JP2005254044A - Back-up reforming catalyst for hydrogen production, and hydrogen production method using the same - Google Patents

Back-up reforming catalyst for hydrogen production, and hydrogen production method using the same Download PDF

Info

Publication number
JP2005254044A
JP2005254044A JP2004065359A JP2004065359A JP2005254044A JP 2005254044 A JP2005254044 A JP 2005254044A JP 2004065359 A JP2004065359 A JP 2004065359A JP 2004065359 A JP2004065359 A JP 2004065359A JP 2005254044 A JP2005254044 A JP 2005254044A
Authority
JP
Japan
Prior art keywords
group
reforming catalyst
catalyst
hydrocarbon
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004065359A
Other languages
Japanese (ja)
Other versions
JP4182220B2 (en
Inventor
Kazuhisa Murata
和久 村田
Masahiro Saito
昌弘 斉藤
Isao Takahara
功 高原
Hitoshi Inaba
仁 稲葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004065359A priority Critical patent/JP4182220B2/en
Publication of JP2005254044A publication Critical patent/JP2005254044A/en
Application granted granted Critical
Publication of JP4182220B2 publication Critical patent/JP4182220B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

<P>PROBLEM TO BE SOLVED: To provide a back-up reforming catalyst with enhanced sulfur resistance for decomposing/reforming gasoline containing sulfur using a nickel-based catalyst at a reforming condition on vehicle of 500-600°C, and to industrially advantageously produce hydrogen from hydrocarbons using two types of catalysts of the back-up reforming catalyst and a reforming catalyst. <P>SOLUTION: In this back-up reforming catalyst for hydrogen production by means of the decomposition of hydrocarbons, a material, which contains (a) a rhodium-containing substance and (b) a substance containing at least one metal selected from the group VI B and group VII B of the Periodical Table and/or lanthanoid metal, is carried on a zirconia- or zeolite-based carrier. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、炭化水素の分解による水素製造用予備改質触媒及びそれを用いた水素の製造方法に関するものである。   The present invention relates to a pre-reforming catalyst for producing hydrogen by cracking hydrocarbons and a method for producing hydrogen using the same.

水素はアンモニアやメタノールの原料等として化学工業で広く使われており、今後は、燃料電池等のエネルギー源としても大量に使われる方向にある。とりわけ車上でガソリン等の炭化水素から水素を製造する場合には、通常の水蒸気改質で用いられる800-900℃より低い500-600℃で安定性の高い触媒が要求される。   Hydrogen is widely used in the chemical industry as a raw material for ammonia and methanol, and in the future, it will be used in large quantities as an energy source for fuel cells and the like. In particular, when hydrogen is produced from hydrocarbons such as gasoline on a vehicle, a highly stable catalyst is required at 500-600 ° C. which is lower than 800-900 ° C. used in ordinary steam reforming.

このような条件においてニッケル系触媒(非特許文献1参照)及びニッケル−パラジウム系触媒(非特許文献2参照)などが有効である。またニッケル系触媒の性能を最大限引き出すために、あらかじめ炭化水素を酸化分解ガス化することによりニッケル上への炭素析出を減少させるための予備改質触媒をニッケル系触媒の前段に装着することが通例であり、Rh/MgO(特許文献1参照)、Ni/Al2O3(特許文献2参照)、Ru/Al2O3(特許文献2参照)などの予備改質触媒が報告されている。 Under such conditions, a nickel-based catalyst (see Non-Patent Document 1) and a nickel-palladium-based catalyst (see Non-Patent Document 2) are effective. In order to maximize the performance of the nickel-based catalyst, a pre-reforming catalyst for reducing carbon deposition on nickel by pre-oxidizing and decomposing hydrocarbons can be installed in front of the nickel-based catalyst. Conventionally, pre-reforming catalysts such as Rh / MgO (see Patent Document 1), Ni / Al 2 O 3 (see Patent Document 2), Ru / Al 2 O 3 (see Patent Document 2) have been reported. .

しかしながら、硫黄化合物を含む炭化水素の場合には、分解用のニッケル系触媒だけでなく、これらの予備改質触媒も硫黄により表面の硫化や炭素析出が起こり、また500-600℃においては水(スチーム)による触媒上の炭素除去/水素変換反応が十分に進行しないため活性が低下するという問題点があった。 However, in the case of hydrocarbons containing sulfur compounds, not only nickel-based catalysts for cracking, but also these pre-reformed catalysts cause sulfurization and carbon deposition on the surface due to sulfur, and water ( Since the carbon removal / hydrogen conversion reaction on the catalyst due to steam) does not proceed sufficiently, there is a problem that the activity decreases.

したがって、ニッケル系触媒を用いて、硫黄化合物を含む炭化水素の分解を500-600℃で安定的に行うためには、予備改質触媒の耐硫黄性を高めることが必要となっている。   Therefore, in order to stably decompose hydrocarbons containing sulfur compounds at 500 to 600 ° C. using a nickel-based catalyst, it is necessary to improve the sulfur resistance of the pre-reform catalyst.

D.J.Moon, K.Sreekumar,S.D.Lee, B.G.Lee, H.S.Kim, Appl.Catal.A: General,215, 1-9 (2001)D.J.Moon, K.Sreekumar, S.D.Lee, B.G.Lee, H.S.Kim, Appl.Catal.A: General, 215, 1-9 (2001) J.Zhang, Y.Wang, R.Ma,D.Wu, Appl.Catal. A: General, 243(2),251-259 (2003).J. Zhang, Y. Wang, R. Ma, D. Wu, Appl. Catal. A: General, 243 (2), 251-259 (2003). 欧州特許出願公開第1077198号明細書(2001)European Patent Application Publication No. 1077198 (2001) 特開2003-229163号公報Japanese Patent Laid-Open No. 2003-229163

本発明の目的は、車上改質等の条件である500-600℃で、硫黄を含むガソリン等の分解/改質反応をニッケル系触媒用いて行うための耐硫黄性を高めた予備改質触媒、及び該予備改質触媒と改質触媒の2つの触媒系を用いて炭化水素から水素を工業的に有利に製造し得る方法を提供することにある。   The object of the present invention is a preliminary reforming with improved sulfur resistance for carrying out decomposition / reforming reaction of sulfur-containing gasoline etc. using a nickel-based catalyst at 500-600 ° C. which is a condition for on-vehicle reforming, etc. An object of the present invention is to provide a catalyst and a method capable of industrially advantageously producing hydrogen from hydrocarbons using two catalyst systems of the pre-reforming catalyst and the reforming catalyst.

