JP2005251701A - Method of manufacturing polymer electrolyte fuel cell electrode - Google Patents

Method of manufacturing polymer electrolyte fuel cell electrode Download PDF

Info

Publication number
JP2005251701A
JP2005251701A JP2004064505A JP2004064505A JP2005251701A JP 2005251701 A JP2005251701 A JP 2005251701A JP 2004064505 A JP2004064505 A JP 2004064505A JP 2004064505 A JP2004064505 A JP 2004064505A JP 2005251701 A JP2005251701 A JP 2005251701A
Authority
JP
Japan
Prior art keywords
cation exchange
catalyst electrode
fuel cell
catalyst
polymer electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004064505A
Other languages
Japanese (ja)
Inventor
Takashi Egawa
崇 江川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2004064505A priority Critical patent/JP2005251701A/en
Publication of JP2005251701A publication Critical patent/JP2005251701A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a polymer electrolyte fuel cell electrode provided with a catalyst electrode, in which the gas diffusion and dewatering properties are improved. <P>SOLUTION: In the method of manufacturing the bonded body of a cation exchange film for the polymer electrolyte fuel cell/a catalyst electrode, the catalyst electrode includes a carbon material, a cation exchange resin, and a catalyst metal. The method comprises a first step of applying on a sheet a mixture containing the carbon material, the cation exchange resin, the catalyst metal, a powder that is soluble in acid, and a solvent, a second step of drying the mixture applied on the sheet to form a stacked member of a catalyst electrode layer and the sheet, a third step of forming the bonded member of the cation exchange film/the catalyst electrode by heat transferring the catalyst electrode layer on the surface of the cation exchange film from the stacked member, and a fourth step of contacting the bonded body of the cation exchange film/the catalyst electrode with acid. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、固体高分子形燃料電池用電極の製造方法に関するものである。   The present invention relates to a method for producing a polymer electrolyte fuel cell electrode.

固体高分子形燃料電池は、その反応生成物が原理的に水のみであり、環境への悪影響がほとんどない発電システムとして注目されている。中でも、近年、プロトン伝導性の陽イオン交換膜を電解質として使用する固体高分子形燃料電池は、作動温度が低く、出力密度が高く、さらに小型化が可能なために、車載用電源など有望視されている。   The polymer electrolyte fuel cell is attracting attention as a power generation system that has almost no adverse environmental impact because its reaction product is essentially only water. In particular, polymer electrolyte fuel cells that use proton-conducting cation exchange membranes as electrolytes in recent years have low operating temperature, high output density, and can be miniaturized. Has been.

固体高分子形燃料電池の電極は、炭素材料と陽イオン交換樹脂と触媒金属とを含むもので構成されている。水素と酸素とを用いて固体高分子形燃料電池を運転した場合、各電極(アノードおよびカソード)では、それぞれつぎの反応が進行する。   The electrode of the polymer electrolyte fuel cell is composed of a carbon material, a cation exchange resin, and a catalyst metal. When the polymer electrolyte fuel cell is operated using hydrogen and oxygen, the following reaction proceeds at each electrode (anode and cathode).

アノ−ド:2H→4H+4e
カソ−ド:O+4H+4e→2H
この反応で生成した電子(e)は電極内の炭素材料を、プロトン(H)は陽イオン交換樹脂のイオン交換基のクラスター部分をそれぞれ通って移動する。すなわち、電極内では、炭素材料が電子伝導経路、陽イオン交換樹脂のイオン交換基のクラスター部分がプロトン伝導経路を形成している。
Anod: 2H 2 → 4H + + 4e
Cathode: O 2 + 4H + + 4e → 2H 2 O
Electrons (e ) generated by this reaction move through the carbon material in the electrode, and protons (H + ) move through the cluster portion of the ion exchange group of the cation exchange resin. That is, in the electrode, the carbon material forms the electron conduction path, and the cluster portion of the ion exchange group of the cation exchange resin forms the proton conduction path.

固体高分子形燃料電池は、上記のように作動温度が低いことが長所であるが、一方では、そのために排熱の回収効率の向上が困難であることが短所である。これを補う意味でも固体高分子形燃料電池には、水素および空気(酸素)の利用率を向上することによって、高いエネルギー効率および高い出力密度で作動させることが要求されている。   The solid polymer fuel cell has an advantage that the operating temperature is low as described above, but on the other hand, it is a disadvantage that it is difficult to improve the recovery efficiency of exhaust heat. In order to supplement this, the polymer electrolyte fuel cell is required to operate with high energy efficiency and high power density by improving the utilization rate of hydrogen and air (oxygen).

