JP2005257073A - Fluid bearing device for motor, motor equipped with the fluid bearing device, and recording disc drive device - Google Patents

Fluid bearing device for motor, motor equipped with the fluid bearing device, and recording disc drive device Download PDF

Info

Publication number
JP2005257073A
JP2005257073A JP2005027314A JP2005027314A JP2005257073A JP 2005257073 A JP2005257073 A JP 2005257073A JP 2005027314 A JP2005027314 A JP 2005027314A JP 2005027314 A JP2005027314 A JP 2005027314A JP 2005257073 A JP2005257073 A JP 2005257073A
Authority
JP
Japan
Prior art keywords
bearing
peripheral surface
shaft
dynamic pressure
axial direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005027314A
Other languages
Japanese (ja)
Other versions
JP2005257073A5 (en
Inventor
Tadashi Akahori
忠 赤堀
Rikuro Obara
陸郎 小原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minebea Co Ltd
Original Assignee
Minebea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minebea Co Ltd filed Critical Minebea Co Ltd
Priority to JP2005027314A priority Critical patent/JP2005257073A/en
Publication of JP2005257073A publication Critical patent/JP2005257073A/en
Publication of JP2005257073A5 publication Critical patent/JP2005257073A5/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Mounting Of Bearings Or Others (AREA)
  • Rotational Drive Of Disk (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fluid bearing device for a motor capable of being decreased in size, decreased in thickness, having a high bearing rigidity, and rotation precision, and capable of reliably locking a shaft member and a bearing member against an impact, and being easy to confirm an injection amount of a lubricant. <P>SOLUTION: In the fluid bearing device for a motor so constituted that a capillary seal part is formed on the one end side of a lubricant filler in a microgap including a dynamic groove formed between the shaft member and the bearing member, and in a position corresponding to a capillary sealer on the shaft member side, an annular member is fitted in the shaft member, and in a position corresponding to a capillary sealer on the bearing member side, the annular member is fitted in the bearing member. A taper or a step is formed respectively on the outer peripheral surface of the annular member on the shaft member side and the inner peripheral surface of the annular member on the shaft member side. The inner and the outer peripheral surfaces are situated opposite to each other in a close vicinity in an axial direction and a radial direction. The shaft member and the bearing member are locked at each other to form the capillary sealer. An axial dynamic bearing part is formed between the annular member on the shaft member side and one end face of the bearing member. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本願の発明は、小型化、薄型化されたスピンドルモータ等のモータに使用されて好適であって、軸受剛性と回転精度に優れ、外部振動や衝撃に対してロータ部材の係止を確実に行なえ、しかも、潤滑剤の注入量の確認も容易なモータの流体軸受装置、該流体軸受装置を備えたモータ並びに記録ディスク駆動装置に関する。   The invention of the present application is suitable for use in a motor such as a spindle motor that has been reduced in size and thickness, has excellent bearing rigidity and rotational accuracy, and can reliably lock the rotor member against external vibration and impact. In addition, the present invention relates to a hydrodynamic bearing device for a motor in which the amount of lubricant injected can be easily checked, a motor including the hydrodynamic bearing device, and a recording disk drive device.

近年、ハードディスク駆動装置は、益々小型化、薄型化し、ハードディスクの記憶容量の大容量化とも相俟って、益々高速度化が進んでいる。そして、その駆動源をなすスピンドルモータの軸受として使用される流体軸受装置には、一層の小型化、薄型化とともに、さらに高度の軸受剛性と回転精度、信頼性が強く求められるようになっている。そこで、これらの要求に答えるべく、従来より、種々の改善がなされている。   In recent years, hard disk drives have become increasingly smaller and thinner, and the speed of the hard disk drive has been increasing with the increase in the storage capacity of the hard disk. In addition, the hydrodynamic bearing device used as a bearing of the spindle motor that forms the driving source is required to have a further high degree of bearing rigidity, rotational accuracy, and reliability as well as further miniaturization and thickness reduction. . Therefore, various improvements have been made so far to meet these requirements.

例えば、特開2002−266878号公報には、相対回転可能に装着された軸部材と軸受部材との間に形成された軸受部を含む微小隙間内に、潤滑剤が連続的に充填され、該微小隙間内における潤滑剤充填部分の少なくとも一端側に、潤滑剤の外方漏出を防止するための流体封止部が、毛細管構造をなすようにして形成され、該軸部材における流体封止部より外方側の部位には、回転ハブが接合されて成るモータの流体軸受装置において、軸部材における流体封止部に対応する位置には、環状部材が嵌着され、該環状部材の軸方向一端側における半径方向への延在表面および該延在表面の外縁から軸方向に連続する外周面と、軸受部材側における半径方向への延在表面および該延在表面の外縁から軸方向に連続する内周面とが、互いに軸方向および半径方向に近接して対向配置されることにより、前記流体封止部が画成されるとともに、環状部材の軸方向他端側における半径方向への延在表面が回転ハブの一端面に当接していることにより、回転ハブが軸方向に支持されるようになっており、さらに、軸部材における流体封止部に対応する位置と反対側の端部位置には、スラストプレートが嵌着された流体軸受装置が記載されている。   For example, in Japanese Patent Application Laid-Open No. 2002-266878, a lubricant is continuously filled in a minute gap including a bearing portion formed between a shaft member and a bearing member that are mounted so as to be relatively rotatable. A fluid sealing portion for preventing leakage of the lubricant is formed on at least one end side of the lubricant filling portion in the minute gap so as to form a capillary structure. From the fluid sealing portion in the shaft member, In the hydrodynamic bearing device of the motor in which the rotating hub is joined to the outer side portion, an annular member is fitted at a position corresponding to the fluid sealing portion in the shaft member, and one end of the annular member in the axial direction is fitted A radially extending surface on the side and an outer peripheral surface that is axially continuous from the outer edge of the extending surface, and a radially extending surface on the bearing member side and an outer peripheral edge of the extending surface that are axially continuous from the outer edge The inner peripheral surface is axial In addition, the fluid sealing portion is defined by being disposed close to each other in the radial direction, and the radially extending surface on the other axial end side of the annular member abuts one end surface of the rotating hub. As a result of the contact, the rotating hub is supported in the axial direction, and a thrust plate is fitted at an end position opposite to the position corresponding to the fluid sealing portion of the shaft member. A hydrodynamic bearing device is described.

この公報に記載のものは、前記のように構成されているので、その流体封止部により、潤滑剤の貯留空間が半径方向および軸方向に増大される。また、この流体封止部を通して潤滑剤を微小隙間内に注入した直後において、潤滑剤の注入量を容易に目視することが可能になり、その注入量の調整が容易になる。また、環状部材の軸方向他端側における半径方向への延在表面が回転ハブの一端面に当接していることにより、回転ハブが軸方向に支持されて、その抜け強度および加工・組立性が改善される。   Since what is described in this publication is configured as described above, the storage space for the lubricant is increased in the radial direction and the axial direction by the fluid sealing portion. Further, immediately after the lubricant is injected into the minute gap through the fluid sealing portion, the amount of the lubricant injected can be easily visually checked, and the adjustment of the injection amount is facilitated. In addition, since the radially extending surface of the annular member on the other end side in the axial direction is in contact with one end surface of the rotating hub, the rotating hub is supported in the axial direction. Is improved.

さらに、この公報に記載のものは、軸部材における流体封止部に対応する位置と反対側の端部位置に嵌着されたスラストプレートの軸方向両端面と、これらの各面にそれぞれ対向する軸受部材端部窪み部の底面およびカウンタープレートの内面との間の微小隙間内に充填された潤滑剤により、スラスト動圧軸受部が形成されるとともに、軸部材と回転ハブとを含む回転部全体の軸受部材に対する抜け止めがなされるようになっている。   Further, the one described in this publication is opposed to both end surfaces in the axial direction of the thrust plate fitted at the end portion opposite to the position corresponding to the fluid sealing portion in the shaft member, respectively. The thrust dynamic pressure bearing portion is formed by the lubricant filled in the minute gap between the bottom surface of the bearing member end recess and the inner surface of the counter plate, and the entire rotating portion including the shaft member and the rotating hub The bearing member is prevented from coming off.

しかしながら、この公報に記載のものは、軸部材における流体封止部に対応する位置と反対側の端部位置に嵌着されたスラストプレートの存在により、流体軸受装置の薄型化が阻まれる構造になっており、しかも、ラジアル動圧軸受部の軸方向長さも、それだけ短縮されざるを得ないので、小型化、薄型化された流体軸受装置において高い軸受剛性と回転精度とを得る点で、なお、改善すべき点が残されていた。   However, the one described in this publication has a structure in which the thinning of the hydrodynamic bearing device is hindered by the presence of a thrust plate fitted at the end position opposite to the position corresponding to the fluid sealing portion of the shaft member. In addition, since the axial length of the radial dynamic pressure bearing portion must be shortened accordingly, it is still possible to obtain high bearing rigidity and rotational accuracy in a compact and thin hydrodynamic bearing device. There was still a point to be improved.

また、特許第3155529号公報には、ロータハブ(回転ハブ)の上壁部下面と筒状の支持部材(軸受スリーブ)の上端面との間に形成された微小隙間に潤滑油が充填されて、そこにスラスト動圧軸受部が形成され、シャフトの先端部には、リング状部材が嵌着されて、これが支持部材の中空部(軸受孔)のシャフトの先端部に対向する部分に形成された環状溝に嵌まり合うことによって、シャフトの抜け止めがなされるようにされた流体軸受装置が記載されている。   Further, in Japanese Patent No. 3155529, lubricating oil is filled in a minute gap formed between the lower surface of the upper wall portion of the rotor hub (rotating hub) and the upper end surface of the cylindrical support member (bearing sleeve), A thrust dynamic pressure bearing portion is formed there, and a ring-shaped member is fitted to the tip portion of the shaft, and this is formed in a portion facing the tip portion of the shaft of the hollow portion (bearing hole) of the support member. A hydrodynamic bearing device is described in which a shaft is prevented from coming off by fitting into an annular groove.

しかしながら、このものにあっては、ロータハブの上壁部下面が、直接スラスト動圧軸受部を構成する一方の摺動面とされているので、ロータハブの上壁部全体を丈夫なものにせざるを得ず、ロータハブの薄型化の妨げとなっている。また、スラストプレートが省略されているとはいえ、シャフトの先端部にリング状部材を備えているので、依然として、流体軸受装置の小型化、薄型化を阻む要因となっている。   However, in this case, since the lower surface of the upper wall portion of the rotor hub is directly formed as one sliding surface constituting the thrust dynamic pressure bearing portion, the entire upper wall portion of the rotor hub must be made strong. This has hindered the thinning of the rotor hub. Even though the thrust plate is omitted, the ring-shaped member is provided at the tip of the shaft, which still prevents the fluid bearing device from being reduced in size and thickness.

さらに、特開2001−103723号公報には、潤滑油を含むラジアル軸受部が設けられたステータ組と、該ラジアル軸受部を介して回転可能に支承されたロータ組とを備えたモータにおいて、ロータ組の回転によって該ロータ組とステータ組との間に形成される負圧領域と、モータの外部空間とを連通させる空気導入穴が、該ロータ組に設けられた、モータの流体軸受装置が記載されている。そして、このものにおいては、この空気導入穴は、潤滑油を流体軸受部に注入するための注入孔としても使用できるようになっている。また、回転軸の先端部には、ロータ組の抜け防止用の止めリングが嵌着されている。   Further, Japanese Patent Application Laid-Open No. 2001-103723 discloses a motor including a stator assembly provided with a radial bearing portion containing lubricating oil and a rotor assembly rotatably supported via the radial bearing portion. A motor hydrodynamic bearing device in which an air introduction hole for communicating a negative pressure region formed between the rotor set and the stator set by rotation of the set and an external space of the motor is provided in the rotor set. Has been. And in this thing, this air introduction hole can be used now also as an injection hole for inject | pouring lubricating oil into a fluid bearing part. A stop ring for preventing the rotor assembly from coming off is fitted to the tip of the rotating shaft.

この公報に記載のものは、前記のように構成されているので、薄型化、偏平化されたモータにおいて、高速回転時にステータ組とロータ組との間に形成される負圧領域の負圧力が強くなろうとしても、その負圧領域内にモータ外部の空気を空気導入穴から導入して、その負圧力を緩和することができ、これにより、軸受部等からの潤滑油の外部漏出などの不都合を防止することができる。また、空気導入穴は、潤滑油の注入孔としても兼用されるので、潤滑油の注入作業を簡易化することができ、生産性が向上して、モータの長寿命化を図ることができる。さらに、止めリングがラジアル軸受部(軸受スリーブ)下端と係合することにより、ロータ組のステータ組に対する抜け止めも可能にされている。   Since the motor described in this publication is configured as described above, in a thin and flat motor, the negative pressure in the negative pressure region formed between the stator assembly and the rotor assembly during high-speed rotation is reduced. Even if it is going to be strong, air outside the motor can be introduced into the negative pressure area from the air introduction hole, and the negative pressure can be relieved. Inconvenience can be prevented. Further, since the air introduction hole is also used as a lubricating oil injection hole, the lubricating oil injection operation can be simplified, the productivity can be improved, and the motor life can be extended. Further, the retaining ring is engaged with the lower end of the radial bearing portion (bearing sleeve), so that the rotor assembly can be prevented from coming off from the stator assembly.

しかしながら、この公報に記載のものは、潤滑剤の貯留空間を増大させる手段を何ら備えないし、ロータ組を構成するロータハブの抜け強度や加工・組立性に対しても無関心である。さらに、スラスト軸受部がフレーム基板(ベース部材)より外方に突出しているので、流体軸受装置の薄型化、偏平化の点で、なお改善の余地が残されたものとなっている。
特開2002−266878号公報 特許第3155529号公報 特開2001−103723号公報
However, the device described in this publication does not include any means for increasing the storage space for the lubricant, and is indifferent to the removal strength of the rotor hub constituting the rotor assembly and the processing / assembly performance. Furthermore, since the thrust bearing portion protrudes outward from the frame substrate (base member), there is still room for improvement in terms of thinning and flattening the hydrodynamic bearing device.
JP 2002-266878 A Japanese Patent No. 3155529 JP 2001-103723 A

本願の発明は、従来のモータの流体軸受装置が有する前記のような問題点を解決して、小型化、薄型化を一層進めることができ、しかも、このようにして小型化、薄型化されたモータの流体軸受装置において、高い軸受剛性と回転精度とを達成することができ、同時に、外部振動や衝撃に対してロータ部材の係止を確実に行なえ、潤滑剤の注入量の確認も容易なモータの流体軸受装置、該流体軸受装置を備えたモータ並びに記録ディスク駆動装置を提供することを課題とする。   The invention of the present application solves the above-mentioned problems of the conventional hydrodynamic bearing device of a motor, and can further reduce the size and the thickness, and the size and the thickness are reduced in this way. In the hydrodynamic bearing device of the motor, high bearing rigidity and rotational accuracy can be achieved, and at the same time, the rotor member can be reliably locked against external vibration and impact, and the amount of lubricant injected can be easily confirmed. It is an object of the present invention to provide a hydrodynamic bearing device for a motor, a motor including the hydrodynamic bearing device, and a recording disk driving device.

前記のような課題は、本願の各請求項に記載された次のような発明により解決される。 すなわち、その請求項1に記載された発明は、相対回転可能に装着された軸部材と軸受部材との間に形成された動圧溝を含む微小隙間内に、潤滑剤が連続的に充填され、前記微小隙間内における潤滑剤充填部分の一端側に、前記潤滑剤の外方漏出を防止するためのキャピラリー・シール部が形成されて成るモータの流体軸受装置において、前記軸部材側の前記キャピラリー・シール部に対応する位置には、軸部材側環状部材が前記軸部材に嵌着され、前記軸受部材側の前記キャピラリー・シール部に対応する位置には、軸受部材側環状部材が前記軸受部材の一端面凹部に嵌着され、前記軸部材側環状部材の外周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、前記軸受部材側環状部材の内周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、前記軸部材側環状部材の外周面と前記軸受部材側環状部材の内周面とが、軸方向および半径方向に近接して対向配置されて、前記軸部材と前記軸受部材とが互いに抜け止めされるとともに、前記キャピラリー・シール部が形成され、前記軸部材の外周面と前記軸受部材の内周面とのいずれかには、ラジアル方向の荷重を受ける動圧を発生させるための動圧溝が形成され、前記軸部材側環状部材の軸方向他端側における半径方向への延在表面と、該延在表面と対向する前記軸受部材の一端面とのいずれかには、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝が形成されたことを特徴とするモータの流体軸受装置である。   The above problems can be solved by the following invention described in each claim of the present application. That is, in the invention described in claim 1, the lubricant is continuously filled in the minute gap including the dynamic pressure groove formed between the shaft member and the bearing member that are mounted so as to be relatively rotatable. In the hydrodynamic bearing device for a motor in which a capillary seal portion for preventing the lubricant from leaking out is formed on one end side of the lubricant filling portion in the minute gap, the capillary on the shaft member side The shaft member side annular member is fitted to the shaft member at a position corresponding to the seal portion, and the bearing member side annular member is located at the position corresponding to the capillary seal portion on the bearing member side. A taper or a step is formed on the outer circumferential surface of the shaft member-side annular member, the diameter of which decreases toward the one end side in the axial direction. , Toward one end in the axial direction A taper or a step that is reduced in diameter is formed, and an outer peripheral surface of the shaft member-side annular member and an inner peripheral surface of the bearing member-side annular member are arranged to face each other in the axial direction and the radial direction, The shaft member and the bearing member are prevented from coming off from each other, the capillary seal portion is formed, and a radial load is applied to either the outer peripheral surface of the shaft member or the inner peripheral surface of the bearing member. A dynamic pressure groove for generating a dynamic pressure to be received is formed, a radially extending surface on the other axial end side of the shaft member side annular member, and one end surface of the bearing member facing the extending surface The hydrodynamic bearing device for a motor is characterized in that a dynamic pressure groove for generating a dynamic pressure that receives a load in the axial direction is formed.

請求項1に記載された発明は、前記のように構成されており、軸方向一端側に向かう程縮径するテーパもしくは段が形成された軸部材側環状部材の外周面と、軸方向一端側に向かう程縮径するテーパもしくは段が形成された軸受部材側環状部材の内周面とが、軸方向および半径方向に近接して対向配置されて、軸部材と軸受部材とが互いに抜け止めされるとともに、キャピラリー・シール部が形成される。また、軸部材側環状部材の軸方向他端側における半径方向への延在表面と、該延在表面と対向する軸受部材の一端面とのいずれかには、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝が形成されるようになっている。   The invention described in claim 1 is configured as described above, and has an outer peripheral surface of a shaft-member-side annular member formed with a taper or a step whose diameter is reduced toward one axial end, and one axial end. The inner circumferential surface of the bearing member-side annular member formed with a taper or a step whose diameter is reduced toward the shaft is disposed to face each other in the axial direction and in the radial direction so that the shaft member and the bearing member are prevented from coming off from each other. At the same time, a capillary seal portion is formed. Further, a dynamic pressure that receives a load in the axial direction is applied to either the radially extending surface on the other axial end side of the shaft member side annular member or one end surface of the bearing member facing the extending surface. A dynamic pressure groove for generating the above is formed.

請求項1に記載された発明は、このような構成により、軸部材のロータ部材もしくはベース部材が固着される側と反対側にリング状の抜け止め部材やスラストプレートを嵌着させることを要せずに、軸部材側環状部材、軸受部材側環状部材および軸受部材の3つの部材のみの組合せにより、外部振動や衝撃に際しての軸部材と軸受部材相互間の抜け止め、アキシャル(スラスト)動圧軸受部の形成を同時に可能にすることができ、併せて、潤滑剤の外方漏出を防止するためのキャピラリー・シール部の形成を可能にすることができる。
これにより、流体軸受装置の小型化、薄型化を一層進めることができ、しかも、このようにして小型化、薄型化された流体軸受装置において、軸部材のストレート部分の長さおよびラジアル動圧軸受部の軸方向長さを比較的大きく取ることができるので、高い軸受剛性と回転精度とを達成することができる。
The invention described in claim 1 requires that a ring-shaped retaining member and a thrust plate be fitted to the side of the shaft member opposite to the side to which the rotor member or base member is fixed. In addition, the shaft member side annular member, the bearing member side annular member, and the bearing member are used in combination to prevent the shaft member and the bearing member from coming off during an external vibration or impact, and an axial (thrust) dynamic pressure bearing. The part can be formed at the same time, and at the same time, the capillary seal part for preventing the lubricant from leaking out can be formed.
As a result, the hydrodynamic bearing device can be further reduced in size and thickness, and in the hydrodynamic bearing device thus reduced in size and thickness, the length of the straight portion of the shaft member and the radial dynamic pressure bearing are provided. Since the axial length of the portion can be made relatively large, high bearing rigidity and rotational accuracy can be achieved.

