JP2005254287A - Method for suppressing nose warping of material to be rolled - Google Patents

Method for suppressing nose warping of material to be rolled Download PDF

Info

Publication number
JP2005254287A
JP2005254287A JP2004070015A JP2004070015A JP2005254287A JP 2005254287 A JP2005254287 A JP 2005254287A JP 2004070015 A JP2004070015 A JP 2004070015A JP 2004070015 A JP2004070015 A JP 2004070015A JP 2005254287 A JP2005254287 A JP 2005254287A
Authority
JP
Japan
Prior art keywords
rolled
lower work
warping
work rolls
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004070015A
Other languages
Japanese (ja)
Inventor
Takashi Motomura
隆 本邑
Kazuhiro Yahiro
和広 八尋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004070015A priority Critical patent/JP2005254287A/en
Publication of JP2005254287A publication Critical patent/JP2005254287A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Metal Rolling (AREA)
  • Control Of Metal Rolling (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the suppressing method of the nose warping of a material to be rolled for suppressing occurrence of the nose warping before the nose warping is caused on the material to be rolled in a roughing mill in the hot rolling process of steel. <P>SOLUTION: In this method, a technique for hot-rolling the material to be rolled while controlling the rotational speed of upper and lower work rolls in order to suppress the nose warping of the material to be rolled with a reversing roughing mill is improved. Specifically, the roughness of the upper and back surfaces of the material to be rolled and the surface roughness of the upper and lower work rolls of the reversing roughing mill are measured respectively before the material to be rolled is bitten between the upper and lower work rolls and the lubricating oil of a volume with which the difference between the coefficient of friction between the upper surface of the material to be rolled and the upper work roll and/or the coefficient of friction between the back surface of the material to be rolled and the lower work roll is eliminated is supplied on the basis of the measured value. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、被圧延材の先端反り抑制方法に係わり、特に、熱間圧延工程の可逆式粗圧延機で鋼鋳片を粗圧延する際に、被圧延材である該鋼鋳片の先端部に生じる変形、所謂「先端反り」を抑制する技術に関する。   The present invention relates to a method for suppressing the tip warpage of a material to be rolled, and particularly, when the steel slab is roughly rolled by a reversible rough rolling machine in a hot rolling process, the tip of the steel slab as a material to be rolled. The present invention relates to a technique for suppressing the deformation that occurs in the so-called “tip warp”.

連続鋳造等で得た鋼鋳片(例えば、スラブ)を熱間圧延して熱延鋼板を製造するには、予め該鋼鋳片を可逆式粗圧延機(以下、粗圧延機という)で一定寸法の中間素材に粗圧延してから、中間圧延機、仕上げ圧延機に供給して所望肉厚の熱延鋼板に圧延する。その際、前記粗圧延機での圧延では、図2(a)及び(b)に示すように、圧延中に水平な鋼鋳片若しくは中間素材(以下、被圧延材1という)の先(又は後)端が上方又は下方に向かって反ることが多い。この所謂「先端反り」が生じると、ワークロール2a,2bでの円滑な圧延ができなくなるばかりでなく、圧延設備の破損を引き起こすこともある。   In order to produce a hot-rolled steel sheet by hot-rolling a steel slab obtained by continuous casting or the like (for example, a slab), the steel slab is previously fixed in a reversible roughing mill (hereinafter referred to as a rough rolling mill). After rough rolling to an intermediate material of the size, it is supplied to an intermediate rolling mill and a finish rolling mill and rolled into a hot rolled steel sheet having a desired thickness. At that time, in rolling with the rough rolling mill, as shown in FIGS. 2 (a) and (b), the tip of a horizontal steel slab or intermediate material (hereinafter referred to as the material to be rolled 1) during rolling (or The rear edge often warps upward or downward. When this so-called “tip warp” occurs, not only smooth rolling on the work rolls 2a and 2b becomes impossible, but also the rolling equipment may be damaged.

かかる先端反りを防止するため、従来より先端反りの原因追求が行われ、被圧延材1の上下面の温度差、摩擦状態の差、上下ロールの径差、板厚、圧下率等、多くの要因が影響していることが明らかになっている。   In order to prevent such a tip warp, the cause of the tip warp has been pursued conventionally, and there are many temperature differences between the upper and lower surfaces of the material 1 to be rolled, frictional differences, upper and lower roll diameter differences, plate thickness, rolling reduction, etc. It is clear that the factors are influencing.