固体高分子形燃料電池が上記の要求を満たすためには、電池を構成する要素のうち特に触媒電極、およびその触媒電極を陽イオン交換膜の両面に形成した前記陽イオン交換膜/触媒電極接合体の、構造と製造方法との最適化が重要である。   In order for the polymer electrolyte fuel cell to satisfy the above requirements, among the elements constituting the cell, in particular, the catalyst electrode, and the cation exchange membrane / catalyst electrode junction in which the catalyst electrode is formed on both sides of the cation exchange membrane It is important to optimize the structure and manufacturing method of the body.

従来、この陽イオン交換膜/触媒電極接合体は、特許文献1や非特許文献1で開示されているように、電極反応を促進する触媒金属と炭素材料と陽イオン交換樹脂とが、エタノールなどのアルコール類の溶媒に溶解または分散された粘性混合物を、陽イオン交換膜の表面に直接塗工するか、または別のシート状基材に塗工して得られる電極を陽イオン交換膜の表面に加熱圧接法で転写することによって得ていた。   Conventionally, as disclosed in Patent Document 1 and Non-Patent Document 1, this cation exchange membrane / catalyst electrode assembly includes a catalyst metal, a carbon material, and a cation exchange resin that promote electrode reactions, such as ethanol. An electrode obtained by directly applying a viscous mixture dissolved or dispersed in a solvent of an alcohol to the surface of the cation exchange membrane or applying it to another sheet-like substrate is used as the surface of the cation exchange membrane. It was obtained by transferring to a film by a heating pressure welding method.

特開平11−241196号公報JP-A-11-241196 M.S.Wilson、Journal of Applied Electrochemistry 22、1(1992)M.M. S. Wilson, Journal of Applied Electrochemistry 22, 1 (1992)

上記の従来の手法で触媒電極を作製する場合、または陽イオン交換膜/触媒電極接合体を作製する場合、上記粘性混合物の溶媒量に応じて、電極の空孔率を制御することが可能であったが、電極の空孔率の大きさは、電極反応に必要な物質を移動させるためには不十分であった。さらに、上記粘性混合物をより多くの溶媒で希釈することによって、粘性混合物の固形分濃度を低くした場合、粘性混合物を用いてシート状基材等に塗工することによって得られた触媒電極は比較的大きな空孔率となるが、粘性混合物の溶媒量を増やすことによって触媒電極の安定性が悪くなり、触媒金属の凝集あるいは沈降等が発生するので、触媒電極の均一性が失われるという問題があった。   When producing a catalyst electrode by the above conventional method, or when producing a cation exchange membrane / catalyst electrode assembly, it is possible to control the porosity of the electrode according to the amount of solvent in the viscous mixture. However, the size of the porosity of the electrode was insufficient to move the substance necessary for the electrode reaction. Furthermore, when the solid content concentration of the viscous mixture is lowered by diluting the viscous mixture with more solvent, the catalyst electrode obtained by applying the viscous mixture to a sheet-like substrate is compared. However, there is a problem that the uniformity of the catalyst electrode is lost because the stability of the catalyst electrode is deteriorated by increasing the amount of the solvent in the viscous mixture and the catalyst metal is agglomerated or settled. there were.

さらに、シート状基材に塗工して得られる触媒電極を陽イオン交換膜に接合あるいは転写した後には、触媒電極の厚みが加熱圧接する前よりも薄くなるので、触媒電極の空孔率が減少した。この空孔率の減少によって、触媒電極における燃料等のガスの拡散性あるいはカソード電極反応により生成する水の排出性が低下するので、固体高分子形燃料電池の分極が増大するという問題があった。   Furthermore, after the catalyst electrode obtained by coating on the sheet-like substrate is bonded or transferred to the cation exchange membrane, the thickness of the catalyst electrode becomes thinner than before the heat-pressing, so the porosity of the catalyst electrode is reduced. Diminished. This decrease in porosity reduces the diffusivity of gas such as fuel at the catalyst electrode or the discharge of water generated by the cathode electrode reaction, which increases the polarization of the polymer electrolyte fuel cell. .