本発明者らは、上記課題を解決するために鋭意検討した結果、(a)ロジウム含有物質と(b)周期律表第6B族、7B族及びランタノイド族金属から選ばれた少なくとも1種の金属を含む物質を、ジルコニア系またはゼオライト系担体に担持させた予備改質触媒を用いると、耐硫黄性が改善されることを見出し本発明を完成するに至った。 As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that at least one metal selected from (a) a rhodium-containing substance and (b) Group 6B, 7B and lanthanoid metals in the periodic table. It was found that the use of a pre-reforming catalyst having a zirconia-based or zeolitic carrier-supported substance containing sulfur improved in sulfur resistance led to the completion of the present invention.

すなわち、本発明によれば、以下の発明が提供される。
(1)(a)ロジウム含有物質と(b)周期律表第6B族、第7B族及び又はランタノイド族金属から選ばれた少なくとも1種の金属を含む物質を、ジルコニア系またはゼオライト系担体に担持してなる、炭化水素の分解による水素製造用予備改質触媒。
(2) 炭化水素が、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素から選ばれた少なくとも一種の炭化水素であることを特徴とする上記(1)に記載の水素製造用予備改質触媒。
(3) 炭化水素が、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素から選ばれた少なくとも2種以上の混合油であることを特徴とする上記(1)に記載の水素製造用予備改質触媒。
(4) 炭化水素が、硫黄化合物を含むものであることを特徴とする上記(2)又は(3)に記載の水素製造用予備改質触媒。
(5) 炭化水素を予備改質触媒及び改質触媒の存在下で加熱分解して水素を製造する方法において、予備改質触媒として上記(1)に記載の予備改質触媒を用いることを特徴とする水素の製造方法。
(6) 分解触媒が、(i)ニッケル含有物質、(ii)周期律表第6B族、7B族、第8族及びランタノイド族金属から選ばれた少なくとも一種の金属を含む物質、及び(iii)周期律表第Ia族金属又はIIa族金属を含む物質を、ジルコニア系またはアルミナ系担体に担持させたものであることを特徴とする上記(1)に記載の水素の製造方法。
That is, according to the present invention, the following inventions are provided.
(1) A substance containing at least one metal selected from (a) a rhodium-containing substance and (b) a periodic table group 6B, 7B and / or lanthanoid group metal is supported on a zirconia-based or zeolite-based carrier A pre-reforming catalyst for producing hydrogen by cracking hydrocarbons.
(2) The preliminary modification for hydrogen production as described in (1) above, wherein the hydrocarbon is at least one hydrocarbon selected from aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons. Quality catalyst.
(3) The hydrocarbon is a mixed oil of at least two or more selected from aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons, for producing hydrogen according to (1) above Pre-reforming catalyst.
(4) The preliminary reforming catalyst for hydrogen production as described in (2) or (3) above, wherein the hydrocarbon contains a sulfur compound.
(5) In the method for producing hydrogen by thermally decomposing hydrocarbons in the presence of a pre-reforming catalyst and a reforming catalyst, the pre-reforming catalyst described in (1) above is used as the pre-reforming catalyst. A method for producing hydrogen.
(6) The cracking catalyst comprises (i) a nickel-containing substance, (ii) a substance containing at least one metal selected from Group 6B, Group 7B, Group 8 and a lanthanoid group metal of the periodic table, and (iii) The method for producing hydrogen according to (1) above, wherein a substance containing a Group Ia metal or a Group IIa metal on a periodic table is supported on a zirconia-based or alumina-based carrier.

本発明の改良型ロジウム系予備改質触媒では、従来公知のロジウムやルテニウム単独系の予備改質触媒とは異なり、第6B族、7B属又はランタノイド族元素と、ジルコニアやゼオライト担体との相乗効果により、ロジウムの硫化による活性低下が抑制され、またロジウム上に析出した炭素はより効率的に水(スチーム)と反応して水素へと変換されるため、有機硫黄化合物を含むガソリン等を500-600℃で効率的に予備改質することができる。   The improved rhodium-based pre-reforming catalyst of the present invention is different from the conventionally known rhodium and ruthenium-only pre-reforming catalysts, and the synergistic effect of the Group 6B, 7B or lanthanoid group elements and zirconia or zeolite carrier. Therefore, the decrease in activity due to rhodium sulfidation is suppressed, and the carbon deposited on rhodium reacts with water (steam) more efficiently and is converted to hydrogen. Preliminary reforming can be efficiently performed at 600 ° C.

本発明の炭化水素の分解により水素を製造する際に使用される予備改質触媒は、(a)ロジウム含有物質と(b)周期律表第6B族、7B族及びランタノイド族金属から選ばれた少なくとも1種の金属を含む物質を、ジルコニア系またはゼオライト系担体に担持させたものである。   The pre-reforming catalyst used when producing hydrogen by cracking the hydrocarbon of the present invention was selected from (a) rhodium-containing materials and (b) Periodic Table Groups 6B, 7B and lanthanoid metals. A substance containing at least one metal is supported on a zirconia-based or zeolitic carrier.

本発明の予備改質触媒の担体として用いるジルコニア系又はゼオライト系物質としては、これまで触媒担体として公知の各種ジルコニア又はゼオライト構造体及びそれらの前駆体が挙げられ、それらの製造法や原材料によっては何ら限定されるものではない。   Examples of the zirconia-based or zeolitic material used as the carrier for the pre-reforming catalyst of the present invention include various zirconia or zeolite structures known as catalyst carriers so far and their precursors, depending on the production method and raw materials thereof. It is not limited at all.

このようなジルコニア系担体としては、アモルファスジルコニア、単斜晶ジルコニア、四方晶ジルコニアなどの酸化物が例示される。また焼成してジルコニアになる前駆体として、ジルコニウムイソプロポキシド、ジルコニウムアセチルアセトナートなどの有機ジルコニウム化合物、塩化ジルコニウム、硝酸ジルコニルなどの無機ジルコニウム塩などを用いることもできる。これらはそのまま焼成することもできるが、水やアンモニア等により加水分解してジルコニア水酸化物としてから、焼成することもできる。 Examples of such zirconia-based carriers include oxides such as amorphous zirconia, monoclinic zirconia, and tetragonal zirconia. In addition, as a precursor that is calcined to become zirconia, organic zirconium compounds such as zirconium isopropoxide and zirconium acetylacetonate, inorganic zirconium salts such as zirconium chloride and zirconyl nitrate can be used. These can be calcined as they are, but can also be calcined after being hydrolyzed with water, ammonia or the like to form zirconia hydroxide.

