JP2005254122A - Lower hydrocarbon direct-reforming catalyst and its manufacturing method - Google Patents

Lower hydrocarbon direct-reforming catalyst and its manufacturing method Download PDF

Info

Publication number
JP2005254122A
JP2005254122A JP2004068438A JP2004068438A JP2005254122A JP 2005254122 A JP2005254122 A JP 2005254122A JP 2004068438 A JP2004068438 A JP 2004068438A JP 2004068438 A JP2004068438 A JP 2004068438A JP 2005254122 A JP2005254122 A JP 2005254122A
Authority
JP
Japan
Prior art keywords
catalyst
metallosilicate
powder
lower hydrocarbon
binder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004068438A
Other languages
Japanese (ja)
Other versions
JP4488773B2 (en
Inventor
Masaru Ichikawa
勝 市川
Ayaichi Kojima
綾一 小島
Yuji Ogawa
裕治 小川
Masamichi Kuramoto
政道 倉元
Yasuyuki Mizobuchi
康之 溝渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP2004068438A priority Critical patent/JP4488773B2/en
Publication of JP2005254122A publication Critical patent/JP2005254122A/en
Application granted granted Critical
Publication of JP4488773B2 publication Critical patent/JP4488773B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal-supporting metallosilicate carrier having high catalytic activity without excessively supporting a catalytic metal on a metallosilicate molded carrier and without damaging porosity or the like. <P>SOLUTION: A metallosilicate powder having catalaytic metal supported thereon is sintered to obtain the metallosilicate powder having a metal component supported thereon. This metallosilicate powder is mixed with a binder to be molded and fired to obtain the lower hydrocarbon direct-reforming catalyst. In mixing the metallosilicate powder having the metal component supported thereon with the binder, it is preferable that polymer beads are added and gasified and removed by heating at the time of firing. As the catalytic metal, for example, there is molybdenum. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明はメタンを主成分とする天然ガスやバイオガス、メタンハイドレートの高度利用に関するものである。   The present invention relates to advanced utilization of natural gas, biogas, and methane hydrate mainly composed of methane.

天然ガス、バイオガス、メタンハイドレートは地球温暖化対策として最も効果的なエネルギーと考えられ、その利用技術に関心が高まっている。メタン資源はそのクリーン性を活かして,次世代の新しい有機資源、燃料電池用の水素資源として着目されているが、本発明はメタンからプラスチック類などの化学製品の原料であるベンゼンおよびナフタレン類を主成分とする芳香族化合物と高純度の水素ガスを効率的に製造しうる触媒化学変換技術およびその触媒製造方法に関するものである。   Natural gas, biogas, and methane hydrate are considered to be the most effective energy as a countermeasure against global warming, and there is an increasing interest in their utilization technologies. Taking advantage of its cleanliness, methane resources are attracting attention as new organic resources for the next generation and hydrogen resources for fuel cells. The present invention uses benzene and naphthalene, which are raw materials for chemical products such as plastics from methane. The present invention relates to a catalytic chemical conversion technique capable of efficiently producing an aromatic compound as a main component and high-purity hydrogen gas and a method for producing the catalyst.

低級炭化水素とりわけメタンからベンゼン等の芳香族化合物と水素とを併産する方法としては、触媒の存在下、酸素あるいは酸化剤の非存在下にメタンを反応させる方法が知られている。この際の触媒としてはZSM-5に担持されたモリブデンが有効とされている(非特許文献1及びこれに引用された文献等〕。しかしながら、これらの触媒を使用した場合でも、炭素析出が多いことやメタンの転化率が低いという解決すべき問題を有している。   As a method of co-producing an aromatic compound such as benzene and hydrogen from lower hydrocarbons, particularly methane, a method of reacting methane in the presence of a catalyst and in the absence of oxygen or an oxidizing agent is known. As the catalyst at this time, molybdenum supported on ZSM-5 is effective (Non-patent Document 1 and documents cited therein) However, even when these catalysts are used, carbon deposition is large. In addition, there is a problem to be solved that the conversion rate of methane is low.

上記従来技術に鑑みて、モリブデン等の触媒材料を多孔質のメタロシリケートに担持した触媒を提案している(特許文献1及び特許文献2)。   In view of the above prior art, a catalyst in which a catalyst material such as molybdenum is supported on a porous metallosilicate has been proposed (Patent Documents 1 and 2).

これらの公報では、担体として7オングストロームの細孔径を有する多孔質のメタロシリケートに触媒材料を担持した触媒を用いた実験において、低級炭化水素が効率的に芳香族化合物化され、これに付随して高純度の水素が得られることが確認されている。一般に金属担持を担持した触媒の調製方法として以下の調製方法がある。   In these publications, in an experiment using a catalyst in which a catalyst material is supported on a porous metallosilicate having a pore diameter of 7 Å as a carrier, a lower hydrocarbon is efficiently converted into an aromatic compound. It has been confirmed that high purity hydrogen can be obtained. In general, the following preparation methods are available as methods for preparing a metal-supported catalyst.

平衡吸着含浸法:担体を溶液に浸漬して吸着させた後、過剰分の溶液を炉別する含浸方法。   Equilibrium adsorption impregnation method: An impregnation method in which a carrier is immersed in a solution and adsorbed, and then an excess solution is separated into a furnace.

湿潤含浸法:担体が均一に湿潤する為の最小限のモリブデン酸アンモニウム水溶液しか使用せず細孔を満たす含浸方法。   Wet impregnation method: An impregnation method that fills the pores using only a minimum aqueous ammonium molybdate solution for uniformly wetting the support.

蒸発乾固含浸法:担体を溶液に浸漬したのち溶媒を蒸発させて溶質を担持する方法。   Evaporation to dry impregnation method: A method in which a solute is supported by evaporating a solvent after immersing a carrier in a solution.

乾式混合法:ゼオライト粉末と酸化モリブデン粉末をボールミール等で混合し、所定の条件下で焼成する方法。   Dry mixing method: A method in which zeolite powder and molybdenum oxide powder are mixed with ball meal or the like and fired under predetermined conditions.

CVD法:ゼオライト粉末と酸化モリブデン粉末を混合し、減圧・封管容器中で焼成する方法。   CVD method: A method in which zeolite powder and molybdenum oxide powder are mixed and fired in a vacuum / sealed tube container.

これらの方法はどの方法を用いても触媒としての効果を発揮するが、押出成型されたメタロシリケート担体の場合、すでに成型されたある形状を保持しているため乾式混合法やCVD法は困難であり、また湿潤含浸や蒸発乾固含浸といった含浸法も均一に担持することは難しく、平衡吸着含浸法が合理的な方法である。
JOURNAL OF CATALYSIS,1997,pp.165,150−161 特開平10−272366号公報 特開平11−60514号公報
Any of these methods can be used as a catalyst, but in the case of an extruded metallosilicate carrier, a dry-mixing method or a CVD method is difficult because it retains a certain shape that has already been formed. In addition, it is difficult to uniformly support impregnation methods such as wet impregnation and evaporation to dryness, and the equilibrium adsorption impregnation method is a reasonable method.
JOURNAL OF CATALYSIS, 1997, pp. 165, 150-161 JP 10-272366 A Japanese Patent Laid-Open No. 11-60514

しかしながら、含浸平衡吸着法ではメタロシリケート担体を含浸した後、湿度と温度を最適に管理して乾燥しなければモリブデン酸アンモニウム塩がメタロシリケート担体の表面に偏析しやすく、モリブデンの偏析によって触媒表面を閉塞させるばかりでなく、触媒内部のモリブデンの分散性も悪くなり活性に影響を与える場合があった。   However, in the impregnation equilibrium adsorption method, after impregnating the metallosilicate support, if the humidity and temperature are optimally controlled and not dried, the ammonium molybdate salt tends to segregate on the surface of the metallosilicate support. In addition to clogging, the dispersibility of molybdenum inside the catalyst also deteriorated, which may affect the activity.

