, the heating element gripping block 15 is composed of a horizontal movement block 18 that moves in the horizontal direction on the base portion 14, and a vertical movement block 19 that moves in the vertical direction. The position of can be adjusted. The horizontal movement block 18 is formed by a guide rail (for example, a dovetail shape) or the like so as to be movable in the horizontal direction as indicated by an arrow X, whereby a U-shaped interval (open shape) of the planar heating element 13 is formed. Can be adjusted. The vertical movement block 19 is formed so as to integrally have a gripping surface 15a for gripping the end of the sheet heating element 13 at the upper end, and is indicated by an arrow Y with a guide rail (for example, dovetail shape). The U-shaped bottom position of the planar heating element 13 can be adjusted. In addition, by adjusting the U-shaped bottom position, the optical fiber core wire 11 can be adjusted to be substantially linear including the fusion spliced portion.

図3では、両側に設置された発熱体把持ブロック15の一方のみを位置調整可能として示したが、双方を位置調整可能とするように構成してもよい。また、水平と垂直の両方を移動可能とする構成で説明したが、必ずしも両方を移動させる必要はなく、例えば、水平方向を移動可能として垂直方向に対しては移動しない構成であってもよい。水平移動ブロック18、垂直移動ブロック19の駆動は、マイクロモータ等で駆動制御するようにしてもよいが手動で行なうようにしてもよい。さらに、発熱体把持ブロック15の位置調整は、光ファイバ補強部材の種類に応じて加熱処理開始時点のみ行なうようにしてもよいが、加熱処理中においても、補強部材の加熱収縮による径の縮小に合わせて連続的に行なうようにしてもよい。   In FIG. 3, only one of the heating element gripping blocks 15 installed on both sides is shown as being position-adjustable, but it may be configured so that both of the positions can be adjusted. In addition, the configuration in which both the horizontal and vertical directions are movable has been described, but it is not always necessary to move both. For example, a configuration in which the horizontal direction is movable and the vertical direction is not movable may be used. The horizontal movement block 18 and the vertical movement block 19 may be driven and controlled by a micromotor or the like, but may be manually performed. Further, the position adjustment of the heating element gripping block 15 may be performed only at the time of starting the heat treatment according to the type of the optical fiber reinforcing member. However, even during the heat treatment, the diameter of the reinforcing member can be reduced by heat shrinkage. You may make it carry out continuously.

図4は本発明で使用する面状発熱体の一例を示す図で、図4(A)は中央発熱部分と側方発熱部分の発熱温度を異ならせた例を示し、図4(B)は発熱部分に均熱板を接合させた例を示す。図中、23は発熱素子、24は絶縁フィルム、25は均熱板を示す。その他の符号は、図1〜図3で用いたのと同じ符号を用いることにより説明を省略する。   FIG. 4 is a view showing an example of a sheet heating element used in the present invention. FIG. 4 (A) shows an example in which the heating temperatures of the central heating portion and the side heating portion are different, and FIG. An example in which a soaking plate is joined to the heat generating portion is shown. In the figure, 23 is a heating element, 24 is an insulating film, and 25 is a soaking plate. Description of other reference numerals is omitted by using the same reference numerals as those used in FIGS.

面状発熱体13は、例えば、ベース材として厚み30μm程度の耐熱性ポリイミドフィルムからなる絶縁フィルム24上に、発熱素子23として厚み30μm程度のステンレス薄板をジグザグ状にカットして貼りつける。そして、この上から接着剤層を有する厚み25μm程度の同じく耐熱性ポリイミドフィルムからなる絶縁フィルム24を重ねて接着一体化して形成される。また、発熱素子23に電力を供給するリード端子は、半田付け或いはハトメ等により接続固定され、耐熱性の封止樹脂により保護される。   The planar heating element 13 is formed by, for example, cutting and pasting a stainless thin plate having a thickness of about 30 μm as a heating element 23 in a zigzag manner on an insulating film 24 made of a heat-resistant polyimide film having a thickness of about 30 μm as a base material. And the insulating film 24 which consists of the same heat resistant polyimide film about 25 micrometers in thickness which has an adhesive bond layer on this is piled up, and it integrates and forms. In addition, the lead terminal for supplying power to the heating element 23 is connected and fixed by soldering or eyelet or the like, and is protected by a heat-resistant sealing resin.