他方ゼオライト系担体としては、Y-型、ベータ、モルデナイト、フェリエライト、ZSM-5などが例示される。いずれの構造でも、シリカ/アルミナ比1から3000程度の異なるものを用いることができる。 On the other hand, examples of the zeolite carrier include Y-type, beta, mordenite, ferrierite, and ZSM-5. Any structure having a silica / alumina ratio of about 1 to 3000 can be used.

本発明の予備改質触媒で活性金属として用いる(a)ロジウム含有物質としては,いかなる形態のものも含まれるが、水や有機溶媒に可溶なものが推奨され、硝酸ロジウム、硫酸ロジウムなどの無機酸ニッケル塩類、塩化ロジウム、臭化ロジウム、などのハロゲン化ロジウム類、四酢酸二ロジウムなどの有機酸ロジウム類、トリス(2.4-ペンタジオナト)ロジウム、ヘクサクロロロジウム酸ナトリウムなどのロジウム配位化合物、クロロトリス(トリフェニルフォスフィン)ロジウム、ドデカアルボニル四ロジウム、ヘキサカルボニル六ロジウム、ジ-m-クロロ-ビス(1,5-シクロオクタジエン)二ロジウムなどの有機金属ロジウム類、などが例示される。ロジウム系物質の添加量は任意であるが、ジルコニア又はゼオライト系担体に対して、ロジウム0.01wt%〜100wt%、好ましくは1wt%〜20wt%である。   The rhodium-containing material used as the active metal in the pre-reforming catalyst of the present invention includes any form, but those that are soluble in water and organic solvents are recommended, such as rhodium nitrate and rhodium sulfate. Inorganic acid nickel salts, rhodium halides such as rhodium chloride and rhodium bromide, organic acid rhodium such as dirhodium tetraacetate, rhodium coordination compounds such as tris (2.4-pentadionato) rhodium, sodium hexachlororhodate, Examples thereof include organometallic rhodiums such as chlorotris (triphenylphosphine) rhodium, dodecaalkenyl tetrarhodium, hexacarbonyl hexarhodium, and di-m-chloro-bis (1,5-cyclooctadiene) dirhodium. The addition amount of the rhodium-based substance is arbitrary, but it is 0.01 wt% to 100 wt%, preferably 1 wt% to 20 wt%, relative to the zirconia or zeolitic support.

また、上記(a)ロジウム含有物質と併用される(b)成分としては、周期律表第6B族、7B族及びランタノイド族金属から選ばれた少なくとも一種の金属を含む物質が用いられる。   As the component (b) used in combination with the (a) rhodium-containing substance, a substance containing at least one metal selected from Group 6B, Group 7B and lanthanoid group metals of the periodic table is used.

第6B族金属としては、クロム、モリブデン、タングステンが挙げられ、7B族金属としては、マンガン、テクネチウム、レニウムなどが挙げられる。またランタノイド族としては、ランタン、セリウム、ユーロピウム、サマリウム、ディスプロシウム、ガドリニウムなどが例示される。これらの金属を含む物質としては、それらの硝酸塩、硫酸塩などの無機酸塩、塩化物、臭化物などのハロゲン化物、蓚酸塩、酢酸塩などの有機酸塩、クロム酸塩、過金属酸塩などの遷移金属酸塩、マンガンカルボニル、レニウムカルボニルなどの有機金属カルボニル類、シクロペンタジエニル化合物などの有機配位化合物、などが例示される。 Examples of the Group 6B metal include chromium, molybdenum, and tungsten. Examples of the Group 7B metal include manganese, technetium, and rhenium. Examples of the lanthanoid group include lanthanum, cerium, europium, samarium, dysprosium, gadolinium and the like. Substances containing these metals include inorganic acid salts such as nitrates and sulfates, halides such as chlorides and bromides, organic acid salts such as oxalates and acetates, chromates and permetalates, etc. And transition metal acid salts, organic metal carbonyls such as manganese carbonyl and rhenium carbonyl, and organic coordination compounds such as cyclopentadienyl compounds.

これらの添加量は任意であるが、ジルコニアまたはゼオライト系担体に対して金属元素0.01wt%〜80wt%、好ましくは1wt%〜20wt%である。これらの添加物は、単独もしくは2種以上の混合物として用いることができる。とりわけ7B族のレニウム元素の場合には、レニウム−硫黄結合の選択的な生成により、水素生成能だけでなくニッケルの耐硫黄性が高められるので、特に好ましい。またランタノイド属のランタン元素もレニウムに匹敵する効果を示す。 Although these addition amounts are arbitrary, they are 0.01 wt%-80 wt%, Preferably they are 1 wt%-20 wt% with respect to a zirconia or a zeolitic support | carrier. These additives can be used alone or as a mixture of two or more. In particular, in the case of a rhenium element belonging to Group 7B, selective generation of a rhenium-sulfur bond is particularly preferable because not only hydrogen generation ability but also sulfur resistance of nickel is enhanced. Lanthanum elements belonging to the genus lanthanoid also have an effect comparable to rhenium.

本発明の予備改質触媒の調製方法としては,(イ)担体であるジルコニアまたはゼオライト系物質に、(a)成分および(b)成分を含浸させる方法,(ロ)ジルコニアまたはゼオライト系担体に、(b)成分を含浸させ、さらに(a)成分を沈殿させる方法,(ハ)ジルコニアまたはゼオライト系担体に、(a)成分および(b)成分の溶液を滴下する方法(incipient wetness法),(ニ)ジルコニアまたはゼオライト系担体、(a)成分および(b)成分を混ねいする方法、(ホ)ゾルゲル法(ジルコニウムまたはゼオライト前駆ケイ素化合物,(a)成分および(b)成分の3者を水やアルコールなどの溶液にすべて溶かし、必要に応じて有機酸を添加して、蒸発乾固後、焼成する)、などが例示される。
(ロ)の場合,通常ロジウムの無機酸塩と,塩基性の沈澱剤の組み合わせが好ましく,沈澱剤としてはアンモニア水,炭酸カリウム,炭酸ナトリウムなどが例示される.また(ホ)の有機酸としては、クエン酸、アルギン酸などの生物由来の多価酸が好ましく用いられる。(イ)〜(ホ)のいずれの方法でも、最終的に焼成を行うが、この時の温度は、300〜1500℃、好ましくは500〜900℃である。
As a preparation method of the pre-reforming catalyst of the present invention, (a) a method of impregnating (a) component and (b) component into zirconia or zeolite-based material as a support, (b) zirconia or zeolite-based material, (B) a method of impregnating the component and further precipitating the component (a), (ha) a method of dropping the solution of the component (a) and the component (b) on the zirconia or zeolite carrier (incipient wetness method), ( D) Zirconia or zeolite carrier, (a) component and (b) component mixing method, (e) sol-gel method (zirconium or zeolite precursor silicon compound, (a) component and (b) component And the like, and the like are dissolved in a solution of alcohol or alcohol, added with an organic acid if necessary, evaporated to dryness, and fired).
In the case of (b), a combination of an inorganic acid salt of rhodium and a basic precipitating agent is usually preferred, and examples of the precipitating agent include ammonia water, potassium carbonate, and sodium carbonate. As the organic acid (e), polyvalent acids derived from organisms such as citric acid and alginic acid are preferably used. Firing is finally carried out by any of the methods (a) to (e), and the temperature at this time is 300 to 1500 ° C., preferably 500 to 900 ° C.