ところが、それらの要因と先端反りとの定量的な関係を把握することは難しく、従来からある先端反りの制御(抑制)技術には、十分に満足できるものがなかった。そこで、本出願人は、先に、粗圧延機4の入側と出側の少なくとも一方の側に反りを検出するセンサを設置して、被圧延材1の上下反り量を検出し、予め求めておいた該上下反り量と上下ワークロールの回転速度差との関係を利用して先端の反りを解消する圧延を行う技術を提案した(特許文献1参照)。   However, it is difficult to grasp the quantitative relationship between these factors and the tip warp, and no conventional tip warpage control (suppression) technology has been fully satisfactory. Therefore, the applicant first installs a sensor for detecting warpage on at least one of the entry side and the exit side of the roughing mill 4 to detect the amount of warpage of the material 1 to be rolled and obtain it in advance. A technique has been proposed in which rolling is performed to eliminate the warpage of the tip by utilizing the relationship between the amount of vertical warpage and the rotational speed difference between the upper and lower work rolls (see Patent Document 1).

この技術は、反り量を検出後、その反り量を直接解消するものであるから、反り原因の如何にかかわらず有効であった。しかしながら、このような被圧延材の先端反りは、前記したように、圧延中に発生すること自体が間題であり、上記先行技術でもまだ十分な対策となっていないのが現状である。
特開昭63−60012号公報
This technique is effective regardless of the cause of warping because it directly eliminates the warping amount after detecting the warping amount. However, as described above, the tip warpage of the material to be rolled is a problem in itself during rolling, and the current state of the art is not yet a sufficient measure even in the prior art.
Japanese Patent Laid-Open No. Sho 63-60012

本発明は、かかる事情に鑑み、鋼材熱間圧延工程の粗圧延機で被圧延材に先端反りが起きる前に、該先端反りの発生を抑制する被圧延材の先端反り抑制方法を提供することを目的としている。   In view of such circumstances, the present invention provides a method for suppressing the tip warpage of a material to be rolled that suppresses the occurrence of the tip warp before the tip warp occurs in the material to be rolled in a rough rolling mill in a steel hot rolling process. It is an object.

発明者は、上記目的を達成するため鋭意研究を重ね、その成果を本発明に具現化した。すなわち、本発明は、可逆式粗圧延機で、被圧延材の先端反りを抑制するために、上下ワークロールの回転速度を制御しながら、該被圧延材を熱間圧延するに際して、前記被圧延材が前記上下ワークロールへ噛み込む前に、該被圧延材の上下面の粗度と、該可逆式粗圧延機の上下ワークロールの表面粗度とをそれぞれ測定し、それら測定値に基づき、該被圧延材の上面と上ワークロールとの間の摩擦係数及び/又は該被圧延材の下面と下ワークロールとの間の摩擦係数の差を解消する量の潤滑油を供給することを特徴とする被圧延材の先端反り抑制方法である。   The inventor has intensively studied to achieve the above object, and the results have been embodied in the present invention. That is, the present invention is a reversible roughing mill, in order to suppress the tip warp of the material to be rolled, while hot rolling the material to be rolled while controlling the rotation speed of the upper and lower work rolls, Before the material bites into the upper and lower work rolls, measure the roughness of the upper and lower surfaces of the material to be rolled, and the surface roughness of the upper and lower work rolls of the reversible roughing mill, respectively, based on the measured values, Supplying an amount of lubricating oil that eliminates the difference in the friction coefficient between the upper surface of the material to be rolled and the upper work roll and / or the friction coefficient between the lower surface of the material to be rolled and the lower work roll. This is a method for suppressing the tip warp of the material to be rolled.

本発明では、粗圧延前に、被圧延材の先端反りが発生しないように、上下ロールへの潤滑油の供給を行うようにしたので、発生させること自体が問題となっていた圧延中における熱延鋼板の先端反りが確実に抑制されるようになる。   In the present invention, before rough rolling, the lubricating oil is supplied to the upper and lower rolls so that the tip of the material to be rolled does not warp. The warpage of the end of the rolled steel sheet is reliably suppressed.

以下、発明に至る経緯をまじえ、本発明の最良の実施形態を説明する。   Hereinafter, the best embodiment of the present invention will be described based on the background to the invention.