また、ZSM−5等合成ゼオライトを担体とした場合、ゼオライト単独では成型性が悪いため、形状、強度を保持するためには無機バインダーを使用して成型する必要があり、結果、ゼオライト成型担体へ含浸する際には、ゼオライト以外の無機バインダー部分へも必然的にモリブデンが担持されることとなり、余分にモリブデンが必要であるばかりでなく、モリブデン金属が担持された無機バインダー部分がコーク発生の大きな原因ともなり触媒の寿命を低下させるなどの問題があった。   In addition, when synthetic zeolite such as ZSM-5 is used as a carrier, zeolite alone has poor moldability, so it is necessary to mold it using an inorganic binder in order to maintain its shape and strength. When impregnated, molybdenum is inevitably supported on an inorganic binder part other than zeolite, and not only is extra molybdenum necessary, but the inorganic binder part on which molybdenum metal is supported has a large amount of coke generation. There were also problems such as causing the catalyst life to decrease.

さらには、含浸時に過剰に担持されたモリブデンが担体の空隙(気孔)、細孔を閉塞させ反応時のメタンガスの透過性、触媒内部へのガス浸透性を悪化させ反応効率に影響を与える場合があった。   In addition, molybdenum excessively supported during impregnation may block the voids (pores) and pores of the support, thereby deteriorating the permeability of methane gas during the reaction and the gas permeability into the catalyst, which may affect the reaction efficiency. there were.

本発明は、かかる事情に鑑みなされたもので、その目的は、メタロシリケート成型担体に過剰に触媒金属が担持されることなく、また気孔率などを損なわないで高触媒活性を有する低級炭化水素直接改質触媒とこの製造方法を提供することにある。   The present invention has been made in view of such circumstances, and the object thereof is to directly apply a lower hydrocarbon having a high catalytic activity without excessively supporting a catalytic metal on a metallosilicate molded support and without impairing porosity. It is to provide a reforming catalyst and a production method thereof.

これまでの製造方法では、触媒活性のない無機バインダーをメタロシリケート粉末に混合したものを押出成型、焼結をして無機バインダー混合メタロシリケート担体を作製していた。これを含浸法で触媒金属を担持すると、余分に金属が担持されていた。   In the conventional production methods, an inorganic binder-mixed metallosilicate support is produced by extrusion molding and sintering a mixture of an inorganic binder having no catalytic activity in a metallosilicate powder. When the catalyst metal was supported by the impregnation method, extra metal was supported.

そこで、本発明の低級炭化水素直接改質触媒の製造方法は、メタロシリケート粉末に触媒金属を担持した後に焼結して前記金属成分を担持したメタロシリケート粉末を得て、その後、この触媒金属成分を担持したメタロシリケート粉末をバインダーと混合してから成型及び焼成して低級炭化水素直接改質触媒をを得ている。前記金属成分としては例えばモリブデンが挙げられる。また、低級炭化水素改質触媒としての効果が確認されているレニウムやタングステンさらにはこれら(モリブデンを含む)の化合物を単独または組み合わせてもよい。   Therefore, the method for producing the lower hydrocarbon direct reforming catalyst of the present invention is obtained by carrying a metallosilicate powder carrying the metal component by sintering after carrying the catalyst metal on the metallosilicate powder. After mixing the metallosilicate powder carrying bismuth with a binder, molding and firing are performed to obtain a lower hydrocarbon direct reforming catalyst. An example of the metal component is molybdenum. In addition, rhenium, tungsten, and these (including molybdenum) compounds that have been confirmed to be effective as a lower hydrocarbon reforming catalyst may be used alone or in combination.

かかる低級炭化水素直接改質触媒の製造方法によれば、坦持金属の分散性向上と担体の気孔率の向上が見出されている。また、触媒活性のない無機バインダーへ触媒金属を担持することなく、また担体成型後に含浸作業もないので、モリブデンの偏析による触媒表面を閉塞の問題も発生しない。   According to such a method for producing a lower hydrocarbon direct reforming catalyst, it has been found that the dispersibility of the supported metal is improved and the porosity of the support is improved. Further, there is no problem of clogging the catalyst surface due to segregation of molybdenum because no catalyst metal is supported on an inorganic binder having no catalytic activity and there is no impregnation work after molding the carrier.

前記メタロシリケート粉末に触媒金属を担持するため担持方法としては、従来の方法である前述の、平衡吸着含浸法、湿潤含浸法、蒸発乾固含浸法、乾式混合法及びCVD法が挙げられるが、蒸発乾固法が担持後乾燥するだけであるため、簡便であり、また必要な金属量も低減することもできる。   Examples of the supporting method for supporting the catalyst metal on the metallosilicate powder include the conventional methods such as the equilibrium adsorption impregnation method, the wet impregnation method, the evaporation dry solid impregnation method, the dry mixing method, and the CVD method. The evaporation to dryness method is simple because it is dried after loading, and the amount of metal required can also be reduced.

さらに、前記触媒の活性を向上させるためには、触媒性能がガスの拡散律速にならないように、気孔率をあげることが重要であり、その方法としては、担体の焼結温度を下げる方法と、前記金属成分を担持したメタロシリケート粉末をバインダーと混合するにあたりポリマービーズを添加し焼成時の加熱によって前記ポリマービーズをガス化除去する方法があり、後者は機械的に低級炭化水素直接改質触媒の気孔率が向上し、前記作用効果はより一層高まる。   Furthermore, in order to improve the activity of the catalyst, it is important to increase the porosity so that the catalyst performance does not become a gas diffusion rate-determining method. In mixing the metallosilicate powder carrying the metal component with a binder, there is a method in which polymer beads are added and the polymer beads are gasified and removed by heating during firing. The latter is a mechanically low hydrocarbon direct reforming catalyst. The porosity is improved, and the effect is further enhanced.

本発明の製造方法及びこれによって得られた低級炭化水素直接改質触媒によれば、坦持金属の分散性向上と担体の気孔率の向上するので、触媒の活性を向上と安定性が得られる。   According to the production method of the present invention and the lower hydrocarbon direct reforming catalyst obtained thereby, the dispersibility of the supported metal is improved and the porosity of the support is improved, so that the activity and stability of the catalyst can be improved. .

また、メタロシリケート粉末に金属を担持定着したのち成型を行うことで担持金属の分散性向上と単体表面の偏析による閉塞の改善、触媒の圧縮強度が高まるので、触媒の強度が向上し、焼成温度を低下させても、強度が低下せずに気孔率を向上させることができる。   In addition, the metal is supported and fixed on the metallosilicate powder, and then molding is performed to improve the dispersibility of the supported metal, improve the clogging due to segregation of the surface of the single substance, and increase the compressive strength of the catalyst. Even if it reduces, porosity can be improved, without intensity | strength decreasing.

さらに、経時的な触媒劣化等による効率低下が少なくなるので、より一層、安定且つ効率良く芳香族化合物と水素の製造が可能となる。   Furthermore, since the decrease in efficiency due to deterioration of the catalyst over time is reduced, the aromatic compound and hydrogen can be produced more stably and efficiently.