また、軸部材側環状部材の外周面に段が形成され、軸受部材側環状部材の内周面に段が形成される場合には、軸部材側環状部材の外周面と軸受部材側環状部材の内周面とが軸方向および半径方向に近接して対向配置されるとき、軸部材側環状部材の上下の遊びを容易に設定することができる構造が得られる。   Further, when a step is formed on the outer peripheral surface of the shaft member side annular member and a step is formed on the inner peripheral surface of the bearing member side annular member, the outer peripheral surface of the shaft member side annular member and the bearing member side annular member When the inner peripheral surface is disposed so as to oppose each other in the axial direction and the radial direction, a structure in which the vertical play of the shaft member-side annular member can be easily set is obtained.

また、この流体軸受装置は、そのままの状態で流体軸受装置として完成しており、これをそのままの状態でモータのベース部材の筒状軸受保持部内もしくはモータのロータ部材の中央孔部内に嵌入して、そこに嵌着させれば、モータの流体軸受装置として使用することができ、そのままの状態で品質検査を行うことができて、便利である。 The hydrodynamic bearing device is completed as it is as a hydrodynamic bearing device, and is fitted in the cylindrical bearing holding portion of the base member of the motor or the central hole portion of the rotor member of the motor as it is. If fitted there, it can be used as a hydrodynamic bearing device for a motor, and quality inspection can be performed as it is, which is convenient.

また、その請求項2に記載された発明は、相対回転可能に装着された軸部材と軸受部材との間に形成された動圧溝を含む微小隙間内に、潤滑剤が連続的に充填され、前記微小隙間内における潤滑剤充填部分の一端側に、前記潤滑剤の外方漏出を防止するためのキャピラリー・シール部が形成されて成るモータの流体軸受装置において、前記軸部材側の前記キャピラリー・シール部に対応する位置には、軸部材側環状部材が前記軸部材に嵌着され、前記軸受部材側の前記キャピラリー・シール部に対応する位置には、軸受部材側環状部材が前記軸受部材の一端面に軸方向から当接するようにして設けられ、前記軸受部材と前記軸受部材側環状部材とを被うようにして、キャップ状の有底筒状部材が設けられ、前記軸受部材側環状部材は、前記有底筒状部材の開口部に嵌着されており、前記軸部材側環状部材の外周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、前記軸受部材側環状部材の内周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、前記軸部材側環状部材の外周面と前記軸受部材側環状部材の内周面とが、軸方向および半径方向に近接して対向配置されて、前記軸部材と前記軸受部材とが互いに抜け止めされるとともに、前記キャピラリー・シール部が形成され、前記軸部材の外周面と前記軸受部材の内周面とのいずれかには、ラジアル方向の荷重を受ける動圧を発生させるための動圧溝が形成され、前記軸部材側環状部材の軸方向他端側における半径方向への延在表面と、該延在表面と対向する前記軸受部材の一端面とのいずれかには、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝が形成されたことを特徴とするモータの流体軸受装置である。   In the invention described in claim 2, the lubricant is continuously filled in a minute gap including a dynamic pressure groove formed between the shaft member and the bearing member mounted so as to be relatively rotatable. In the hydrodynamic bearing device for a motor in which a capillary seal portion for preventing the lubricant from leaking out is formed on one end side of the lubricant filling portion in the minute gap, the capillary on the shaft member side The shaft member side annular member is fitted to the shaft member at a position corresponding to the seal portion, and the bearing member side annular member is located at the position corresponding to the capillary seal portion on the bearing member side. A cap-shaped bottomed cylindrical member is provided so as to cover the bearing member and the bearing member side annular member, and the bearing member side annular The member is A taper or a step is formed on the outer peripheral surface of the shaft member-side annular member, the diameter of which decreases toward the one end side in the axial direction. The peripheral surface is formed with a taper or a step that decreases in diameter toward one end in the axial direction, and the outer peripheral surface of the shaft member-side annular member and the inner peripheral surface of the bearing member-side annular member are in the axial direction and the radial direction. The shaft member and the bearing member are prevented from coming off from each other, and the capillary seal portion is formed, and the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing member One of them is provided with a dynamic pressure groove for generating a dynamic pressure that receives a load in the radial direction, a radially extending surface on the other axial end side of the shaft member side annular member, and the extension Between one end surface of the bearing member facing the surface The or Re is a fluid bearing apparatus of the motor, wherein the dynamic pressure grooves are formed for generating a dynamic pressure that receives a load of axial direction.

請求項2に記載された発明は、前記のように構成されており、軸受部材側のキャピラリー・シール部に対応する位置には、軸受部材側環状部材が軸受部材の一端面に軸方向から当接するようにして設けられ、軸受部材と軸受部材側環状部材とを被うようにして、有底筒状部材が設けられ、軸受部材側環状部材は、該有底筒状部材の開口部に嵌着されているので、潤滑剤の潤滑剤充填部分から外部への漏出は、この有底筒状部材により略完全に防止される。また、これにより、有底筒状部材や軸受部材側環状部材をプレス加工により製作することが可能な形状にすることができ、軸受部材の構造も最も簡単化されて、モータの製作コストを低減することができる。
その他、前記した、請求項1に記載された発明が奏する効果と同様の効果を奏することができる。
The invention described in claim 2 is configured as described above, and the annular member on the bearing member side contacts the one end surface of the bearing member from the axial direction at a position corresponding to the capillary seal portion on the bearing member side. A bottomed cylindrical member is provided so as to cover the bearing member and the bearing member-side annular member, and the bearing member-side annular member is fitted into the opening of the bottomed cylindrical member. Thus, leakage of the lubricant from the lubricant filling portion to the outside is almost completely prevented by the bottomed cylindrical member. In addition, the bottomed cylindrical member and the bearing member side annular member can be made into a shape that can be manufactured by press working, the structure of the bearing member is also simplified, and the manufacturing cost of the motor is reduced. can do.
In addition, the same effects as the effects described in the first aspect of the present invention can be achieved.

さらに、その請求項3に記載された発明は、相対回転可能に装着された軸部材と軸受部材との間に形成された動圧溝を含む微小隙間内に、潤滑剤が連続的に充填され、前記微小隙間内における潤滑剤充填部分の一端側に、前記潤滑剤の外方漏出を防止するためのキャピラリー・シール部が形成されて成るモータの流体軸受装置において、前記軸部材側の前記キャピラリー・シール部に対応する位置には、軸部材側環状部材が前記軸部材に嵌着され、前記軸受部材側の前記キャピラリー・シール部に対応する位置には、軸受部材側スリーブ付き環状部材が設けられ、前記軸受部材側スリーブ付き環状部材のスリーブ部は、前記軸受部材の一端縮径部に嵌着されており、前記軸受部材の他端縮径部を被うようにして、浅いキャップ状の皿状部材が設けられ、前記軸受部材の中央径大部は、ベース部材の筒状軸受保持部もしくはロータ部材の中央孔部に嵌着され、前記軸部材側環状部材の外周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、前記軸受部材側スリーブ付き環状部材のスリーブ部を除く環状部の内周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、前記軸部材側環状部材の外周面と前記軸受部材側スリーブ付き環状部材のスリーブ部を除く環状部の内周面とが、軸方向および半径方向に近接して対向配置されて、前記軸部材と前記軸受部材とが互いに抜け止めされるとともに、前記キャピラリー・シール部が形成され、前記軸部材の外周面と前記軸受部材の内周面とのいずれかには、ラジアル方向の荷重を受ける動圧を発生させるための動圧溝が形成され、前記軸部材側環状部材の軸方向他端側における半径方向への延在表面と、該延在表面と対向する前記軸受部材の一端面とのいずれかには、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝が形成されたことを特徴とするモータの流体軸受装置である。   Further, according to the third aspect of the present invention, the lubricant is continuously filled in the minute gap including the dynamic pressure groove formed between the shaft member and the bearing member mounted so as to be relatively rotatable. In the hydrodynamic bearing device for a motor in which a capillary seal portion for preventing the lubricant from leaking out is formed on one end side of the lubricant filling portion in the minute gap, the capillary on the shaft member side A shaft member-side annular member is fitted to the shaft member at a position corresponding to the seal portion, and a bearing member-side annular member is provided at a position corresponding to the capillary seal portion on the bearing member side. The sleeve portion of the annular member with the bearing member side sleeve is fitted to one diameter-reduced portion of the bearing member, and has a shallow cap shape so as to cover the other-diameter reduced portion of the bearing member. The dish-shaped member The large-diameter portion of the bearing member is fitted into the cylindrical bearing holding portion of the base member or the central hole portion of the rotor member, and on the outer peripheral surface of the shaft-member-side annular member on one end side in the axial direction. A taper or a step that is reduced in diameter toward the end is formed, and a taper or a step that is reduced in diameter toward the one end in the axial direction is formed on the inner peripheral surface of the annular portion excluding the sleeve portion of the annular member with the bearing member side sleeve. The outer peripheral surface of the annular member-side annular member and the inner peripheral surface of the annular portion excluding the sleeve portion of the annular member with the bearing-member-side sleeve are arranged to face each other in the axial direction and in the radial direction so as to face each other. And the bearing member are prevented from coming off from each other, the capillary seal portion is formed, and either the outer peripheral surface of the shaft member or the inner peripheral surface of the bearing member is subjected to a dynamic load. Pressure generated A dynamic pressure groove is formed, and the axially extending surface on the other axial end side of the shaft member side annular member and either one end surface of the bearing member facing the extending surface Is a hydrodynamic bearing device for a motor, in which a dynamic pressure groove for generating a dynamic pressure that receives a load in an axial direction is formed.

請求項3に記載された発明は、前記のように構成されており、軸受部材側のキャピラリー・シール部に対応する位置には、軸受部材側スリーブ付き環状部材が設けられ、該軸受部材側スリーブ付き環状部材のスリーブ部は、軸受部材の一端縮径部に嵌着されており、軸受部材の他端縮径部を被うようにして、皿状部材が設けられているので、潤滑剤の潤滑剤充填部分から外部への漏出は、軸受部材側スリーブ付き環状部材と軸受部材との接触部から外部への漏出も、皿状部材と軸受部材の他端面との接触部から外部への漏出も、共にこれら軸受部材側スリーブ付き環状部材と皿状部材とにより、それぞれ略完全に防止される。   The invention described in claim 3 is configured as described above, and an annular member with a bearing member side sleeve is provided at a position corresponding to the capillary seal portion on the bearing member side, and the bearing member side sleeve is provided. The sleeve portion of the ring-shaped annular member is fitted to one diameter-reduced portion of the bearing member, and the dish-shaped member is provided so as to cover the other-diameter reduced portion of the bearing member. Leakage from the lubricant-filled portion to the outside is also caused by leakage from the contact portion between the annular member with the bearing member side sleeve and the bearing member to the outside from the contact portion between the plate-like member and the other end surface of the bearing member. Both are substantially completely prevented by the annular member with the bearing member side sleeve and the dish-shaped member.

また、軸受部材の中央径大部は、ベース部材の筒状軸受保持部もしくはロータ部材の中央孔部に嵌着されているので、精度の高い部品同志の嵌着が可能になり、モータの軸の倒れ等の精度を維持することが容易で、回転精度を一層向上させることができる。
その他、前記した、請求項1に記載された発明が奏する効果と同様の効果を奏することができる。
In addition, since the large-diameter portion of the bearing member is fitted into the cylindrical bearing holding portion of the base member or the central hole portion of the rotor member, it is possible to fit parts with high accuracy, and the shaft of the motor Therefore, it is easy to maintain the accuracy of the tilting and the like, and the rotational accuracy can be further improved.
In addition, the same effects as the effects described in the first aspect of the present invention can be achieved.

また、その請求項4に記載された発明は、相対回転可能に装着された軸部材と軸受部材との間に形成された動圧溝を含む微小隙間内に、潤滑剤が連続的に充填され、前記微小隙間内における潤滑剤充填部分の一端側に、前記潤滑剤の外方漏出を防止するためのキャピラリー・シール部が形成されて成るモータの流体軸受装置において、前記軸部材側の前記キャピラリー・シール部に対応する位置には、軸部材側環状部材が前記軸部材に嵌着され、前記軸受部材側の前記キャピラリー・シール部に対応する位置には、軸受部材側環状部材が前記軸受部材の一端面に軸方向から当接するようにして設けられ、前記軸受部材と前記軸受部材側環状部材とを被うようにして、筒状部材が設けられ、前記軸受部材側環状部材は、前記筒状部材の軸方向一端側開口部に嵌着されており、前記筒状部材の軸方向他端側開口部には、前記軸受部材の軸受孔の開放端側を塞ぐカバープレートが嵌着され、前記軸部材側環状部材の外周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、前記軸受部材側環状部材の内周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、前記軸部材側環状部材の外周面と前記軸受部材側環状部材の内周面とが、軸方向および半径方向に近接して対向配置されて、前記軸部材と前記軸受部材とが互いに抜け止めされるとともに、前記キャピラリー・シール部が形成され、前記軸部材の外周面と前記軸受部材の内周面とのいずれかには、ラジアル方向の荷重を受ける動圧を発生させるための動圧溝が形成され、前記軸部材側環状部材の軸方向他端側における半径方向への延在表面と、該延在表面と対向する前記軸受部材の一端面とのいずれかには、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝が形成されたことを特徴とするモータの流体軸受装置である。   In the invention described in claim 4, a lubricant is continuously filled in a minute gap including a dynamic pressure groove formed between a shaft member and a bearing member mounted so as to be relatively rotatable. In the hydrodynamic bearing device for a motor in which a capillary seal portion for preventing the lubricant from leaking out is formed on one end side of the lubricant filling portion in the minute gap, the capillary on the shaft member side The shaft member side annular member is fitted to the shaft member at a position corresponding to the seal portion, and the bearing member side annular member is located at the position corresponding to the capillary seal portion on the bearing member side. A cylindrical member is provided so as to cover the bearing member and the bearing member-side annular member, and the bearing member-side annular member is provided with the cylindrical member. Axis direction A cover plate is fitted to the opening on the other end side in the axial direction of the cylindrical member, and a cover plate for closing the open end side of the bearing hole of the bearing member is fitted to the side member, and the shaft member side annular member A taper or step that is reduced in diameter toward one end in the axial direction is formed on the outer peripheral surface of the shaft, and a taper or step that decreases in diameter toward one end in the axial direction is formed on the inner peripheral surface of the bearing member-side annular member. And the outer peripheral surface of the shaft member-side annular member and the inner peripheral surface of the bearing member-side annular member are disposed opposite to each other in the axial direction and in the radial direction so that the shaft member and the bearing member are The capillary seal portion is formed and is prevented from coming off, and a dynamic pressure is generated on one of the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing member to generate a dynamic pressure that receives a radial load. A pressure groove is formed, and the shaft member side annular member A dynamic pressure for generating a dynamic pressure that receives an axial load is applied to either the radially extending surface on the other end side in the axial direction or the one end surface of the bearing member facing the extending surface. A hydrodynamic bearing device for a motor, wherein a groove is formed.

請求項4に記載された発明は、前記のように構成されており、軸受部材側のキャピラリー・シール部に対応する位置には、軸受部材側環状部材が軸受部材の一端面に軸方向から当接するようにして設けられ、軸受部材と軸受部材側環状部材とを被うようにして、筒状部材が設けられ、軸受部材側環状部材は、該筒状部材の軸方向一端側開口部に嵌着されており、該筒状部材の軸方向他端側開口部には、軸受部材の軸受孔の開放端側を塞ぐカバープレートが嵌着されているので、筒状部材や軸受部材側環状部材をプレス加工により製作することが可能な形状にすることができ、また、軸受部材や筒状部材の構造も最も簡単化されて、モータの製作コストを低減することができる。
その他、前記した、請求項1に記載された発明が奏する効果と同様の効果を奏することができる。
The invention described in claim 4 is configured as described above, and the annular member on the bearing member side contacts the one end surface of the bearing member from the axial direction at a position corresponding to the capillary seal portion on the bearing member side. A cylindrical member is provided so as to cover the bearing member and the bearing member-side annular member, and the bearing member-side annular member is fitted in the opening on one axial end side of the cylindrical member. Since the cover plate that closes the open end side of the bearing hole of the bearing member is fitted to the opening in the other axial end of the cylindrical member, the cylindrical member or the bearing member side annular member Can be made into a shape that can be manufactured by pressing, and the structure of the bearing member and the cylindrical member is also simplified most, and the manufacturing cost of the motor can be reduced.
In addition, the same effects as the effects described in the first aspect of the present invention can be achieved.

さらに、その請求項5に記載されたように請求項1に記載の発明を構成することにより、軸受部材側環状部材は、軸受部材に溶着される。この結果、軸受部材側環状部材の固着の強度が高まるので、外部振動や衝撃に際しての軸部材と軸受部材相互間の抜け止めを確実に行なうことができる。   Further, by configuring the invention according to claim 1 as described in claim 5, the bearing member-side annular member is welded to the bearing member. As a result, the strength of fixing of the bearing member side annular member is increased, so that it is possible to reliably prevent the shaft member and the bearing member from coming off during external vibration or impact.

また、その請求項6に記載されたように請求項1に記載の発明を構成することにより、軸受部材の軸受孔の開放端側を塞ぐカバープレートと軸受部材とが、同一材料の一体加工により製作される。これにより、潤滑剤の潤滑剤充填部分から外部への漏出が、キャピラリー・シール部を介してのわずかの漏出の可能性を除いては、完全に防止される。また、軸受部材の構造が簡単化され、部品点数が減って、組立て工数を低減することができる。   Further, by configuring the invention according to claim 1 as described in claim 6, the cover plate that closes the open end side of the bearing hole of the bearing member and the bearing member are integrally processed by the same material. Produced. As a result, leakage of the lubricant from the lubricant filling portion to the outside is completely prevented except for the possibility of slight leakage through the capillary seal portion. Further, the structure of the bearing member is simplified, the number of parts is reduced, and the assembly man-hour can be reduced.

また、その請求項7に記載されたように請求項1ないし請求項4のいずれかに記載の発明を構成することにより、軸部材側環状部材は、焼入れされた鋼で製作され、ロータ部材の端面もしくはベース部材の底面に当接して、該ロータ部材を軸方向に支持しているようにされるかもしくは該ベース部材により軸方向に支持されるようにされる。これにより、小型化、薄型化されたモータにおいて、ロータ部材が薄くされたとしても、該ロータ部材は、硬化された剛性の高い軸部材側環状部材により軸方向に堅固に支持されることとなるので、ロータ部材にディスク等が載置されて該ロータ部材にクランプされるときにも、該ロータ部材の変形を防止することが可能になる。また、軸部材は、硬化された剛性の高い軸部材側環状部材により軸方向に堅固に支持されることとなるので、ベース部材に固定される軸部材の安定度をより増大させることができる。   Further, by configuring the invention according to any one of claims 1 to 4 as described in claim 7, the shaft member side annular member is made of hardened steel, and the rotor member The rotor member is supported in the axial direction by contacting the end surface or the bottom surface of the base member, or is supported in the axial direction by the base member. As a result, even if the rotor member is thinned in a motor that is reduced in size and thickness, the rotor member is firmly supported in the axial direction by the hardened and rigid shaft member-side annular member. Therefore, even when a disk or the like is placed on the rotor member and clamped on the rotor member, it is possible to prevent the rotor member from being deformed. Further, since the shaft member is firmly supported in the axial direction by the hardened and highly rigid shaft member-side annular member, the stability of the shaft member fixed to the base member can be further increased.

さらに、その請求項8に記載されたように請求項7に記載の発明を構成することにより、軸部材側環状部材は、熱処理後に、そのロータ部材の端面もしくはベース部材の底面に当接する軸方向一端面が研磨仕上げされる。これにより、ロータ部材もしくはベース部材に対する軸部材の取付け精度をより向上させることができる。   Further, by configuring the invention according to claim 7 as described in claim 8, the shaft member side annular member is axially contacted with the end surface of the rotor member or the bottom surface of the base member after the heat treatment. One end surface is polished. Thereby, the attachment precision of the shaft member with respect to a rotor member or a base member can be improved more.

また、その請求項9に記載されたように請求項7または請求項8に記載の発明を構成することにより、軸部材側環状部材は、熱処理後に、その軸受部材の一端面と対向する軸方向他端側における半径方向への延在表面が研磨仕上げされる。これにより、回転軸線に対して偏りなくスラスト動圧を発生させて、回転精度を高めることができる。   Further, by configuring the invention according to claim 7 or claim 8 as described in claim 9, the shaft-member-side annular member is axially opposed to one end surface of the bearing member after the heat treatment. The radially extending surface on the other end side is polished. Thereby, a thrust dynamic pressure can be generated without being biased with respect to the rotation axis, and the rotation accuracy can be improved.

さらに、その請求項10に記載されたように請求項1ないし請求項4のいずれかに記載の発明を構成することにより、ロータ部材もしくはベース部材の、キャピラリー・シール部と軸方向に対向する部分には、複数の潤滑剤注入口が貫通形成される。この結果、モータ完成品でも、潤滑剤の界面を目視することが可能になり、潤滑剤の注入量の確認が容易になり、また、ここから潤滑剤を注入することも可能になるので、モータの品質管理が容易になる。さらに、この複数の潤滑剤注入口は、ロータ部材の周方向に等間隔に形成されるので、ロータ部材の回転のバランスを崩すこともない。   Further, by configuring the invention according to any one of claims 1 to 4 as described in claim 10, a portion of the rotor member or the base member facing the capillary seal portion in the axial direction A plurality of lubricant inlets are formed through. As a result, even in the finished motor product, it becomes possible to visually check the interface of the lubricant, it is easy to check the amount of lubricant injected, and it is also possible to inject lubricant from here. Quality control becomes easier. Further, since the plurality of lubricant inlets are formed at equal intervals in the circumferential direction of the rotor member, the balance of rotation of the rotor member is not lost.