図4に示すように、面状発熱体13は、補強部材12の軸方向と直交する面の断面がU字状になるように湾曲され、U字形状が維持されるように、図1〜3で示したように両側の非発熱部分13aを、発熱体把持ブロックと押え部材で支持固定する。U字状にされた中央の発熱部分13bには、融着接続された光ファイバ心線11を挿通した補強部材12が収納載置される。このとき、面状発熱体13のU字状の湾曲底部には補強部材12が接触した状態となるが、側面は非接触の状態となる。また、補強部材12が未だ加熱収縮されていない初期状態においては、非接触部分の接触面積は比較的大きいが、加熱が進んで補強部材12の外径が縮小してくると、接触部分の面積が少なくなり非接触部分の面積が増大してくる。   As shown in FIG. 4, the planar heating element 13 is curved so that the cross section of the surface orthogonal to the axial direction of the reinforcing member 12 is U-shaped, and the U-shaped is maintained so as to maintain the U-shape. As shown in FIG. 3, the non-heat generating portions 13a on both sides are supported and fixed by the heating element gripping block and the pressing member. A reinforcing member 12 through which the optical fiber core wire 11 that has been fusion-connected is inserted is housed and placed in the central heat generating portion 13b that is U-shaped. At this time, the reinforcing member 12 is in contact with the U-shaped curved bottom of the planar heating element 13, but the side surface is in a non-contact state. Further, in the initial state where the reinforcing member 12 is not yet heated and contracted, the contact area of the non-contact portion is relatively large, but when the heating proceeds and the outer diameter of the reinforcing member 12 is reduced, the area of the contact portion is reduced. Decreases and the area of the non-contact portion increases.

抵抗線等の発熱素子23を接合して形成される発熱部分13bは、U字状の湾曲底部を含む中央発熱部分とその両側の側方発熱部分とに分けて考えることができる。ここで、中央発熱部分は上述した接触部分をほぼカバーする領域とし、側方発熱部分は非接触部分をほぼカバーする領域とする。そして、図4(A)に示すように、発熱素子23は、例えば、ジグザグ状に形成して、側方発熱部分の発熱素子の密度を中央発熱部分に比べて粗く形成し、側方発熱部分の温度が中央発熱部分の温度より低くなるようにしている。なお、接触部分と非接触部分の領域の境界は、補強部材12の加熱処理の進行に伴って変化してくるが、特に明確である必要はない。   The heat generating portion 13b formed by joining the heat generating elements 23 such as resistance wires can be divided into a central heat generating portion including a U-shaped curved bottom and side heat generating portions on both sides thereof. Here, the central heat generating portion is a region that substantially covers the contact portion described above, and the side heat generating portion is a region that substantially covers the non-contact portion. As shown in FIG. 4A, the heat generating element 23 is formed in, for example, a zigzag shape, and the density of the heat generating elements in the side heat generating portion is formed to be rougher than that in the central heat generating portion. Is set to be lower than the temperature of the central heating portion. In addition, although the boundary of the area | region of a contact part and a non-contact part changes with progress of the heat processing of the reinforcement member 12, it does not need to be especially clear.

以上の構成において補強部材12は、U字状の湾曲した底部に接触しているため、この中央発熱部分の接触部分からは熱伝導により加熱され、側方発熱部分の非接触部分からは熱輻射により加熱される。この加熱により、熱収縮性チューブを熱収縮させてチューブ内の空隙容積を縮小すると共に、熱溶融性チューブを溶融させて縮小された空隙容積を満たすことができる。   In the above configuration, since the reinforcing member 12 is in contact with the U-shaped curved bottom portion, it is heated by heat conduction from the contact portion of the central heat generation portion, and heat radiation from the non-contact portion of the side heat generation portion. Is heated by. By this heating, the heat-shrinkable tube can be thermally shrunk to reduce the void volume in the tube, and the heat-meltable tube can be melted to fill the reduced void volume.