したがって、モリブデンを担持した改質触媒を採用した水素及び芳香族化合物の製造方法において、水素及び芳香族化合物の量産性を制御するシステムの構築化にも大いに寄与する。   Therefore, in the method for producing hydrogen and aromatic compounds using the reforming catalyst supporting molybdenum, it greatly contributes to the construction of a system for controlling the mass productivity of hydrogen and aromatic compounds.

本発明の実施の形態について図面を参照しながら説明する。   Embodiments of the present invention will be described with reference to the drawings.

本発明の低級炭化水素直接改質触媒の製造方法は、メタロシリケート粉末に触媒金属を担持し焼結して前記金属成分をメタロシリケートに固定化することで前記金属成分を担持したメタロシリケート粉末を得て、その後、この触媒金属成分を担持したメタロシリケート粉末をバインダーと混合してから成型及び焼成して低級炭化水素直接改質触媒を得ている。   The method for producing a lower hydrocarbon direct reforming catalyst according to the present invention comprises supporting a metallosilicate powder carrying a metal component by supporting the metal catalyst on a metallosilicate powder and sintering it to fix the metal component to the metallosilicate. After that, the metallosilicate powder carrying the catalytic metal component is mixed with a binder, and then molded and fired to obtain a lower hydrocarbon direct reforming catalyst.

前記メタロシリケートとしては、例えばアルミノシリケートの場合、シリカおよびアルミナから成る4.5〜6.5オングストローム径の細孔を有する多孔質体であり、モレキュラーシーブ5A,フォジャサイト(NaYおよびNaX),ZSM−5,MCM−22等が例示される。さらに、リン酸を主成分とするALPO−5,VPI−5等の6〜13オングストロームのミクロ細孔からなる多孔質体、チャンネルからなるゼオライト担体、シリカを主成分とし一部アルミナを成分として含むメゾ細孔(10〜1000オングストローム)の筒状細孔(チャンネル)を有するFSM−16やMCM−41等のメゾ細孔多孔質担体なども例示される。また、前記アルミナシリケートの他に、シリカおよびチタニアからなるメタロシリケート等も挙げられる。   As the metallosilicate, for example, in the case of aluminosilicate, it is a porous body having pores with a diameter of 4.5 to 6.5 angstroms made of silica and alumina, and includes molecular sieve 5A, faujasite (NaY and NaX), ZSM-5, MCM-22, etc. are exemplified. Furthermore, a porous body composed of 6 to 13 angstrom micropores such as ALPO-5, VPI-5, etc. mainly composed of phosphoric acid, a zeolite carrier composed of channels, silica and a part of alumina as a component. Examples thereof include mesoporous porous carriers such as FSM-16 and MCM-41 having cylindrical pores (channels) having mesopores (10 to 1000 angstroms). In addition to the alumina silicate, a metallosilicate composed of silica and titania may be used.

メタシリケート粉末に担持する前記金属成分としては、例えばモリブデンや低級炭化水素改質触媒としての効果が確認されているレニウムやタングステンさらにはこれら(モリブデンを含む)の化合物を単独または組み合わせたものがある。   Examples of the metal component supported on the metasilicate powder include, for example, rhenium and tungsten, which have been confirmed to be effective as molybdenum and a lower hydrocarbon reforming catalyst, and compounds of these (including molybdenum) alone or in combination. .

メタロシリケート粉末に前記金属成分を担持するにあたっては、前記金属成分を含んだ水溶液に攪拌手段で攪拌しながらメタロシリケートの粉体を一定量(例えば、前記金属成分をモリブデンとする場合、モリブデン担持量が得られえる低級炭化水素直接改質触媒に対して6重量%となるよるように)加えて、一定時間(例えば3時間)攪拌している。そして、この攪拌物を一定温度(例えば70〜100℃)で乾燥、蒸発乾固した後に、これを空気中で一定温度のもと所定時間(例えば550℃のもと5時間)焼結すればよい。   When the metal component is supported on the metallosilicate powder, a fixed amount of the metallosilicate powder is stirred in the aqueous solution containing the metal component with stirring means (for example, when the metal component is molybdenum, the amount of molybdenum supported) Is added to the lower hydrocarbon direct reforming catalyst that can be obtained), and the mixture is stirred for a certain time (for example, 3 hours). Then, after this stirred product is dried at a constant temperature (for example, 70 to 100 ° C.) and evaporated to dryness, it is sintered in air at a constant temperature for a predetermined time (for example, at 550 ° C. for 5 hours). Good.

前記触媒金属成分を担持したメタロシリケート粉末をバインダーと混合するにあたり、バインダーとしては無機バインダーと有機バインダーとがある。無機バインダーは粘土またはこれと同等の物性のものであれば既知のものでよい。前記有機バインダーは水分と共に前記メタロシリケート及び無機フィラーとを混錬して成形できるものであれば既知のものでよい。   In mixing the metallosilicate powder carrying the catalytic metal component with a binder, the binder includes an inorganic binder and an organic binder. The inorganic binder may be a known one as long as it has clay or physical properties equivalent thereto. The organic binder may be a known one as long as it can be molded by kneading the metallosilicate and inorganic filler together with moisture.

そして、前記前記触媒金属成分を担持したメタロシリケート粉末とバインダーと水とを配合してからの成型にあたっては高圧成形法を採用している。高圧成形法の具体的な手段として例えば真空押し出し成形機等がある。尚、成形体の形状は、触媒の使用形態に応じて、粉末状または棒状の他、または中空円柱状、ペレット状、ハニカム状、リング形状若しくはその他の形状に形成される。   A high-pressure molding method is employed for molding the metallosilicate powder carrying the catalytic metal component, a binder and water. Specific examples of the high pressure molding method include a vacuum extrusion molding machine. In addition, the shape of a molded object is formed in a hollow cylindrical shape, a pellet shape, a honeycomb shape, a ring shape, or other shapes other than a powder form or a rod shape according to the usage form of a catalyst.

前記得られた成型体は、成型時に添加した水分を除去するために100℃で一定時間(例えば約5時間)の乾燥工程に供される。さらに焼成工程では、成型時に添加した有機バインダーが瞬時に燃焼しないように一定温度範囲(例えば250〜450℃)のもと一定時間(2〜5時間)程度の温度キープを適宜(例えば2回)実施してバインダーが除去される。   The obtained molded body is subjected to a drying step at 100 ° C. for a certain time (for example, about 5 hours) in order to remove moisture added during molding. Further, in the firing step, a temperature keep of about a certain time (2 to 5 hours) is appropriately (for example, twice) within a certain temperature range (for example, 250 to 450 ° C.) so that the organic binder added at the time of molding does not burn instantaneously. In practice, the binder is removed.

さらに、前記金属成分を担持したメタロシリケート粉末をバインダーと混合するにあたり、ポリマービーズを添加すると、焼成時の加熱によって前記ポリマービーズがガス化除去されて機械的に気孔率が向上するので、低級炭化水素直接改質触媒の触媒活性が高まる。ポリマービーズはとしては平均粒径90〜110μmのものが例示される。   Furthermore, when mixing the metallosilicate powder carrying the metal component with a binder, if polymer beads are added, the polymer beads are gasified and removed by heating during firing, and the porosity is mechanically improved. The catalytic activity of the hydrogen direct reforming catalyst is increased. Examples of the polymer beads include those having an average particle diameter of 90 to 110 μm.