そこで本発明は、固体高分子形燃料電池および固体高分子形燃料電池用電極における従来の問題点を解消するため、ガス拡散性と排水性とを向上した触媒電極を備える固体高分子形燃料電池用陽イオン交換膜/触媒電極接合体電極の製造方法を提供することを目的としている。   Accordingly, the present invention provides a polymer electrolyte fuel cell having a catalyst electrode with improved gas diffusibility and drainage in order to solve the conventional problems in the polymer electrolyte fuel cell and the electrode for the polymer electrolyte fuel cell. An object of the present invention is to provide a method for producing a cation exchange membrane / catalyst electrode assembly electrode.

請求項1の発明は、固体高分子形燃料電池用陽イオン交換膜/触媒電極接合体の製造方法において、前記触媒電極は炭素材料、陽イオン交換樹脂および触媒金属を含み、炭素材料、陽イオン交換樹脂、触媒金属、酸に溶解する粉末および溶媒を含む混合物をシート上に塗工する第1の工程と、前記シート上に塗工した混合物を乾燥して、触媒電極層とシ−トとの積層体を作製する第2の工程と、前記積層体から触媒電極層を陽イオン交換膜表面に熱転写して陽イオン交換膜/触媒電極接合体を得る第3の工程と、前記陽イオン交換膜/触媒電極接合体を酸と接触させる第4の工程とを経ることを特徴とする。   The invention of claim 1 is a method for producing a cation exchange membrane / catalyst electrode assembly for a polymer electrolyte fuel cell, wherein the catalyst electrode contains a carbon material, a cation exchange resin and a catalyst metal, and the carbon material, the cation A first step of applying a mixture containing an exchange resin, a catalyst metal, an acid-soluble powder and a solvent onto a sheet; and drying the mixture applied onto the sheet to form a catalyst electrode layer and a sheet; A second step of producing the laminate, a third step of obtaining a cation exchange membrane / catalyst electrode assembly by thermally transferring the catalyst electrode layer from the laminate to the surface of the cation exchange membrane, and the cation exchange. And a fourth step of contacting the membrane / catalyst electrode assembly with an acid.

本発明の固体高分子形燃料電池用電極の製法では、酸に溶解する粉末を含む触媒電極を陽イオン交換膜に加熱圧接した後に、酸に溶解する粉末を除去するので、得られた陽イオン交換膜/触媒電極接合体の触媒電極には適度な空孔が形成される。この空孔の空孔率は、65%〜85%あるので、電極中における水素や空気等のガスの拡散性およびカソード電極反応等により生成する水の排出性が向上する。   In the method for producing an electrode for a polymer electrolyte fuel cell of the present invention, the catalyst electrode containing the powder that dissolves in the acid is heated and pressed against the cation exchange membrane, and then the powder that dissolves in the acid is removed. Appropriate pores are formed in the catalyst electrode of the exchange membrane / catalyst electrode assembly. Since the porosity of these holes is 65% to 85%, the diffusibility of gas such as hydrogen and air in the electrode and the discharge of water generated by the cathode electrode reaction and the like are improved.

その結果、電流密度あるいは燃料と酸素との利用率が高い条件下における燃料電池の分極の増大を抑制できるので、高い出力密度の燃料電池を提供することが可能となる。   As a result, an increase in the polarization of the fuel cell under conditions where the current density or the utilization ratio of fuel and oxygen is high can be suppressed, and a fuel cell with a high output density can be provided.

以下、本発明の実施形態により本願発明について詳細に説明する。   Hereinafter, the present invention will be described in detail according to embodiments of the present invention.

本発明の、触媒電極が炭素材料、陽イオン交換樹記脂および触媒金属を含む、固体高分子形燃料電池用陽イオン交換膜/触媒電極接合体の製造方法は、炭素材料、陽イオン交換樹脂、触媒金属、酸に溶解する粉末および溶媒を含む混合物をシート上に塗工する第1の工程と、前記シート上に塗工した混合物を乾燥して、触媒電極層とシ−トとの積層体を作製する第2の工程と、前記積層体から触媒電極層を陽イオン交換膜表面に熱転写して陽イオン交換膜/触媒電極接合体を得る第3の工程と、前記陽イオン交換膜/触媒電極接合体を酸と接触させる第4の工程とを経ることを特徴とするものである。   The method for producing a cation exchange membrane / catalyst electrode assembly for a polymer electrolyte fuel cell in which the catalyst electrode of the present invention contains a carbon material, a cation exchange resin, and a catalyst metal includes a carbon material and a cation exchange resin. , A first step of coating a catalyst metal, a mixture containing an acid-soluble powder and a solvent on a sheet, and drying the mixture coated on the sheet to laminate a catalyst electrode layer and a sheet A second step of producing a body, a third step of obtaining a cation exchange membrane / catalyst electrode assembly by thermally transferring the catalyst electrode layer from the laminate to the surface of the cation exchange membrane, and the cation exchange membrane / A fourth step of contacting the catalyst electrode assembly with an acid is performed.