この加熱において、面状発熱体13の非接触部分からの放熱は、接触部分の放熱と比べて少なく、このため非接触部分は温度上昇しやすい。しかし、上述したように側方の非接触部分に対応する側方発熱部分は、発熱量を少なくして温度上昇が抑制されている。一方、中央発熱部分は側方発熱部分の発熱量よりは大きい発熱量であるが、接触状態にある補強部材12に効率よく熱を伝達するため温度上昇は抑えられる。したがって、接触部分と非接触部分との温度差を小さくすることができ、この結果、発熱部分13b全体の温度を均一にして、面状発熱体13の損傷を防止することが可能となる。   In this heating, heat radiation from the non-contact portion of the planar heating element 13 is less than heat radiation from the contact portion, and therefore the temperature of the non-contact portion is likely to increase. However, as described above, the side heat generation portion corresponding to the non-contact portion on the side is reduced in heat generation and the temperature rise is suppressed. On the other hand, the heat generation amount at the central heat generation portion is larger than the heat generation amount at the side heat generation portion, but since the heat is efficiently transmitted to the reinforcing member 12 in the contact state, the temperature rise is suppressed. Therefore, the temperature difference between the contact portion and the non-contact portion can be reduced, and as a result, the temperature of the entire heat generating portion 13b can be made uniform to prevent the planar heating element 13 from being damaged.

しかし、ここで、発熱部分13bの側方発熱部分と中央発熱部分で、発熱素子23が均一密度で形成され、発熱温度が一様になるようにしたとする。この場合、補強部材12との接触部分では熱伝導により発熱部分13bからの熱が補強部材12に放熱されるが、非接触部分では輻射による放熱のみで熱伝導による放熱と比べると少ない。このため、補強部材12の非接触部分と接触部分とでは大きな温度差が生じ、非接触部分では面状発熱体13の温度が耐熱温度以上に押し上げられる可能性があり、場合によっては焼損する。なお、安全を見越して非接触部分の温度上昇を低く設定すると、全体の発熱温度を低く設定しなければならず、補強部材12に対する加熱処理時間が増大し、生産性が低下する。   However, here, it is assumed that the heat generating elements 23 are formed with a uniform density in the side heat generating portion and the central heat generating portion of the heat generating portion 13b so that the heat generating temperature is uniform. In this case, the heat from the heat generating portion 13b is radiated to the reinforcing member 12 by heat conduction at the contact portion with the reinforcing member 12, but at the non-contact portion, only heat radiation by radiation is less than heat radiation by heat conduction. For this reason, a large temperature difference occurs between the non-contact portion and the contact portion of the reinforcing member 12, and the temperature of the planar heating element 13 may be pushed up to the heat resistant temperature or more in the non-contact portion. Note that if the temperature rise in the non-contact portion is set low in anticipation of safety, the overall heat generation temperature must be set low, the heat treatment time for the reinforcing member 12 increases, and the productivity decreases.

そこで、図4(B)に示すように、発熱部分13bの側方発熱部分と中央発熱部分で、発熱素子23が均一密度で形成され、発熱温度が一様になるように形成されている場合、発熱部分13bのほぼ全域を覆うように、均熱板25を貼りつけるとよい。均熱板25は、アルミニウム又は銅などの熱伝導性がよく可撓性のある金属板を接着等により接合させることで容易に設けることができる。   Therefore, as shown in FIG. 4B, the heat generating elements 23 are formed at a uniform density in the side heat generating portion and the central heat generating portion of the heat generating portion 13b, and the heat generating temperature is formed to be uniform. The soaking plate 25 may be attached so as to cover almost the entire heat generating portion 13b. The soaking plate 25 can be easily provided by bonding a flexible metal plate having good thermal conductivity such as aluminum or copper by bonding or the like.

均熱板25は、U字状に湾曲される内側に設けるのが好ましく、補強部材12は均熱板25に直接接するように収納載置される。補強部材12は、均熱板25を介してU字状の底部からは熱伝導により加熱され、側方からは熱輻射により加熱される。この加熱により、熱収縮性チューブを熱収縮させてチューブ内の空隙容積を縮小すると共に、熱溶融性チューブを溶融させて縮小された空隙容積を満たすことができる。そして、均熱板25を備えることにより、補強部材12の非接触部分と接触部分との温度差を小さくすることができ、この結果、発熱部分13b全体の温度を均一にして、面状発熱体13の損傷を防止することができる。   The soaking plate 25 is preferably provided on the inner side curved in a U shape, and the reinforcing member 12 is housed and placed so as to be in direct contact with the soaking plate 25. The reinforcing member 12 is heated by heat conduction from the U-shaped bottom through the heat equalizing plate 25 and heated by heat radiation from the side. By this heating, the heat-shrinkable tube can be thermally shrunk to reduce the void volume in the tube, and the heat-meltable tube can be melted to fill the reduced void volume. By providing the soaking plate 25, the temperature difference between the non-contact portion and the contact portion of the reinforcing member 12 can be reduced. As a result, the temperature of the entire heat generating portion 13b is made uniform, and the sheet heating element is formed. 13 damage can be prevented.