前記焼成にあたっては昇温及び降温速度をともに30〜50℃/時とするとよい。前記昇温及び降温速度が前記速度以上であり、バインダーやポリマービーズを除去するキープ時間を確保しない場合には、バインダーの焼成やポリマービーズのガス化が瞬時に起こり、焼成体の強度が低下するためである。   In the firing, it is preferable that both the temperature increase and the temperature decrease rate are 30 to 50 ° C./hour. When the temperature raising and lowering rate is equal to or higher than the above rate and the keeping time for removing the binder and polymer beads is not secured, the firing of the binder and the gasification of the polymer beads occur instantaneously, and the strength of the fired body is reduced. Because.

前記得られた焼成体を炭化処理するにあたっては、前記焼成体を空気流通下一定温度(例えば550℃)まで昇温、一定時間(例えば1時間)維持した後に還元ガスに切り替え、昇温(例えば650℃まで)して一定時間(例えば1時間)維持した後、さらに昇温(例えば750℃まで)するとよい。還元性ガスとしては、メタン、水素、アルゴンガス、及びこれらのガスを適宜混合したガス(例えばメタン+10%アルゴン+6%水素)が例示される。   In carbonizing the obtained fired body, the fired body is heated to a certain temperature (for example, 550 ° C.) under air flow, maintained for a certain time (for example, 1 hour), then switched to a reducing gas, and heated (for example, 650 ° C.) and maintained for a certain time (for example, 1 hour), and then the temperature may be further increased (for example, to 750 ° C.). Examples of the reducing gas include methane, hydrogen, argon gas, and a gas obtained by appropriately mixing these gases (for example, methane + 10% argon + 6% hydrogen).

以上のようにして製造された触媒は前述のように加圧成形法が採用されているので有形物となっており主に固定床式の反応装置に充填される。そして、この反応装置に低級炭化水素を含んだガスを供して一定の温度、圧力、空間速度及び滞留時間のもとで前記触媒と接触反応させることで、安定した生成速度での芳香族化合物と水素の製造が可能となる。尚、前記低級炭化水素としてはメタンの他、エタン、エチレン、プロパン、プロプレン、n‐ブタン、イソブタン、n−ブテン及びイソブテン等が例示される。   The catalyst produced as described above is tangible because the pressure molding method is adopted as described above, and is mainly packed in a fixed bed type reactor. Then, by providing a gas containing a lower hydrocarbon to this reactor and causing the catalyst to contact with the catalyst under a constant temperature, pressure, space velocity and residence time, the aromatic compound at a stable production rate can be obtained. Hydrogen can be produced. Examples of the lower hydrocarbon include methane, ethane, ethylene, propane, propylene, n-butane, isobutane, n-butene, and isobutene.

本発明を以下の実施例によりさらに具体的に説明するが、本発明はこれらの実施例によって何ら限定されるものではない。   The present invention will be described more specifically with reference to the following examples, but the present invention is not limited to these examples.

(比較例1)
比較例1に係る低級炭化水素直接改質触媒は、図4に示した含浸平衡吸着法に基づく従来の製造方法1によって製造したものである。
(Comparative Example 1)
The lower hydrocarbon direct reforming catalyst according to Comparative Example 1 is produced by the conventional production method 1 based on the impregnation equilibrium adsorption method shown in FIG.

1.低級炭化水素改質触媒(以下、触媒と称する)の製造
1)触媒構成成分の配合
触媒の主成分であるメタロシリケートにはアンモニウム型ZSM−5(SiO2/Al23=25〜60)を採用した。触媒の構成成分とその配合比率(重量%)以下に示した。
1. Production of lower hydrocarbon reforming catalyst (hereinafter referred to as catalyst) 1) Compounding of catalyst components Ammonium type ZSM-5 (SiO 2 / Al 2 O 3 = 25 to 60) is used for the metallosilicate which is the main component of the catalyst. It was adopted. The constituent components of the catalyst and the blending ratio (% by weight) are shown below.

無機成分:有機バインダー:水分=65.4:13.6:21.0
また、無機成分の構成成分とその配合比率(重量%)以下に示した。
Inorganic component: Organic binder: Moisture = 65.4: 13.6: 21.0
Moreover, it showed below the component of an inorganic component, and its mixture ratio (weight%).

ZSM−5:粘土:ガラス繊維=82.5:10.5:7.0
2)成型 無機成分と有機バインダーと水分とを前記配合比率で混合し、ニーダ等の混練手段によって混練した。次いで、この混合体を真空押し出し成型機によって棒状(径5mm)に成形した。そして、この押し出し成型で得られた径5mmの棒状担体を長さ6mmに切断して成形体を得た。
ZSM-5: Clay: Glass fiber = 82.5: 10.5: 7.0
2) Molding An inorganic component, an organic binder, and moisture were mixed at the blending ratio and kneaded by a kneading means such as a kneader. Next, this mixture was formed into a rod shape (diameter 5 mm) by a vacuum extrusion molding machine. Then, a rod-shaped carrier having a diameter of 5 mm obtained by this extrusion molding was cut into a length of 6 mm to obtain a molded body.

3)乾燥・焼結 成形時に添加した水分を除去するために、前記成形体を100℃のもとで約5時間乾燥させた後に焼成した。焼結温度は725〜800℃の範囲とした。昇温及び降温速度はともに30〜50℃/時とした。尚、焼結の際、有機バインダーが瞬時に燃焼しないように、温度範囲250〜450℃のもとでの2〜5時間程度の温度キープを2回実施することでバインダー成分を除去した。昇温、降温速度がこれ以上のスピードであり、バインダーを除去するキープ時間を確保しない場合にはバインダーが瞬時に燃焼し、焼成体の強度が低下するためである。   3) Drying / sintering In order to remove moisture added during molding, the molded body was dried at 100 ° C. for about 5 hours and then fired. The sintering temperature was in the range of 725 to 800 ° C. The temperature increase and temperature decrease rates were both 30 to 50 ° C./hour. In addition, the binder component was removed by implementing twice the temperature maintenance for about 2 to 5 hours under the temperature range of 250-450 degreeC so that an organic binder might not burn instantaneously at the time of sintering. This is because the temperature rising / falling speed is higher than this, and when the keep time for removing the binder is not secured, the binder burns instantaneously and the strength of the fired body decreases.

4)モリブデン担持焼成 蒸留水10.4リットルに7モリブデン酸アンモニウム6水和物を2250g溶かし含浸水溶液を調製した。そこへかさ比重0.54g/cm3の3)で得た焼成体4700gを3時間浸漬した。3時間後、水分を吹き払った後、湿度と温度を管理しながら乾燥した。そして、この乾燥した触媒前駆体を空気中で550℃、5時間焼成した。 4) Molybdenum-supported calcination 2250 g of ammonium molybdate hexahydrate was dissolved in 10.4 liters of distilled water to prepare an aqueous impregnation solution. There, 4700 g of the fired body obtained in 3) having a bulk specific gravity of 0.54 g / cm 3 was immersed for 3 hours. After 3 hours, the moisture was blown off, followed by drying while controlling the humidity and temperature. The dried catalyst precursor was calcined at 550 ° C. for 5 hours in air.