本発明の固体高分子形燃料電池用陽イオン交換膜/触媒電極接合体の製造方法においては、第1の工程と第4の工程とに特徴がある。すなわち、第1の工程において、炭素材料、陽イオン交換樹脂、触媒金属、酸に溶解する粉末および溶媒を含む混合物をシート上に塗工するが、この工程において、混合物に含まれる酸に溶解する粉末の量をコントロールすることが重要である。第2の工程では、乾燥により、シート上に塗工した混合物から溶媒を除去し、触媒電極とシ−トとの積層体とする。得られた触媒電極には、炭素材料、陽イオン交換樹脂、触媒金属、酸に溶解する粉末が含まれている。   The method for producing a cation exchange membrane / catalyst electrode assembly for a polymer electrolyte fuel cell according to the present invention is characterized by the first step and the fourth step. That is, in the first step, a mixture containing a carbon material, a cation exchange resin, a catalyst metal, a powder that dissolves in an acid and a solvent is applied on the sheet, but in this step, the mixture dissolves in an acid contained in the mixture. It is important to control the amount of powder. In the second step, the solvent is removed from the mixture coated on the sheet by drying to obtain a laminate of the catalyst electrode and the sheet. The obtained catalyst electrode contains a carbon material, a cation exchange resin, a catalyst metal, and a powder that dissolves in an acid.

本発明における陽イオン交換膜/触媒電極接合体は、第2の工程で得られた触媒電極とシートとの積層体を所定の大きさに加工して、第3の工程で、触媒電極のみを陽イオン交換膜の表面に加熱圧接することによって熱転写して接合し、シ−トを剥離することにより、陽イオン交換膜/触媒電極接合体を得る。   In the cation exchange membrane / catalyst electrode assembly according to the present invention, the laminate of the catalyst electrode and the sheet obtained in the second step is processed into a predetermined size, and only the catalyst electrode is processed in the third step. By heat-contacting the surface of the cation exchange membrane with heat, it is bonded by thermal transfer, and the sheet is peeled off to obtain a cation exchange membrane / catalyst electrode assembly.

第4の工程では、陽イオン交換膜/触媒電極接合体を酸と接触させることにより、触媒電極中の酸に溶解する粉末を溶解して除去し、酸に溶解する粉末のあとが空孔となる。陽イオン交換膜/触媒電極接合体を酸と接触させる方法としては、陽イオン交換膜/触媒電極接合体を酸溶液中に一定時間浸漬することや、陽イオン交換膜/触媒電極接合体に酸溶液を噴霧するなどの方法が例示される。なお、本発明において、酸の種類は特に限定されるものではないが、好ましくは硫酸を使用する。   In the fourth step, the cation exchange membrane / catalyst electrode assembly is brought into contact with an acid to dissolve and remove the powder that dissolves in the acid in the catalyst electrode. Become. As a method for bringing the cation exchange membrane / catalyst electrode assembly into contact with an acid, the cation exchange membrane / catalyst electrode assembly is immersed in an acid solution for a certain period of time, or an acid is added to the cation exchange membrane / catalyst electrode assembly. A method such as spraying the solution is exemplified. In the present invention, the type of acid is not particularly limited, but sulfuric acid is preferably used.

したがって、触媒電極の空孔率は、第1の工程における混合物に含まれる酸に溶解する粉末の量によって決められ、空孔の形状は酸に溶解する粉末の粒子の形状によって決められる。なお、触媒電極の白金担持量は、第1の工程における、混合物に含まれる触媒金属の量によって決められる。   Therefore, the porosity of the catalyst electrode is determined by the amount of powder dissolved in the acid contained in the mixture in the first step, and the shape of the pores is determined by the shape of powder particles dissolved in the acid. Note that the amount of platinum supported on the catalyst electrode is determined by the amount of catalyst metal contained in the mixture in the first step.