また、その請求項11に記載されたように請求項1ないし請求項4のいずれかに記載の発明を構成することにより、軸部材側環状部材と軸部材とが、同一材料の一体加工により製作される。これにより、部品点数が減って、組立て工数を低減することができる。   Further, by configuring the invention according to any one of claims 1 to 4 as described in claim 11, the shaft member-side annular member and the shaft member are manufactured by integral processing of the same material. Is done. Thereby, the number of parts can be reduced and the assembly man-hour can be reduced.

また、その請求項12に記載されたように請求項4に記載の発明を構成することにより、軸受部材側環状部材と筒状部材とが、同一材料の一体加工により製作される。これにより、部品点数が減って、組立て工数を低減することができる。さらに、この一体加工は、プレス加工とすることができるので、モータの製作コストを低く維持することができる。   Further, by configuring the invention according to claim 4 as described in claim 12, the bearing member-side annular member and the cylindrical member are manufactured by integral processing of the same material. Thereby, the number of parts can be reduced and the assembly man-hour can be reduced. Furthermore, since this integrated process can be a press process, the manufacturing cost of the motor can be kept low.

さらに、その請求項13に記載されたように請求項1ないし請求項4のいずれかに記載の発明を構成することにより、軸部材側環状部材の外周面に形成されたテーパと、軸受部材側環状部材の内周面もしくは軸受部材側スリーブ付き環状部材のスリーブ部を除く環状部の内周面に形成されたテーパとは、軸方向一端側に向かう程それらの間の半径方向隙間が拡大するようにして形成される。この結果、潤滑剤の貯留空間を増大させることができるとともに、キャピラリー・シール部における潤滑剤の界面変動を緩和して、潤滑剤の外部への漏出を防止することができる。   Furthermore, by forming the invention according to any one of claims 1 to 4 as described in claim 13, a taper formed on the outer peripheral surface of the shaft member side annular member, and the bearing member side The taper formed on the inner peripheral surface of the annular member or the inner peripheral surface of the annular portion excluding the sleeve portion of the annular member with the bearing member-side sleeve is such that the radial gap therebetween increases toward the one end side in the axial direction. Thus formed. As a result, the lubricant storage space can be increased, and the fluctuation of the lubricant interface at the capillary seal portion can be mitigated to prevent leakage of the lubricant to the outside.

また、その請求項14に記載されたように請求項1ないし請求項4のいずれかに記載の発明を構成することにより、軸部材側環状部材の外周面に形成された段と、軸受部材側環状部材の内周面もしくは軸受部材側スリーブ付き環状部材のスリーブ部を除く環状部の内周面に形成された段とは、それらの段の軸方向一端側の一半外周面部分と一半内周面部分との間の半径方向隙間が軸方向一端側に向かう程拡大するようにして形成される。この結果、潤滑剤の貯留空間を増大させることができるとともに、キャピラリー・シール部における潤滑剤の界面変動を緩和して、潤滑剤の外部への漏出を防止することができる。   Further, by configuring the invention according to any one of claims 1 to 4 as described in claim 14, a step formed on the outer peripheral surface of the shaft member side annular member, and the bearing member side The steps formed on the inner peripheral surface of the annular member or on the inner peripheral surface of the annular portion excluding the sleeve portion of the annular member with the bearing member side sleeve are the one half outer peripheral surface portion and one half inner periphery of one end in the axial direction of these steps. The gap in the radial direction between the surface portions is formed so as to increase toward the one end side in the axial direction. As a result, the lubricant storage space can be increased, and the fluctuation of the lubricant interface at the capillary seal portion can be mitigated to prevent leakage of the lubricant to the outside.

また、その請求項15に記載されたように請求項14に記載の発明を構成することにより、軸部材側環状部材の外周面に形成された段の軸方向一端側の一半外周面部分と、前記軸受部材側環状部材の内周面もしくは前記軸受部材側スリーブ付き環状部材のスリーブ部を除く環状部の内周面に形成された段の軸方向一端側の一半内周面部分とのいずれかには、キャピラリー・シール部における潤滑剤の界面変動を緩和し得る環状溝が形成される。この結果、前記した、請求項14に記載された発明が奏する効果が一層助長される。   Further, by configuring the invention according to claim 14 as described in claim 15, a half outer peripheral surface portion on one end side in the axial direction of the step formed on the outer peripheral surface of the shaft member-side annular member; Either the inner peripheral surface of the bearing member-side annular member or a half inner peripheral surface portion on one end side in the axial direction of the step formed on the inner peripheral surface of the annular portion excluding the sleeve portion of the annular member with the bearing member-side sleeve Is formed with an annular groove that can alleviate the interface fluctuation of the lubricant in the capillary seal portion. As a result, the effect produced by the invention described in claim 14 is further promoted.

さらに、また、その請求項16に記載されたように請求項2または請求項3のいずれかに記載の発明を構成することにより、軸受部材の他端面と有底筒状部材もしくは皿状部材との間に形成された微小隙間と、キャピラリー・シール部と、の間を連通する連通路が形成される。これにより、軸部材の他端面(先端面)と有底筒状部材もしくは皿状部材との間の微小隙間や軸受部材の他端面と有底筒状部材もしくは皿状部材との間の微小隙間内に残留し易い空気を、連通路およびキャピラリー・シール部を介して外部に逃がすことができ、また、潤滑剤充填部分の全域に渡って負圧の発生領域がなくなるので、軸受の信頼性を向上させることができる。   Further, as described in claim 16, by configuring the invention according to claim 2 or claim 3, the other end surface of the bearing member and the bottomed cylindrical member or the dish-like member A communication passage communicating between the minute gap formed between the two and the capillary seal portion is formed. Thereby, a minute gap between the other end face (tip face) of the shaft member and the bottomed cylindrical member or the dish-like member, or a minute gap between the other end face of the bearing member and the bottomed cylindrical member or the dish-like member. Air that tends to remain inside can be released to the outside through the communication path and capillary seal, and there is no negative pressure generation area over the entire area where the lubricant is filled. Can be improved.

また、その請求項17に記載された発明は、請求項1ないし請求項16のいずれかに記載のモータの流体軸受装置を備えたスピンドルモータであって、前記ベース部材に固定されたステータと、前記ベース部材に対して回転自在に設けられ、前記軸部材の一端部に嵌着されるか前記軸受部材に直接もしくは前記有底筒状部材または前記筒状部材を介して間接に嵌着された回転要素をなすロータ部材と、該ロータ部材の外周筒状部に嵌着され、前記ステータと協働して回転磁界を発生するロータ磁石とから成るロータとを備え、前記流体軸受装置は、前記ロータの回転を支持しており、前記ロータは、前記流体軸受装置内のアキシャル方向の荷重を受ける動圧を発生させるための動圧溝で発生する動圧が作用する方向とは反対方向に磁気力で吸引され、これらの動圧と磁気力とがバランスすることによって、その荷重が支持されていることを特徴とするスピンドルモータである。   The invention described in claim 17 is a spindle motor comprising the hydrodynamic bearing device for a motor according to any one of claims 1 to 16, wherein the stator is fixed to the base member, The base member is rotatably provided and is fitted to one end of the shaft member, or directly or indirectly to the bearing member through the bottomed tubular member or the tubular member. The hydrodynamic bearing device includes: a rotor member that forms a rotating element; and a rotor that is fitted to an outer cylindrical portion of the rotor member and that includes a rotor magnet that generates a rotating magnetic field in cooperation with the stator. The rotation of the rotor is supported, and the rotor is magnetic in a direction opposite to the direction in which the dynamic pressure generated in the dynamic pressure groove for generating the dynamic pressure that receives the load in the axial direction in the hydrodynamic bearing device acts. Suck with force Is, by the with these dynamic pressure and the magnetic force balancing a spindle motor, characterized in that the load is supported.

請求項17に記載された発明は、前記のように構成されているので、請求項1ないし請求項16に記載のモータの流体軸受装置がそれぞれ奏する効果を奏することができるとともに、磁気力が、これら流体軸受装置内のアキシャル方向の荷重を受ける動圧を発生させるための動圧溝で発生する動圧力と釣り合って、該動圧溝が臨む微小間隙部の隙間を適切に保ち、軸体の相対回転の安定化を図ることができ、動力消費が少なく、信頼性の高いスピンドルモータを得ることができる。   Since the invention described in claim 17 is configured as described above, the hydrodynamic bearing device of the motor according to any one of claims 1 to 16 can achieve the effects respectively, and the magnetic force is In balance with the dynamic pressure generated in the dynamic pressure groove for generating the dynamic pressure that receives the load in the axial direction in these hydrodynamic bearing devices, the gap of the micro gap facing the dynamic pressure groove is appropriately maintained, and the shaft body Relative rotation can be stabilized, and a spindle motor with low power consumption and high reliability can be obtained.

また、その請求項18に記載された発明は、請求項17に記載のスピンドルモータを備えた記録ディスク駆動装置であって、記録ディスクに情報を書き込みおよび/または読み出しするためのヘッドを備え、前記スピンドルモータが、前記記録ディスクを回転駆動するようにされていることを特徴とする記録ディスク駆動装置である。   The invention described in claim 18 is a recording disk drive device comprising the spindle motor according to claim 17, comprising a head for writing and / or reading information on the recording disk, A recording disk drive device characterized in that a spindle motor is configured to rotationally drive the recording disk.

請求項18に記載された発明は、前記のように構成されているので、請求項17に記載のスピンドルモータが奏する効果を奏することができるとともに、小型化、薄型化された記録ディスク駆動装置であっても、流体軸受装置のラジアル動圧軸受部の軸方向長さが比較的大きくできるため、高い軸受剛性と回転精度とを確保することができ、流体軸受装置からの潤滑油の外方漏出や飛散によるスピンドルモータ内及び装置内汚染を効果的に防止することができる信頼性の高い記録ディスク駆動装置を低コストで提供することが可能になる。   Since the invention described in claim 18 is configured as described above, the effect of the spindle motor described in claim 17 can be achieved, and the recording disk drive apparatus can be reduced in size and thickness. Even in such a case, since the axial length of the radial dynamic pressure bearing portion of the hydrodynamic bearing device can be made relatively large, high bearing rigidity and rotational accuracy can be ensured, and leakage of lubricating oil from the hydrodynamic bearing device can be ensured. It is possible to provide a highly reliable recording disk drive apparatus that can effectively prevent contamination in the spindle motor and the apparatus due to scattering and scattering at low cost.

前記のとおり、本願の発明のモータの流体軸受装置によれば、軸部材のロータ部材もしくはベース部材が固着される側と反対側にリング状の抜け止め部材やスラストプレートを嵌着させることを要せずに、軸部材側環状部材、軸受部材側環状部材および軸受部材の3つの部材のみの組合せにより、外部振動や衝撃に際しての軸部材と軸受部材相互間の抜け止め、アキシャル動圧軸受部の形成を同時に可能にすることができ、併せて、潤滑剤の外方漏出を防止するためのキャピラリー・シール部の形成を可能にすることができる。これにより、流体軸受装置の小型化、薄型化を一層進めることができ、しかも、このようにして小型化、薄型化された流体軸受装置において、軸部材のストレート部分の長さおよびラジアル動圧軸受部の軸方向長さを比較的大きく取ることができるので、高い軸受剛性と回転精度とを達成することができる。   As described above, according to the hydrodynamic bearing device for a motor of the present invention, it is necessary to fit a ring-shaped retaining member and a thrust plate on the opposite side of the shaft member to the side on which the rotor member or base member is fixed. Without using the shaft member side annular member, the bearing member side annular member, and the bearing member alone, it is possible to prevent the shaft member and the bearing member from slipping out in the event of external vibration or impact, and the axial dynamic pressure bearing portion. The formation can be simultaneously performed, and at the same time, it is possible to form a capillary seal portion for preventing the lubricant from leaking out. As a result, the hydrodynamic bearing device can be further reduced in size and thickness, and in the hydrodynamic bearing device thus reduced in size and thickness, the length of the straight portion of the shaft member and the radial dynamic pressure bearing are provided. Since the axial length of the portion can be made relatively large, high bearing rigidity and rotational accuracy can be achieved.

また、軸部材側環状部材の外周面に段が形成され、軸受部材側環状部材の内周面に段が形成される場合には、軸部材側環状部材の外周面と軸受部材側環状部材の内周面とが軸方向および半径方向に近接して対向配置されるとき、軸部材側環状部材の上下の遊びを容易に設定することができる構造が得られる。   Further, when a step is formed on the outer peripheral surface of the shaft member side annular member and a step is formed on the inner peripheral surface of the bearing member side annular member, the outer peripheral surface of the shaft member side annular member and the bearing member side annular member When the inner peripheral surface is disposed so as to oppose each other in the axial direction and the radial direction, a structure in which the vertical play of the shaft member-side annular member can be easily set is obtained.

また、軸受部材側のキャピラリー・シール部に対応する位置には、軸受部材側環状部材が軸受部材の一端面に軸方向から当接するようにして設けられ、軸受部材と軸受部材側環状部材とを被うようにして、キャップ状の有底筒状部材が設けられ、軸受部材側環状部材が、該有底筒状部材の開口部に嵌着される場合には、潤滑剤の潤滑剤充填部分から外部への漏出は、この有底筒状部材により略完全に防止される。また、これにより、有底筒状部材や軸受部材側環状部材をプレス加工により製作することが可能な形状にすることができるので、モータの製作コストを低減することができる。   Further, the bearing member side annular member is provided at a position corresponding to the capillary seal portion on the bearing member side so as to abut on one end surface of the bearing member from the axial direction, and the bearing member and the bearing member side annular member are connected to each other. When the cap-shaped bottomed cylindrical member is provided and the bearing member-side annular member is fitted into the opening of the bottomed cylindrical member, the lubricant-filled portion of the lubricant Leakage from the outside to the outside is almost completely prevented by this bottomed cylindrical member. In addition, the bottomed cylindrical member and the bearing member side annular member can be formed into a shape that can be manufactured by press working, so that the manufacturing cost of the motor can be reduced.

さらに、軸受部材側のキャピラリー・シール部に対応する位置には、軸受部材側スリーブ付き環状部材が設けられ、該軸受部材側スリーブ付き環状部材のスリーブ部が、軸受部材の一端縮径部に嵌着され、軸受部材の他端縮径部を被うようにして、浅いキャップ状の皿状部材が設けられ、軸受部材の中央径大部は、ベース部材の筒状軸受保持部もしくはロータ部材の中央孔部に嵌着される場合には、潤滑剤の潤滑剤充填部分から外部への漏出は、軸受部材側スリーブ付き環状部材と軸受部材との接触部から外部への漏出も、皿状部材と軸受部材の他端面との接触部から外部への漏出も、共にこれら軸受部材側スリーブ付き環状部材と皿状部材とにより、それぞれ略完全に防止される。また、軸受部材の中央径大部は、ベース部材の筒状軸受保持部もしくはロータ部材の中央孔部に嵌着されるので、精度の高い部品同志の嵌着が可能になり、モータの軸の倒れ等の精度を維持することが容易で、回転精度を一層向上させることができる。   Further, an annular member with a bearing member side sleeve is provided at a position corresponding to the capillary seal portion on the bearing member side, and the sleeve portion of the annular member with the bearing member side sleeve is fitted to the one end reduced diameter portion of the bearing member. A shallow cap-shaped dish-shaped member is provided so as to cover the other end diameter-reduced portion of the bearing member, and the large central diameter portion of the bearing member is the cylindrical bearing holding portion of the base member or the rotor member. When fitted in the central hole, the leakage of the lubricant from the lubricant-filled portion to the outside is caused by the leakage from the contact portion between the bearing member side annular member and the bearing member to the outside. Also, leakage from the contact portion between the bearing member and the other end surface of the bearing member to the outside is almost completely prevented by the annular member with the bearing member side sleeve and the dish-like member. In addition, since the large-diameter portion of the bearing member is fitted into the cylindrical bearing holding portion of the base member or the central hole portion of the rotor member, it is possible to fit parts with high accuracy, and the motor shaft It is easy to maintain accuracy such as falling down, and the rotational accuracy can be further improved.

また、軸部材側環状部材が焼入れされた鋼で製作され、ロータ部材の端面もしくはベース部材の底面に当接して、該ロータ部材を軸方向に支持しているようにされるかもしくは前記ベース部材により軸方向に支持されるようにされる場合には、小型化、薄型化されたモータにおいて、ロータ部材が薄くされたとしも、該ロータ部材は、硬化された剛性の高い軸部材側環状部材により軸方向に堅固に支持されることとなるので、ロータ部材にディスク等が載置されて該ロータ部材にクランプされるときにも、該ロータ部材の変形を防止することが可能になる。また、軸部材は、硬化された剛性の高い軸部材側環状部材により軸方向に堅固に支持されることとなるので、ベース部材に固定される軸部材の安定度をより増大させることができる   Further, the shaft member-side annular member is made of hardened steel and is in contact with the end surface of the rotor member or the bottom surface of the base member so as to support the rotor member in the axial direction or the base member. If the rotor member is thinned in a motor that has been reduced in size and thickness, the rotor member is a hardened and highly rigid shaft member-side annular member. Therefore, even when a disk or the like is placed on the rotor member and clamped to the rotor member, the rotor member can be prevented from being deformed. Further, since the shaft member is firmly supported in the axial direction by the hardened and highly rigid shaft member-side annular member, the stability of the shaft member fixed to the base member can be further increased.

また、ロータ部材もしくはベース部材の、キャピラリー・シール部と軸方向に対向する部分に、複数の潤滑剤注入口が貫通形成される場合には、モータ完成品でも、潤滑剤の界面を目視することが可能になり、潤滑剤の注入量の確認が容易になり、また、ここから潤滑剤を注入することも可能になるので、モータの品質管理が容易になる。さらに、この複数の潤滑剤注入口は、ロータ部材の周方向に等間隔に形成されるので、ロータ部材の回転のバランスを崩すこともない。   In addition, when multiple lubricant inlets are formed through the rotor member or base member in the axially opposite portion of the capillary seal portion, the lubricant interface should be visually observed even in the finished motor product. This makes it possible to easily check the amount of lubricant injected, and also to inject the lubricant from here, facilitating quality control of the motor. Further, since the plurality of lubricant inlets are formed at equal intervals in the circumferential direction of the rotor member, the balance of rotation of the rotor member is not lost.

さらに、また、以上のような種々の効果を奏するモータの流体軸受装置を備えたスピンドルモータ、該スピンドルモータを備えた記録ディスク駆動装置とすることによって、回転性能(軸受剛性、回転精度)に優れ、動力消費が少なく、信頼性の高い、小型化、薄型化されたスピンドルモータおよび記録ディスク駆動装置を提供することができる。
その他、前記したような種々の効果を奏することができる。
Furthermore, a spindle motor equipped with a hydrodynamic bearing device for a motor having various effects as described above, and a recording disk drive device equipped with the spindle motor are excellent in rotational performance (bearing rigidity, rotational accuracy). Therefore, it is possible to provide a spindle motor and a recording disk driving device that consumes less power and has high reliability, and is reduced in size and thickness.
In addition, various effects as described above can be achieved.

相対回転可能に装着された軸部材と軸受部材との間に形成された動圧溝を含む微小隙間内に、潤滑剤が連続的に充填され、該微小隙間内における潤滑剤充填部分の一端側に、潤滑剤の外方漏出を防止するためのキャピラリー・シール部が形成されて成るモータの流体軸受装置において、軸部材側のキャピラリー・シール部に対応する位置には、軸部材側環状部材を軸部材に嵌着し、軸受部材側のキャピラリー・シール部に対応する位置には、軸受部材側環状部材を軸受部材の一端面凹部に嵌着し、軸部材側環状部材の外周面には、軸方向一端側に向かう程縮径するテーパもしくは段を形成し、軸受部材側環状部材の内周面には、軸方向一端側に向かう程縮径するテーパもしくは段を形成し、軸部材側環状部材の外周面と軸受部材側環状部材の内周面とを、軸方向および半径方向に近接して対向配置して、軸部材および該軸部材と軸受部材とが互いに抜け止めされるようにするとともに、キャピラリー・シール部を形成する。軸部材の外周面と軸受部材の内周面とのいずれかには、ラジアル方向の荷重を受ける動圧を発生させるための動圧溝を形成し、軸部材側環状部材の軸方向他端側における半径方向への延在表面と、該延在表面と対向する軸受部材の一端面とのいずれかには、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝を形成する。   A lubricant is continuously filled in a minute gap including a dynamic pressure groove formed between a shaft member and a bearing member that are mounted so as to be relatively rotatable, and one end side of a lubricant filling portion in the minute gap. Further, in the hydrodynamic bearing device of the motor in which a capillary seal portion for preventing the lubricant from leaking out is formed, the shaft member side annular member is provided at a position corresponding to the capillary seal portion on the shaft member side. The bearing member side annular member is fitted into the recess on the one end surface of the bearing member at a position corresponding to the capillary seal portion on the bearing member side, and the outer peripheral surface of the shaft member side annular member is A taper or step that decreases in diameter toward one end in the axial direction is formed, and a taper or step that decreases in diameter toward one end in the axial direction is formed on the inner peripheral surface of the bearing member-side annular member. Of the outer peripheral surface of the member and the annular member on the bearing member side A peripheral surface, and opposed in close proximity to the axial and radial arrangement, as well as to the shaft member and the shaft member and the bearing member is retained to each other, forming a capillary seal portion. Either one of the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing member is formed with a dynamic pressure groove for generating a dynamic pressure that receives a load in the radial direction, and the other axial end side of the shaft member-side annular member A dynamic pressure groove for generating a dynamic pressure that receives a load in the axial direction is formed on one of the radially extending surface and one end surface of the bearing member facing the extending surface.