5)炭化処理 前記得られた焼成体を空気流通下550℃まで昇温、1時間維持した後にメタンとアルゴンと水素の混合ガス(メタン+10%アルゴン+6%水素)に切り替え、650℃まで昇温、1時間維持その後、750℃に昇温し反応を開始することで比較例1に係る触媒を得た。   5) Carbonization treatment The obtained fired body was heated to 550 ° C. under air flow, maintained for 1 hour, then switched to a mixed gas of methane, argon and hydrogen (methane + 10% argon + 6% hydrogen) and heated to 650 ° C. The catalyst according to Comparative Example 1 was obtained by maintaining the temperature for 1 hour and then raising the temperature to 750 ° C. to start the reaction.

2.触媒の評価
固定床流通式反応装置のインコネル800H接ガス部カロライジング処理製反応管(内径18mm)に評価対象の触媒を14g充填(ゼオライト率82.50%)した。そして、これにメタンとアルゴンと水素との混合ガス(メタン+10%アルゴン+6%水素)を供給して、反応空間速度3000ml/g−MFI/h(CH4gas flow base)、反応温度750℃、反応時間10時間、反応圧力0.3MPaの条件で、触媒と混合ガスとを反応させた。この際、水素と芳香族化合物(ベンゼン)の生成する速度を経時的に調べた。
2. Evaluation of catalyst 14 g of the catalyst to be evaluated (zeolite ratio 82.50%) was filled in an Inconel 800H gas contacting part calorizing reaction tube (inner diameter 18 mm) of a fixed bed flow type reactor. Then, a mixed gas of methane, argon, and hydrogen (methane + 10% argon + 6% hydrogen) is supplied thereto, and the reaction space velocity is 3000 ml / g-MFI / h (CH 4 gas flow base), the reaction temperature is 750 ° C., The catalyst and the mixed gas were reacted under the conditions of a reaction time of 10 hours and a reaction pressure of 0.3 MPa. At this time, the rate of formation of hydrogen and an aromatic compound (benzene) was examined over time.

(比較例2)
比較例2に係る低級炭化水素直接改質触媒は、図1に示した製造方法2によって製造したものである。
(Comparative Example 2)
The lower hydrocarbon direct reforming catalyst according to Comparative Example 2 is produced by the production method 2 shown in FIG.

1.低級炭化水素改質触媒の製造
1)メタロシリケート粉体へのモリブデン担持 メタロシリケート粉体にはアンモニウム型ZSM−5(SiO2/Al23=25〜60)の粉体を採用した。蒸留水5リットルに7モリブデン酸アンモニウム6水和物を溶かし含浸水溶液を調製した。調製した含浸水溶液を高速攪拌機で攪拌しながらZSM−5の粉体を5kg加えて3時間攪拌した。この攪拌物を70〜100℃で乾燥、蒸発乾固した後に空気中で550℃、5時間焼結し、モリブデン担時メタロシリケート粉を得た。
1. Production of lower hydrocarbon reforming catalyst 1) Molybdenum supported on metallosilicate powder Ammonium-type ZSM-5 (SiO 2 / Al 2 O 3 = 25-60) powder was used as the metallosilicate powder. Ammonium molybdate hexahydrate was dissolved in 5 liters of distilled water to prepare an aqueous impregnation solution. While stirring the prepared impregnating aqueous solution with a high-speed stirrer, 5 kg of ZSM-5 powder was added and stirred for 3 hours. This stirred product was dried at 70 to 100 ° C. and evaporated to dryness, and then sintered in air at 550 ° C. for 5 hours to obtain molybdenum-supported metallosilicate powder.

2)触媒構成成分の配合
触媒の構成成分とその配合比率(重量%)以下に示した。
2) Compounding of catalyst components The components of the catalyst and the compounding ratio (% by weight) are shown below.

無機成分のみの配合:モリブデン担時メタロシリケート粉(82.5%)、粘土(10.5%)、ガラス繊維(7%)
全体配合:無機成分(65.4%)、有機バインダー(13.6%)、水分(21%)
3)成型 前記配合の無機成分、有機バインダー、水分を配合し、ニーダなどを用いて混合、混練した。そして、混合体を真空押し出し成型機によって棒状(径5mm)に成型した。
Inorganic component only: Molybdenum metallosilicate powder (82.5%), clay (10.5%), glass fiber (7%)
Total formulation: inorganic component (65.4%), organic binder (13.6%), moisture (21%)
3) Molding Inorganic components, organic binders, and moisture were blended and mixed and kneaded using a kneader. Then, the mixture was molded into a rod shape (diameter 5 mm) by a vacuum extrusion molding machine.

4)乾燥、焼成 乾燥工程では、成型時に添加した水分を除去するために100℃で約5時間乾燥した。焼成工程では、成型時に添加した有機バインダーが瞬時に燃焼しないように250〜450℃の温度範囲の中に2〜5時間程度の温度キープを2回実施してバインダーを除去した。このとき、昇温、降温速度ともに30〜50℃/時とした。   4) Drying and calcination In the drying step, drying was performed at 100 ° C. for about 5 hours in order to remove moisture added during molding. In the firing step, the binder was removed by performing temperature keeping for about 2 to 5 hours twice in a temperature range of 250 to 450 ° C. so that the organic binder added at the time of molding does not burn instantaneously. At this time, both temperature increase and temperature decrease rates were set to 30 to 50 ° C./hour.

5)炭化処理 比較例1における炭化処理と同じ方法で炭化処理して比較例2に係る触媒を得た。   5) Carbonization treatment The catalyst according to Comparative Example 2 was obtained by carbonization treatment in the same manner as the carbonization treatment in Comparative Example 1.

2.触媒の評価
比較例1に係る触媒の評価方法と同じ方法で評価した。
2. Evaluation of catalyst It evaluated by the same method as the evaluation method of the catalyst which concerns on the comparative example 1. FIG.

(実施例1)
実施例1に係る低級炭化水素直接改質触媒は、図1に示した製造方法2によって製造したものである。
(Example 1)
The lower hydrocarbon direct reforming catalyst according to Example 1 is produced by the production method 2 shown in FIG.

1.低級炭化水素改質触媒の製造
1)メタロシリケート粉体へのモリブデン担持 メタロシリケート粉体にはアンモニウム型ZSM−5(SiO2/Al23=25〜60)の粉体を採用した。蒸留水5リットルに7モリブデン酸アンモニウム6水和物を溶かし含浸水溶液を調製した。調製した含浸水溶液を高速攪拌機で攪拌しながらZSM−5の粉体5kgを加えて3時間攪拌した。この攪拌物を70〜100℃で乾燥、蒸発乾固した後に、これを空気中で550℃のもと5時間焼結し、モリブデン担時メタロシリケート粉を得た。
1. Production of lower hydrocarbon reforming catalyst 1) Molybdenum supported on metallosilicate powder Ammonium-type ZSM-5 (SiO 2 / Al 2 O 3 = 25-60) powder was used as the metallosilicate powder. Ammonium molybdate hexahydrate was dissolved in 5 liters of distilled water to prepare an aqueous impregnation solution. While stirring the prepared impregnating aqueous solution with a high-speed stirrer, 5 kg of ZSM-5 powder was added and stirred for 3 hours. This stirred product was dried at 70 to 100 ° C. and evaporated to dryness, and then sintered in air at 550 ° C. for 5 hours to obtain a metallosilicate powder supported by molybdenum.

2)触媒構成成分の配合
触媒の構成成分とその配合比率(重量%)以下に示した。
2) Compounding of catalyst components The components of the catalyst and the compounding ratio (% by weight) are shown below.