発明者は、被圧延材に先端反りが生じる一つの重要な要因である摩擦抵抗に着眼した。一般に、被圧延材1の上面と接触する上ワークロール2aの表面との摩擦抵抗が、被圧延材1の下面と接触する下ワークロール2bの表面との摩擦抵抗に比べて大き過ぎると、図2(a)で示したように、被圧延材1の先端は上方に向けて反り、逆に小さ過ぎると、図2(b)で示したように、下方に向けて反る傾向があるからである。そこで、発明者は、上下ワークロールの表面と接触する被圧延材1の上面側の摩擦係数と下面側の摩擦係数との差を、該被圧延材1が上下ワークロール間に導入する(噛み込む)前に解消すれば、先端反りの発生を抑制するのに役立つと考え、その対策を以下のように具体化した。   The inventor has focused on frictional resistance, which is one important factor that causes tip warpage in the material to be rolled. In general, if the frictional resistance with the surface of the upper work roll 2a in contact with the upper surface of the material 1 to be rolled is too large compared with the frictional resistance with the surface of the lower work roll 2b in contact with the lower surface of the material 1 to be rolled, As shown in FIG. 2 (a), the tip of the material to be rolled 1 warps upward, and on the contrary, if it is too small, it tends to warp downward as shown in FIG. 2 (b). It is. Therefore, the inventor introduces the difference between the friction coefficient on the upper surface side and the friction coefficient on the lower surface side of the material to be rolled 1 in contact with the surfaces of the upper and lower work rolls between the upper and lower work rolls (biting). We thought that it would help to prevent the occurrence of tip warping if it was resolved before, and the countermeasures were materialized as follows.

まず、被圧延材1の上下面の粗度及び上下ワークロール2a,2bの表面粗度をそれぞれ測定する非接触表面粗度計5をセンサとして配設する。この非接触表面粗度計5には、例えば、レーザー距離計が利用できる。それらの測定値は、演算器6に入力され、予め該演算器6に記憶させてある関係式(後述の図3参照)を用いて前記摩擦係数に変換され、被圧延材1の上下面での摩擦係数の差として出力(算出)する。この演算器6には、例えばプロセス・コンピュータを利用すれば良い。なお、粗圧延機4は、通常、その上下ワークロール2a,2bの間で被圧延材1を可逆的に複数回にわたって往復移動し、該被圧延材1を圧延するので、上記摩擦係数は、図1に示すように、粗圧延機4の上下流の両側で求めると良い。   First, a non-contact surface roughness meter 5 that measures the roughness of the upper and lower surfaces of the material 1 to be rolled and the surface roughness of the upper and lower work rolls 2a and 2b is provided as a sensor. As the non-contact surface roughness meter 5, for example, a laser distance meter can be used. These measured values are input to the calculator 6 and converted into the friction coefficient using a relational expression (see FIG. 3 described later) stored in advance in the calculator 6. Is output (calculated) as the difference in friction coefficient. For this computing unit 6, for example, a process computer may be used. In addition, since the rough rolling mill 4 normally reciprocates the rolled material 1 between the upper and lower work rolls 2a and 2b a plurality of times and rolls the rolled material 1, the friction coefficient is as follows: As shown in FIG. 1, it may be obtained on both upstream and downstream sides of the roughing mill 4.