そして、軸部材側環状部材は、焼入れされた鋼で製作し、ロータ部材の端面もしくはベース部材の底面に当接させて、ロータ部材を軸方向に支持するようにするかもしくはベース部材により軸方向に支持されるようにする。また、ロータ部材もしくはベース部材の、キャピラリー・シール部と軸方向に対向する部分には、周方向に等間隔に複数の潤滑剤注入口を貫通形成する。   The shaft member-side annular member is made of hardened steel and is brought into contact with the end surface of the rotor member or the bottom surface of the base member to support the rotor member in the axial direction or axially by the base member. To be supported. In addition, a plurality of lubricant injection holes are formed through the rotor member or the base member at a portion facing the capillary seal portion in the axial direction at equal intervals in the circumferential direction.

次に、本願の発明の第1の実施例(実施例1)について説明する。
図1は、本実施例1のモータの縦断面図、図2は、その部分拡大図である。本実施例1において、モータ1は、ハードディスク駆動装置の駆動源として用いられるスピンドルモータであり、そのベース部材2の中央部に直立して設けられた筒状軸受保持部3には、流体軸受装置の軸受部材4をなす筒状スリーブが嵌着されている。そして、この軸受部材(スリーブ)4の中心部に貫通形成された軸受孔4aには、回転軸をなす軸部材(シャフト)5が回転自在に軸受支持されている。
Next, a first embodiment (embodiment 1) of the present invention will be described.
FIG. 1 is a longitudinal sectional view of the motor according to the first embodiment, and FIG. 2 is a partially enlarged view thereof. In the first embodiment, the motor 1 is a spindle motor used as a drive source of the hard disk drive device, and the cylindrical bearing holding portion 3 provided upright at the central portion of the base member 2 includes a fluid dynamic bearing device. A cylindrical sleeve forming the bearing member 4 is fitted. A shaft member (shaft) 5 that forms a rotation shaft is rotatably supported in a bearing hole 4 a formed through the center of the bearing member (sleeve) 4.

軸部材5の図1において上方の縮径された一端部には、図示されないディスクを載置して回転するロータ部材(ロータハブ)6が嵌着されている。ディスクは、ロータ部材6のフランジ部6bの表面上に載置されて、図示されないクランプ部材により、ロータ部材6上に固定される。軸部材5の一端部側に形成されたねじ孔5aは、これらクランプ部材とロータ部材6とを軸部材5にねじ止めするための孔である。軸受部材4の軸受孔4aの開放端側は、カバープレート7により閉鎖されている。   A rotor member (rotor hub) 6 that rotates by placing a disk (not shown) is fitted on one end of the shaft member 5 that is reduced in diameter in FIG. The disc is placed on the surface of the flange portion 6b of the rotor member 6 and fixed on the rotor member 6 by a clamp member (not shown). A screw hole 5 a formed on one end of the shaft member 5 is a hole for screwing the clamp member and the rotor member 6 to the shaft member 5. The open end side of the bearing hole 4 a of the bearing member 4 is closed by the cover plate 7.

ベース部材2には、筒状軸受保持部3よりも半径方向外方に同心円状に、ステータ8が固定されており、このステータ8と半径方向内方にわずかの隙間を置いて対向するようにして、ロータ磁石9が、ロータ部材6の筒状部6aの外周面上に固着されている。この筒状部6aは、筒状軸受保持部3と半径方向にわずかの隙間を置いて対向している。したがって、このモータ1は、インナーロータタイプのモータを成している。   A stator 8 is fixed to the base member 2 concentrically outward in the radial direction with respect to the cylindrical bearing holding portion 3, and faces the stator 8 with a slight gap inward in the radial direction. The rotor magnet 9 is fixed on the outer peripheral surface of the cylindrical portion 6 a of the rotor member 6. The cylindrical portion 6a is opposed to the cylindrical bearing holding portion 3 with a slight gap in the radial direction. Therefore, the motor 1 is an inner rotor type motor.

軸部材5と軸受部材4との間に形成されたラジアル動圧軸受部10を含む微小隙間内、および軸部材5の他端部の端面(図1において下端面)とカバープレート7との間に形成された微小隙間内には、潤滑剤が連続的に充填されており、これらの微小隙間内における潤滑剤充填部分の図1において上方の一端側には、後述するアキシャル動圧軸受部11を経由して該潤滑剤充填部分と連通するようにして、潤滑剤の外方漏出を防止するためのキャピラリー・シール部(流体封止部)12が、毛細管構造をなすようにして形成されている。ラジアル動圧軸受部10は、図1中符号10a、10bで示されるように、軸方向の2個所に形成されている。   In a minute gap including the radial dynamic pressure bearing portion 10 formed between the shaft member 5 and the bearing member 4, and between the end surface (the lower end surface in FIG. 1) of the other end portion of the shaft member 5 and the cover plate 7. The minute gaps formed in FIG. 1 are continuously filled with a lubricant, and an axial dynamic pressure bearing portion 11 to be described later is disposed at one end on the upper side in FIG. 1 of the lubricant filling portion in these minute gaps. A capillary seal portion (fluid seal portion) 12 is formed so as to form a capillary structure so as to communicate with the lubricant-filled portion via the nozzle and prevent the lubricant from leaking out. Yes. The radial dynamic pressure bearing portion 10 is formed at two locations in the axial direction, as indicated by reference numerals 10a and 10b in FIG.

軸部材5側のキャピラリー・シール部12に対応する位置には、軸部材側環状部材13が、軸部材5の縮径された一端部に、ロータ部材6の図1において下方の端面に当接するようにして、圧入、接着もしくはこれらの組合せまたは溶着により嵌着されており、また、軸受部材4側のキャピラリー・シール部12に対応する位置には、軸受部材側環状部材14が、軸受部材4の一端面に穿設された凹部4bに、圧入、接着もしくはこれらの組合せまたは溶着により嵌着されている。軸部材側環状部材13は、ロータ部材6の外径寸法に比較すると、かなり小径であるが、ロータ部材6の軸部材5に嵌着される部分周辺をかなりの領域に渡って支えて、厚さの薄いロータ部材6の天井壁部を補強する。軸受部材側環状部材14は、凹部4bの周壁4cに溶着されることが好ましい。   At a position corresponding to the capillary seal portion 12 on the shaft member 5 side, the shaft member-side annular member 13 abuts on one end portion of the shaft member 5 whose diameter is reduced, on the lower end surface of the rotor member 6 in FIG. Thus, the bearing member-side annular member 14 is fitted to the bearing member 4 at a position corresponding to the capillary seal portion 12 on the bearing member 4 side by press-fitting, bonding, or a combination or welding thereof. Is fitted into a recess 4b drilled in one end face of the steel plate by press-fitting, bonding, a combination thereof, or welding. The shaft member-side annular member 13 is considerably smaller in diameter than the outer diameter of the rotor member 6, but supports the periphery of the portion of the rotor member 6 fitted to the shaft member 5 over a considerable area. The ceiling wall portion of the thin rotor member 6 is reinforced. The bearing member-side annular member 14 is preferably welded to the peripheral wall 4c of the recess 4b.

軸部材側環状部材13の外周面には、軸方向一端側に向かう程縮径するテーパ13aが形成されており、また、軸受部材側環状部材14の内周面には、軸方向一端側に向かう程縮径するテーパ14aが形成されている。そして、これら軸部材側環状部材13の外周面と軸受部材側環状部材14の内周面とが、軸方向および半径方向に近接して対向配置されて、両テーパ13a、14aが軸方向および半径方向に接近することにより、軸部材5および該軸部材5に固着されたロータ部材6が軸受部材4に対して抜け止めされるとともに、前記した、潤滑剤充填部分に連なるキャピラリー・シール部12が形成されている。両テーパ13a、14a間の半径方向隙間は、図1、図2、図15(5)にそれぞれ図示されるように、軸方向一端側に向かう程大きくなるようにされるのがよい。   The outer circumferential surface of the shaft member-side annular member 13 is formed with a taper 13a that decreases in diameter toward the one end in the axial direction, and the inner circumferential surface of the bearing member-side annular member 14 is disposed at one end in the axial direction. A taper 14a that is reduced in diameter as it goes is formed. The outer peripheral surface of the shaft member-side annular member 13 and the inner peripheral surface of the bearing member-side annular member 14 are arranged to oppose each other in the axial direction and the radial direction, and both the tapers 13a, 14a are in the axial direction and the radial direction. By approaching in the direction, the shaft member 5 and the rotor member 6 fixed to the shaft member 5 are prevented from coming off from the bearing member 4, and the capillary seal portion 12 connected to the lubricant filling portion is provided as described above. Is formed. The radial gap between the two tapers 13a, 14a is preferably made larger toward the one end side in the axial direction as shown in FIGS. 1, 2, and 15 (5).

ラジアル動圧軸受部10(10a、10b)において、軸部材5の外周面と軸受部材4の内周面とのいずれかには、ラジアル方向の荷重を受ける動圧を発生させるための動圧溝が形成されており、また、軸部材側環状部材13の軸方向他端側(図1において下端側)における半径方向への延在表面13bと、該延在表面13bと対向する軸受部材4の一端面(凹部4bの底面)とのいずれかには、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝が形成されている。このアキシャル方向の荷重を受ける動圧を発生させるための動圧溝が形成された個所において、延在表面13bと凹部4bの底面との間に潤滑剤が充填されて、そこにアキシャル(スラスト)動圧軸受部11が形成されている。   In the radial dynamic pressure bearing portion 10 (10a, 10b), a dynamic pressure groove for generating a dynamic pressure that receives a load in the radial direction is provided on either the outer peripheral surface of the shaft member 5 or the inner peripheral surface of the bearing member 4. And a radially extending surface 13b on the other axial end side (the lower end side in FIG. 1) of the shaft member side annular member 13, and the bearing member 4 facing the extended surface 13b. A dynamic pressure groove for generating a dynamic pressure that receives a load in the axial direction is formed on one end surface (the bottom surface of the recess 4b). In a portion where a dynamic pressure groove for generating a dynamic pressure that receives a load in the axial direction is formed, a lubricant is filled between the extended surface 13b and the bottom surface of the recess 4b, and the axial (thrust) is filled there. A hydrodynamic bearing portion 11 is formed.

したがって、今、ステータ8に通電されて、モータ1が回転を始めると、軸部材5は、ラジアル動圧軸受部10(10a、10b)において発生する動圧力によりラジアル方向に支持されて、軸受部材4の軸受孔4aとは非接触で回転する。また、軸部材5に嵌着された軸部材側環状部材13は、アキシャル動圧軸受部11において発生する動圧力によりアキシャル方向に支持されて、軸受部材4の凹部4bの底面とは非接触で回転する。カバープレート7は、アキシャル方向の荷重を受けることはないので、薄く形成されている。   Therefore, now, when the stator 8 is energized and the motor 1 starts to rotate, the shaft member 5 is supported in the radial direction by the dynamic pressure generated in the radial dynamic pressure bearing portion 10 (10a, 10b). It rotates without contact with the 4 bearing holes 4a. Further, the shaft member-side annular member 13 fitted to the shaft member 5 is supported in the axial direction by the dynamic pressure generated in the axial dynamic pressure bearing portion 11, and is not in contact with the bottom surface of the recess 4 b of the bearing member 4. Rotate. The cover plate 7 is formed thin because it does not receive a load in the axial direction.

本実施例1は、前記のように構成されているので、次のような効果を奏することができる。
軸部材5のロータ部材6が固着される側と反対側(他端側)にリング状の抜け止め部材やスラストプレート(カウンタープレート)を嵌着させることを要せずに、軸部材側環状部材13、軸受部材側環状部材14および軸受部材4の3つの部材のみの組合せにより、外部振動や衝撃に際しての軸部材5およびロータ部材6の軸受部材4に対する抜け止めやアキシャル動圧軸受部11の形成を同時に可能にすることができ、併せて、潤滑剤の外方漏出を防止するためのキャピラリー・シール部12の形成を可能にすることができる。
これにより、流体軸受装置の小型化、薄型化を一層進めることができ、しかも、このようにして小型化、薄型化された流体軸受装置において、軸部材5のストレート部分の長さおよびラジアル動圧軸受部10(10a、10b)の軸方向長さを比較的大きく取ることができるようになるので、高い軸受剛性と回転精度とを達成することができる。
Since the present Example 1 is comprised as mentioned above, there can exist the following effects.
It is not necessary to fit a ring-shaped retaining member or thrust plate (counter plate) on the opposite side (the other end side) of the shaft member 5 to the side to which the rotor member 6 is fixed. 13. The combination of only the three members of the bearing member-side annular member 14 and the bearing member 4 prevents the shaft member 5 and the rotor member 6 from coming off from the bearing member 4 and forms the axial dynamic pressure bearing portion 11 when external vibration or impact occurs. At the same time, it is possible to form the capillary seal portion 12 for preventing the lubricant from leaking out.
As a result, the hydrodynamic bearing device can be further reduced in size and thickness, and in the hydrodynamic bearing device thus reduced in size and thickness, the length of the straight portion of the shaft member 5 and the radial dynamic pressure are reduced. Since the axial length of the bearing portion 10 (10a, 10b) can be made relatively large, high bearing rigidity and rotational accuracy can be achieved.

また、軸受部材側環状部材14は、軸受部材4の凹部4bの周壁4cに溶着されているので、軸受部材側環状部材14の固着の強度が高まり、外部振動や衝撃に際しての軸部材5およびロータ部材6の軸受部材4に対する抜け止めを確実に行なうことができる。   Further, since the bearing member-side annular member 14 is welded to the peripheral wall 4c of the recess 4b of the bearing member 4, the strength of fixing of the bearing member-side annular member 14 is increased, and the shaft member 5 and the rotor are subjected to external vibration and impact. It is possible to reliably prevent the member 6 from coming off from the bearing member 4.

また、両テーパ13a、14a間の半径方向隙間が、軸方向一端側に向かう程大きくなるようにされる場合には、潤滑剤の貯留空間を増大させることができるとともに、キャピラリー・シール部12における潤滑剤の界面変動を緩和して、潤滑剤の外部への漏出を防止することができる。   Further, when the radial gap between both the tapers 13a and 14a is increased toward the one end in the axial direction, the lubricant storage space can be increased, and the capillary seal portion 12 Lubricant interface fluctuations can be mitigated, and leakage of the lubricant to the outside can be prevented.

さらに、本実施例1の流体軸受装置は、そのままの状態で流体軸受装置として完成しており、これをそのままの状態でベース部材2の筒状軸受保持部3内に嵌入して、その軸受部材4を筒状軸受保持部3に嵌着させれば、スピンドルモータ1の流体軸受装置として使用することができ、そのままの状態で品質検査を行うことができて、便利である。 Furthermore, the hydrodynamic bearing device of the first embodiment is completed as it is as a hydrodynamic bearing device, and is inserted into the cylindrical bearing holding portion 3 of the base member 2 as it is, and the bearing member If 4 is fitted to the cylindrical bearing holding part 3, it can be used as a hydrodynamic bearing device of the spindle motor 1, and the quality inspection can be performed as it is, which is convenient.

次に、本願の発明の第2の実施例(実施例2)について説明する。
図3は、本実施例2のモータの縦断面図、図4は、その部分拡大図である。本実施例2において、モータ1は、キャピラリー・シール部12の構造が実施例1と異なっている。すなわち、本実施例2においては、軸部材側環状部材13の外周面に、段13cが、テーパ13aに代えて形成され、軸受部材側環状部材14の内周面には、段14cが、テーパ14aに代えて形成されている。
Next, a second embodiment (embodiment 2) of the present invention will be described.
FIG. 3 is a longitudinal sectional view of the motor of the second embodiment, and FIG. 4 is a partially enlarged view thereof. In the second embodiment, the motor 1 is different from the first embodiment in the structure of the capillary seal portion 12. That is, in the second embodiment, the step 13c is formed on the outer peripheral surface of the shaft member side annular member 13 in place of the taper 13a, and the step 14c is tapered on the inner peripheral surface of the bearing member side annular member 14. 14a is formed instead of 14a.

これらの段13c、14cは、軸部材側環状部材13の外周面、軸受部材側環状部材14の内周面に、半径方向内方に向かうように形成された段であり、通常は、これらの面に1段のみ形成される。この段13cの軸方向一端側(図3において上方側)の一半外周面部分13dと、段14cの軸方向一端側の一半内周面部分14dとの間の半径方向隙間は、図15(1)〜(4)、(6)、(7)に示されるように、軸方向一端側に向かう程大きくされる場合も、図15(8)、(9)に示されるように、一定に保持される場合もある。これらの場合において、一半外周面部分13dと一半内周面部分14dとのいずれかに、流体封止部12における潤滑剤の界面変動を緩和し得る環状溝15を形成するようにしてもよい(図15(6)〜(9)参照)。   These steps 13c and 14c are steps formed on the outer peripheral surface of the shaft member side annular member 13 and the inner peripheral surface of the bearing member side annular member 14 so as to be directed radially inward. Only one step is formed on the surface. The radial gap between one half outer peripheral surface portion 13d in the axial direction one end side (upper side in FIG. 3) of the step 13c and one half inner peripheral surface portion 14d in the one axial end side of the step 14c is shown in FIG. ) To (4), (6), and (7), as shown in FIGS. 15 (8) and (9), even when it is increased toward one end in the axial direction, it is held constant. Sometimes it is done. In these cases, an annular groove 15 that can alleviate the interface fluctuation of the lubricant in the fluid sealing portion 12 may be formed in either the half outer peripheral surface portion 13d or the half inner peripheral surface portion 14d ( (Refer FIG. 15 (6)-(9)).

図15(1)〜(4)、(6)、(7)は、一半外周面部分13dと一半内周面部分14dとの間の半径方向隙間が、軸方向一端側に向かう程大きくされる場合において、一半外周面部分13dの傾斜のさせ方、一半内周面部分14dの傾斜のさせ方の組合せに応じて、色々な隙間形状があり得ることを示している。図15(1)、(7)は、一半内周面部分14dのみを軸方向一端側に向かう程拡径させた場合、図15(3)、(6)は、一半外周面部分13dのみを軸方向一端側に向かう程縮径させた場合、図15(2)は、これらの場合を組み合わせた場合、図15(4)は、一半外周面部分13dも、一半内周面部分14dも、共に軸方向一端側に向かう程縮径させた場合を、それぞれ示している。   15 (1) to (4), (6), and (7), the radial clearance between the half outer peripheral surface portion 13d and the half inner peripheral surface portion 14d is increased toward the one end side in the axial direction. In some cases, there are various gap shapes depending on the combination of the inclination of the half outer peripheral surface portion 13d and the inclination of the half inner peripheral surface portion 14d. FIGS. 15 (1) and (7) show that when only one half inner peripheral surface portion 14d is enlarged in diameter toward one end in the axial direction, FIGS. 15 (3) and 15 (6) show only one half outer peripheral surface portion 13d. When the diameter is reduced toward one end in the axial direction, FIG. 15 (2) shows a case where these cases are combined, and FIG. 15 (4) shows that both the half outer peripheral surface portion 13d and the half inner peripheral surface portion 14d Each shows a case where the diameter is reduced toward one end in the axial direction.

なお、段13cの軸方向他端側(図3において下方側)の他半外周面部分と、段14cの軸方向他端側の他半内周面部分とには、特に符号を付していないが、これらの面部分は、略軸方向に沿って形成されており、微小隙間を介して対向している。この微小隙間は、アキシャル動圧軸受部11に通じている。
本実施例2は、以上の点で実施例1と異なっているが、その他の点で異なるところはないので、詳細な説明を省略する。
The other half outer peripheral surface portion of the other end side in the axial direction of the step 13c (the lower side in FIG. 3) and the other half inner peripheral surface portion of the other end side in the axial direction of the step 14c are particularly labeled. Although not provided, these surface portions are formed substantially along the axial direction and are opposed to each other through a minute gap. The minute gap communicates with the axial dynamic pressure bearing portion 11.
The second embodiment is different from the first embodiment in the above points, but there is no difference in other points, and thus detailed description is omitted.