また、補強部材12の加熱によって、ホットメルト接着樹脂からなる熱溶融性チューブが溶融して外部に垂れ落ちることがある。この場合、面状発熱体13の表面に付着した接着剤を除去するのに苦労することがある。このため、本発明においては、均熱板25の表面にフッ素樹脂のコーティングを施した構成とすることができる。フッ素樹脂の皮膜を設けておくことにより、例え、溶融した接着剤が付着しても容易に除去することができ、作業性をよくすることができる。   Further, the heating of the reinforcing member 12 may cause the hot-melt tube made of hot-melt adhesive resin to melt and sag outside. In this case, it may be difficult to remove the adhesive adhered to the surface of the sheet heating element 13. For this reason, in this invention, it can be set as the structure which gave the coating of the fluororesin to the surface of the soaking | uniform-heating board 25. FIG. By providing a film of fluororesin, for example, even if a molten adhesive adheres, it can be easily removed and workability can be improved.

図5は面状発熱体の他の例を示す図である。この面状発熱体13は、図4(B)の例では発熱部分13bの全体をカバーする1枚の均熱板25を用いるのに対し、軸方向に対して複数に分割され、軸方向には熱的には分離された均熱板25を用いる例である。図4で説明したように、発熱部分13bにおける補強部材12の接触部分と非接触部分は、補強部材12の軸方向と直行する側面方向で生じる。したがって、面状発熱体13の側面方向となる横幅方向で温度が均熱化されればよく、補強部材12の軸方向の中央部と両端部では、温度差をつけることが有利な場合がある。   FIG. 5 is a view showing another example of the planar heating element. In the example of FIG. 4B, the sheet heating element 13 is divided into a plurality of parts in the axial direction, while using a single heat equalizing plate 25 that covers the entire heating part 13b. Is an example in which a soaking plate 25 that is thermally separated is used. As described with reference to FIG. 4, the contact portion and the non-contact portion of the reinforcing member 12 in the heat generating portion 13 b occur in the side surface direction perpendicular to the axial direction of the reinforcing member 12. Therefore, it is only necessary to equalize the temperature in the width direction that is the side surface direction of the planar heating element 13, and it may be advantageous to provide a temperature difference between the central portion and both end portions of the reinforcing member 12 in the axial direction. .

図5(B)は、補強部材12の軸方向の中央部側の加熱温度を高く、両端部側に行くにしたがって加熱温度を低くして使用する例である。図示のような温度パターンは、中央部側の発熱素子23の形成密度を大きくすることにより容易に実現することができる。しかし、通常、両端部側の放熱が大きいことから、発熱素子23の密度が均一に形成されている場合であっても、多少は中央部側の加熱温度が高くなっている。中央部側の加熱温度を高くすることにより、補強部材12は中央部側から加熱収縮が始まり、熱収縮性チューブは順次両端部側に向かって収縮が進行する。また、内部の熱溶融性チューブも中央部側から溶融が始まり、順次両端側に向けて接着剤を押出していくため、補強部材内に気泡が残りにくくなる。このため、気泡による光ファイバに対する側圧発生等が軽減される。   FIG. 5B shows an example in which the heating temperature on the central portion side in the axial direction of the reinforcing member 12 is increased and the heating temperature is lowered as it goes to both end portions. The temperature pattern as shown in the figure can be easily realized by increasing the formation density of the heating elements 23 on the center side. However, since the heat radiation at both end portions is usually large, the heating temperature at the central portion side is somewhat higher even when the density of the heat generating elements 23 is formed uniformly. By increasing the heating temperature on the center side, the reinforcing member 12 starts to heat shrink from the center side, and the heat shrinkable tube sequentially shrinks toward both end sides. In addition, since the internal heat-meltable tube starts to melt from the center side and the adhesive is sequentially pushed out toward the both end sides, it is difficult for bubbles to remain in the reinforcing member. For this reason, generation | occurrence | production of the side pressure with respect to the optical fiber by a bubble, etc. are reduced.