本発明方法は、図1に示されるように、予備改質触媒により、炭化水素がまずメタン等の低分子の炭化水素に分解され、引き続いて改質触媒の効果により水素リッチのガスに変換される。   In the method of the present invention, as shown in FIG. 1, the hydrocarbon is first decomposed into low-molecular hydrocarbons such as methane by the pre-reforming catalyst, and subsequently converted into hydrogen-rich gas by the effect of the reforming catalyst. The

この場合用いられる改質触媒としては、たとえば、ニッケル/シリカ、ルテニウム/アルミナのような従来公知のものが使用されるが、ニッケル系分解触媒が好ましく使用される。更に好ましくは、ジルコニア系またはアルミナ系担体に、(i)ニッケル含有物質及び(ii)周期律表第6B族、7B族、第8族及びランタノイド族金属から選ばれた少なくとも一種の金属を含む物質、及び(iii)周期律表第Ia族金属又はIIa族金属(アルカリ又はアルカリ土類金属ともいう)を含む物質、を担持させた触媒が用いられる。 As the reforming catalyst used in this case, conventionally known catalysts such as nickel / silica and ruthenium / alumina are used, and a nickel-based decomposition catalyst is preferably used. More preferably, the zirconia-based or alumina-based support contains (i) a nickel-containing material and (ii) at least one metal selected from Group 6B, 7B, Group 8, and lanthanoid group metals in the periodic table. And (iii) a catalyst carrying a substance containing a Group Ia metal or Group IIa metal (also referred to as alkali or alkaline earth metal) of the periodic table.

(i)のニッケル含有物質としては,いかなる形態のものも含まれるが、水や有機溶媒に可溶なものが推奨され、硝酸ニッケル、硫酸ニッケルなどの無機酸ニッケル塩類、塩化ニッケル、臭化ニッケルなどのハロゲン化ニッケル類、蓚酸ニッケル、ステアリン酸ニッケル、酢酸ニッケルなどの有機酸ニッケル類、ニッケロセン、ニッケルアセチルアセトネートなどの有機金属ニッケル類、などが例示される。ニッケル系物質の添加量は任意であるが、ジルコニア又はアルミナ系担体に対して、ニッケル0.01wt%〜100wt%、好ましくは1wt%〜70wt%である。 (I) Nickel-containing substances include any form, but those that are soluble in water or organic solvents are recommended. Nickel acid nickel salts such as nickel nitrate and nickel sulfate, nickel chloride, and nickel bromide And nickel halides such as nickel oxalate, nickel stearate, and nickel acetate, and organic metal nickel such as nickelocene and nickel acetylacetonate. The addition amount of the nickel-based material is arbitrary, but it is 0.01 wt% to 100 wt% nickel, preferably 1 wt% to 70 wt% with respect to the zirconia or alumina support.

また、上記ニッケル含有物質と併用される、(ii)の他方の触媒の活性成分としては、周期律表第6B族、7B族、第8族及びランタノイド族金属から選ばれた少なくとも一種の金属を含む物質が用いられる。   In addition, as the active component of the other catalyst of (ii) used in combination with the nickel-containing substance, at least one metal selected from Group 6B, Group 7B, Group 8 and lanthanoid group metals of the periodic table is used. Contains substances are used.

第6B族金属としては、クロム、モリブデン、タングステンが挙げられ、7B族金属としては、マンガン、テクネチウム、レニウムなどが挙げられる。また第8族としては、鉄、コバルト、ロジウムなどが例示される。これらの金属を含む物質としては、それらの硝酸塩、硫酸塩などの無機酸塩、塩化物、臭化物などのハロゲン化物、蓚酸塩、酢酸塩などの有機酸塩、クロム酸塩、過レニウム酸塩などの遷移金属酸塩、テトラカルボニル鉄酸塩などの有機金属酸塩、シクロペンタジエニル化合物などの有機配位化合物、などが例示される。これらの添加量は任意であるが、ジルコニアまたはアルミナ系担体に対して金属元素0.01wt%〜80wt%、好ましくは1wt%〜20wt%である。これらの添加物(I)は、単独もしくは2種以上の混合物として用いることができる。 Examples of the Group 6B metal include chromium, molybdenum, and tungsten. Examples of the Group 7B metal include manganese, technetium, and rhenium. Examples of Group 8 include iron, cobalt, and rhodium. Substances containing these metals include inorganic acid salts such as nitrates and sulfates, halides such as chlorides and bromides, organic acid salts such as oxalates and acetates, chromates and perrhenates. Transition metal acid salts, organic metal acid salts such as tetracarbonyl ferrate, organic coordination compounds such as cyclopentadienyl compounds, and the like. Although these addition amounts are arbitrary, they are 0.01 wt%-80 wt%, Preferably they are 1 wt%-20 wt% with respect to a zirconia or an alumina type | system | group support | carrier. These additives (I) can be used alone or as a mixture of two or more.

ニッケル系物質と同時に用いられる(iii)の成分は、周期律表第Ia族金属又はIIa族金属(アルカリ又はアルカリ土類金属ともいう)を含む物質であり、この場合、第Ia族金属としては、リチウム、ナトリウム、カリウムが挙げられ、IIa族金属としては、マグネシウム、ストロンチウム、カルシウム、バリウムなどが挙げられる。これらの金属を含む物質としては、それらの硝酸塩、硫酸塩などの無機酸塩、塩化物、臭化物などのハロゲン化物、蓚酸塩、酢酸塩などの有機酸塩、クロム酸塩、バナジン酸塩などの遷移金属酸塩、テトラカルボニル鉄酸塩などの有機金属酸塩、シクロペンタジエニル化合物などの有機配位化合物、メチラートやエチラートなどのアルコラート類、などが例示される。これらの添加量は任意であるが、ジルコニアやアルミナ系担体に対して金属元素0.01wt%〜80wt%、好ましくは1wt%〜20wt%である。これらの添加物(II)は、単独もしくは2種以上の混合物として用いることができる。 The component (iii) used simultaneously with the nickel-based material is a material containing a Group Ia metal or a Group IIa metal (also referred to as an alkali or alkaline earth metal) in the periodic table. In this case, , Lithium, sodium, and potassium. Examples of the Group IIa metal include magnesium, strontium, calcium, and barium. Substances containing these metals include inorganic acid salts such as nitrates and sulfates, halides such as chlorides and bromides, organic acid salts such as oxalates and acetates, chromates and vanadates. Examples include transition metal acid salts, organic metal acid salts such as tetracarbonyl ferrate, organic coordination compounds such as cyclopentadienyl compounds, alcoholates such as methylate and ethylate, and the like. Although these addition amounts are arbitrary, they are 0.01 wt%-80 wt%, preferably 1 wt%-20 wt% of a metal element with respect to a zirconia or an alumina type support | carrier. These additives (II) can be used alone or as a mixture of two or more.