本実施例2は、前記のように構成されているので、次のような効果を奏することができる。
軸部材側環状部材13の外周面には、段13cが形成され、軸受部材側環状部材14の内周面には、段14cが形成されているので、軸部材側環状部材13の外周面と軸受部材側環状部材14の内周面とが軸方向および半径方向に近接して対向配置されるとき、軸部材側環状部材13の上下の遊びを容易に設定することができる構造が得られる。
Since the present Example 2 is comprised as mentioned above, there can exist the following effects.
A step 13 c is formed on the outer peripheral surface of the shaft member side annular member 13, and a step 14 c is formed on the inner peripheral surface of the bearing member side annular member 14. When the inner circumferential surface of the bearing member-side annular member 14 is disposed so as to oppose each other in the axial direction and the radial direction, a structure in which the vertical play of the shaft member-side annular member 13 can be easily set is obtained.

また、段13cと段14cとが、一半外周面部分13dと一半内周面部分14dとの間の半径方向隙間が軸方向一端側に向かう程拡大するようにして形成される場合には、潤滑剤の貯留空間を増大させることができるとともに、キャピラリー・シール部12における潤滑剤の界面変動を緩和して、潤滑剤の外部への漏出を防止することができる。さらに、一半外周面部分13dと一半内周面部分14dとのいずれかに、キャピラリー・シール部12における潤滑剤の界面変動を緩和し得る環状溝15が形成される場合には、前記のような効果が一層助長される。
その他、前記した、実施例1が奏する効果と同様の効果を奏することができる。
In addition, when the step 13c and the step 14c are formed so that the radial gap between the half outer peripheral surface portion 13d and the half inner peripheral surface portion 14d increases toward the one end side in the axial direction, lubrication is performed. The space for storing the agent can be increased, and the interface fluctuation of the lubricant in the capillary seal portion 12 can be reduced to prevent the lubricant from leaking to the outside. Further, in the case where the annular groove 15 that can reduce the interface fluctuation of the lubricant in the capillary seal portion 12 is formed in either the half outer peripheral surface portion 13d or the half inner peripheral surface portion 14d, The effect is further promoted.
In addition, the same effects as those of the first embodiment described above can be achieved.

次に、本願の発明の第3の実施例(実施例3)について説明する。
図5は、本実施例3のモータの縦断面図である。本実施例3においては、軸受部材4の軸受孔4aの開放端側を塞ぐカバープレート7と軸受部材4とが、同一材料の一体加工により製作されており、特に別部品としてのカバープレート7は使用されていない。その他は、実施例1と同様である。
Next, a third embodiment (embodiment 3) of the present invention will be described.
FIG. 5 is a longitudinal sectional view of the motor according to the third embodiment. In the third embodiment, the cover plate 7 and the bearing member 4 that close the open end side of the bearing hole 4a of the bearing member 4 and the bearing member 4 are manufactured by integral processing of the same material. not being used. Others are the same as in the first embodiment.

本実施例3は、前記のように構成されているので、潤滑剤の潤滑剤充填部分から外部への漏出が、キャピラリー・シール部12を介してのわずかの漏出の可能性を除いては、完全に防止できる。また、軸受部材4の構造が簡単化され、部品点数が減って、組立て工数を低減することができる。
本実施例3におけるカバープレート7と軸受部材4との一体化構造は、カバープレート7を用いる他の全ての実施例に対して転用が可能である。
Since the third embodiment is configured as described above, the leakage of the lubricant from the lubricant-filled portion to the outside is limited to the possibility of slight leakage through the capillary seal portion 12. Can be completely prevented. Further, the structure of the bearing member 4 is simplified, the number of parts is reduced, and the assembly man-hour can be reduced.
The integrated structure of the cover plate 7 and the bearing member 4 in the third embodiment can be diverted to all other embodiments using the cover plate 7.

次に、本願の発明の第4の実施例(実施例4)について説明する。
本実施例4においては、実施例1における軸部材側環状部材13が、焼入れされた鋼で製作され、ロータ部材6の端面に当接して、ロータ部材6を軸方向に支持するようにされている。さらに、この軸部材側環状部材13は、そのロータ部材6の端面に当接する面(軸方向一端面)と、軸受部材4の一端面と対向する軸方向他端側における半径方向への延在表面13b(軸方向他端面)とが、共に熱処理後に研磨仕上げされている。その他は、実施例1と同様である。
Next, a fourth embodiment (embodiment 4) of the present invention will be described.
In the fourth embodiment, the shaft member-side annular member 13 in the first embodiment is made of hardened steel, abuts against the end surface of the rotor member 6, and supports the rotor member 6 in the axial direction. Yes. Further, the shaft member-side annular member 13 extends in the radial direction on the surface that contacts the end surface of the rotor member 6 (one axial end surface) and the other axial end opposite to the one end surface of the bearing member 4. Both the surface 13b (the other end surface in the axial direction) are polished after heat treatment. Others are the same as in the first embodiment.

本実施例4は、前記のように構成されているので、小型化、薄型化されたモータ1において、ロータ部材6の壁面が薄く形成されたとしも、該ロータ部材6は、硬化された剛性の高い軸部材側環状部材13により軸方向に堅固に支持されることとなるので、ロータ部材6にディスク等が載置されて該ロータ部材6にクランプされるときにも、該ロータ部材6の変形を防止することができる。また、ロータ部材6に対する軸部材5の取付け精度をより向上させることができ、回転軸線に対して偏りなくスラスト動圧を発生させて、回転精度を高めることができる。
本実施例4における軸部材側環状部材13の素材は、軸部材側環状部材13を用いる他の全ての実施例に対して適用が可能である。
Since the fourth embodiment is configured as described above, even if the wall surface of the rotor member 6 is thin in the motor 1 that has been reduced in size and thickness, the rotor member 6 has a cured rigidity. Since the shaft member-side annular member 13 is firmly supported in the axial direction, even when a disk or the like is placed on the rotor member 6 and clamped to the rotor member 6, the rotor member 6 Deformation can be prevented. Further, the mounting accuracy of the shaft member 5 with respect to the rotor member 6 can be further improved, and the thrust dynamic pressure can be generated without being biased with respect to the rotation axis, thereby improving the rotation accuracy.
The material of the shaft member side annular member 13 in the fourth embodiment can be applied to all other embodiments using the shaft member side annular member 13.

次に、本願の発明の第5の実施例(実施例5)について説明する。
図6は、本実施例5のモータの縦断面図である。本実施例5において、実施例2のロータ部材6の、キャピラリー・シール部12と軸方向に対向する部分には、周方向に等間隔に複数の潤滑剤注入口16が貫通形成されている。その他は、実施例2と同様である。
Next, a fifth embodiment (embodiment 5) of the present invention will be described.
FIG. 6 is a longitudinal sectional view of the motor of the fifth embodiment. In the fifth embodiment, a plurality of lubricant injection ports 16 are formed at equal intervals in the circumferential direction in the portion of the rotor member 6 of the second embodiment facing the capillary seal portion 12 in the axial direction. Others are the same as in the second embodiment.

本実施例5は、前記のように構成されているので、モータ完成品でも、潤滑剤の界面を目視することが可能になり、潤滑剤の注入量の確認が容易になる。また、ここから潤滑剤を注入することも可能になるので、これらにより、モータ1の品質管理が容易になる。さらに、この複数の潤滑剤注入口16は、ロータ部材6の周方向に等間隔に形成されているので、ロータ部材6の回転のバランスを崩すこともない。
本実施例5における潤滑剤注入口16は、キャピラリー・シール部12を有する他の全ての実施例に対して適用が可能である。
Since the fifth embodiment is configured as described above, the interface of the lubricant can be visually observed even in the finished motor product, and the injection amount of the lubricant can be easily confirmed. Moreover, since it becomes possible to inject | pour a lubricant from here, the quality control of the motor 1 becomes easy by these. Further, since the plurality of lubricant inlets 16 are formed at equal intervals in the circumferential direction of the rotor member 6, the rotation balance of the rotor member 6 is not lost.
The lubricant injection port 16 in the fifth embodiment can be applied to all other embodiments having the capillary seal portion 12.

次に、本願の発明の第6の実施例(実施例6)について説明する。
図7は、本実施例6のモータの縦断面図である。本実施例6において、軸受部材4側のキャピラリー・シール部12に対応する位置には、軸受部材側環状部材14が、軸受部材4の一端面に軸方向から当接するようにして設けられ、軸受部材4と軸受部材側環状部材14とを被うようにして、キャップ状の有底筒状部材17が設けられている。そして、軸受部材側環状部材14は、この有底筒状部材17の開口部の内周面に、圧入と溶着との組合せもしくは圧入と接着との組合せの方法により嵌着されている。有底筒状部材17は、底壁を有する円筒体から成るものである。
Next, a sixth embodiment (embodiment 6) of the present invention will be described.
FIG. 7 is a longitudinal sectional view of the motor of the sixth embodiment. In the sixth embodiment, a bearing member-side annular member 14 is provided at a position corresponding to the capillary seal portion 12 on the bearing member 4 side so as to abut on one end surface of the bearing member 4 from the axial direction. A cap-shaped bottomed cylindrical member 17 is provided so as to cover the member 4 and the bearing member-side annular member 14. The bearing member-side annular member 14 is fitted on the inner peripheral surface of the opening of the bottomed tubular member 17 by a combination of press-fitting and welding or a combination of press-fitting and adhesion. The bottomed tubular member 17 is a cylindrical body having a bottom wall.

ステータ8は、実施例1のインナーロータタイプとは異なり、ロータ磁石9に対して半径方向内方にあって、筒状軸受保持部3に、軸受部材4を被う有底筒状部材17と背中合わせに外方から嵌着されている。また、ロータ磁石9は、実施例1のインナーロータタイプとは異なり、ロータ部材6の筒状部6aの内周面上に固着されている。したがって、本実施例6のモータ1は、アウターロータタイプのモータを成している。有底筒状部材17の筒状軸受保持部3への嵌着は、ギャップが生じないように、熱硬化性接着剤等を用いて行なうのが良い。   Unlike the inner rotor type of the first embodiment, the stator 8 is radially inward with respect to the rotor magnet 9, and has a bottomed cylindrical member 17 that covers the bearing member 4 on the cylindrical bearing holding portion 3. It is fitted back to back from the outside. Further, unlike the inner rotor type of the first embodiment, the rotor magnet 9 is fixed on the inner peripheral surface of the cylindrical portion 6 a of the rotor member 6. Therefore, the motor 1 of the sixth embodiment is an outer rotor type motor. The bottomed cylindrical member 17 is preferably fitted to the cylindrical bearing holding portion 3 using a thermosetting adhesive or the like so that a gap is not generated.

また、ベース部材2の面上には、ロータ磁石9の直下の位置に、ロータ磁石9の端部とわずかの隙間を置いて、環状の吸引板18が固着されている。この吸引板18は、ロータ磁石9と吸引し合って、ロータ部全体を軸方向他端側に付勢する。このロータ部全体の軸方向他端側への付勢力と重力との合力は、アキシャル動圧軸受部11で発生する動圧力と釣り合って、軸部材5および軸部材側環状部材13を、軸受部材4の凹部4bの底面とは非接触で回転させる。
その他、多少の形状、構造の相違はあるが、その基本的な構造の点で、実施例1と特に異なるものではない。
On the surface of the base member 2, an annular suction plate 18 is fixed at a position directly below the rotor magnet 9 with a slight gap from the end of the rotor magnet 9. The suction plate 18 attracts the rotor magnet 9 and urges the entire rotor portion toward the other end in the axial direction. The resultant force of the urging force toward the other axial end of the entire rotor portion and gravity is balanced with the dynamic pressure generated in the axial dynamic pressure bearing portion 11, so that the shaft member 5 and the shaft member side annular member 13 are replaced with the bearing member. 4 is rotated without contact with the bottom surface of the recess 4b.
In addition, although there are some differences in shape and structure, the basic structure is not particularly different from the first embodiment.

本実施例6は、前記のように構成されているので、潤滑剤の潤滑剤充填部分から外部への漏出は、キャップ状の有底筒状部材17により略完全に防止される。また、有底筒状部材17や軸受部材側環状部材14をプレス加工により製作することが可能な形状にすることができるので、モータ1の製作コストを低減することができる。
その他、前記した、実施例1が奏する効果と同様の効果を奏することができる。
Since the sixth embodiment is configured as described above, leakage of the lubricant from the lubricant filling portion to the outside is almost completely prevented by the cap-shaped bottomed cylindrical member 17. Moreover, since the bottomed cylindrical member 17 and the bearing member side annular member 14 can be formed into a shape that can be manufactured by pressing, the manufacturing cost of the motor 1 can be reduced.
In addition, the same effects as those of the first embodiment described above can be achieved.

次に、本願の発明の第7の実施例(実施例7)について説明する。
図8は、本実施例7のモータの縦断面図である。本実施例7においては、軸受部材4と軸受部材側環状部材14とを半径方向外方から被うようにして、筒状部材22が設けられている。軸受部材側環状部材14は、この筒状部材22の軸方向一端側(図8において上側)開口部に嵌着されており、筒状部材22の軸方向他端側(図8において下側)開口部には、軸受部材4の軸受孔4aの開放端側を塞ぐカバープレート7が嵌着されている。このカバープレート7は、実施例1のカバープレート7よりも拡径されている。本実施例7を実施例6と比較すると、実施例6の有底筒状部材17の底壁が打ち抜かれて、別部材としてのカバープレート7とされたものに相当している。
Next, a seventh embodiment (embodiment 7) of the present invention will be described.
FIG. 8 is a longitudinal sectional view of the motor of the seventh embodiment. In the seventh embodiment, the cylindrical member 22 is provided so as to cover the bearing member 4 and the bearing member side annular member 14 from the outside in the radial direction. The bearing member-side annular member 14 is fitted into an opening on one axial end side (upper side in FIG. 8) of the cylindrical member 22, and the other axial end side (lower side in FIG. 8) of the cylindrical member 22. A cover plate 7 that closes the open end side of the bearing hole 4a of the bearing member 4 is fitted into the opening. The cover plate 7 has a larger diameter than the cover plate 7 of the first embodiment. When this Example 7 is compared with Example 6, it corresponds to what the bottom wall of the bottomed cylindrical member 17 of Example 6 was punched out and used as the cover plate 7 as another member.

本実施例7は、前記のように構成されているので、筒状部材22や軸受部材側環状部材14、カバープレート7をプレス加工により製作することが可能な形状にすることができ、軸受部材4や筒状部材22の構造も最も簡単化されて、モータの製作コストを低減することができる。
その他、前記した、実施例1が奏する効果と同様の効果を奏することができる。
Since the seventh embodiment is configured as described above, the cylindrical member 22, the bearing member-side annular member 14, and the cover plate 7 can be formed into a shape that can be manufactured by pressing, and the bearing member. The structure of 4 and the cylindrical member 22 is also simplified most, and the manufacturing cost of the motor can be reduced.
In addition, the same effects as those of the first embodiment described above can be achieved.

次に、本願の発明の第8の実施例(実施例8)について説明する。
図9は、本実施例8のモータの縦断面図である。本実施例8は、実施例7の軸受部材側環状部材14と筒状部材22、軸部材側環状部材13と軸部材5とが、それぞれ同一材料の一体加工により製作されたものに相当している。このようにして製作された新たな鍔付き筒状部材に、符号23が付されている。この鍔付き筒状部材23のうち、鍔部を含む軸方向一端側(図9において上側)の所定長部分が、キャピラリー・シール部12を形成する一方の部品(軸受部材側環状部材)として機能する部分である。
Next, an eighth embodiment (Embodiment 8) of the present invention will be described.
FIG. 9 is a longitudinal sectional view of the motor of the eighth embodiment. The eighth embodiment corresponds to the bearing member-side annular member 14 and the cylindrical member 22, and the shaft member-side annular member 13 and the shaft member 5 of the seventh embodiment, which are manufactured by integral processing of the same material. Yes. Reference numeral 23 is attached to the new flanged tubular member manufactured in this manner. Among the tubular member 23 with a flange, a predetermined length portion on one axial end side (upper side in FIG. 9) including the flange functions as one part (bearing member side annular member) forming the capillary seal portion 12. It is a part to do.

この鍔付き筒状部材23にあっては、その鍔部を除く部分の壁厚が、実施例7における軸受部材側環状部材14の段より軸方向他端側の壁部分の半径方向壁厚を取り込んで、やや厚くされているが、実施例7の軸受部材側環状部材14および筒状部材22の形状をそのままにして、同一材料の一体加工により製作されてもよい。その他は、実施例7と同様である。   In the flanged tubular member 23, the wall thickness of the portion excluding the flange portion is the radial wall thickness of the wall portion on the other axial end side from the step of the bearing member side annular member 14 in the seventh embodiment. However, the bearing member-side annular member 14 and the cylindrical member 22 of the seventh embodiment may be manufactured by an integrated process using the same material. Others are the same as in Example 7.

本実施例8は、前記のように構成されているので、部品点数が減って、組立て工数を低減することができる。さらに、軸受部材側環状部材14に相当する部分と筒状部材22に相当する部分との一体加工は、プレス加工とすることが可能であるので、モータの製作コストを廉価に維持することができる。   Since the eighth embodiment is configured as described above, the number of parts can be reduced, and the assembly man-hour can be reduced. Furthermore, since the integral processing of the portion corresponding to the bearing member-side annular member 14 and the portion corresponding to the cylindrical member 22 can be performed by pressing, the manufacturing cost of the motor can be kept inexpensive. .

次に、本願の発明の第9の実施例(実施例9)について説明する。
図10は、本実施例9のモータの縦断面図である。本実施例9において、軸受部材4側のキャピラリー・シール部12に対応する位置には、軸受部材側スリーブ付き環状部材14が設けられ、該軸受部材側スリーブ付き環状部材14のスリーブ部14eは、軸受部材4の一端縮径部4dに、圧入、接着もしくはこれらの組合せまたは溶着により嵌着されており、スリーブ部14eを除く環状部14fが、軸部材側環状部材13に対している。
Next, a ninth embodiment (embodiment 9) of the present invention will be described.
FIG. 10 is a longitudinal sectional view of the motor of the ninth embodiment. In the ninth embodiment, an annular member 14 with a bearing member side sleeve is provided at a position corresponding to the capillary seal portion 12 on the bearing member 4 side, and the sleeve portion 14e of the annular member 14 with the bearing member side sleeve is The bearing member 4 is fitted to the one end reduced diameter portion 4d by press-fitting, bonding, a combination thereof, or welding, and the annular portion 14f excluding the sleeve portion 14e is attached to the shaft member-side annular member 13.

そして、軸部材側環状部材13の外周面と軸受部材側スリーブ付き環状部材14の環状部14fの内周面とが、軸方向および半径方向に近接して対向配置されて、軸部材5および該軸部材5に固着されたロータ部材6が軸受部材4に対して抜け止めされるとともに、キャピラリー・シール部12が形成されるようになっている。   The outer peripheral surface of the shaft member-side annular member 13 and the inner peripheral surface of the annular portion 14f of the annular member 14 with bearing member-side sleeve are arranged to oppose each other in the axial direction and the radial direction, so that the shaft member 5 and the The rotor member 6 fixed to the shaft member 5 is prevented from coming off from the bearing member 4, and a capillary seal portion 12 is formed.

また、軸受部材4の他端縮径部4eを被うようにして、浅いキャップ状の皿状部材19が設けられており、軸受部材4の中央径大部4fは、ベース部材2の筒状軸受保持部3に直接嵌着されている。皿状部材19は、その開口部が他端縮径部4eに圧入、接着もしくはこれらの組合せまたは溶着により嵌着されている。その他は、実施例6と同様である。   Further, a shallow cap-like dish-like member 19 is provided so as to cover the other end reduced diameter portion 4 e of the bearing member 4, and the large central diameter portion 4 f of the bearing member 4 is a cylindrical shape of the base member 2. The bearing holder 3 is directly fitted. The dish-like member 19 has its opening fitted into the other end reduced diameter portion 4e by press fitting, bonding, a combination thereof, or welding. Others are the same as in Example 6.

本実施例9は、前記のように構成されているので、潤滑剤の潤滑剤充填部分から外部への漏出は、軸受部材側スリーブ付き環状部材14と軸受部材4との接触部から外部への漏出も、皿状部材19と軸受部材4の他端面との接触部から外部への漏出も、共にこれら軸受部材側スリーブ付き環状部材14と皿状部材19とにより、それぞれ略完全に防止される。   Since the ninth embodiment is configured as described above, leakage of the lubricant from the lubricant-filled portion to the outside is caused by the contact between the bearing member-side annular member 14 with the sleeve 14 and the bearing member 4 to the outside. Both the leakage and the leakage from the contact portion between the dish-shaped member 19 and the other end surface of the bearing member 4 to the outside are almost completely prevented by the annular member 14 with the sleeve on the bearing member side and the dish-shaped member 19. .

また、軸受部材4の中央径大部4fは、ベース部材2の筒状軸受保持部3に嵌着されているので、精度の高い部品同志の嵌着が可能になり、モータ1の軸(軸部材5)の倒れ等の精度を維持することが容易で、回転精度を一層向上させることができる。   Further, since the central diameter large portion 4f of the bearing member 4 is fitted to the cylindrical bearing holding portion 3 of the base member 2, it is possible to fit parts with high accuracy, and the shaft of the motor 1 (shaft) It is easy to maintain the accuracy of the member 5) such as falling, and the rotational accuracy can be further improved.