図5(A)に示したように、補強部材12の軸方向に対して熱的に分離され、複数に分割された均熱板25を接合する構成とすることにより、面状発熱体13は、補強部材12の接触部分と非接触部分で生じる側面方向に対しては均熱化されるが、軸方向に対しては温度差をつけることができる。したがって、均熱板を用いて面状発熱体の焼損を防止すると同時に、図5(B)のような温度パターンでの加熱処理を行なうこともできる。   As shown in FIG. 5A, the sheet heating element 13 is formed by joining the heat equalizing plates 25 that are thermally separated in the axial direction of the reinforcing member 12 and divided into a plurality of parts. Although the temperature is uniformed in the side surface direction generated at the contact portion and the non-contact portion of the reinforcing member 12, a temperature difference can be given to the axial direction. Therefore, it is possible to perform the heat treatment with the temperature pattern as shown in FIG. 5B while simultaneously preventing the planar heating element from being burned by using the soaking plate.

図6は、本発明による加熱処理装置を融着接続装置に搭載した構成例を示す図である。図中、30は融着接続装置、31はモニタ装置、32は融着機構部、33はクランプ部を示す。その他の符号は、図1〜図3に用いた符号を用いることにより説明を省略する。融着機構部32(詳細構成は省略)は、アーク放電を用いた単心の融着接続、或いは、多心一括融着接続等が行なえる各種構成のものを用いることができる。本発明では、この融着接続装置30の融着機構部32に対して、上述した加熱処理装置10を平行に設置することで、作業性のよいものとすることができる。   FIG. 6 is a diagram showing a configuration example in which the heat treatment apparatus according to the present invention is mounted on the fusion splicing apparatus. In the figure, 30 is a fusion splicing device, 31 is a monitor device, 32 is a fusion mechanism portion, and 33 is a clamp portion. Description of other reference numerals is omitted by using the reference numerals used in FIGS. As the fusion mechanism part 32 (detailed configuration is omitted), various structures that can perform single-core fusion connection using arc discharge, multi-core batch fusion connection, or the like can be used. In the present invention, the heat treatment device 10 described above is installed in parallel with the fusion mechanism portion 32 of the fusion splicing device 30, thereby improving workability.

単心又は多心の光ファイバ心線11を融着機構部32に設置するに際しては、いずれか一方の光ファイバ心線11に予め補強部材12を通しておく。クランプ部33により光ファイバ心線11を保持整列させ、また、図示しない調心手段により光ファイバ接続端の調心を行なって融着接続が実施される。融着接続の各処理状態はモニタ装置31により、逐次表示される。この後、光ファイバ心線11をクランプ部33から外し、補強部材12を融着接続部分に移動させる。次いで、その状態を維持して隣接設置されている加熱処理装置10のU字状の面状発熱体13内に補強部材12を収納載置し、両側のクランプ台部16で光ファイバ心線11を把持固定し、所定の制御によって加熱処理を実施する。   When the single-core or multi-fiber optical fiber 11 is installed in the fusion mechanism 32, the reinforcing member 12 is passed through one of the optical fiber cores 11 in advance. The optical fiber core wire 11 is held and aligned by the clamp portion 33, and the optical fiber connection end is aligned by an aligning means (not shown) to perform the fusion connection. Each processing state of the fusion splicing is sequentially displayed by the monitor device 31. Thereafter, the optical fiber core wire 11 is removed from the clamp portion 33, and the reinforcing member 12 is moved to the fusion splicing portion. Next, the reinforcing member 12 is housed and placed in the U-shaped planar heating element 13 of the heat treatment apparatus 10 installed adjacently while maintaining the state, and the optical fiber core wire 11 is clamped by the clamp bases 16 on both sides. Is held and fixed, and heat treatment is performed under predetermined control.

本発明の概略を説明する図である。It is a figure explaining the outline of the present invention. 本発明の加熱処理装置の一例を示す図である。It is a figure which shows an example of the heat processing apparatus of this invention. 図2の一部を除去した加熱処理装置の断面構造を示す図である。It is a figure which shows the cross-section of the heat processing apparatus which removed a part of FIG. 本発明による面状発熱体の一例を示す図である。It is a figure which shows an example of the planar heating element by this invention. 本発明による面状発熱体の他の例を示す図である。It is a figure which shows the other example of the planar heating element by this invention. 本発明による加熱処理装置を融着接続装置に搭載した構成例を説明する図である。It is a figure explaining the structural example which mounts the heat processing apparatus by this invention in the fusion splicing apparatus. 従来の光ファイバ補強部材の加熱処理方法を説明する図である。It is a figure explaining the heat processing method of the conventional optical fiber reinforcement member.