本発明で水素製造原料として使用する炭化水素としては、通常、常温で気体又は液体の炭化水素であって、具体的には、メタン、エタン、エチレン、プロパン等の脂肪族炭化水素;シクロヘキサン、メチルシクロヘキサン、シクロペンタン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられ、これらは単独又は2種以上の混合物として使用される。また、パラフィンワックス等の常温で固体の炭化水素を使用することもできる。   The hydrocarbon used as a raw material for producing hydrogen in the present invention is usually a gas or liquid hydrocarbon at normal temperature, specifically, an aliphatic hydrocarbon such as methane, ethane, ethylene, propane, etc .; cyclohexane, methyl Examples thereof include alicyclic hydrocarbons such as cyclohexane and cyclopentane; aromatic hydrocarbons such as benzene, toluene and xylene, and these are used alone or as a mixture of two or more. Also, hydrocarbons that are solid at room temperature, such as paraffin wax, can be used.

特に、本発明においては、前記特有なロジウム系の予備改質触媒と、それに続く低分子炭化水素の改質触媒(好ましくはニッケル系触媒)を併用したことから、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素の2種以上の組み合わせからなる炭化水素油たとえばガソリン、灯油などの混合油を500-600℃程度の低温で反応させて、効率よく水素を製造することが可能である。   In particular, in the present invention, since the specific rhodium-based pre-reforming catalyst and the subsequent low-molecular hydrocarbon reforming catalyst (preferably a nickel-based catalyst) are used in combination, aliphatic hydrocarbons, alicyclic It is possible to produce hydrogen efficiently by reacting a hydrocarbon oil composed of a combination of two or more hydrocarbons and aromatic hydrocarbons such as gasoline and kerosene at a low temperature of about 500-600 ° C. .

さらに硫黄を含む物質を共存させることもできる。この時の物質として、チオフェン、ジベンゾチオフェンなどの芳香族チオフェン類、チオフェノール、プロピルスルフィドなどの脂肪族硫黄化合物などの有機硫黄物質、硫化水素、二硫化炭素、二酸化硫黄などの無機硫黄物質が例示される。炭化水素混合物中に許容される硫黄濃度は、0〜1000ppm(硫黄の重量基準)、好ましくは0〜10ppmである。 Furthermore, a substance containing sulfur can be allowed to coexist. Examples of substances at this time include aromatic thiophenes such as thiophene and dibenzothiophene, organic sulfur substances such as aliphatic sulfur compounds such as thiophenol and propyl sulfide, and inorganic sulfur substances such as hydrogen sulfide, carbon disulfide, and sulfur dioxide. Is done. The sulfur concentration allowed in the hydrocarbon mixture is 0 to 1000 ppm (based on the weight of sulfur), preferably 0 to 10 ppm.

炭化水素は、そのまま純品で用いることもできるが、熱力学的に有利に効率良く熱分解させるためにアルゴン、窒素、ヘリウム等の不活性ガスで希釈して使うことも可能である。このときの希釈率は任意である。
反応温度は200〜1,200℃、好ましくは400〜800℃であり、また触媒表面と炭化水素ガスとの接触時間は0.01〜1000秒、好ましくは0.1〜10秒とするのが望ましい。
Hydrocarbons can be used pure as they are, but they can also be diluted with an inert gas such as argon, nitrogen, helium, etc. in order to thermally decompose efficiently and efficiently thermodynamically. The dilution rate at this time is arbitrary.
The reaction temperature is 200 to 1,200 ° C., preferably 400 to 800 ° C., and the contact time between the catalyst surface and the hydrocarbon gas is 0.01 to 1000 seconds, preferably 0.1 to 10 seconds. desirable.

また本反応は通常水の共存下で行われ、水(スチーム)量は任意であるが、原料炭化水素中に含まれる炭素1モルに対し0.001〜100モル、好ましくは0.01〜10モルの割合である。さらに、水に加えて酸素や二酸化炭素を共存させることも可能であり、加える量は任意であるが、水と同程度の範囲で用いられる。   Further, this reaction is usually carried out in the presence of water, and the amount of water (steam) is arbitrary, but 0.001 to 100 mol, preferably 0.01 to 10 mol per mol of carbon contained in the raw material hydrocarbon. The molar ratio. Furthermore, it is possible to coexist oxygen and carbon dioxide in addition to water, and the amount to be added is arbitrary, but it is used in the same range as water.

本発明の熱分解方法は、バッチ方式或いは流通方式のいずれも採用できるが、好ましくは流通方式で実施される。流通方式で行う場合には、固定床方式、移動床方式、循環流動層方式等を適宜採用できる。本発明の方法を固定床方式で実施する場合には、ロジウム系予備改質触媒及びニッケル系分解触媒を連続して同一の管状反応管に充填する方法、またそれぞれ独立した管状反応管に予備改質触媒と分解触媒を充填することが可能である。その際、触媒充填層の上下端部にはフィルター層を積層して触媒層を固定することが望ましい。   The thermal decomposition method of the present invention can employ either a batch method or a distribution method, but is preferably carried out by a distribution method. In the case of performing the distribution method, a fixed bed method, a moving bed method, a circulating fluidized bed method, or the like can be appropriately employed. When the method of the present invention is carried out in a fixed bed system, a method in which a rhodium-based pre-reforming catalyst and a nickel-based cracking catalyst are continuously filled in the same tubular reaction tube, or a preliminary modification to independent tubular reaction tubes, respectively. It is possible to fill the catalyst and cracking catalyst. At that time, it is desirable to fix the catalyst layer by laminating filter layers on the upper and lower ends of the catalyst packed layer.