次に、本願の発明の第10の実施例(実施例10)について説明する。
図11は、本実施例10のモータの縦断面図である。本実施例10においては、実施例9の軸部材側環状部材13と軸部材5とが、同一材料の一体加工により製作されている。その他は、実施例9と同様である。
Next, a tenth embodiment (embodiment 10) of the present invention will be described.
FIG. 11 is a longitudinal sectional view of the motor of the tenth embodiment. In the tenth embodiment, the shaft member-side annular member 13 and the shaft member 5 of the ninth embodiment are manufactured by integral processing of the same material. Others are the same as in the ninth embodiment.

本実施例10は、前記のように構成されているので、部品点数が減って、組立て工数を低減することができる。
本実施例10における軸部材側環状部材13と軸部材5との一体化構造は、軸部材側環状部材13を用いる他の全ての実施例に対して適用が可能である。
Since the tenth embodiment is configured as described above, the number of parts can be reduced and the number of assembling steps can be reduced.
The integrated structure of the shaft member side annular member 13 and the shaft member 5 in the tenth embodiment can be applied to all other embodiments using the shaft member side annular member 13.

次に、本願の発明の第11の実施例(実施例11)について説明する。
図18(1)〜(3)は、本実施例11のモータの流体軸受装置の縦断面図である。本実施例11においては、軸受部材4の他端面(図18において下端面)と皿状部材19との間に形成された微小隙間もしくは軸受部材4の他端面と有底筒状部材17との間に形成された微小隙間と、キャピラリー・シール部12と、の間を連通する連通路20が形成されている。
Next, an eleventh embodiment (embodiment 11) of the present invention will be described.
18 (1) to 18 (3) are longitudinal sectional views of the hydrodynamic bearing device for the motor of the eleventh embodiment. In Example 11, a minute gap formed between the other end surface of the bearing member 4 (the lower end surface in FIG. 18) and the dish-shaped member 19 or the other end surface of the bearing member 4 and the bottomed cylindrical member 17. A communication path 20 that communicates between the minute gap formed therebetween and the capillary seal portion 12 is formed.

この連通路20は、図18(1)、(2)に図示されるように、軸受部材4の内部に設けられてもよいし、図18(3)に図示されるように、軸受部材4の外周面に軸方向に形成された1本もしくは複数本の溝を有底筒状部材17が被うことにより形成されるようにしてもよい。図18(1)に図示される連通路20は、アキシャル動圧軸受部11が形成される微小隙間に近く臨むようにして形成されており、図18(2)に図示される連通路20は、キャピラリー・シール部12の始端部に直接臨むようにして形成されている。その他は、有底筒状部材17が用いられるか、皿状部材19が用いられるかの相違に応じて、実施例6または実施例9と同様である。   The communication path 20 may be provided inside the bearing member 4 as shown in FIGS. 18 (1) and 18 (2), or the bearing member 4 as shown in FIG. 18 (3). The bottomed cylindrical member 17 may be formed by covering one or a plurality of grooves formed in the axial direction on the outer peripheral surface of the bottom. The communication path 20 illustrated in FIG. 18 (1) is formed so as to face a minute gap where the axial dynamic pressure bearing portion 11 is formed, and the communication path 20 illustrated in FIG. 18 (2) is a capillary. -It is formed so as to directly face the start end portion of the seal portion 12. Others are the same as in Example 6 or Example 9 depending on whether the bottomed cylindrical member 17 or the dish-shaped member 19 is used.

本実施例11は、前記のように構成されているので、軸部材5の他端面(先端面)と皿状部材19もしくは有底筒状部材17との間、軸受部材4の他端面と皿状部材19もしくは有底筒状部材17との間の微小隙間内に残留し易い空気を、連通路20およびキャピラリー・シール部12を介して外部に逃がすことができ、また、潤滑剤充填部分の全域に渡って負圧の発生領域がなくなるので、軸受の信頼性を向上させることができる。
本実施例11における連通路20は、皿状部材19もしくは有底筒状部材17が用いられる全ての実施例に対して適用が可能である。
Since the eleventh embodiment is configured as described above, the other end surface (tip surface) of the shaft member 5 and the dish-like member 19 or the bottomed cylindrical member 17, the other end face of the bearing member 4 and the dish The air that tends to remain in the minute gap between the cylindrical member 19 or the bottomed cylindrical member 17 can be released to the outside through the communication passage 20 and the capillary seal portion 12, and the lubricant filling portion Since there is no negative pressure generation region over the entire area, the reliability of the bearing can be improved.
The communication passage 20 in the eleventh embodiment can be applied to all embodiments in which the dish-shaped member 19 or the bottomed cylindrical member 17 is used.

なお、ラジアル動圧軸受部10、アキシャル動圧軸受部11の構成については、それらの形成個所の数、動圧溝の形状の違いに応じて、種々の実施形態があり得る。
図12および図13は、ラジアル動圧軸受部10の構成の仕方について、種々の実施形態を比較し易いように並べて示したものである。
In addition, about the structure of the radial dynamic-pressure bearing part 10 and the axial dynamic-pressure-bearing part 11, there can exist various embodiment according to the number of those formation parts and the difference in the shape of a dynamic pressure groove.
12 and 13 show the configuration of the radial dynamic pressure bearing portion 10 side by side so that various embodiments can be easily compared.

先ず、図12は、ラジアル動圧軸受部10の構成に関し、それが軸方向の2個所に形成される場合の各種実施形態を示している。図12(1)のラジアル動圧軸受部10においては、図12において上方のラジアル動圧軸受部10aも、下方のラジアル動圧軸受部10bも、共にシンメトリックなヘリングボーン溝から成る動圧溝を有し、上方のラジアル動圧軸受部10aの動圧溝の方が、下方のラジアル動圧軸受部10bよりも、寸法を大きくして形成されている。   First, FIG. 12 shows various embodiments in the case where the radial dynamic pressure bearing portion 10 is formed at two axial positions with respect to the configuration of the radial dynamic pressure bearing portion 10. In the radial dynamic pressure bearing portion 10 of FIG. 12 (1), the upper radial dynamic pressure bearing portion 10a and the lower radial dynamic pressure bearing portion 10b in FIG. 12 both have a symmetrical herringbone groove. The upper dynamic dynamic pressure bearing portion 10a has a larger dynamic pressure groove than the lower radial dynamic pressure bearing portion 10b.

図12(2)のラジアル動圧軸受部10においては、図12において上方のラジアル動圧軸受部10aは、アシメトリックなヘリングボーン溝から成る動圧溝を有し、下方のラジアル動圧軸受部10bは、シンメトリックなヘリングボーン溝から成る動圧溝を有している。両動圧溝の寸法比は、図12(1)の場合と略同様である。   In the radial dynamic pressure bearing portion 10 of FIG. 12 (2), the upper radial dynamic pressure bearing portion 10a in FIG. 12 has a dynamic pressure groove formed of an asymmetric herringbone groove, and the lower radial dynamic pressure bearing portion 10a. 10b has a dynamic pressure groove composed of a symmetric herringbone groove. The dimensional ratio between the two dynamic pressure grooves is substantially the same as in FIG.

図12(3)のラジアル動圧軸受部10においては、図12において上方のラジアル動圧軸受部10aも、下方のラジアル動圧軸受部10bも、共に多円弧溝21から成る動圧溝を有し、上方のラジアル動圧軸受部10aの動圧溝の方が、下方のラジアル動圧軸受部10bよりも、寸法を大きくして形成されている。この多円弧溝21から成る動圧溝は、図12(3)中、軸部材5と軸受部材4との組立体の平面図に示されるとおり、断面多円弧状で、軸方向に延びる複数条の溝から成るものである。   In the radial dynamic pressure bearing portion 10 of FIG. 12 (3), both the upper radial dynamic pressure bearing portion 10a and the lower radial dynamic pressure bearing portion 10b in FIG. In addition, the dynamic pressure groove of the upper radial dynamic pressure bearing portion 10a is formed with a size larger than that of the lower radial dynamic pressure bearing portion 10b. The dynamic pressure groove composed of the multi-arc groove 21 is a plurality of strips extending in the axial direction and having a multi-arc cross section as shown in the plan view of the assembly of the shaft member 5 and the bearing member 4 in FIG. It consists of a groove.

次に、図13は、ラジアル動圧軸受部10の構成に関し、それが軸方向の1個所に形成される場合の各種実施形態を示している。図13(1)のラジアル動圧軸受部10は、シンメトリックなヘリングボーン溝から成る動圧溝を有し、図13(2)のラジアル動圧軸受部10は、アシメトリックなヘリングボーン溝から成る動圧溝を有し、図13(3)のラジアル動圧軸受部10は、多円弧溝21(図12(3)参照)から成る動圧溝を有している。   Next, FIG. 13 shows various embodiments in the case where the radial dynamic pressure bearing portion 10 is formed at one place in the axial direction with respect to the configuration of the radial dynamic pressure bearing portion 10. The radial dynamic pressure bearing portion 10 in FIG. 13 (1) has a dynamic pressure groove formed of a symmetric herringbone groove, and the radial dynamic pressure bearing portion 10 in FIG. 13 (2) is formed of an asymmetric herringbone groove. The radial dynamic pressure bearing portion 10 shown in FIG. 13 (3) has a dynamic pressure groove formed of a multi-arc groove 21 (see FIG. 12 (3)).

また、図14は、アキシャル動圧軸受部11の構成に関し、そこで採用される動圧溝の各種実施形態を示している。図14(1)のアキシャル動圧軸受部11の動圧溝は、スパイラル溝から成り、図14(2)のアキシャル動圧軸受部11の動圧溝は、シンメトリックなヘリングボーン溝から成り、図14(3)のアキシャル動圧軸受部11の動圧溝は、アシメトリックなヘリングボーン溝から成っている。これらの図において、黒い部分は、溝の底部(谷部)を示し、白い部分は、山部を示している。   FIG. 14 shows various embodiments of the dynamic pressure groove employed in the axial dynamic pressure bearing portion 11. The dynamic pressure groove of the axial dynamic pressure bearing portion 11 in FIG. 14 (1) consists of a spiral groove, and the dynamic pressure groove of the axial dynamic pressure bearing portion 11 in FIG. 14 (2) consists of a symmetric herringbone groove, The dynamic pressure groove of the axial dynamic pressure bearing portion 11 shown in FIG. 14 (3) is an asymmetric herringbone groove. In these drawings, the black portion indicates the bottom (valley) of the groove, and the white portion indicates the peak.

図20および図21は、図12〜図14で示されるラジアル・アキシャル動圧軸受部用の各種動圧溝形状の各種組合せを、ラジアル動圧軸受部10が軸方向の2個所に形成される場合と、1個所のみに形成される場合とに分けて、それぞれ表にして示したものである。特にラジアル動圧軸受部10が軸方向の2個所に形成される場合の(7)の組合せを有するモータ1の流体軸受装置について、これを試作して、試験した結果、良好な回転精度を示した。   20 and 21 show various combinations of various dynamic pressure groove shapes for the radial and axial dynamic pressure bearing portions shown in FIGS. 12 to 14, and the radial dynamic pressure bearing portion 10 is formed at two positions in the axial direction. The table is divided into a case and a case where it is formed only at one place, and each is shown in a table. In particular, the hydrodynamic bearing device of the motor 1 having the combination (7) in the case where the radial dynamic pressure bearing portion 10 is formed at two positions in the axial direction was prototyped and tested. As a result, it showed good rotational accuracy. It was.

また、軸受部材側環状部材14の構成についても、種々の実施形態があり得る。これらについては、すでに実施例1、6、8、9等の説明の中で述べた。図16(1)〜(4)は、これらを、比較し易いように、並べて示したものである。   Moreover, various embodiments can be applied to the configuration of the bearing member-side annular member 14. These have already been described in the description of Examples 1, 6, 8, 9 and the like. FIGS. 16 (1) to (4) are shown side by side for easy comparison.

また、軸受部材4の軸受孔4aの開放端側を閉塞する構造についても、種々の実施形態があり得る。これらについては、すでに実施例1、3、6、7、9等の説明の中で述べた。図17(1)〜(5)は、これらを、比較し易いように、並べて示したものである。   Also, various embodiments may be provided for the structure for closing the open end side of the bearing hole 4a of the bearing member 4. These have already been described in the description of Examples 1, 3, 6, 7, 9 and the like. FIGS. 17 (1) to (5) are shown side by side for easy comparison.

さらに、また、軸部材5の構造についても、種々の実施形態があり得る。図19(1)〜(6)は、これらを、比較し易いように、並べて示したものである。これらのうち、図19(1)〜(3)は、軸部材5の中間部の外周面に、上下ラジアル動圧軸受部10a、10bを隔てる分離溝5cを備えるタイプのものを示し、これらのうち、図19(1)は、軸部材5の軸方向一端部に縮径部5bを有し、そこに軸部材側環状部材13が嵌着されるタイプのもの、図19(2)は、分離溝5c部を除いて、ストレートタイプのもの、図19(3)は、軸部材側環状部材13と軸部材5とが一体化されたタイプのものを、それぞれ示している。   Furthermore, there can be various embodiments for the structure of the shaft member 5. FIGS. 19 (1) to 19 (6) are shown side by side for easy comparison. Among these, FIG. 19 (1)-(3) shows the thing of the type provided with the isolation | separation groove | channel 5c which divides the upper and lower radial dynamic-pressure-bearing parts 10a and 10b in the outer peripheral surface of the intermediate part of the shaft member 5, Among these, FIG. 19 (1) has a reduced diameter portion 5b at one axial end of the shaft member 5, and the shaft member-side annular member 13 is fitted therein, and FIG. Except for the separation groove 5c, a straight type is shown, and FIG. 19 (3) shows a type in which the shaft member-side annular member 13 and the shaft member 5 are integrated.

また、図19(4)〜(6)は、軸部材5の中間部の外周面に、上下ラジアル動圧軸受部10a、10bを隔てる分離溝5cを備えないタイプのものを示し、これらのうち、図19(4)は、軸部材5の軸方向一端部に縮径部5bを有し、そこに軸部材側環状部材13が嵌着されるタイプのもの、図19(5)は、軸方向全長に渡ってストレートタイプのもの、図19(6)は、軸部材側環状部材13と軸部材5とが一体化されたタイプのものを、それぞれ示している。   19 (4) to (6) show a type in which the outer peripheral surface of the intermediate portion of the shaft member 5 is not provided with a separation groove 5c separating the upper and lower radial dynamic pressure bearing portions 10a and 10b. 19 (4) is a type in which the shaft member 5 has a reduced diameter portion 5b at one end in the axial direction, and the shaft member-side annular member 13 is fitted therein, and FIG. A straight type over the entire length in the direction, FIG. 19 (6) shows a type in which the shaft member-side annular member 13 and the shaft member 5 are integrated.

次に、本願の発明の第12の実施例(実施例12)について説明する。
図22は、本実施例12のハードディスク駆動装置30の縦断面図である。ハードディスク駆動装置30は、図示されるように、実施例6のモータ1と、ベース部材2と、このベース部材2内を密閉して塵埃等が極度に少ないクリーンな空間を形成するカバー部材31と、ハードディスク32と、ハードディスク32のクランプ部材33と、ハードディスク32に対して情報を書き込みおよび/または読み出しするための磁気ヘッド34と、磁気ヘッド34を支持するアーム35と、磁気ヘッド34およびアーム35を所要の位置に移動させるボイスコイルモータ36とにより構成されている。
Next, a twelfth embodiment (embodiment 12) of the present invention will be described.
FIG. 22 is a longitudinal sectional view of the hard disk drive device 30 according to the twelfth embodiment. As shown in the figure, the hard disk drive 30 includes a motor 1 according to a sixth embodiment, a base member 2, and a cover member 31 that seals the inside of the base member 2 to form a clean space with extremely little dust. A hard disk 32, a clamp member 33 of the hard disk 32, a magnetic head 34 for writing and / or reading information to / from the hard disk 32, an arm 35 for supporting the magnetic head 34, and a magnetic head 34 and an arm 35. The voice coil motor 36 is moved to a required position.

ハードディスク32は、ロータハブ6に2枚装着されているが、その枚数は、これに限定されるものではない。ハードディスク32は、ロータハブ6の回転とともに回転する。磁気ヘッド34は、ベース部材2の底部の適宜個所に旋回自在に支持されたアーム35の先端部に上下一対となるよう取り付けられている。上下一対の磁気ヘッド34は、1枚のハードディスク32を挟むように配置され、ハードディスク32の両面に対して情報の書き込みおよび/または読み出しを行なうようになっている。本ハードディスク駆動装置30では、ハードディスク32が2枚の構成となっているために、図のように、磁気ヘッド34が上下二対設けられているが、ハードディスク32の枚数は、これに限定されるものではなく、構成に応じてディスク1枚毎に磁気ヘッド34が一対設けられる。 Although two hard disks 32 are mounted on the rotor hub 6, the number of the hard disks 32 is not limited to this. The hard disk 32 rotates with the rotation of the rotor hub 6. The magnetic heads 34 are attached to the tip of an arm 35 that is pivotally supported at an appropriate location on the bottom of the base member 2 so as to form a pair. The pair of upper and lower magnetic heads 34 are arranged so as to sandwich one hard disk 32, and write and / or read information on both surfaces of the hard disk 32. In the present hard disk drive 30, since the hard disk 32 has a configuration of two sheets, the magnetic heads 34 are provided in two pairs in the upper and lower directions as shown in the figure, but the number of the hard disks 32 is limited to this. A pair of magnetic heads 34 is provided for each disk depending on the configuration.

このように、本実施例12のハードディスク駆動装置30のスピンドルモータとして実施例6のモータ1を適用することにより、小型化、薄型化されたハードディスク駆動装置30であっても、流体軸受装置のラジアル動圧軸受部10の軸方向長さが比較的大きくできるため、高い軸受剛性と回転精度とを確保することができるとともに、流体軸受装置からの潤滑油の外方漏出や飛散によるモータ内及び装置内汚染が効果的に防止された、信頼性の高いハードディスク駆動装置30を低コストで提供することが可能になる。
なお、本実施例12では、実施例6のモータ1がハードディスク駆動装置30に適用されたが、その他の実施例のモータ1が適用されてもよく、また、ハードディスクに代えて、CDやDVD等の記録ディスクとされてもよく、これらの記録ディスクを駆動する記録ディスク駆動装置とされてもよいものである。
As described above, by applying the motor 1 of the sixth embodiment as the spindle motor of the hard disk drive device 30 of the twelfth embodiment, even if the hard disk drive device 30 is reduced in size and thickness, the hydrodynamic bearing device is radial. Since the axial length of the hydrodynamic bearing portion 10 can be made relatively large, high bearing rigidity and rotational accuracy can be ensured, and the motor and apparatus due to outward leakage and scattering of lubricating oil from the hydrodynamic bearing device It is possible to provide a highly reliable hard disk drive device 30 in which internal contamination is effectively prevented at low cost.
In the twelfth embodiment, the motor 1 of the sixth embodiment is applied to the hard disk drive device 30, but the motor 1 of other embodiments may be applied, and a CD, a DVD, or the like may be used instead of the hard disk. The recording disk may be a recording disk drive device that drives these recording disks.

本願の発明は、以上の実施例および実施形態に限定されず、その要旨を逸脱しない範囲において、さらに、種々の変形が可能である。
例えば、以上の実施例および実施形態においては、全て軸回転型の流体軸受装置、該流体軸受装置を備えたスピンドルモータおよび記録ディスク駆動装置として説明されたが、この流体軸受装置は、軸固定型としても使用されることができる。
The invention of the present application is not limited to the above examples and embodiments, and various modifications can be made without departing from the scope of the invention.
For example, in the above examples and embodiments, the description has been given of the shaft rotation type hydrodynamic bearing device, the spindle motor provided with the hydrodynamic bearing device, and the recording disk drive device. Can also be used.

例えば、図23に図示されるモータ1および該モータ1を備えたハードディスク駆動装置30においては、その軸受部に、実施例6のモータ1に使用された流体軸受装置が軸固定型として使用されている。すなわち、その流体軸受装置の軸部材5の下端面と軸部材側環状部材13の下端面とは、ベース部材2の底面に当接されて、ねじ37を用いてそこにねじ止め固定され、その流体軸受装置の軸受部材4は、有底筒状部材17を介してロータハブ6の中央孔部6cに嵌入・嵌着されて、これと一体に回転可能にされることによって、その流体軸受装置が軸固定型とされているものである。なお、ロータの配置は、実施例6のアウターロータタイプからインナーロータタイプに転換されている。このように、流体軸受装置をねじ37一本でベース部材2に固定する構造を採用することにより、従来の圧入代を節約することができ、ラジアル軸受部の軸方向長さを短くすることがないため、モータ1が薄型化されても、充分な軸受剛性を確保できる。   For example, in the motor 1 shown in FIG. 23 and the hard disk drive device 30 including the motor 1, the hydrodynamic bearing device used in the motor 1 of the sixth embodiment is used as a shaft-fixing type for the bearing portion. Yes. That is, the lower end surface of the shaft member 5 of the hydrodynamic bearing device and the lower end surface of the shaft member-side annular member 13 are brought into contact with the bottom surface of the base member 2 and are screwed and fixed thereto using screws 37. The bearing member 4 of the hydrodynamic bearing device is fitted and fitted into the central hole 6c of the rotor hub 6 through the bottomed cylindrical member 17 so that the hydrodynamic bearing device can rotate integrally therewith. It is a fixed shaft type. The arrangement of the rotor has been changed from the outer rotor type of the sixth embodiment to the inner rotor type. Thus, by adopting a structure in which the hydrodynamic bearing device is fixed to the base member 2 with one screw 37, the conventional press-fitting allowance can be saved, and the axial length of the radial bearing portion can be shortened. Therefore, even if the motor 1 is thinned, sufficient bearing rigidity can be ensured.