無機成分のみの配合:モリブデン担持ゼオライト(82.5%)、粘土(10.5)、ガラス繊維(7%)
全体配合:無機成分(65.4%)、有機バインダー(13.6%)、水分(21%)
3)成型 前記配合の無機成分、有機バインダー、水分を配合し、ニーダなどを用いて混合、混練した。そして、混合体を真空押し出し成型機によって棒状(径5mm)に成型した。
Inorganic compound only: Molybdenum-supported zeolite (82.5%), clay (10.5), glass fiber (7%)
Total formulation: inorganic component (65.4%), organic binder (13.6%), moisture (21%)
3) Molding Inorganic components, organic binders, and moisture were blended and mixed and kneaded using a kneader. Then, the mixture was molded into a rod shape (diameter 5 mm) by a vacuum extrusion molding machine.

4)乾燥、焼成 前記得られた成型体の乾燥工程では、成型時に添加した水分を除去するために100℃で約5時間乾燥した。焼成工程では、昇温、降温速度ともに30〜50℃/時とした。このとき、成型時に添加した有機バインダーが瞬時に燃焼しないように250〜450℃の温度範囲の中に2〜5時間程度の温度キープを2回実施してバインダーを除去した。   4) Drying and firing In the drying step of the obtained molded body, the molded body was dried at 100 ° C. for about 5 hours in order to remove moisture added during molding. In the firing step, both temperature increase and temperature decrease rates were 30 to 50 ° C./hour. At this time, in order to prevent the organic binder added at the time of molding from burning instantaneously, the binder was removed by performing temperature keeping for about 2 to 5 hours twice in a temperature range of 250 to 450 ° C.

5)炭化処理 前記焼成して得た焼成体を比較例1における炭化処理と同じ方法で炭化処理して実施例1に係る触媒を得た。   5) Carbonization treatment The fired body obtained by the calcination was carbonized by the same method as the carbonization treatment in Comparative Example 1 to obtain a catalyst according to Example 1.

2.触媒の評価
比較例1に係る触媒の評価方法と同じ方法で評価した。
2. Evaluation of catalyst It evaluated by the same method as the evaluation method of the catalyst which concerns on the comparative example 1. FIG.

(実施例2)
実施例2に係る低級炭化水素直接改質触媒は、図1に示した製造方法3によって製造したものである。
(Example 2)
The lower hydrocarbon direct reforming catalyst according to Example 2 is produced by the production method 3 shown in FIG.

1.低級炭化水素改質触媒の製造
1)メタロシリケート粉体へのモリブデン担持 メタロシリケート粉体にはアンモニウム型ZSM−5(SiO2/Al23=25〜60)の粉体を採用した。蒸留水5リットルに7モリブデン酸アンモニウム6水和物を溶かし含浸水溶液を調製した。調製した含浸水溶液を高速攪拌機で攪拌しながらZSM−5の粉体5kgを加えて3時間攪拌した。この攪拌物を70〜100℃で乾燥、蒸発乾固した後に、これを空気中で550℃のもと5時間焼結し、モリブデン担時メタロシリケート粉を得た。
1. Production of lower hydrocarbon reforming catalyst 1) Molybdenum supported on metallosilicate powder Ammonium-type ZSM-5 (SiO 2 / Al 2 O 3 = 25-60) powder was used as the metallosilicate powder. Ammonium molybdate hexahydrate was dissolved in 5 liters of distilled water to prepare an aqueous impregnation solution. While stirring the prepared impregnating aqueous solution with a high-speed stirrer, 5 kg of ZSM-5 powder was added and stirred for 3 hours. This stirred product was dried at 70 to 100 ° C. and evaporated to dryness, and then sintered in air at 550 ° C. for 5 hours to obtain a metallosilicate powder supported by molybdenum.

2)触媒構成成分の配合
触媒の構成成分とその配合比率(重量%)以下に示した。
2) Compounding of catalyst components The components of the catalyst and the compounding ratio (% by weight) are shown below.

無機成分のみの配合:モリブデン担持ゼオライト(82.5%)、粘土(10.5%)、ガラス繊維(7%)
全体配合:無機成分(65.4%)、有機バインダー(13.6%)、ポリマービーズ(松本油脂製薬製F−80E;平均粒径90〜110μm,真比重0.025)(1.0%)、水分(21%)
3)成型 前記配合の無機成分、有機バインダー、水分を配合し、ニーダなどを用いて混合、混練した。そして、混合体を真空押し出し成型機によって棒状(径5mm)に成型した。
Inorganic compound only: Molybdenum supported zeolite (82.5%), clay (10.5%), glass fiber (7%)
Total formulation: inorganic component (65.4%), organic binder (13.6%), polymer beads (F-80E manufactured by Matsumoto Yushi Seiyaku; average particle size 90-110 μm, true specific gravity 0.025) (1.0% ), Moisture (21%)
3) Molding Inorganic components, organic binders, and moisture were blended and mixed and kneaded using a kneader. Then, the mixture was molded into a rod shape (diameter 5 mm) by a vacuum extrusion molding machine.

4)乾燥、焼成 前記得られた成型体の乾燥工程では、成型時に添加した水分を除去するために100℃で約5時間乾燥した。焼成工程では、昇温、降温速度ともに30〜50℃/時とした。このとき、成型時に添加したポリマービーズが瞬時にガス化しないように、120〜150℃で2時間保持し、その後有機バインダも瞬時に燃焼しないように250〜450℃の温度範囲の中に2〜5時間程度の温度キープを2回実施し、バインダーを除去するようした。   4) Drying and firing In the drying step of the obtained molded body, the molded body was dried at 100 ° C. for about 5 hours in order to remove moisture added during molding. In the firing step, both temperature increase and temperature decrease rates were 30 to 50 ° C./hour. At this time, the polymer beads added at the time of molding are kept at 120 to 150 ° C. for 2 hours so as not to be gasified instantaneously, and thereafter, the organic binder is also kept in a temperature range of 250 to 450 ° C. so as not to burn instantaneously. The temperature was kept for about 5 hours twice to remove the binder.

5)炭化処理 前記焼成して得た焼成体を比較例1における炭化処理と同じ方法で炭化処理して実施例2に係る触媒を得た。   5) Carbonization treatment The fired body obtained by firing was carbonized by the same method as the carbonization treatment in Comparative Example 1 to obtain a catalyst according to Example 2.

2.触媒の評価
比較例1に係る触媒の評価方法と同じ方法で評価した。
2. Evaluation of catalyst It evaluated by the same method as the evaluation method of the catalyst which concerns on the comparative example 1. FIG.

図2は比較例1及び実施例1に係る触媒を用いた場合の10時間の改質時間における水素生成速度の経時的変化を示したものである。図3は比較例1及び実施例1に係る触媒を用いた場合の10時間の改質時間におけるベンゼン生成速度の経時的変化を示したものである。   FIG. 2 shows the change over time in the hydrogen production rate during the reforming time of 10 hours when the catalysts according to Comparative Example 1 and Example 1 are used. FIG. 3 shows the change with time of the benzene production rate during the reforming time of 10 hours when the catalysts according to Comparative Example 1 and Example 1 are used.

図から明らかなように比較例1に係る触媒よりも実施例1に係る触媒の方が優れた水素、ベンゼン生成活性を示すことが確認できる。また、無機バインダー部分へのモリブデン金属担持がないため、コーク発生による生成速度の低下の傾き(触媒劣化の傾き)が減少していることも認められる。   As is clear from the figure, it can be confirmed that the catalyst according to Example 1 shows superior hydrogen and benzene production activity than the catalyst according to Comparative Example 1. In addition, since there is no molybdenum metal supported on the inorganic binder part, it is recognized that the slope of the decrease in the production rate due to the generation of coke (the slope of catalyst deterioration) is reduced.