本発明に用いられる炭素材料は電子伝導性の高いものが好ましく、たとえば、アセチレンブラックやファーネスブラックなどのカーボンブラックおよび活性炭などが使用できる。好ましくは、Denka Black、Vulcan XC−72、Black Pearl 2000、あるいはケッチェンブラックEC等のカーボンブラックを使用する。   The carbon material used in the present invention preferably has a high electron conductivity. For example, carbon black such as acetylene black and furnace black, activated carbon, and the like can be used. Preferably, carbon black such as Denka Black, Vulcan XC-72, Black Pearl 2000, or Ketjen Black EC is used.

本発明に用いられる触媒金属は、酸素の還元反応または水素の酸化反応に対する触媒活性が高いことから、白金、ロジウム、ルテニウム、イリジウム、パラジウム、オスニウムなどの白金族金属およびその合金などが好ましい。触媒金属は、微粒子としてそのまま使用してもよいが、その金属を上記炭素材料に担持したものを使用することができ、その触媒の担持量が担体触媒全体の質量当たり5〜60質量%で使用することが好ましい。   The catalytic metal used in the present invention is preferably a platinum group metal such as platinum, rhodium, ruthenium, iridium, palladium, osnium, or an alloy thereof because of its high catalytic activity for oxygen reduction reaction or hydrogen oxidation reaction. The catalyst metal may be used as fine particles as it is, but the metal supported on the above carbon material can be used, and the amount of the catalyst supported is 5 to 60% by mass based on the total mass of the supported catalyst. It is preferable to do.

本発明に用いられる陽イオン交換樹脂として、たとえば、パーフルオロカーボンスルホン酸形、スチレン−ジビニルベンゼン系のスルホン酸形陽イオン交換樹脂またはイオン交換基としてカルボキシル基を備えた陽イオン交換樹脂などが使用できる。   As the cation exchange resin used in the present invention, for example, a perfluorocarbon sulfonic acid type, a styrene-divinylbenzene sulfonic acid type cation exchange resin, or a cation exchange resin having a carboxyl group as an ion exchange group can be used. .

本発明においては、電極の空孔率が65%以上、85%以下であることが好ましい。この範囲であれば、水素や空気等のガスの拡散性や、生成水の排出性も良好であり、分極特性に優れた固体高分子形燃料電池を得ることが可能である。電極の空孔率が65%未満の場合は、電極中のガスの拡散性、あるいは生成水の排出性が低下するおそれがある。電極の空孔率が85%を越える場合は、炭素材料同士の接触抵抗が大きくなることによって、固体高分子形燃料電池の分極特性が低下する恐れがある。   In the present invention, the electrode porosity is preferably 65% or more and 85% or less. Within this range, it is possible to obtain a polymer electrolyte fuel cell having excellent diffusibility of gas such as hydrogen and air and excellent discharge of generated water and excellent polarization characteristics. When the porosity of the electrode is less than 65%, the gas diffusibility in the electrode or the discharge of generated water may be reduced. When the porosity of the electrode exceeds 85%, the contact resistance between the carbon materials is increased, which may deteriorate the polarization characteristics of the polymer electrolyte fuel cell.

本発明の電極における白金担持量は、第1の製造方法では0.3mg/cm以上、1.0mg/cm以下であることが好ましい。この範囲であれば、分極特性に優れた固体高分子形燃料電池を得ることが可能である。白金担持量が0.3mg/cm未満の場合は、電極反応に必要な白金量が少ないので、初期からの出力特性が低くなるおそれがある。白金担持量が1.0mg/cmよりも大きい場合は、触媒層が厚くなりすぎることによって、ガスの拡散性あるいは生成水の排出性が低下する恐れがある。 The platinum loading in the electrode of the present invention is preferably 0.3 mg / cm 2 or more and 1.0 mg / cm 2 or less in the first production method. Within this range, a polymer electrolyte fuel cell having excellent polarization characteristics can be obtained. When the amount of platinum supported is less than 0.3 mg / cm 2, the amount of platinum necessary for the electrode reaction is small, so that the output characteristics from the initial stage may be lowered. If the amount of platinum supported is greater than 1.0 mg / cm 2 , the catalyst layer may be too thick, which may reduce gas diffusibility or product water discharge.