この流体軸受装置の軸部材側環状部材13は、熱処理(焼入れ)された鋼またはステンレス鋼で構成することにより、剛性の高い軸部材側環状部材を得ることができ、これによって、ベース部材2に固定される軸部材5の安定度をより増大させることができる。また、この形態において、軸部材側環状部材13のベース部材2の底面への当接面を熱処理後に研磨仕上げしたものにすれば、ベース部材2に対する軸部材5の取付け精度をより向上させることができる。さらに、軸部材側環状部材13の上端面(軸受部材4の下端面に対向するスラスト動圧発生面)を熱処理後に研磨仕上げしたものにすれば、回転軸線に対して偏りなくスラスト動圧を発生させ、回転精度を高めることができる。また、ベース部材2を鋼板等の磁性材をプレス加工した部材で構成することにより、実施例6の吸引板18を設けることなくスラスト動圧力と釣り合う磁気力を発生させることができ、ベース部材をアルミ製とした場合よりも板厚を薄くすることができるので、さらに薄型化を図ることができる。   The shaft member-side annular member 13 of this hydrodynamic bearing device can be made of heat-treated (quenched) steel or stainless steel, whereby a highly rigid shaft member-side annular member can be obtained. The stability of the fixed shaft member 5 can be further increased. Further, in this embodiment, if the contact surface of the shaft member side annular member 13 with the bottom surface of the base member 2 is polished after heat treatment, the mounting accuracy of the shaft member 5 to the base member 2 can be further improved. it can. Furthermore, if the upper end surface of the shaft-member-side annular member 13 (the thrust dynamic pressure generating surface facing the lower end surface of the bearing member 4) is polished after heat treatment, thrust dynamic pressure is generated without being biased with respect to the rotational axis. The rotation accuracy can be increased. Further, by configuring the base member 2 with a member obtained by pressing a magnetic material such as a steel plate, it is possible to generate a magnetic force that balances with the thrust dynamic pressure without providing the suction plate 18 of the sixth embodiment. Since the plate thickness can be made thinner than when made of aluminum, the thickness can be further reduced.

この変形実施例において、ベース部材2には、さらに、キャピラリー・シール部12と軸方向に対向する部分に、実施例5と同様の複数の潤滑剤注入口が周方向に等間隔に貫通形成されてもよい。ハードディスク駆動装置30のその他の部分の構造は、図22に図示されたところと変わりはないので、詳細な説明を省略する。   In this modified embodiment, the base member 2 is further provided with a plurality of lubricant injection holes similar to those of the embodiment 5 at equal intervals in the circumferential direction at a portion facing the capillary seal portion 12 in the axial direction. May be. Since the structure of the other part of the hard disk drive 30 is the same as that shown in FIG. 22, detailed description thereof is omitted.

本願の発明の第1の実施例(実施例1)のモータの縦断面図である。It is a longitudinal cross-sectional view of the motor of 1st Example (Example 1) of invention of this application. 図1の部分拡大図である。It is the elements on larger scale of FIG. 本願の発明の第2の実施例(実施例2)のモータの縦断面図である。It is a longitudinal cross-sectional view of the motor of 2nd Example (Example 2) of invention of this application. 図3の部分拡大図である。FIG. 4 is a partially enlarged view of FIG. 3. 本願の発明の第3の実施例(実施例3)のモータの縦断面図である。It is a longitudinal cross-sectional view of the motor of 3rd Example (Example 3) of invention of this application. 本願の発明の第5の実施例(実施例5)のモータの縦断面図である。It is a longitudinal cross-sectional view of the motor of 5th Example (Example 5) of invention of this application. 本願の発明の第6の実施例(実施例6)のモータの縦断面図である。It is a longitudinal cross-sectional view of the motor of 6th Example (Example 6) of invention of this application. 本願の発明の第7の実施例(実施例7)のモータの縦断面図である。It is a longitudinal cross-sectional view of the motor of 7th Example (Example 7) of invention of this application. 本願の発明の第8の実施例(実施例8)のモータの縦断面図である。It is a longitudinal cross-sectional view of the motor of 8th Example (Example 8) of invention of this application. 本願の発明の第9の実施例(実施例9)のモータの縦断面図である。It is a longitudinal cross-sectional view of the motor of 9th Example (Example 9) of invention of this application. 本願の発明の第10の実施例(実施例10)のモータの縦断面図である。It is a longitudinal cross-sectional view of the motor of 10th Example (Example 10) of this invention. ラジアル動圧軸受部が軸方向の2個所に形成される場合の同ラジアル動圧軸受部の各種実施形態を示した図である。It is the figure which showed various embodiment of the radial dynamic pressure bearing part in case a radial dynamic pressure bearing part is formed in two places of an axial direction. ラジアル動圧軸受部が軸方向の1個所に形成される場合の同ラジアル動圧軸受部の各種実施形態を示した図である。It is the figure which showed various embodiment of the radial dynamic pressure bearing part in case a radial dynamic pressure bearing part is formed in one place of an axial direction. アキシャル動圧軸受部の動圧溝の各種実施形態を示した図である。It is the figure which showed various embodiment of the dynamic pressure groove of an axial dynamic pressure bearing part. モータの流体軸受装置の流体封止部を画成する毛細管シールが、軸部材側環状部材の外周面に形成されたテーパもしくは段と、軸受部材側環状部材の内周面に形成されたテーパもしくは段とが対向配置されることにより形成される場合の、同毛細管シールの各種実施形態を示した図である。The capillary seal that defines the fluid sealing portion of the fluid bearing device of the motor includes a taper or step formed on the outer peripheral surface of the shaft member side annular member and a taper or step formed on the inner peripheral surface of the bearing member side annular member. It is the figure which showed various embodiment of the same capillary seal in the case of being formed by opposingly arranging a step. 軸受部材側環状部材の各種実施形態を示した図である。It is the figure which showed various embodiment of the bearing member side annular member. 軸受部材の軸受孔の開放端側を閉塞する構造の各種実施形態を示した図である。It is the figure which showed various embodiment of the structure which obstruct | occludes the open end side of the bearing hole of a bearing member. 本願の発明の第11の実施例(実施例11)の、モータの流体軸受装置の縦断面図である。It is a longitudinal cross-sectional view of the hydrodynamic bearing apparatus of the motor of 11th Example (Example 11) of this invention. 軸部材の各種実施形態を示した図である。It is the figure which showed various embodiment of the shaft member. ラジアル・アキシャル動圧軸受部用の各種動圧溝形状の各種組合せを、ラジアル動圧軸受部が軸方向の2個所に形成される場合について、表にして示したものである。Various combinations of various dynamic pressure groove shapes for the radial and axial dynamic pressure bearing portions are shown in a table in the case where the radial dynamic pressure bearing portions are formed at two positions in the axial direction. ラジアル・アキシャル動圧軸受部用の各種動圧溝形状の各種組合せを、ラジアル動圧軸受部が軸方向の1個所のみに形成される場合について、表にして示したものである。Various combinations of various dynamic pressure groove shapes for the radial / axial dynamic pressure bearing portion are shown in a table in the case where the radial dynamic pressure bearing portion is formed only at one position in the axial direction. 本願の発明の第12の実施例(実施例12)を示すハードディスク駆動装置の縦断面図である。It is a longitudinal cross-sectional view of the hard-disk drive device which shows 12th Example (Example 12) of invention of this application. 軸固定型として使用される流体軸受装置を備えたスピンドルモータ、ハードディスク駆動装置主要部の縦断面図である。It is a longitudinal cross-sectional view of the main part of a spindle motor and a hard disk drive device provided with a hydrodynamic bearing device used as a fixed shaft type.

符号の説明Explanation of symbols

1…モータ、2…ベース部材、3…筒状軸受保持部、4…軸受部材、4a…軸受孔、4b…凹部、4c…周壁、4d…一端縮径部、4e…他端縮径部、4f…中央径大部、5…軸部材(シャフト)、5a…ねじ孔、5b…縮径部、5c…分離溝、6…ロータ部材(ロータハブ)、6a…筒状部、6b…フランジ部、6c…中央孔部、7…カバープレート、8…ステータ、9…ロータ磁石、10(10a、10b)…ラジアル動圧軸受部、11…アキシャル動圧軸受部、12…流体封止部、13…軸部材側環状部材、13a…テーパ、13b…延在表面、13c…段、13d…一半外周面部分、14…軸受部材側環状部材または軸受部材側スリーブ付き環状部材、14a…テーパ、14c…段、14d…一半内周面部分、14e…スリーブ部、14f…環状部、15…環状溝、16…潤滑剤注入口、17…有底筒状部材(有底円筒体)、18…吸引板、19…皿状部材、20…連通路、21…多円弧溝、22…筒状部材(円筒体)、23…鍔付き筒状部材、30…ハードディスク駆動装置、31…カバー部材、32…ハードディスク、33…クランプ部材、34…磁気ヘッド、35…アーム、36…ボイスコイルモータ、37…ねじ。













DESCRIPTION OF SYMBOLS 1 ... Motor, 2 ... Base member, 3 ... Cylindrical bearing holding part, 4 ... Bearing member, 4a ... Bearing hole, 4b ... Recessed part, 4c ... Peripheral wall, 4d ... One end reduced diameter part, 4e ... Other end reduced diameter part, 4f: Large central diameter, 5 ... Shaft member (shaft), 5a ... Screw hole, 5b ... Reduced diameter portion, 5c ... Separation groove, 6 ... Rotor member (rotor hub), 6a ... Cylindrical portion, 6b ... Flange portion, 6 ... Central hole, 7 ... Cover plate, 8 ... Stator, 9 ... Rotor magnet, 10 (10a, 10b) ... Radial dynamic pressure bearing part, 11 ... Axial dynamic pressure bearing part, 12 ... Fluid sealing part, 13 ... Shaft member side annular member, 13a ... taper, 13b ... extended surface, 13c ... step, 13d ... one half outer peripheral surface portion, 14 ... annular member with bearing member side annular member or bearing member side sleeve, 14a ... taper, 14c ... step , 14d: one-half inner peripheral surface portion, 14e: sleeve portion, 4f ... annular portion, 15 ... annular groove, 16 ... lubricant injection port, 17 ... bottomed cylindrical member (bottomed cylindrical body), 18 ... suction plate, 19 ... dish-like member, 20 ... communication path, 21 ... many Arc groove, 22 ... cylindrical member (cylindrical body), 23 ... cylindrical member with flange, 30 ... hard disk drive, 31 ... cover member, 32 ... hard disk, 33 ... clamp member, 34 ... magnetic head, 35 ... arm, 36 ... Voice coil motor, 37 ... Screw.













Claims (18)