ところで、本発明では、先端反りを抑制するように、従来から存在する上下ワークロールの回転速度差を制御する方法を併用することを前提とする。本実施形態では、被圧延材の上面及び下面の温度差を考慮しながら回転速度差を制御する事例を説明する。そのためには、この温度差の検出が必要であるので、粗圧延機4の入側と出側の両側に被圧延材1の上下面の温度をそれぞれ測定する非接触温度計11を設ける。この非接触温度計11には、周知の光放射温度計が利用できる。そして、それぞれの温度測定値を前記演算器6に入力して、上下面の温度差を算出すると同時に、該温度差の先端反りに対する影響を解消するため、演算器6に予め記憶させてある上下面間の温度差と先端反りを解消させる上下ワークロール2a,2bの回転速度との関係に照らして、上下ワークロールの周速を変更するようにした。その上下面間の温度差と先端反りを抑制する上下ワークロールの回転速度差との関係については、予め圧延対象の鋼種、板厚及び板幅が同一の被圧延材で事前に試験操業を行ったり、過去の操業データ解析で求めておけば良い(後述の図3参照)。つまり、所謂「学習制御」を行うのである。また、上下ワークロール2a,2b間の回転速度差を検知するには、上下ワークロールの回転数をそれぞれ測定する回転速度計(図示せず)と、演算器6の指示で前記上下ワークロール2a,2bの回転数をそれぞれに変更する回転速度変更手段12とを備えるようにした。   By the way, in this invention, it presupposes using together the method of controlling the rotational speed difference of the up-and-down work roll which exists conventionally so that a tip curvature may be suppressed. In this embodiment, an example will be described in which the rotational speed difference is controlled while taking into account the temperature difference between the upper surface and the lower surface of the material to be rolled. For this purpose, since this temperature difference needs to be detected, non-contact thermometers 11 for measuring the temperatures of the upper and lower surfaces of the material 1 to be rolled are provided on both the entry side and the exit side of the rough rolling mill 4. As this non-contact thermometer 11, a known light radiation thermometer can be used. Then, each temperature measurement value is inputted to the computing unit 6 to calculate the temperature difference between the upper and lower surfaces, and at the same time, in order to eliminate the influence of the temperature difference on the tip warp, it is stored in the computing unit 6 in advance. The peripheral speed of the upper and lower work rolls is changed in light of the relationship between the temperature difference between the lower surfaces and the rotational speed of the upper and lower work rolls 2a and 2b that eliminate the tip warp. Regarding the relationship between the temperature difference between the upper and lower surfaces and the rotation speed difference between the upper and lower work rolls that suppress warping of the tip, a test operation is performed in advance on a material to be rolled with the same steel type, sheet thickness, and sheet width. Or obtained by analyzing past operation data (see FIG. 3 described later). That is, so-called “learning control” is performed. Further, in order to detect the rotational speed difference between the upper and lower work rolls 2a and 2b, a rotational speed meter (not shown) for measuring the rotational speed of the upper and lower work rolls respectively, and the upper and lower work rolls 2a according to instructions from the computing unit 6 , 2b, and a rotation speed changing means 12 for changing the number of rotations respectively.

本発明の重要ポイントは、上記した摩擦係数の差を解消する手段として、潤滑油を利用することである。具体的には、潤滑油を噴射する潤滑油供給手段7を、被圧延材1の上面及び下面の両側にそれぞれ設け、前記摩擦係数の差が解消するように、潤滑油8を供給する。そのためには、摩擦係数の差と供給する潤滑油8の量との関係が必要になるが、その関係は、予め圧延対象の鋼種、板厚及び板幅が同一の被圧延材1で事前に試験操業を行ったり、過去の操業データ解析で求めておけば良い。この場合、前記潤滑油供給手段7には、潤滑油8を噴射するノズル9と、回転ポンプ10とを備えているのが好ましい。該回転ポンプ10を利用すれば、潤滑油8の供給をそのインペラ等の回転数を変更することで容易に行えるからである。   The important point of the present invention is to use a lubricating oil as a means for eliminating the above-described difference in friction coefficient. Specifically, lubricating oil supply means 7 for injecting lubricating oil is provided on both sides of the upper surface and the lower surface of the material 1 to be rolled, and the lubricating oil 8 is supplied so as to eliminate the difference in the friction coefficient. For that purpose, the relationship between the difference in the coefficient of friction and the amount of lubricating oil 8 to be supplied is necessary, and this relationship is previously determined in advance in the material 1 to be rolled having the same steel type, plate thickness, and plate width to be rolled. It may be obtained by performing a test operation or analyzing past operation data. In this case, the lubricating oil supply means 7 is preferably provided with a nozzle 9 for injecting lubricating oil 8 and a rotary pump 10. This is because if the rotary pump 10 is used, the lubricating oil 8 can be easily supplied by changing the rotational speed of the impeller and the like.

具体的な本発明の実施フローを図3に例示する。なお、図3に記載された各種の記号は、以下の通りである。なお、ワークロールは、単にロールと略記している。   A specific implementation flow of the present invention is illustrated in FIG. In addition, the various symbols described in FIG. 3 are as follows. The work roll is simply abbreviated as a roll.