符号の説明Explanation of symbols

10…加熱処理装置、11…光ファイバ心線、12…補強部材、13…面状発熱体、13a…非発熱部分、13b…発熱部分、14…ベース部、15…発熱体把持ブロック、15a…把持面、16…クランプ台部、16a…溝部、17…クランプ部片、17a…取手部、17b…クランプパッド、18…水平移動ブロック、19…垂直移動ブロック、20…押え部材、21…カバー、22…回路基板、23…発熱素子、24…絶縁フィルム、25…均熱板、30…融着接続装置、31…モニタ装置、32…融着機構部、33…クランプ部。 DESCRIPTION OF SYMBOLS 10 ... Heat processing apparatus, 11 ... Optical fiber core wire, 12 ... Reinforcing member, 13 ... Planar heating element, 13a ... Non-heating part, 13b ... Heating part, 14 ... Base part, 15 ... Heating body holding block, 15a ... Gripping surface 16 ... Clamp base part 16a ... Groove part 17 ... Clamp part piece 17a ... Handle part 17b ... Clamp pad 18 ... Horizontal movement block 19 ... Vertical movement block 20 ... Presser member 21 ... Cover DESCRIPTION OF SYMBOLS 22 ... Circuit board, 23 ... Heat generating element, 24 ... Insulating film, 25 ... Soaking plate, 30 ... Fusion splicer, 31 ... Monitor apparatus, 32 ... Fusing mechanism part, 33 ... Clamp part.

Claims (9)

光ファイバの融着接続部を保護する光ファイバ補強部材を加熱収縮する加熱処理装置であって、加熱部がU字状に湾曲された可撓性の面状発熱体で形成され、前記面状発熱体の上端部を把持する把持ブロックが位置調整可能に設けられていることを特徴とする光ファイバ補強部材の加熱処理装置。   A heat treatment apparatus for heating and shrinking an optical fiber reinforcing member for protecting a fusion spliced portion of an optical fiber, wherein the heating portion is formed of a flexible planar heating element curved in a U shape, A heat treatment apparatus for an optical fiber reinforcing member, wherein a gripping block for gripping an upper end portion of a heating element is provided so as to be position-adjustable. 前記把持ブロックの位置調整は、前記面状発熱体のU字状の開き間隔を調整するものであることを特徴とする請求項1に記載の光ファイバ補強部材の加熱処理装置。   2. The heat treatment apparatus for an optical fiber reinforcing member according to claim 1, wherein the position adjustment of the gripping block adjusts a U-shaped opening interval of the planar heating element. 前記把持ブロックの位置調整は、前記面状発熱体のU字状の底部高さ位置を調整するものであることを特徴とする請求項1又は2に記載の光ファイバ補強部材の加熱処理装置。   3. The heat treatment apparatus for an optical fiber reinforcing member according to claim 1, wherein the position adjustment of the gripping block adjusts the height of the U-shaped bottom of the planar heating element. 前記面状発熱体の発熱部分におけるU字状の側方発熱部分が中央発熱部分の発熱温度より低くなるように形成されていることを特徴とする請求項1〜3のいずれか1項に記載の光ファイバ補強部材の加熱処理装置。   The U-shaped side heat generation part in the heat generation part of the planar heating element is formed so as to be lower than the heat generation temperature of the central heat generation part. Heat treatment apparatus for optical fiber reinforcement member. 前記面状発熱体の発熱部分に金属板からなる均熱板が接合されていることを特徴とする請求項1〜3のいずれか1項に記載の光ファイバ補強部材の加熱処理装置。   The heat treatment apparatus for an optical fiber reinforcing member according to any one of claims 1 to 3, wherein a heat equalizing plate made of a metal plate is joined to a heat generating portion of the planar heating element. 前記均熱板は、補強部材の軸方向に対して熱的に分離された複数の均熱板で形成されていることを特徴とする請求項5に記載の光ファイバ補強部材の加熱処理装置。   6. The heat treatment apparatus for an optical fiber reinforcing member according to claim 5, wherein the heat equalizing plate is formed of a plurality of heat equalizing plates that are thermally separated in the axial direction of the reinforcing member. 光ファイバの融着接続部を保護する光ファイバ補強部材を加熱収縮する加熱処理方法であって、U字状に湾曲された面状発熱体を前記光ファイバ補強部材の形状にならうように変形調整して前記光ファイバ補強部材を加熱収縮することを特徴とする光ファイバ補強部材の加熱処理方法。   A heat treatment method for heating and shrinking an optical fiber reinforcing member for protecting a fusion spliced portion of an optical fiber, wherein a planar heating element curved in a U shape is deformed to follow the shape of the optical fiber reinforcing member A method for heat-treating an optical fiber reinforcing member, comprising adjusting and heat-shrinking the optical fiber reinforcing member. 前記面状発熱体の上部を位置調整可能な把持ブロックにより把持し、前記把持ブロックの位置を調整することを特徴とする請求項7に記載の光ファイバ補強部材の加熱処理方法。   8. The heat treatment method for an optical fiber reinforcing member according to claim 7, wherein an upper portion of the planar heating element is gripped by a position-adjustable gripping block, and the position of the gripping block is adjusted. 請求項1〜6のいずれか1項に記載の光ファイバ補強部材の加熱処理装置を搭載したことを特徴とする光ファイバ融着接続装置。   An optical fiber fusion splicer comprising the heat treatment device for an optical fiber reinforcing member according to any one of claims 1 to 6.
JP2004067014A 2004-03-10 2004-03-10 Heat treatment apparatus and method of heat treatment for optical fiber reinforcement member, and optical fiber connection apparatus by fusion Pending JP2005257855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004067014A JP2005257855A (en) 2004-03-10 2004-03-10 Heat treatment apparatus and method of heat treatment for optical fiber reinforcement member, and optical fiber connection apparatus by fusion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004067014A JP2005257855A (en) 2004-03-10 2004-03-10 Heat treatment apparatus and method of heat treatment for optical fiber reinforcement member, and optical fiber connection apparatus by fusion