相対回転可能に装着された軸部材と軸受部材との間に形成された動圧溝を含む微小隙間内に、潤滑剤が連続的に充填され、
前記微小隙間内における潤滑剤充填部分の一端側に、前記潤滑剤の外方漏出を防止するためのキャピラリー・シール部が形成されて成るモータの流体軸受装置において、
前記軸部材側の前記キャピラリー・シール部に対応する位置には、軸部材側環状部材が前記軸部材に嵌着され、
前記軸受部材側の前記キャピラリー・シール部に対応する位置には、軸受部材側環状部材が前記軸受部材の一端面凹部に嵌着され、
前記軸部材側環状部材の外周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、
前記軸受部材側環状部材の内周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、
前記軸部材側環状部材の外周面と前記軸受部材側環状部材の内周面とが、軸方向および半径方向に近接して対向配置されて、前記軸部材と前記軸受部材とが互いに抜け止めされるとともに、前記キャピラリー・シール部が形成され、
前記軸部材の外周面と前記軸受部材の内周面とのいずれかには、ラジアル方向の荷重を受ける動圧を発生させるための動圧溝が形成され、
前記軸部材側環状部材の軸方向他端側における半径方向への延在表面と、該延在表面と対向する前記軸受部材の一端面とのいずれかには、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝が形成された
ことを特徴とするモータの流体軸受装置。
A lubricant is continuously filled in a minute gap including a dynamic pressure groove formed between a shaft member and a bearing member mounted so as to be relatively rotatable,
In the hydrodynamic bearing device of the motor, in which a capillary seal portion for preventing the lubricant from leaking out is formed on one end side of the lubricant filling portion in the minute gap,
At a position corresponding to the capillary seal portion on the shaft member side, a shaft member side annular member is fitted to the shaft member,
At a position corresponding to the capillary seal portion on the bearing member side, a bearing member-side annular member is fitted into a recess on one end surface of the bearing member,
On the outer peripheral surface of the shaft-member-side annular member, a taper or step that is reduced in diameter toward the one end side in the axial direction is formed.
The inner peripheral surface of the bearing member side annular member is formed with a taper or step that decreases in diameter toward the one end side in the axial direction.
The outer peripheral surface of the shaft-member-side annular member and the inner peripheral surface of the bearing-member-side annular member are disposed opposite to each other in the axial direction and the radial direction so that the shaft member and the bearing member are prevented from coming off from each other. And the capillary seal part is formed,
Either one of the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing member is formed with a dynamic pressure groove for generating a dynamic pressure that receives a load in a radial direction,
Either one of the radially extending surface on the other axial end side of the shaft member side annular member and the one end surface of the bearing member facing the extending surface is subjected to a dynamic pressure that receives a load in the axial direction. A hydrodynamic bearing device for a motor, wherein a dynamic pressure groove for generating the pressure is formed.
相対回転可能に装着された軸部材と軸受部材との間に形成された動圧溝を含む微小隙間内に、潤滑剤が連続的に充填され、
前記微小隙間内における潤滑剤充填部分の一端側に、前記潤滑剤の外方漏出を防止するためのキャピラリー・シール部が形成されて成るモータの流体軸受装置において、
前記軸部材側の前記キャピラリー・シール部に対応する位置には、軸部材側環状部材が前記軸部材に嵌着され、
前記軸受部材側の前記キャピラリー・シール部に対応する位置には、軸受部材側環状部材が前記軸受部材の一端面に軸方向から当接するようにして設けられ、
前記軸受部材と前記軸受部材側環状部材とを被うようにして、キャップ状の有底筒状部材が設けられ、
前記軸受部材側環状部材は、前記有底筒状部材の開口部に嵌着されており、
前記軸部材側環状部材の外周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、
前記軸受部材側環状部材の内周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、
前記軸部材側環状部材の外周面と前記軸受部材側環状部材の内周面とが、軸方向および半径方向に近接して対向配置されて、前記軸部材と前記軸受部材とが互いに抜け止めされるとともに、前記キャピラリー・シール部が形成され、
前記軸部材の外周面と前記軸受部材の内周面とのいずれかには、ラジアル方向の荷重を受ける動圧を発生させるための動圧溝が形成され、
前記軸部材側環状部材の軸方向他端側における半径方向への延在表面と、該延在表面と対向する前記軸受部材の一端面とのいずれかには、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝が形成された
ことを特徴とするモータの流体軸受装置。
A lubricant is continuously filled in a minute gap including a dynamic pressure groove formed between a shaft member and a bearing member mounted so as to be relatively rotatable,
In the hydrodynamic bearing device of the motor, in which a capillary seal portion for preventing the lubricant from leaking out is formed on one end side of the lubricant filling portion in the minute gap,
At a position corresponding to the capillary seal portion on the shaft member side, a shaft member side annular member is fitted to the shaft member,
At a position corresponding to the capillary seal portion on the bearing member side, a bearing member side annular member is provided so as to abut on one end surface of the bearing member from the axial direction,
A cap-shaped bottomed tubular member is provided so as to cover the bearing member and the bearing member-side annular member,
The bearing member side annular member is fitted in the opening of the bottomed tubular member,
On the outer peripheral surface of the shaft-member-side annular member, a taper or step that is reduced in diameter toward the one end side in the axial direction is formed.
The inner peripheral surface of the bearing member side annular member is formed with a taper or step that decreases in diameter toward the one end side in the axial direction.
The outer peripheral surface of the shaft-member-side annular member and the inner peripheral surface of the bearing-member-side annular member are disposed opposite to each other in the axial direction and the radial direction so that the shaft member and the bearing member are prevented from coming off from each other. And the capillary seal part is formed,
Either one of the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing member is formed with a dynamic pressure groove for generating a dynamic pressure that receives a load in a radial direction,
Either one of the radially extending surface on the other axial end side of the shaft member side annular member and the one end surface of the bearing member facing the extending surface is subjected to a dynamic pressure that receives a load in the axial direction. A hydrodynamic bearing device for a motor, wherein a dynamic pressure groove for generating the pressure is formed.
相対回転可能に装着された軸部材と軸受部材との間に形成された動圧溝を含む微小隙間内に、潤滑剤が連続的に充填され、
前記微小隙間内における潤滑剤充填部分の一端側に、前記潤滑剤の外方漏出を防止するためのキャピラリー・シール部が形成されて成るモータの流体軸受装置において、
前記軸部材側の前記キャピラリー・シール部に対応する位置には、軸部材側環状部材が前記軸部材に嵌着され、
前記軸受部材側の前記キャピラリー・シール部に対応する位置には、軸受部材側スリーブ付き環状部材が設けられ、
前記軸受部材側スリーブ付き環状部材のスリーブ部は、前記軸受部材の一端縮径部に嵌着されており、
前記軸受部材の他端縮径部を被うようにして、浅いキャップ状の皿状部材が設けられ、
前記軸受部材の中央径大部は、ベース部材の筒状軸受保持部もしくはロータ部材の中央孔部に嵌着され、
前記軸部材側環状部材の外周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、
前記軸受部材側スリーブ付き環状部材のスリーブ部を除く環状部の内周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、
前記軸部材側環状部材の外周面と前記軸受部材側スリーブ付き環状部材のスリーブ部を除く環状部の内周面とが、軸方向および半径方向に近接して対向配置されて、前記軸部材と前記軸受部材とが互いに抜け止めされるとともに、前記キャピラリー・シール部が形成され、
前記軸部材の外周面と前記軸受部材の内周面とのいずれかには、ラジアル方向の荷重を受ける動圧を発生させるための動圧溝が形成され、
前記軸部材側環状部材の軸方向他端側における半径方向への延在表面と、該延在表面と対向する前記軸受部材の一端面とのいずれかには、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝が形成された
ことを特徴とするモータの流体軸受装置。
A lubricant is continuously filled in a minute gap including a dynamic pressure groove formed between a shaft member and a bearing member mounted so as to be relatively rotatable,
In the hydrodynamic bearing device of the motor, in which a capillary seal portion for preventing the lubricant from leaking out is formed on one end side of the lubricant filling portion in the minute gap,
At a position corresponding to the capillary seal portion on the shaft member side, a shaft member side annular member is fitted to the shaft member,
An annular member with a bearing member side sleeve is provided at a position corresponding to the capillary seal portion on the bearing member side,
The sleeve portion of the annular member with the bearing member side sleeve is fitted to one end reduced diameter portion of the bearing member,
A shallow cap-shaped dish-shaped member is provided so as to cover the other end reduced diameter portion of the bearing member,
The central diameter large portion of the bearing member is fitted into the cylindrical bearing holding portion of the base member or the central hole portion of the rotor member,
On the outer peripheral surface of the shaft-member-side annular member, a taper or step that is reduced in diameter toward the one end side in the axial direction is formed.
On the inner peripheral surface of the annular portion excluding the sleeve portion of the annular member with the bearing member side sleeve, a taper or a step is formed that is reduced in diameter toward one end in the axial direction.
An outer peripheral surface of the shaft member-side annular member and an inner peripheral surface of the annular portion excluding the sleeve portion of the annular member with the bearing member-side sleeve are disposed to oppose each other in the axial direction and the radial direction, and the shaft member The bearing member and each other are prevented from coming off, and the capillary seal portion is formed,
Either one of the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing member is formed with a dynamic pressure groove for generating a dynamic pressure that receives a load in a radial direction,
Either one of the radially extending surface on the other axial end side of the shaft member side annular member and the one end surface of the bearing member facing the extending surface is subjected to a dynamic pressure that receives a load in the axial direction. A hydrodynamic bearing device for a motor, wherein a dynamic pressure groove for generating the pressure is formed.
相対回転可能に装着された軸部材と軸受部材との間に形成された動圧溝を含む微小隙間内に、潤滑剤が連続的に充填され、
前記微小隙間内における潤滑剤充填部分の一端側に、前記潤滑剤の外方漏出を防止するためのキャピラリー・シール部が形成されて成るモータの流体軸受装置において、
前記軸部材側の前記キャピラリー・シール部に対応する位置には、軸部材側環状部材が前記軸部材に嵌着され、
前記軸受部材側の前記キャピラリー・シール部に対応する位置には、軸受部材側環状部材が前記軸受部材の一端面に軸方向から当接するようにして設けられ、
前記軸受部材と前記軸受部材側環状部材とを被うようにして、筒状部材が設けられ、
前記軸受部材側環状部材は、前記筒状部材の軸方向一端側開口部に嵌着されており、
前記筒状部材の軸方向他端側開口部には、前記軸受部材の軸受孔の開放端側を塞ぐカバープレートが嵌着され、
前記軸部材側環状部材の外周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、
前記軸受部材側環状部材の内周面には、軸方向一端側に向かう程縮径するテーパもしくは段が形成され、
前記軸部材側環状部材の外周面と前記軸受部材側環状部材の内周面とが、軸方向および半径方向に近接して対向配置されて、前記軸部材と前記軸受部材とが互いに抜け止めされるとともに、前記キャピラリー・シール部が形成され、
前記軸部材の外周面と前記軸受部材の内周面とのいずれかには、ラジアル方向の荷重を受ける動圧を発生させるための動圧溝が形成され、
前記軸部材側環状部材の軸方向他端側における半径方向への延在表面と、該延在表面と対向する前記軸受部材の一端面とのいずれかには、アキシャル方向の荷重を受ける動圧を発生させるための動圧溝が形成された
ことを特徴とするモータの流体軸受装置。
A lubricant is continuously filled in a minute gap including a dynamic pressure groove formed between a shaft member and a bearing member mounted so as to be relatively rotatable,
In the hydrodynamic bearing device of the motor, in which a capillary seal portion for preventing the lubricant from leaking out is formed on one end side of the lubricant filling portion in the minute gap,
At a position corresponding to the capillary seal portion on the shaft member side, a shaft member side annular member is fitted to the shaft member,
At a position corresponding to the capillary seal portion on the bearing member side, a bearing member side annular member is provided so as to abut on one end surface of the bearing member from the axial direction,
A cylindrical member is provided so as to cover the bearing member and the bearing member-side annular member,
The bearing member side annular member is fitted to the opening in the axial direction one end side of the cylindrical member,
A cover plate for closing the open end side of the bearing hole of the bearing member is fitted into the opening on the other axial end side of the cylindrical member,
On the outer peripheral surface of the shaft-member-side annular member, a taper or step that is reduced in diameter toward the one end side in the axial direction is formed.
The inner peripheral surface of the bearing member side annular member is formed with a taper or step that decreases in diameter toward the one end side in the axial direction.
The outer peripheral surface of the shaft-member-side annular member and the inner peripheral surface of the bearing-member-side annular member are disposed opposite to each other in the axial direction and the radial direction so that the shaft member and the bearing member are prevented from coming off from each other. And the capillary seal part is formed,
Either one of the outer peripheral surface of the shaft member and the inner peripheral surface of the bearing member is formed with a dynamic pressure groove for generating a dynamic pressure that receives a load in a radial direction,
Either one of the radially extending surface on the other axial end side of the shaft member side annular member and the one end surface of the bearing member facing the extending surface is subjected to a dynamic pressure that receives a load in the axial direction. A hydrodynamic bearing device for a motor, wherein a dynamic pressure groove for generating the pressure is formed.
前記軸受部材側環状部材は、前記軸受部材に溶着されていることを特徴とする請求項1に記載のモータの流体軸受装置。   The hydrodynamic bearing device for a motor according to claim 1, wherein the bearing member-side annular member is welded to the bearing member. 前記軸受部材の軸受孔の開放端側を塞ぐカバープレートと前記軸受部材とが、同一材料の一体加工により製作されていることを特徴とする請求項1に記載のモータの流体軸受装置。   The hydrodynamic bearing device for a motor according to claim 1, wherein the cover plate that closes the open end side of the bearing hole of the bearing member and the bearing member are manufactured by integral processing of the same material. 前記軸部材側環状部材は、焼入れされた鋼で製作され、前記ロータ部材の端面もしくは前記ベース部材の底面に当接して、前記ロータ部材を軸方向に支持しているかもしくは前記ベース部材により軸方向に支持されていることを特徴とする請求項1ないし請求項4のいずれかに記載のモータの流体軸受装置。   The shaft-member-side annular member is made of hardened steel, abuts against the end surface of the rotor member or the bottom surface of the base member, and supports the rotor member in the axial direction or is axially supported by the base member. The hydrodynamic bearing device for a motor according to any one of claims 1 to 4, wherein the hydrodynamic bearing device is supported by the motor. 前記軸部材側環状部材は、熱処理後に、前記ロータ部材の端面もしくは前記ベース部材の底面に当接する軸方向一端面が研磨仕上げされていることを特徴とする請求項7に記載のモータの流体軸受装置。   8. The hydrodynamic bearing for a motor according to claim 7, wherein the shaft-member-side annular member has a polished end surface in the axial direction that contacts the end surface of the rotor member or the bottom surface of the base member after heat treatment. apparatus. 前記軸部材側環状部材は、熱処理後に、前記軸受部材の一端面と対向する軸方向他端側における半径方向への延在表面が研磨仕上げされていることを特徴とする請求項7または請求項8に記載のモータの流体軸受装置。   The axially extending surface of the axial member-side annular member on the other axial end opposite to the one end surface of the bearing member is polished and finished after heat treatment. The hydrodynamic bearing device for the motor according to claim 8. 前記ロータ部材もしくは前記ベース部材の、前記キャピラリー・シール部と軸方向に対向する部分には、周方向に等間隔に複数の潤滑剤注入口が貫通形成されていることを特徴とする請求項1ないし請求項4のいずれかに記載のモータの流体軸受装置。   2. A plurality of lubricant injection holes are formed at equal intervals in the circumferential direction in a portion of the rotor member or the base member facing the capillary seal portion in the axial direction. The hydrodynamic bearing device for a motor according to any one of claims 4 to 4. 前記軸部材側環状部材と前記軸部材とが、同一材料の一体加工により製作されていることを特徴とする請求項1ないし請求項4のいずれかに記載のモータの流体軸受装置。   5. The hydrodynamic bearing device for a motor according to claim 1, wherein the shaft-member-side annular member and the shaft member are manufactured by integral processing of the same material. 前記軸受部材側環状部材と前記筒状部材とが、同一材料の一体加工により製作されていることを特徴とする請求項4に記載のモータの流体軸受装置。   5. The hydrodynamic bearing device for a motor according to claim 4, wherein the bearing member-side annular member and the cylindrical member are manufactured by integral processing of the same material. 前記軸部材側環状部材の外周面に形成されたテーパと、前記軸受部材側環状部材の内周面もしくは前記軸受部材側スリーブ付き環状部材のスリーブ部を除く環状部の内周面に形成されたテーパとは、軸方向一端側に向かう程それらの間の半径方向隙間が拡大するようにして形成されていることを特徴とする請求項1ないし請求項4のいずれかに記載のモータの流体軸受装置。   A taper formed on the outer peripheral surface of the shaft member side annular member and an inner peripheral surface of the annular portion excluding the inner peripheral surface of the bearing member side annular member or the sleeve portion of the annular member with the bearing member side sleeve. 5. The motor hydrodynamic bearing according to claim 1, wherein the taper is formed such that a radial gap therebetween increases toward one end in the axial direction. apparatus. 前記軸部材側環状部材の外周面に形成された段と、前記軸受部材側環状部材の内周面もしくは前記軸受部材側スリーブ付き環状部材のスリーブ部を除く環状部の内周面に形成された段とは、それらの段の軸方向一端側の一半外周面部分と一半内周面部分との間の半径方向隙間が軸方向一端側に向かう程拡大するようにして形成されていることを特徴とする請求項1ないし請求項4のいずれかに記載のモータの流体軸受装置。   A step formed on the outer peripheral surface of the shaft member side annular member and an inner peripheral surface of the annular portion excluding the inner peripheral surface of the bearing member side annular member or the sleeve portion of the annular member with the bearing member side sleeve. The steps are formed such that a radial gap between one half outer peripheral surface portion and one half inner peripheral surface portion of one step in the axial direction of the step is increased toward the one end side in the axial direction. The hydrodynamic bearing device for a motor according to any one of claims 1 to 4. 前記軸部材側環状部材の外周面に形成された段の軸方向一端側の一半外周面部分と、前記軸受部材側環状部材の内周面もしくは前記軸受部材側スリーブ付き環状部材のスリーブ部を除く環状部の内周面に形成された段の軸方向一端側の一半内周面部分とのいずれかには、前記キャピラリー・シール部における前記潤滑剤の界面変動を緩和し得る環状溝が形成されたことを特徴とする請求項14に記載のモータの流体軸受装置。   Excluding one half outer peripheral surface portion on one axial end side of the step formed on the outer peripheral surface of the shaft member side annular member, and the inner peripheral surface of the bearing member side annular member or the sleeve portion of the annular member with the bearing member side sleeve. An annular groove is formed on one of the inner peripheral surface portions on one end side in the axial direction of the step formed on the inner peripheral surface of the annular portion so as to reduce the interface fluctuation of the lubricant in the capillary seal portion. The hydrodynamic bearing device for a motor according to claim 14. 前記軸受部材の他端面と前記有底筒状部材もしくは前記皿状部材との間に形成された微小隙間と、前記キャピラリー・シール部と、の間を連通する連通路が形成されたことを特徴とする請求項2または請求項3に記載のモータの流体軸受装置。   A communication path that communicates between the capillary seal portion and the minute gap formed between the other end surface of the bearing member and the bottomed cylindrical member or the dish-shaped member is formed. The hydrodynamic bearing device for a motor according to claim 2 or 3. 請求項1ないし請求項16のいずれかに記載のモータの流体軸受装置を備えたスピンドルモータであって、
前記ベース部材に固定されたステータと、
前記ベース部材に対して回転自在に設けられ、前記軸部材の一端部に嵌着されるか前記軸受部材に直接もしくは前記有底筒状部材または前記筒状部材を介して間接に嵌着された回転要素をなすロータ部材と、該ロータ部材の外周筒状部に嵌着され、前記ステータと協働して回転磁界を発生するロータ磁石とから成るロータと
を備え、
前記流体軸受装置は、前記ロータの回転を支持しており、前記ロータは、前記流体軸受装置内のアキシャル方向の荷重を受ける動圧を発生させるための動圧溝で発生する動圧が作用する方向とは反対方向に磁気力で吸引され、これらの動圧と磁気力とがバランスすることによって、その荷重が支持されている
ことを特徴とするスピンドルモータ。
A spindle motor comprising the hydrodynamic bearing device for a motor according to any one of claims 1 to 16,
A stator fixed to the base member;
The base member is rotatably provided and is fitted to one end of the shaft member, or directly or indirectly to the bearing member through the bottomed tubular member or the tubular member. A rotor member that forms a rotating element, and a rotor that is fitted to an outer peripheral cylindrical portion of the rotor member, and a rotor magnet that generates a rotating magnetic field in cooperation with the stator,
The hydrodynamic bearing device supports the rotation of the rotor, and the rotor is subjected to dynamic pressure generated in a dynamic pressure groove for generating a dynamic pressure that receives a load in an axial direction in the hydrodynamic bearing device. A spindle motor that is attracted by a magnetic force in a direction opposite to the direction, and that the dynamic pressure and the magnetic force balance to support the load.
請求項17に記載のスピンドルモータを備えた記録ディスク駆動装置であって、
記録ディスクに情報を書き込みおよび/または読み出しするためのヘッドを備え、
前記スピンドルモータが、前記記録ディスクを回転駆動するようにされている
ことを特徴とする記録ディスク駆動装置。
A recording disk drive comprising the spindle motor according to claim 17,
A head for writing and / or reading information on a recording disk;
A recording disk drive apparatus, wherein the spindle motor is configured to rotationally drive the recording disk.
JP2005027314A 2004-02-09 2005-02-03 Fluid bearing device for motor, motor equipped with the fluid bearing device, and recording disc drive device Pending JP2005257073A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027314A JP2005257073A (en) 2004-02-09 2005-02-03 Fluid bearing device for motor, motor equipped with the fluid bearing device, and recording disc drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004031448 2004-02-09
JP2005027314A JP2005257073A (en) 2004-02-09 2005-02-03 Fluid bearing device for motor, motor equipped with the fluid bearing device, and recording disc drive device

Publications (2)

Publication Number Publication Date
JP2005257073A true JP2005257073A (en) 2005-09-22
JP2005257073A5 JP2005257073A5 (en) 2008-04-03

Family

ID=35082979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027314A Pending JP2005257073A (en) 2004-02-09 2005-02-03 Fluid bearing device for motor, motor equipped with the fluid bearing device, and recording disc drive device

Country Status (1)

Country Link
JP (1) JP2005257073A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113705A (en) * 2005-10-20 2007-05-10 Minebea Co Ltd Fluid dynamic bearing device, motor, and disk storage device
KR100733223B1 (en) * 2005-12-05 2007-06-27 삼성전기주식회사 Hydrodynamics bearing
JP2007263368A (en) * 2006-03-27 2007-10-11 Samsung Electro-Mechanics Co Ltd Hydrodynamic bearing with additional fluid storage space
US20090279819A1 (en) * 2006-03-20 2009-11-12 Ntn Corporation Fluid dynamic bearing device
JP2010019289A (en) * 2008-07-08 2010-01-28 Ntn Corp Fluid dynamic pressure bearing device
US8013487B2 (en) 2008-09-26 2011-09-06 Panasonic Corporation Hydrodynamic bearing device, and spindle motor and information apparatus equipped with same

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865949A (en) * 1994-08-19 1996-03-08 Matsushita Electric Ind Co Ltd Motor
JPH09119431A (en) * 1995-10-25 1997-05-06 Koyo Seiko Co Ltd Dynamic pressure bearing
JPH11187611A (en) * 1997-12-18 1999-07-09 Seiko Instruments Inc Spindle motor and rotating body device using the motor as driving source of rotating body
JP2000274429A (en) * 1999-03-25 2000-10-03 Seiko Instruments Inc Liquid dynamic pressure bearing and spindle motor
JP2001056023A (en) * 1999-08-18 2001-02-27 Seiko Instruments Inc Spindle motor
JP2001124059A (en) * 1999-10-27 2001-05-08 Ntn Corp Dynamic pressure bearing unit
JP2001271838A (en) * 2000-03-27 2001-10-05 Nippon Densan Corp Hydrodynamic fluid bearing device and motor
JP2001289247A (en) * 2000-04-07 2001-10-19 Nsk Ltd Fluid bearing device
JP2002005172A (en) * 2000-06-19 2002-01-09 Nippon Densan Corp Fluid dynamic pressure bearing, and motor and disc device using the bearing
JP2002339956A (en) * 2001-05-17 2002-11-27 Riraiaru:Kk Dynamic pressure bearing device, and manufacturing method therefor
JP2003032945A (en) * 2001-07-18 2003-01-31 Matsushita Electric Ind Co Ltd Information recording and reproducing device
JP2003130044A (en) * 2001-10-25 2003-05-08 Nippon Densan Corp Dynamic pressure bearing device, motor, and disc device
WO2003058082A1 (en) * 2002-01-09 2003-07-17 Minebea Co., Ltd. A Japanese Corporation Method for producing a spindle motor and spindle motor for a hard disk drive
JP2003239951A (en) * 2002-02-20 2003-08-27 Ntn Corp Dynamic pressure bearing device and manufacturing method therefor
JP2003333798A (en) * 2002-05-17 2003-11-21 Nippon Densan Corp Spindle motor and magnetic disc drive
JP2004019708A (en) * 2002-06-13 2004-01-22 Nippon Densan Corp Dynamic pressure bearing, spindle motor using the same, and disc driving device with spindle motor
JP2004028165A (en) * 2002-06-24 2004-01-29 Ntn Corp Fluid bearing device

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865949A (en) * 1994-08-19 1996-03-08 Matsushita Electric Ind Co Ltd Motor
JPH09119431A (en) * 1995-10-25 1997-05-06 Koyo Seiko Co Ltd Dynamic pressure bearing
JPH11187611A (en) * 1997-12-18 1999-07-09 Seiko Instruments Inc Spindle motor and rotating body device using the motor as driving source of rotating body
JP2000274429A (en) * 1999-03-25 2000-10-03 Seiko Instruments Inc Liquid dynamic pressure bearing and spindle motor
JP2001056023A (en) * 1999-08-18 2001-02-27 Seiko Instruments Inc Spindle motor
JP2001124059A (en) * 1999-10-27 2001-05-08 Ntn Corp Dynamic pressure bearing unit
JP2001271838A (en) * 2000-03-27 2001-10-05 Nippon Densan Corp Hydrodynamic fluid bearing device and motor
JP2001289247A (en) * 2000-04-07 2001-10-19 Nsk Ltd Fluid bearing device
JP2002005172A (en) * 2000-06-19 2002-01-09 Nippon Densan Corp Fluid dynamic pressure bearing, and motor and disc device using the bearing
JP2002339956A (en) * 2001-05-17 2002-11-27 Riraiaru:Kk Dynamic pressure bearing device, and manufacturing method therefor
JP2003032945A (en) * 2001-07-18 2003-01-31 Matsushita Electric Ind Co Ltd Information recording and reproducing device
JP2003130044A (en) * 2001-10-25 2003-05-08 Nippon Densan Corp Dynamic pressure bearing device, motor, and disc device
WO2003058082A1 (en) * 2002-01-09 2003-07-17 Minebea Co., Ltd. A Japanese Corporation Method for producing a spindle motor and spindle motor for a hard disk drive
JP2003239951A (en) * 2002-02-20 2003-08-27 Ntn Corp Dynamic pressure bearing device and manufacturing method therefor
JP2003333798A (en) * 2002-05-17 2003-11-21 Nippon Densan Corp Spindle motor and magnetic disc drive
JP2004019708A (en) * 2002-06-13 2004-01-22 Nippon Densan Corp Dynamic pressure bearing, spindle motor using the same, and disc driving device with spindle motor
JP2004028165A (en) * 2002-06-24 2004-01-29 Ntn Corp Fluid bearing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113705A (en) * 2005-10-20 2007-05-10 Minebea Co Ltd Fluid dynamic bearing device, motor, and disk storage device
KR100733223B1 (en) * 2005-12-05 2007-06-27 삼성전기주식회사 Hydrodynamics bearing
US20090279819A1 (en) * 2006-03-20 2009-11-12 Ntn Corporation Fluid dynamic bearing device
US8403565B2 (en) * 2006-03-20 2013-03-26 Ntn Corporation Fluid dynamic bearing device
JP2007263368A (en) * 2006-03-27 2007-10-11 Samsung Electro-Mechanics Co Ltd Hydrodynamic bearing with additional fluid storage space
JP2010019289A (en) * 2008-07-08 2010-01-28 Ntn Corp Fluid dynamic pressure bearing device
US8013487B2 (en) 2008-09-26 2011-09-06 Panasonic Corporation Hydrodynamic bearing device, and spindle motor and information apparatus equipped with same

Similar Documents

Publication Publication Date Title
US7372663B2 (en) Lubricated limiter for fluid dynamic bearing motor
US7654744B2 (en) Fluid dynamic bearing mechanism for a motor
US8587895B1 (en) Bearing mechanism, motor and disk drive apparatus
US6888278B2 (en) Spindle motor and disk drive utilizing the spindle motor
US7401979B2 (en) Dynamic pressure bearing device
JP2006283773A (en) Dynamic pressure fluid bearing device and small-sized motor having the same
US8284515B2 (en) Fluid dynamic pressure bearing device, spindle motor and disk drive apparatus
US7661882B2 (en) Fluid dynamic pressure bearing device, spindle motor provided with the fluid dynamic pressure bearing device, and recording disk drive device
WO2005121575A1 (en) Fluid dynamic pressure bearing, motor, and recording medium drive device
JP2006017299A (en) Hydrodynamic bearing and spindle motor with the same, and recording disk driving device
US8508883B2 (en) Motor including hydrodynamic bearing and disk drive apparatus including same
JP4619763B2 (en) Fluid dynamic bearing device, spindle motor provided with the fluid dynamic pressure bearing device, and recording disk drive
JP2005257073A (en) Fluid bearing device for motor, motor equipped with the fluid bearing device, and recording disc drive device
JP2005257073A5 (en)
JP2004270820A (en) Fluid dynamic-pressure bearing, spindle motor and recording disk driver
US8873198B1 (en) Motor and disk drive apparatus
JP4387114B2 (en) Bearing mechanism, motor and disk drive
JP2006029565A (en) Fluid bearing device, spindle motor having the same, and hard disk drive device
JP2008163969A (en) Bearing mechanism, motor, and recording disc drive mechanism
US8608384B2 (en) Rotating device
JP4043838B2 (en) Spindle motor and recording disk drive
JP3955944B2 (en) Motor and disk device
US20080278850A1 (en) Motor
WO2004077643A1 (en) Motor using dynamic gas bearings
US20070183090A1 (en) Rotor hub, motor, and recording disk driving device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101222

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308