U(X):上ロールの回転速度、VUSET(X):上ロールの回転数設定値、TU(X):被圧延材の上面の温度測定値,rU(X):被圧延材の上面の粗度測定値,rD(X):被圧延材の下面の粗度測定値,RU(X):上ロール表面の粗度測定値,RD(X):下ロール表面の粗度測定値、PU(X):上ロール用回転ポンプの回転数,PUSET(X):上ロール用回転ポンプの回転数設定値、TD(X):被圧延材の下面の温度測定値,X:被圧延材の長手方向位置(粗圧延機の直下)、ΔPU(X):上側回転ポンプの補正回転数、ΔVU(X):上側ロールの補正回転速度、f1:上側回転ポンプの補正回転数を算出する関数、f2:上側ロールの補正回転速度を算出する関数、λ1:関数f1の学習項、λ2:関数f2の学習項、
この図3によれば、まず、被圧延材を入側から粗圧延機へ接近させ(例えば、図1の左側から右側へ)、非接触表面粗度計5(入側のもので被圧延材の温度測定用)、非接触温度計11でそれぞれのデータを計測する。そして、被圧延材の上下面温度差から、反りを解消する上ロールの補正回転速度ΔVU(X)を算出すると同時に、ロール上下の摩擦係数を同一にする上側回転ポンプの補正回転数ΔPU(X)を算出する。
そして、それら補正回転速度ΔVU(X)及び補正回転数ΔPU(X)に基づき、被圧延材の長手方向測定位置に応じたロール回転速度のVU(X)及びポンプ回転数PU(X)をそれぞれ算出し、粗圧延機による熱間圧延を行う。該熱間圧延が終了したら、必要に応じて、同一の粗圧延機への被圧延材の向きを変えて(例えば上記の方向とは逆に)、上記と同様にして熱間圧延を繰り返す。
V U (X): Rotational speed of upper roll, V USET (X): Rotational speed setting value of upper roll, T U (X): Temperature measured value of upper surface of material to be rolled, r U (X): Rolled Roughness measurement value of the top surface of the material, r D (X): Roughness measurement value of the bottom surface of the material to be rolled, R U (X): Roughness measurement value of the upper roll surface, R D (X): Lower roll surface Roughness measurement value, P U (X): rotational speed of upper roll rotary pump, P USET (X): rotational speed setting value of upper roll rotary pump, T D (X): lower surface of rolled material Temperature measured value, X: Longitudinal position of the material to be rolled (directly under the roughing mill), ΔP U (X): Corrected rotational speed of upper rotary pump, ΔV U (X): Corrected rotational speed of upper roll, f 1 : A function for calculating the corrected rotational speed of the upper rotary pump, f 2 : a function for calculating the corrected rotational speed of the upper roll, λ 1 : a learning term for the function f 1 , λ 2 : a learning term for the function f 2 ,
According to FIG. 3, first, the material to be rolled is brought close to the roughing mill from the entry side (for example, from the left side to the right side in FIG. 1), and the non-contact surface roughness meter 5 (the material to be rolled by the entry side). The non-contact thermometer 11 measures each data. Then, from the temperature difference between the upper and lower surfaces of the material to be rolled, the corrected rotational speed ΔV U (X) of the upper roll that eliminates warpage is calculated, and at the same time, the corrected rotational speed ΔP U of the upper rotary pump that makes the upper and lower rolls have the same friction coefficient. (X) is calculated.
Based on the corrected rotational speed ΔV U (X) and the corrected rotational speed ΔP U (X), the roll rotational speed V U (X) and the pump rotational speed P U ( X) is calculated, and hot rolling is performed with a roughing mill. When the hot rolling is completed, the direction of the material to be rolled into the same roughing mill is changed as necessary (for example, opposite to the above direction), and the hot rolling is repeated in the same manner as described above.

なお、本実施形態では、被圧延材の上側の潤滑油の供給及びロール回転速度を補正する制御を行っているが、本発明は、上下両方の側、あるいは下側のみの制御でも良いことは言うまでもない。また、潤滑油の供給を上側又は下側の一方のみとしても良い。   In the present embodiment, the supply of the lubricating oil on the upper side of the material to be rolled and the control for correcting the roll rotation speed are performed, but the present invention may be controlled on both the upper and lower sides or only on the lower side. Needless to say. Further, the lubricating oil may be supplied only on one of the upper side and the lower side.