本発明の触媒層の厚みは、10μm以上、50μm以下が好ましい。この範囲であれば、分極特性に優れた固体高分子形燃料電池を得ることが可能である。触媒層の厚みが、10μm未満の場合は、電極の多孔度が65%以上、85%以下であり、さらに白金担持量が0.3mg/cm以上、1.0mg/cm以下である電極を製作することができない。触媒層厚みが50μmよりも大きい場合は、触媒層が厚くなりすぎることによって、ガスの拡散性あるいは生成水の排出性が低下するおそれがある。 The thickness of the catalyst layer of the present invention is preferably 10 μm or more and 50 μm or less. Within this range, a polymer electrolyte fuel cell having excellent polarization characteristics can be obtained. When the thickness of the catalyst layer is less than 10 μm, the porosity of the electrode is 65% or more and 85% or less, and the platinum loading is 0.3 mg / cm 2 or more and 1.0 mg / cm 2 or less. Cannot be produced. When the thickness of the catalyst layer is larger than 50 μm, the catalyst layer becomes too thick, and there is a possibility that the gas diffusibility or the generated water discharge property is lowered.

本発明に用いられる酸に溶解する粉末として、金属粉末や無機化合物粉末を用いることができる。これらの中では、ニッケル、亜鉛、鉄、および炭酸カルシウムからなる群より選ばれる少なくとも1種を用いることが好ましい。さらに、用いる粉末の粉体特性には特に制限はないが、平均粒子径が0.1μm以上、5μm以下、より好ましくは0.5μm以上、2μm以下のものを使用することが好ましい。酸に溶解する粉末を用いることによって、電極の多孔度が増加するとともに、0.1μm以上、10μm以下の細孔が増加する。   As the powder that dissolves in the acid used in the present invention, a metal powder or an inorganic compound powder can be used. Among these, it is preferable to use at least one selected from the group consisting of nickel, zinc, iron, and calcium carbonate. Further, the powder characteristics of the powder to be used are not particularly limited, but it is preferable to use those having an average particle diameter of 0.1 μm or more and 5 μm or less, more preferably 0.5 μm or more and 2 μm or less. By using a powder that dissolves in an acid, the porosity of the electrode increases, and pores of 0.1 μm or more and 10 μm or less increase.

本発明の製造方法の第1の工程で用いるシートの材質としては、高分子フィルムや金属箔を用いることができる。しかし、高分子フィルムを用いた場合には、熱転写の工程で熱収縮をおこして、触媒電極に亀裂が生じる恐れや、触媒電極から剥離が不十分となるなどの問題が発生することがあり、また、金属箔を用いた場合には、材質によっては、陽イオン交換樹脂のスルフォン酸基に吸着して、陽イオン交換樹脂中のプロトンの移動を妨げるなどの問題が発生することがある。   As the material of the sheet used in the first step of the production method of the present invention, a polymer film or a metal foil can be used. However, when a polymer film is used, heat shrinkage may occur in the thermal transfer process, causing problems such as cracks in the catalyst electrode and insufficient peeling from the catalyst electrode. In addition, when a metal foil is used, depending on the material, there may be a problem that it is adsorbed on the sulfonic acid group of the cation exchange resin and hinders the movement of protons in the cation exchange resin.

そこで、シートの材質としては、10μm以上、100μm以下の厚さのチタン箔またはチタン合金箔が好ましい。その理由は、チタン箔やチタン合金箔の表面に形成されている酸化皮膜は非常に緻密で化学的に安定であり、陽イオン交換樹脂に含まれるスルホン酸基等の酸に侵されにくいことが挙げられる。チタン箔やチタン合金箔の厚さが10μm未満の時は、塗工時に箔が切断するおそれがあり、逆に、厚さが100μmを越える時は、電極の加工等が困難になる。このような観点から、本発明の電極の製造方法に好適なチタン箔やチタン合金箔の厚みは、10μm以上、100μm以下であり、より好ましくは15μm以上、50μm以下である。   Therefore, the material of the sheet is preferably a titanium foil or a titanium alloy foil having a thickness of 10 μm or more and 100 μm or less. The reason is that the oxide film formed on the surface of the titanium foil or titanium alloy foil is very dense and chemically stable, and is not easily affected by acids such as sulfonic acid groups contained in the cation exchange resin. Can be mentioned. When the thickness of the titanium foil or titanium alloy foil is less than 10 μm, the foil may be cut at the time of coating. Conversely, when the thickness exceeds 100 μm, it becomes difficult to process the electrode. From such a viewpoint, the thickness of the titanium foil or titanium alloy foil suitable for the electrode manufacturing method of the present invention is 10 μm or more and 100 μm or less, more preferably 15 μm or more and 50 μm or less.