本発明の新規なロジウム系予備改質触媒は、従来公知のロジウム系触媒とは異なり、(ii)の周期律表第6B族、7B族及びランタノイド族金属から選ばれた少なくとも一種の金属を含む物質と、ロジウム及びジルコニアまたはゼオライト担体との相乗効果により、500-600℃程度の比較的低温でも、ガソリンや灯油などの炭化水素混合油を用いたとしても、炭素−炭素結合が効率よく解裂して低分子量のメタン、エタン等に分解されるため、次の分解触媒(好ましくはニッケル系分解触媒)による水素製造反応を高選択率、高収率に進めることができる。また前記(ii)の成分存在により、ロジウム系触媒の耐硫黄性も改善される。   The novel rhodium-based pre-reforming catalyst of the present invention includes at least one metal selected from Group 6B, Group 7B and lanthanoid group metals of (ii), unlike the conventionally known rhodium-based catalysts. Due to the synergistic effect of the substance and rhodium and zirconia or zeolite carrier, the carbon-carbon bond is efficiently cleaved even at relatively low temperatures of around 500-600 ° C, even when using hydrocarbon blend oils such as gasoline and kerosene. Then, since it is decomposed into low molecular weight methane, ethane or the like, the hydrogen production reaction by the next decomposition catalyst (preferably nickel-based decomposition catalyst) can be advanced with high selectivity and high yield. The presence of the component (ii) also improves the sulfur resistance of the rhodium catalyst.

次に、本発明を実施例によって更に詳細に説明する。   Next, the present invention will be described in further detail with reference to examples.

実施例1
[予備改質触媒の調製]
硝酸ジルコニル21gを蒸留水100gに溶かし、水で希釈したアンモニア水100ml(アンモニア水25ml/水75ml)を滴下して水酸化ジルコニウムの沈殿を得る。100℃で一晩乾燥後、ここで、300℃で3時間焼成してアモルファスジルコニア(AZ)を得た。硝酸ロジウム0.138g(ロジウムの担持率2wt%)と過レニウム酸アンモン0.180gを(同5wt%)を蒸留水40gに溶かし、その後溶液にAZ2.5gを懸濁させ、金属分をジルコニアに担持する。蒸留水を蒸発乾固し、100℃で一晩放置後,540℃で6時間焼成し,2.14gのRh/Re/ZrO2触媒を得た。
[改質触媒の調製]
他方、硝酸ニッケル2.48g(AZに対するニッケルの担持率10wt%)と硝酸ストロンチウム0.604gを(同5wt%),過レニウム酸アンモン0.180g(同5wt%)を蒸留水40gに溶かし、その後溶液にAZ 2.5gを懸濁させ、金属分をジルコニアに担持する。蒸留水を蒸発乾固し、100℃で一晩放置後,700℃で3時間焼成し,2.81gのRe/Ni/Sr/ZrO2触媒を得た。
[水素の製造]
こうして得た2つの触媒各1gをペレット化し、適度に分割した後、これを内径12mmのセラミクス製反応管の中央に充填して触媒層を形成した。上段に予備改質のためのRh/Re/ZrO2触媒、下段に低分子炭化水素から水素を製造するためのRe/Ni/Sr/ZrO2触媒を充填した。この場合、触媒層両端及び2つの触媒の間には石英ウールを充填して反応中に触媒や混合がないようにした。この反応管を電気炉内に縦に装填し、反応管上部からガスを流通させた。触媒の予備処理は、水素600℃で2時間還元した。その後、メチルシクロヘキサン(MCH、硫黄5.2ppm入り)/スチーム/酸素/窒素が5.25/59.64/29.26/5.85(モル比) (スチーム/炭素比=1.63(モル比)、酸素/炭素比=1.59(モル比))の混合ガスを130cm3/minの速度で通しながら、反応管の内温を5℃/minの速度で580℃まで昇温させて反応を開始した。この時MCHと水は液体ポンプにて注入した。3時間後及び33時間後のガス組成をガスクロマトグラフにて分析したところ、MCH転化率、水素生成速度及び水素組成は表2のようになり、3時間後でMCH転化率100%、水素生成速度37.5mmol/s/g、組成54.3%が得られた。33時間後でMCH転化率100%、水素生成速度39.9mmol/s/g、組成55.1%が得られ、活性低下は見られなかった。副生物はメタン、CO、CO2であった。なお、MCH転化率(CHC%)、水素速度(F)、水素組成(Comp)は下式にて計算される。
Example 1
[Preparation of pre-reforming catalyst]
Zirconyl nitrate (21 g) is dissolved in distilled water (100 g), and 100 ml of ammonia water diluted with water (ammonia water 25 ml / water 75 ml) is added dropwise to obtain zirconium hydroxide precipitate. After drying at 100 ° C. overnight, it was calcined at 300 ° C. for 3 hours to obtain amorphous zirconia (AZ). Dissolve 0.138g of rhodium nitrate (rhodium loading 2wt%) and 0.180g of ammonium perrhenate (5wt%) in 40g of distilled water, then suspend 2.5g of AZ in the solution, and support the metal in zirconia. . Distilled water was evaporated to dryness, left at 100 ° C. overnight, and then calcined at 540 ° C. for 6 hours to obtain 2.14 g of Rh / Re / ZrO 2 catalyst.
[Preparation of reforming catalyst]
On the other hand, 2.48 g of nickel nitrate (10 wt% of nickel supported on AZ), 0.604 g of strontium nitrate (5 wt%), 0.180 g of ammonium perrhenate (5 wt%) were dissolved in 40 g of distilled water, and then AZ was added to the solution. Suspend 2.5 g and load metal on zirconia. Distilled water was evaporated to dryness, left at 100 ° C overnight, and then calcined at 700 ° C for 3 hours to obtain 2.81 g of Re / Ni / Sr / ZrO2 catalyst.
[Production of hydrogen]
1 g of each of the two catalysts thus obtained was pelletized and appropriately divided, and then filled into the center of a ceramic reaction tube having an inner diameter of 12 mm to form a catalyst layer. The upper stage was filled with Rh / Re / ZrO2 catalyst for pre-reforming, and the lower stage was filled with Re / Ni / Sr / ZrO2 catalyst for producing hydrogen from low molecular weight hydrocarbons. In this case, quartz wool was filled between both ends of the catalyst layer and between the two catalysts so that there was no catalyst or mixing during the reaction. The reaction tube was vertically loaded in an electric furnace, and gas was circulated from the upper part of the reaction tube. In the catalyst pretreatment, hydrogen was reduced at 600 ° C. for 2 hours. Then methylcyclohexane (MCH, sulfur 5.2ppm) / steam / oxygen / nitrogen 5.25 / 59.64 / 29.26 / 5.85 (molar ratio) (steam / carbon ratio = 1.63 (molar ratio), oxygen / carbon ratio = 1.59 (molar) The reaction was started by raising the internal temperature of the reaction tube to 580 ° C. at a rate of 5 ° C./min. At this time, MCH and water were injected by a liquid pump. The gas composition after 3 hours and 33 hours was analyzed with a gas chromatograph. The MCH conversion rate, hydrogen production rate and hydrogen composition were as shown in Table 2. After 3 hours, the MCH conversion rate was 100% and the hydrogen production rate. 37.5 mmol / s / g, composition 54.3% was obtained. After 33 hours, an MCH conversion rate of 100%, a hydrogen production rate of 39.9 mmol / s / g, and a composition of 55.1% were obtained, and no decrease in activity was observed. By-products were methane, CO, and CO2. The MCH conversion rate (C HC %), hydrogen velocity (F), and hydrogen composition (Comp) are calculated by the following equations.