被圧延材として、連続鋳造で得た幅1000mm×長さ8m×厚さ260mmのスラブを、図1に示すように、熱間圧延工程の可逆式粗圧延機で粗圧延し、幅1000mm×長さ800mm×厚さ219mmのサイズの中間素材とした。その際、本発明に係る被圧延材の先端反り抑制方法を適用した。その結果、圧延中に先端反りが生じることなく円滑に操業が実施できた。つまり、本発明によれば、操業を一次停止したり、圧延設備のどこかに損傷を与えることなく、安定操業が実施できるようになる。   As a material to be rolled, a slab having a width of 1000 mm × a length of 8 m × a thickness of 260 mm obtained by continuous casting is roughly rolled with a reversible rough rolling mill in a hot rolling process as shown in FIG. An intermediate material having a size of 800 mm in thickness and 219 mm in thickness was used. At that time, the method for suppressing the tip warp of the material to be rolled according to the present invention was applied. As a result, the operation could be carried out smoothly without causing tip warp during rolling. That is, according to the present invention, stable operation can be performed without temporarily stopping the operation or damaging somewhere in the rolling equipment.

本発明に係る被圧延材の先端反り制御装置を説明する図である。It is a figure explaining the tip curvature control apparatus of the to-be-rolled material which concerns on this invention. 粗圧延機による熱間圧延で被圧延材に生じる反りを示す横断面図であり、(a)は上反り、(b)は下反りである。It is a cross-sectional view which shows the curvature which arises in a to-be-rolled material by the hot rolling by a rough rolling mill, (a) is upward curvature, (b) is downward curvature. 本発明に係る被圧延材の先端反り制御方法を実施する具体的な内容を示すフロー図である。It is a flowchart which shows the concrete content which implements the tip curvature control method of the to-be-rolled material which concerns on this invention.

符号の説明Explanation of symbols

1 被圧延材
2 ワークロール(2a 上ワークロール、2b 下ワークロール)
3 バックアップロール(3a 上バックアップロール、3b 下バックアップロール
4 可逆粗圧延機(粗圧延機)
5 非接触表面粗度計
6 演算機
7 潤滑油供給手段
8 潤滑油
9 ノズル
10 回転ポンプ
11 非接触温度計
12 ロールの回転速度変更手段
13 ロールの回転(駆動)装置
14 潤滑油の流量計
1 Material to be rolled 2 Work roll (2a upper work roll, 2b lower work roll)
3 backup roll (3a upper backup roll, 3b lower backup roll 4 reversible roughing mill (rough rolling mill)
DESCRIPTION OF SYMBOLS 5 Non-contact surface roughness meter 6 Calculator 7 Lubricating oil supply means 8 Lubricating oil 9 Nozzle 10 Rotating pump 11 Non-contact thermometer 12 Roll rotation speed changing means 13 Roll rotation (drive) device 14 Lubricating oil flow meter

Claims (1)

可逆式粗圧延機で、被圧延材の先端反りを抑制するために、上下ワークロールの回転速度を制御しながら、該被圧延材を熱間圧延するに際して、
前記被圧延材が前記上下ワークロールへ噛み込む前に、該被圧延材の上下面の粗度と、該可逆式粗圧延機の上下ワークロールの表面粗度とをそれぞれ測定し、それら測定値に基づき、該被圧延材の上面と上ワークロールとの間の摩擦係数及び/又は該被圧延材の下面と下ワークロールとの間の摩擦係数の差を解消する量の潤滑油を供給することを特徴とする被圧延材の先端反り抑制方法。
In reversible rough rolling mill, in order to suppress the tip warp of the material to be rolled, while rolling the material to be rolled while controlling the rotation speed of the upper and lower work rolls,
Before the material to be rolled bites into the upper and lower work rolls, the roughness of the upper and lower surfaces of the material to be rolled and the surface roughness of the upper and lower work rolls of the reversible roughing mill are measured, and these measured values are measured. Based on the above, an amount of lubricating oil that eliminates the difference in the friction coefficient between the upper surface of the material to be rolled and the upper work roll and / or the friction coefficient between the lower surface of the material to be rolled and the lower work roll is supplied. A method for suppressing tip warpage of a material to be rolled.
JP2004070015A 2004-03-12 2004-03-12 Method for suppressing nose warping of material to be rolled Withdrawn JP2005254287A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004070015A JP2005254287A (en) 2004-03-12 2004-03-12 Method for suppressing nose warping of material to be rolled

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004070015A JP2005254287A (en) 2004-03-12 2004-03-12 Method for suppressing nose warping of material to be rolled

Publications (1)

Publication Number Publication Date
JP2005254287A true JP2005254287A (en) 2005-09-22

Family

ID=35080530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004070015A Withdrawn JP2005254287A (en) 2004-03-12 2004-03-12 Method for suppressing nose warping of material to be rolled