また、表1は比較例1、比較例2、実施例1及び実施例2に係る触媒の物理物性示したものである。   Table 1 shows the physical properties of the catalysts according to Comparative Example 1, Comparative Example 2, Example 1, and Example 2.

Figure 2005254122
Figure 2005254122

表に示された通り、メタロシリケート粉末に触媒金属を担持した後に焼結して前記金属成分を担持したメタロシリケート粉末を得て、その後、この触媒金属成分を担持したメタロシリケート粉末をバインダーと混合してから成型及び焼成してメタロシリケート成型担体に含浸担持した場合と比較し、圧縮強度は向上することが確認できる。製造方法2を採用した場合でかつ焼成温度を725℃にした場合(比較例2に係る触媒)、比較例1に係る触媒と比べて強度が大幅に向上し見かけ比重が大きくなっており気孔率が低下することが分かる。製造方法2でかつ焼成温度を600℃とした場合(実施例1に係る触媒)、焼成温度を下げたことにより見かけ比重は小さくなるが、圧縮強度は比較例1に係る触媒よりも強いことが確認できる。製造方法3でかつ焼成温度600℃の場合(実施例2に係る触媒)、見かけ比重が大幅に低下しているが、比較例1に係る触媒と圧縮強度は同等であることが確認できる。   As shown in the table, the metallosilicate powder carrying the metal component was obtained by carrying the catalyst metal on the metallosilicate powder and then sintering, and then mixing the metallosilicate powder carrying the metal catalyst component with the binder. Then, it can be confirmed that the compressive strength is improved as compared with the case where it is molded and fired and impregnated and supported on a metallosilicate molded carrier. When the production method 2 is adopted and the calcination temperature is set to 725 ° C. (catalyst according to comparative example 2), the strength is greatly improved and the apparent specific gravity is increased as compared with the catalyst according to comparative example 1. It turns out that falls. When the production method 2 and the calcination temperature are 600 ° C. (catalyst according to Example 1), the apparent specific gravity is reduced by lowering the calcination temperature, but the compressive strength is stronger than that of the catalyst according to Comparative Example 1. I can confirm. In the case of the production method 3 and the calcination temperature of 600 ° C. (catalyst according to Example 2), the apparent specific gravity is greatly reduced, but it can be confirmed that the compressive strength is the same as that of the catalyst according to Comparative Example 1.

さらに、表2は比較例1、比較例2及び比較例3に係る触媒の反応開始6時間後の水素、ベンゼン、ナフタレンの生成速度をまとめたものである。   Further, Table 2 summarizes the production rates of hydrogen, benzene, and naphthalene 6 hours after the start of the reaction of the catalysts according to Comparative Example 1, Comparative Example 2, and Comparative Example 3.

Figure 2005254122
Figure 2005254122

この表から明らかなように実施例1に係る触媒は比較例1及び2に係る触媒と比べて低級炭化水素の転化効率に優れていることが確認できる。尚、比較例2に係る触媒の場合その製造方法は実施例1に係る触媒と同じにもかかわらず性能低下が大きいのは見掛け比重が増加し気孔率が低下しているためであるといえる。   As is apparent from this table, it can be confirmed that the catalyst according to Example 1 is superior in the conversion efficiency of lower hydrocarbons as compared with the catalysts according to Comparative Examples 1 and 2. In the case of the catalyst according to Comparative Example 2, although the production method is the same as that of the catalyst according to Example 1, the performance decrease is large because the apparent specific gravity increases and the porosity decreases.

以上の実施例に基づき本発明の低級炭化水素直接改質触媒について詳細に説明したが、この実施例が本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the lower hydrocarbon direct reforming catalyst of the present invention has been described in detail on the basis of the above-described examples, it will be understood by those skilled in the art that this example can be variously modified and modified within the scope of the technical idea of the present invention. Obviously, such variations and modifications should fall within the scope of the appended claims.

例えば、本実施例の触媒はメタロシリケートとしてZSM−5を採用しているが、他のメタロシリケート、すなわち、モレキュラーシーブ5A,フォジャサイト(NaYおよびNaX),MCM−22のアルミノシリケート、ALPO−5,VPI−5、FSM−16、MCM−41や、シリカおよびチタニアからなるメタロシリケートについても同等の効果が得られる。   For example, the catalyst of this example employs ZSM-5 as the metallosilicate, but other metallosilicates, that is, molecular sieve 5A, faujasite (NaY and NaX), aluminosilicate of MCM-22, ALPO- Similar effects can be obtained with 5, VPI-5, FSM-16, MCM-41, and metallosilicates composed of silica and titania.

また、本実施例の触媒は主な担持金属としてモリブデンを採用されているが、既に低級炭化水素改質触媒としての効果が確認され、前記実施の形態で紹介した文献で紹介されている各種触媒金属のうちレニウムやタングステンさらにはこれら(モリブデンを含む)の化合物を単独または組み合わせて用いた場合においても、同様の作用効果が得られることが確認されている。   Further, although the catalyst of this example employs molybdenum as the main supported metal, the effects as a lower hydrocarbon reforming catalyst have already been confirmed, and various catalysts introduced in the literature introduced in the above embodiment. It has been confirmed that similar effects can be obtained even when rhenium, tungsten, or a compound of these (including molybdenum) is used alone or in combination.

さらに、実施例に係る触媒は棒状に形成されたものであるが、中空円柱状、ハニカム形状、粉末状,ペレット状,リング形状の形成した場合においても、同様の作用効果が得られることが確認されている。   Furthermore, although the catalyst according to the example is formed in a rod shape, it is confirmed that the same effect can be obtained even in the case of forming a hollow cylindrical shape, honeycomb shape, powder shape, pellet shape, ring shape. Has been.

低級炭化水素直接改質触媒の製造方法2及び製造方法3を示したフローチャート図。The flowchart figure which showed the manufacturing method 2 and the manufacturing method 3 of a lower hydrocarbon direct reforming catalyst. 比較例1及び実施例1に係る触媒を用いた場合の10時間の改質時間における水素生成速度の経時的変化。The change with time of the hydrogen production rate in the reforming time of 10 hours when the catalysts according to Comparative Example 1 and Example 1 were used. 比較例1及び実施例1に係る触媒を用いた場合の10時間の改質時間におけるベンゼン生成速度の経時的変化。The time-dependent change of the benzene production | generation rate in the reforming time of 10 hours at the time of using the catalyst which concerns on the comparative example 1 and Example 1. FIG. 低級炭化水素直接改質触媒の製造方法1を示したフローチャート図。The flowchart figure which showed the manufacturing method 1 of the lower hydrocarbon direct reforming catalyst.