Figure 2005254044
Figure 2005254044

比較例1
Rh/Re/ZrO2予備改質触媒を用いない以外は実施例1と同様にして反応させたところ、表2の比較例1のようになり、3時間後でMCH転化率100%、水素生成速度41.3mmol/s/g、組成56.3%、33時間後でMCH転化率100%、水素生成速度27.6mmol/s/g、組成45.1%が得られ、水素生成速度が約3/2に低下し、Ni上の炭素析出量も多かった。
Comparative Example 1
The reaction was carried out in the same manner as in Example 1 except that no Rh / Re / ZrO2 pre-reforming catalyst was used. As shown in Comparative Example 1 of Table 2, the MCH conversion rate was 100% and the hydrogen production rate after 3 hours. 41.3 mmol / s / g, composition 56.3%, 33 hours later MCH conversion 100%, hydrogen production rate 27.6 mmol / s / g, composition 45.1% obtained, hydrogen production rate decreased to about 3/2, There was also a large amount of carbon deposition on Ni.

実施例2
過レニウム酸アンモンの代わりに、硝酸ランタンを用いて、2wt%Rh/5wt%Re/ZrO2触媒を調製し、実施例1と同様にして反応させたところ、表2のような結果となり、レニウムの場合と同様に活性低下も炭素析出も少なかった。
Example 2
A 2 wt% Rh / 5 wt% Re / ZrO2 catalyst was prepared using lanthanum nitrate instead of ammonium perrhenate and reacted in the same manner as in Example 1. The results shown in Table 2 were obtained. As in the case, there was little decrease in activity and carbon deposition.

実施例3
ジルコニアの代わりにモルデナイト(Si/Al2比=240)を用いて、2wt%Rh/5wt%Re/モルデナイト触媒を調製し、実施例1と同様にして反応させたところ、表2のような結果となり、ジルコニアの場合と同様に活性低下も炭素析出も少なかった。
Example 3
Using mordenite (Si / Al2 ratio = 240) instead of zirconia, a 2 wt% Rh / 5 wt% Re / mordenite catalyst was prepared and reacted in the same manner as in Example 1. The results shown in Table 2 were obtained. As in the case of zirconia, there was little decrease in activity and carbon deposition.

実施例4
過レニウム酸アンモンの代わりに、硝酸マンガン及び硝酸セリウム、ジルコニアの代わりにY-型ゼオライト(Si/Al2=6)を用いて、2wt%Rh/10wt%Mn/10wt%Ce/ ZrO2触媒を調製し、実施例1と同様にして反応させたところ、表2のような結果となり、活性低下は認められなかったが、炭素析出がレニウムの場合より少し顕著であった。
Example 4
Prepare 2wt% Rh / 10wt% Mn / 10wt% Ce / ZrO2 catalyst using manganese nitrate and cerium nitrate instead of ammonium perrhenate and Y-type zeolite (Si / Al2 = 6) instead of zirconia. When the reaction was carried out in the same manner as in Example 1, the results shown in Table 2 were obtained and no decrease in activity was observed, but the carbon deposition was slightly more pronounced than in the case of rhenium.

実施例5
メチルシクロヘキサン(MCH)の代わりに、MCH75Vol.%/トルエン25vol.%の混合原料を用いた以外、実施例1と同様にして反応させたところ、表2のような結果となり、活性低下も炭素析出も少なく、芳香族の影響はあまりないことが分かった。
Example 5
When the reaction was carried out in the same manner as in Example 1 except that a mixed raw material of MCH75Vol.% / Toluene 25vol.% Was used instead of methylcyclohexane (MCH), the results shown in Table 2 were obtained, and the activity decreased and the carbon precipitation It was found that there was little influence of aromatics.

比較例2−4
Rh/Re/ZrO2の代わりに、Ru/Ce/Al2O3、Pd/Ce/Al2O3及びMn/CeO2/ZrO2をそれぞれ用いた以外は実施例1と同様にして反応させたところ、表2の比較例2−4のようになり、いずれも活性低下が著しく、とりわけPd/Ce/Al2O3及びMn/CeO2/ZrO2では、炭素析出のために33時間後には反応管が閉塞した。
Comparative Example 2-4
Comparative Example 2 in Table 2 was carried out in the same manner as in Example 1 except that Ru / Ce / Al2O3, Pd / Ce / Al2O3 and Mn / CeO2 / ZrO2 were used instead of Rh / Re / ZrO2, respectively. As shown in -4, both showed a significant decrease in activity. In particular, in Pd / Ce / Al2O3 and Mn / CeO2 / ZrO2, the reaction tube was blocked after 33 hours due to carbon deposition.

Figure 2005254044
Figure 2005254044

本発明の炭化水素分解反応の説明図Explanatory drawing of hydrocarbon decomposition reaction of the present invention

Claims (6)