Country Status (1)

Country Link
JP (1) JP2005254287A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188384A (en) * 2009-02-19 2010-09-02 Nisshin Steel Co Ltd Method for controlling warpage of tip of hot bar
JP2013099757A (en) * 2011-11-08 2013-05-23 Jfe Steel Corp Cold rolling method and method of producing metal plate
JP2017018983A (en) * 2015-07-10 2017-01-26 東芝三菱電機産業システム株式会社 Rolling system, rolling method, and control device
CN110814047A (en) * 2019-11-13 2020-02-21 燕山大学 Method for compensating concentration of emulsion on lower surface of strip steel of DCR unit
CN110814046A (en) * 2019-11-13 2020-02-21 燕山大学 Flow compensation method for emulsion on lower surface of strip steel of DCR unit
JP7428197B2 (en) 2021-05-25 2024-02-06 Jfeスチール株式会社 Steel plate shape discrimination method, shape measurement method, shape control method, manufacturing method, shape discrimination model generation method, and shape discrimination device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010188384A (en) * 2009-02-19 2010-09-02 Nisshin Steel Co Ltd Method for controlling warpage of tip of hot bar
JP2013099757A (en) * 2011-11-08 2013-05-23 Jfe Steel Corp Cold rolling method and method of producing metal plate
JP2017018983A (en) * 2015-07-10 2017-01-26 東芝三菱電機産業システム株式会社 Rolling system, rolling method, and control device
CN110814047A (en) * 2019-11-13 2020-02-21 燕山大学 Method for compensating concentration of emulsion on lower surface of strip steel of DCR unit
CN110814046A (en) * 2019-11-13 2020-02-21 燕山大学 Flow compensation method for emulsion on lower surface of strip steel of DCR unit
CN110814046B (en) * 2019-11-13 2020-11-13 燕山大学 Flow compensation method for emulsion on lower surface of strip steel of DCR unit
CN110814047B (en) * 2019-11-13 2021-02-12 燕山大学 Method for compensating concentration of emulsion on lower surface of strip steel of DCR unit
JP7428197B2 (en) 2021-05-25 2024-02-06 Jfeスチール株式会社 Steel plate shape discrimination method, shape measurement method, shape control method, manufacturing method, shape discrimination model generation method, and shape discrimination device

Similar Documents

Publication Publication Date Title
RU2449846C2 (en) Method of rolling metal strip with adjustment of its lateral position and roll mill to this end
JP2007260775A (en) Method of and device for rolling metal plate
JP4907311B2 (en) Thickness control device for tandem rolling mill
JP2005254287A (en) Method for suppressing nose warping of material to be rolled
JP4267609B2 (en) Rolling method and rolling apparatus for metal sheet
JP2006320933A (en) Camber controlling method, manufacturing method for rolling stock, and rolling apparatus
JP2007069234A (en) Method and device for monitoring passage of sheet on thick steel plate straightening line
US7854154B2 (en) Process and computer program for controlling a rolling process
JP2008043967A (en) Method for controlling shape of plate in hot rolling
JP5355134B2 (en) Hot bar tip warpage control method
JP2007185703A (en) Method of rolling control and hot finishing mill
JP4268582B2 (en) Plate thickness control method and plate thickness / shape non-interference control method
JP2018158365A (en) Hot rolling method and hot rolling device
JPWO2020213542A1 (en) Meander control method for the material to be rolled
JP2898910B2 (en) Coolant control method in plate rolling mill
JPH0413411A (en) Method for controlling strip thickness when strip is passed through in hot continuous mill
JP2004025254A (en) Method for preventing camber at the end of rolling stock in hot rolling
WO2024042936A1 (en) Cold-rolling method and cold-rolling equipment
JP2692544B2 (en) Method and device for controlling temperature of hot rolling mill
JP5380879B2 (en) Automatic correction control method for differential thickness steel sheet and manufacturing method for differential thickness steel sheet
JP3771781B2 (en) Thick steel plate rolling equipment and thick steel plate rolling method
JP6477629B2 (en) Inspection apparatus for uneven defects on steel sheet surface and inspection method for uneven defects on steel sheet surface
KR101657783B1 (en) Apparatus and method of controlling tension of wire rod
JP2005186085A (en) Thickness change controller for travelling plate in continuous cold rolling machine
JP2758275B2 (en) Rolling tip warpage control method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070605