Publications (1)

Publication Number Publication Date
JP2005257855A true JP2005257855A (en) 2005-09-22

Family

ID=35083661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004067014A Pending JP2005257855A (en) 2004-03-10 2004-03-10 Heat treatment apparatus and method of heat treatment for optical fiber reinforcement member, and optical fiber connection apparatus by fusion

Country Status (1)

Country Link
JP (1) JP2005257855A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171132A (en) * 2004-12-14 2006-06-29 Furukawa Electric Co Ltd:The Method for heating optical fiber connection part reinforcement sleeve, and heating device used therefor
WO2007119835A1 (en) 2006-04-13 2007-10-25 Sumitomo Electric Industries, Ltd. Fusion splice machine
JP2008033266A (en) * 2006-06-28 2008-02-14 Chubu Electric Power Co Inc Reinforced sleeve structure body and method of the reinforcing fusion spliced part
JP2010217271A (en) * 2009-03-13 2010-09-30 Furukawa Electric Co Ltd:The Heating apparatus for heat-shrinkable reinforcing sleeve, and fusion splicing machine therefor
CN103376507A (en) * 2013-07-24 2013-10-30 大豪信息技术(威海)有限公司 High-efficiency heating tank for optical fiber fusion splicer and optical fiber fusion splicer
CN103376506A (en) * 2013-07-24 2013-10-30 大豪信息技术(威海)有限公司 High-efficiency heating tank for optical fiber fusion splicer and optical fiber fusion splicer
US9134480B2 (en) 2013-07-24 2015-09-15 Dh Infotech (Weihai) Inc. Efficient heating groove for optical-fiber fusion splicer and optical-fiber fusion splicer
CN106707413A (en) * 2016-12-30 2017-05-24 合肥正阳光电科技有限责任公司 Big-core-diameter optical fiber fused processing platform
WO2020158240A1 (en) 2019-01-30 2020-08-06 Seiオプティフロンティア株式会社 Reinforcement sleeve heating device and fusion splicing machine
JPWO2020071166A1 (en) * 2018-10-02 2021-09-02 住友電工オプティフロンティア株式会社 Reinforcing device for optical fiber fusion splicer and fusion splicer equipped with it