(a)ロジウム含有物質と(b)周期律表第6B族、第7B族及び又はランタノイド族金属から選ばれた少なくとも1種の金属を含む物質を、ジルコニア系またはゼオライト系担体に担持してなる、炭化水素の分解による水素製造用予備改質触媒。 (A) A rhodium-containing substance and (b) a substance containing at least one metal selected from Group 6B, Group 7B and / or lanthanoid group metals on a periodic table is supported on a zirconia or zeolite carrier. , Pre-reforming catalyst for hydrogen production by hydrocarbon decomposition. 炭化水素が、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素から選ばれた少なくとも一種の炭化水素であることを特徴とする請求項1に記載の水素製造用予備改質触媒。 The pre-reforming catalyst for hydrogen production according to claim 1, wherein the hydrocarbon is at least one kind of hydrocarbon selected from an aliphatic hydrocarbon, an alicyclic hydrocarbon, and an aromatic hydrocarbon. 炭化水素が、脂肪族炭化水素、脂環式炭化水素及び芳香族炭化水素から選ばれた少なくとも2種以上の混合油であることを特徴とする請求項1に記載の水素製造用予備改質触媒。 The pre-reforming catalyst for hydrogen production according to claim 1, wherein the hydrocarbon is a mixed oil of at least two kinds selected from aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons. . 炭化水素が、硫黄化合物を含むものであることを特徴とする請求項2又は3に記載の水素製造用予備改質触媒。 The pre-reforming catalyst for hydrogen production according to claim 2 or 3, wherein the hydrocarbon contains a sulfur compound. 炭化水素を予備改質触媒及び改質触媒の存在下で加熱分解して水素を製造する方法において、予備改質触媒として請求項1に記載の予備改質触媒を用いることを特徴とする水素の製造方法。 A method for producing hydrogen by thermally decomposing hydrocarbons in the presence of a pre-reforming catalyst and a reforming catalyst, wherein the pre-reforming catalyst according to claim 1 is used as the pre-reforming catalyst. Production method. 分解触媒が、(i)ニッケル含有物質、(ii)周期律表第6B族、7B族、第8族及びランタノイド族金属から選ばれた少なくとも一種の金属を含む物質、及び(iii)周期律表第Ia族金属又はIIa族金属を含む物質を、ジルコニア系またはアルミナ系担体に担持させたものであることを特徴とする請求項5に記載の水素の製造方法。
The decomposition catalyst comprises (i) a nickel-containing substance, (ii) a substance containing at least one metal selected from Group 6B, Group 7B, Group 8 and a lanthanoid group metal, and (iii) Periodic Table 6. The method for producing hydrogen according to claim 5, wherein a substance containing a Group Ia metal or a Group IIa metal is supported on a zirconia-based or alumina-based carrier.
JP2004065359A 2004-03-09 2004-03-09 Pre-reforming catalyst for hydrogen production and method for producing hydrogen using the same Expired - Lifetime JP4182220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004065359A JP4182220B2 (en) 2004-03-09 2004-03-09 Pre-reforming catalyst for hydrogen production and method for producing hydrogen using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004065359A JP4182220B2 (en) 2004-03-09 2004-03-09 Pre-reforming catalyst for hydrogen production and method for producing hydrogen using the same

Publications (2)

Publication Number Publication Date
JP2005254044A true JP2005254044A (en) 2005-09-22
JP4182220B2 JP4182220B2 (en) 2008-11-19

Family

ID=35080310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004065359A Expired - Lifetime JP4182220B2 (en) 2004-03-09 2004-03-09 Pre-reforming catalyst for hydrogen production and method for producing hydrogen using the same

Country Status (1)

Country Link
JP (1) JP4182220B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009011133A1 (en) * 2007-07-19 2009-01-22 Toda Kogyo Corporation Catalyst for decomposing hydrocarbon
JP2009521387A (en) * 2005-12-21 2009-06-04 ヴァイレント エナジー システムズ インク. Catalyst and method for producing oxygen-containing compound

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009521387A (en) * 2005-12-21 2009-06-04 ヴァイレント エナジー システムズ インク. Catalyst and method for producing oxygen-containing compound
WO2009011133A1 (en) * 2007-07-19 2009-01-22 Toda Kogyo Corporation Catalyst for decomposing hydrocarbon
JPWO2009011133A1 (en) * 2007-07-19 2010-09-16 戸田工業株式会社 Catalyst for cracking hydrocarbons
US8268289B2 (en) 2007-07-19 2012-09-18 Toda Kogyo Corporation Hydrocarbon-decomposing catalyst, process for decomposing hydrocarbons and process for producing hydrogen using the catalyst, and power generation system
JP5531615B2 (en) * 2007-07-19 2014-06-25 戸田工業株式会社 Catalyst for cracking hydrocarbons

Also Published As

Publication number Publication date
JP4182220B2 (en) 2008-11-19

Similar Documents

Publication Publication Date Title
US9782754B2 (en) Alkane dehydrogenation catalyst and process for its preparation
KR100993452B1 (en) Process for producing olefin by catalytic cracking of hydrocarbon
WO2016049144A1 (en) Oxygen transfer agents for the oxidative dehydrogenation of hydrocarbons and systems and processes using the same
JP3835765B2 (en) Process for producing aromatic hydrocarbons
JP2006021100A (en) Catalyst for manufacture of liquefied petroleum gas and method of manufacturing liquefied petroleum gas using it
WO2006016444A1 (en) Liquefied petroleum gas production catalyst and process for producing liquefied petroleum gas using this catalyst
ITMI942522A1 (en) PARAFFIN DEHYDROGENATION CATALYSTS C3-C20 AND THEIR PREPARATION
KR20130074393A (en) Catalyst for efficient co2 conversion and method for preparing thereof
CN110603096A (en) Preparation method of high-regeneration-efficiency straight-chain light hydrocarbon dehydrogenation catalyst
JP2010155234A (en) Hydrocarbon reforming catalyst, manufacturing method thereof and fuel cell containing this catalyst
KR20110097953A (en) Variation of the tin impregnation of a catalyst for the dehydrogenation of alkanes
JP4500943B2 (en) Reforming catalyst for hydrogen production and method for producing hydrogen using the same
US9694345B2 (en) Catalyst composition for the selective conversion of synthesis gas to light olefins
KR101421189B1 (en) The modified catalyst for co2 conversion
Chen et al. Highly Dispersed Low-Polymeric VO x/Silica Gel Catalyst for Efficient Catalytic Dehydrogenation of Propane to Propylene
JPWO2005037962A1 (en) Method for producing liquefied petroleum gas mainly composed of propane or butane
JP4174589B2 (en) Catalyst for producing hydrogen and method for producing hydrogen using the same
JP4182220B2 (en) Pre-reforming catalyst for hydrogen production and method for producing hydrogen using the same
KR101653429B1 (en) Process for oxidative dehydrogenation of paraffinic lower hydrocarbons
KR20190135799A (en) Catalyst Comprising MgO-Al2O3 Hybrid Support and The Method of Preparing Synthesis Gas from Carbon Dioxide Reforming of Alcohol Using the Same
JP4942718B2 (en) Autothermal reforming catalyst
JP3742816B2 (en) Carbon monoxide hydrogenation using metal sulfide catalyst
JP6102473B2 (en) Catalyst for producing synthesis gas, method for regenerating the catalyst, and method for producing synthesis gas
WO2001047843A1 (en) Process for the production of olefins
JP5107046B2 (en) Hydrocarbon steam reforming catalyst

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080710

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350