Claims (4)

メタロシリケート粉末に触媒金属を担持した後に焼結して前記金属成分を担持したメタロシリケート粉末を得て、その後、この触媒金属成分を担持したメタロシリケート粉末をバインダーと混合してから成型及び焼成して低級炭化水素直接改質触媒を得ること
を特徴とする低級炭化水素直接改質触媒の製造方法。
After the catalyst metal is supported on the metallosilicate powder, sintering is performed to obtain a metallosilicate powder supporting the metal component. After that, the metallosilicate powder supporting the catalyst metal component is mixed with a binder, and then molded and fired. To obtain a lower hydrocarbon direct reforming catalyst.
前記金属成分を担持したメタロシリケート粉末をバインダーと混合するにあたり、ポリマービーズを添加し、焼成時の加熱によって前記ポリマービーズをガス化除去することを特徴とする請求項1記載の低級炭化水素直接改質触媒の製造方法。   2. The lower hydrocarbon direct modification according to claim 1, wherein when mixing the metallosilicate powder carrying the metal component with a binder, polymer beads are added, and the polymer beads are gasified and removed by heating during firing. A method for producing a catalyst. 前記触媒金属はモリブデンであることを特徴とする請求項1または2記載の低級炭化水素直接改質触媒の製造方法。   The method for producing a lower hydrocarbon direct reforming catalyst according to claim 1 or 2, wherein the catalyst metal is molybdenum. 請求項1から3のいずれか1項に記載の低級炭化水素直接改質触媒の製造方法によって製造した低級炭化水素直接改質触媒。
A lower hydrocarbon direct reforming catalyst produced by the method for producing a lower hydrocarbon direct reforming catalyst according to any one of claims 1 to 3.
JP2004068438A 2004-03-11 2004-03-11 Method for producing lower hydrocarbon direct reforming catalyst and lower hydrocarbon direct reforming catalyst Expired - Lifetime JP4488773B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004068438A JP4488773B2 (en) 2004-03-11 2004-03-11 Method for producing lower hydrocarbon direct reforming catalyst and lower hydrocarbon direct reforming catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004068438A JP4488773B2 (en) 2004-03-11 2004-03-11 Method for producing lower hydrocarbon direct reforming catalyst and lower hydrocarbon direct reforming catalyst

Publications (2)

Publication Number Publication Date
JP2005254122A true JP2005254122A (en) 2005-09-22
JP4488773B2 JP4488773B2 (en) 2010-06-23

Family

ID=35080382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004068438A Expired - Lifetime JP4488773B2 (en) 2004-03-11 2004-03-11 Method for producing lower hydrocarbon direct reforming catalyst and lower hydrocarbon direct reforming catalyst

Country Status (1)

Country Link
JP (1) JP4488773B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007051601A1 (en) * 2005-10-31 2007-05-10 Süd-Chemie AG Process for producing porous shaped bodies
JP2008229519A (en) * 2007-03-20 2008-10-02 Meidensha Corp Method for manufacturing catalyst for reforming lower hydrocarbon
WO2008149591A1 (en) 2007-06-07 2008-12-11 Meidensha Corporation Method of regenerating lower hydrocarbon aromatizing catalyst
WO2010013527A1 (en) * 2008-07-29 2010-02-04 株式会社明電舎 Process for producing aromatic compound
WO2016136678A1 (en) * 2015-02-24 2016-09-01 三井金属鉱業株式会社 Base material for fuel-reforming catalyst, and fuel-reforming catalyst employing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105397094B (en) * 2015-12-23 2018-06-15 北京矿冶研究总院 Preparation method of spherical spraying molybdenum powder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160787A (en) * 1984-08-17 1986-03-28 シエブロン リサーチ コンパニー Dehydrocyclization method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160787A (en) * 1984-08-17 1986-03-28 シエブロン リサーチ コンパニー Dehydrocyclization method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007051601A1 (en) * 2005-10-31 2007-05-10 Süd-Chemie AG Process for producing porous shaped bodies
JP2009513478A (en) * 2005-10-31 2009-04-02 ズード−ケミー アーゲー Method for producing porous molded body
JP2008229519A (en) * 2007-03-20 2008-10-02 Meidensha Corp Method for manufacturing catalyst for reforming lower hydrocarbon
WO2008149591A1 (en) 2007-06-07 2008-12-11 Meidensha Corporation Method of regenerating lower hydrocarbon aromatizing catalyst
US8735310B2 (en) 2007-06-07 2014-05-27 Meidensha Corporation Method of regenerating lower hydrocarbon aromatizing catalyst
WO2010013527A1 (en) * 2008-07-29 2010-02-04 株式会社明電舎 Process for producing aromatic compound
JP2010053123A (en) * 2008-07-29 2010-03-11 Meidensha Corp Method for producing aromatic compound
GB2474806A (en) * 2008-07-29 2011-04-27 Meidensha Electric Mfg Co Ltd Process for producing aromatic compound
CN102112417A (en) * 2008-07-29 2011-06-29 株式会社明电舍 Process for producing aromatic compound
GB2474806B (en) * 2008-07-29 2013-05-01 Meidensha Electric Mfg Co Ltd Process for producing aromatic compound
WO2016136678A1 (en) * 2015-02-24 2016-09-01 三井金属鉱業株式会社 Base material for fuel-reforming catalyst, and fuel-reforming catalyst employing same
JPWO2016136678A1 (en) * 2015-02-24 2017-09-21 三井金属鉱業株式会社 Base material for fuel reforming catalyst and fuel reforming catalyst using the same

Also Published As

Publication number Publication date
JP4488773B2 (en) 2010-06-23

Similar Documents

Publication Publication Date Title
JP4945242B2 (en) Process for producing aromatic hydrocarbons and hydrogen
JP5540462B2 (en) Regeneration method for lower hydrocarbon aromatization catalyst
JP5499669B2 (en) Process for producing lower hydrocarbon and aromatic compound and production catalyst
WO2007037388A1 (en) Process for production of aromatic compound
Ren et al. Methane aromatization in the absence of oxygen over extruded and molded MoO3/ZSM-5 catalysts: Influences of binder and molding method
JP4488773B2 (en) Method for producing lower hydrocarbon direct reforming catalyst and lower hydrocarbon direct reforming catalyst
JP5402354B2 (en) Aromatic compound production method
JP4677194B2 (en) Method for converting lower hydrocarbons using catalysts
JP4790356B2 (en) Lower hydrocarbon reforming catalyst
JP2009028710A (en) Catalyst for aromatization of lower hydrocarbon
JPWO2005028105A1 (en) Lower hydrocarbon aromatization catalyst and method for producing the same, and method for producing aromatic compound and hydrogen
JP4302954B2 (en) Method for producing lower hydrocarbon aromatic compound catalyst
JP5564769B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP2006263682A (en) Method for manufacturing catalyst for reforming lower hydrocarbon directly
JP2005254121A (en) Manufacturing method of lower hydrocarbon direct-reforming catalyst
JP2005254120A (en) Lower hydrocarbon direct-reforming catalyst and its manufacturing method
JP5286815B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound
JP2006263683A (en) Method for manufacturing catalyst for reforming lower hydrocarbon directly and catalyst for reforming lower hydrocarbon directly
JP2008132490A (en) Method for manufacturing aromatization catalyst of lower hydrocarbon
JP5315698B2 (en) Method for producing aromatic compound
JP2008093663A (en) Manufacturing method of aromatization catalyst of lower hydrocarbon
KR102494221B1 (en) Catalyst for selective light olefin production based on fluidized bed reaction, method for manufacturing the same, and method for manufacturing light olifin using the same
WO2010061683A1 (en) Process for producing lower-hydrocarbon aromatization catalyst and lower-hydrocarbon aromatization catalyst
KR101790987B1 (en) Method for producing bio-aromatics from glycerol
JP5568834B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130409

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4488773

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140409

Year of fee payment: 4

EXPY Cancellation because of completion of term