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006171132A (en) * 2004-12-14 2006-06-29 Furukawa Electric Co Ltd:The Method for heating optical fiber connection part reinforcement sleeve, and heating device used therefor
JP4532251B2 (en) * 2004-12-14 2010-08-25 古河電気工業株式会社 Heating method of optical fiber connection portion reinforcing sleeve and heating apparatus used therefor
WO2007119835A1 (en) 2006-04-13 2007-10-25 Sumitomo Electric Industries, Ltd. Fusion splice machine
EP2006718A2 (en) * 2006-04-13 2008-12-24 Sumitomo Electric Industries, Ltd. Fusion splice machine
EP2006718A4 (en) * 2006-04-13 2012-06-27 Sumitomo Electric Industries Fusion splice machine
JP2008033266A (en) * 2006-06-28 2008-02-14 Chubu Electric Power Co Inc Reinforced sleeve structure body and method of the reinforcing fusion spliced part
JP2010217271A (en) * 2009-03-13 2010-09-30 Furukawa Electric Co Ltd:The Heating apparatus for heat-shrinkable reinforcing sleeve, and fusion splicing machine therefor
CN103376506A (en) * 2013-07-24 2013-10-30 大豪信息技术(威海)有限公司 High-efficiency heating tank for optical fiber fusion splicer and optical fiber fusion splicer
CN103376507A (en) * 2013-07-24 2013-10-30 大豪信息技术(威海)有限公司 High-efficiency heating tank for optical fiber fusion splicer and optical fiber fusion splicer
CN103376507B (en) * 2013-07-24 2015-01-14 大豪信息技术(威海)有限公司 High-efficiency heating tank for optical fiber fusion splicer and optical fiber fusion splicer
US9134480B2 (en) 2013-07-24 2015-09-15 Dh Infotech (Weihai) Inc. Efficient heating groove for optical-fiber fusion splicer and optical-fiber fusion splicer
KR101915592B1 (en) * 2013-07-24 2018-11-06 이노 인스트루먼트 (차이나). 인코퍼레이션 Efficient heating groove for optical-fiber fusion splicer and optical-fiber fusion splicer
CN106707413A (en) * 2016-12-30 2017-05-24 合肥正阳光电科技有限责任公司 Big-core-diameter optical fiber fused processing platform
JPWO2020071166A1 (en) * 2018-10-02 2021-09-02 住友電工オプティフロンティア株式会社 Reinforcing device for optical fiber fusion splicer and fusion splicer equipped with it
WO2020158240A1 (en) 2019-01-30 2020-08-06 Seiオプティフロンティア株式会社 Reinforcement sleeve heating device and fusion splicing machine
KR20210119973A (en) 2019-01-30 2021-10-06 스미토모 덴코 옵티프론티어 가부시키가이샤 Reinforcement sleeve heating device and fusion splicer

Similar Documents

Publication Publication Date Title
US7212718B2 (en) Apparatus and method for heat-treatment of optical fiber reinforcing member and optical fiber fusion splicing apparatus
JP5233511B2 (en) Protective sleeve, protective sleeve manufacturing apparatus and manufacturing method
JP3293594B2 (en) Apparatus and method for heating protective member of optical fiber fusion spliced part
US4039309A (en) Method and apparatus for breaking optical fibers
JP2010249967A (en) Holder, fusion splicer, and fusion splicing method
JP2005257855A (en) Heat treatment apparatus and method of heat treatment for optical fiber reinforcement member, and optical fiber connection apparatus by fusion
WO1990016003A2 (en) Method and apparatus for forming high strength splices in optical fibers
JP5053318B2 (en) Heat shrinkable reinforcing sleeve heating device and fusion splicer
JP5407540B2 (en) Holder, fusion splicer and fusion splicing method
JP6397599B1 (en) Fusion splicer and optical fiber reinforcing method
JP2005148170A (en) Heat-treatment device and heat treatment of optical fiber reinforcing member and optical fiber fusion splicing device
JP4165375B2 (en) Heat treatment apparatus and heat treatment method for optical fiber reinforcing member, and optical fiber fusion splicing apparatus
JPH10332979A (en) Device and method for heating heat-shrinkable sleeve for optical fiber connection part reinforcement
JP4161821B2 (en) Fusion splicing reinforcement method
JP2014006430A (en) Protective sleeve
JP2011112785A (en) Optical fiber fusion splicing machine and fusion splicing method
EP0406339A1 (en) Mounting optical waveguides
JP4532251B2 (en) Heating method of optical fiber connection portion reinforcing sleeve and heating apparatus used therefor
JPS63271208A (en) Method for reinforcing light-fusing coupler
JP2000347067A (en) Heating device for heat shrinkable sleeve
JPH09230160A (en) Heater for optical fiber juncture reinforcing member
JPS61245114A (en) Fusion splicing device for optical fiber
JPH07134218A (en) Fusion splicing device for multiple optical fiber
JPS6224204A (en) Method and apparatus for reinforcing optical fiber juncture
JPS62166304A (en) Remover for intermediate coating of optical fiber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060525

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909