本発明の製造方法の第1の工程において、混合物やペーストをシート上に塗工する方法には、リバースロール法、コンマバー法、グラビヤ法、およびエアーナイフ法などの任意のコーターヘッドを用いることができる。ドクターブレード法およびディップコート法などによっても塗工することができる。   In the first step of the production method of the present invention, an arbitrary coater head such as a reverse roll method, a comma bar method, a gravure method, and an air knife method may be used as a method of coating the mixture or paste on the sheet. it can. It can also be applied by a doctor blade method or a dip coating method.

本発明の製造方法の第2の工程における乾燥方法としては、放置乾燥のほか、送風乾燥機、温風乾燥機、赤外線加熱機、遠赤外線加熱機などが使用できるが、特に限定されるものではない。   As a drying method in the second step of the production method of the present invention, in addition to standing drying, a blower dryer, a hot air dryer, an infrared heater, a far infrared heater, etc. can be used, but are not particularly limited. Absent.

本発明の製造方法で得られた陽イオン交換膜/電極接合体を固体高分子形燃料電池で使用する場合には、陽イオン交換膜/電極接合体のアノードおよびカソードの外側にカーボンペーパーやカーボンクロスのような導電性多孔質基材からなるガス拡散層を配置することが好ましい。陽イオン交換膜/電極接合体の電極のカソードおよびアノードにはそれぞれ、酸素を含むガスおよび水素を含むガスが供給される。具体的には、ガスの流路となる溝が形成されたセパレータを陽イオン交換膜/電極接合体の両電極の外側に配置して、ガスの流路にガスを流すことにより、陽イオン交換膜/電極接合体に燃料となるガスを供給する。   When the cation exchange membrane / electrode assembly obtained by the production method of the present invention is used in a polymer electrolyte fuel cell, carbon paper or carbon is placed outside the anode and cathode of the cation exchange membrane / electrode assembly. It is preferable to dispose a gas diffusion layer made of a conductive porous substrate such as cloth. A gas containing oxygen and a gas containing hydrogen are respectively supplied to the cathode and the anode of the electrode of the cation exchange membrane / electrode assembly. Specifically, cation exchange is performed by placing a separator formed with a groove to be a gas flow path outside both electrodes of the cation exchange membrane / electrode assembly and flowing the gas through the gas flow path. A gas serving as a fuel is supplied to the membrane / electrode assembly.

以下、本発明を好適な実施例を用いて説明する。   The present invention will be described below with reference to preferred embodiments.

[実施例1〜4および比較例1〜4]
[実施例1]
第1の工程では、白金担持カーボン触媒(田中貴金属工業社製、白金50wt%、担体:Vulcan XC−72)2.0gと陽イオン交換樹脂(デュポン社製、ナフィオン10wt%溶液)6.7gと酸に溶解する粉末としてのニッケル粉末(日興リカ社製、平均粒径0.65μm)8.0gを秤量したのちに攪拌棒で混合し、さらにハイブリッドミキサー(キーエンス社製、HM−500)を用いて混練することによって混合物を調整した。
[Examples 1 to 4 and Comparative Examples 1 to 4]
[Example 1]
In the first step, platinum-supported carbon catalyst (Tanaka Kikinzoku Kogyo Co., Ltd., platinum 50 wt%, support: Vulcan XC-72) 2.0 g and cation exchange resin (DuPont Nafion 10 wt% solution) 6.7 g, After weighing 8.0 g of nickel powder (Nikko Rica, average particle size 0.65 μm) as a powder that dissolves in acid, it is mixed with a stir bar, and further a hybrid mixer (Keyence, HM-500) is used. The mixture was adjusted by kneading.

その混合物にジメチルスルホキシドを添加することによって、粘度を調整した。そして混合物を超音波分散機(エスエムテー社製、UH−600S)で分散させて、これを電極塗工用分散液とした。この分散液を50μmの厚みのチタン箔上に180μmのギャップを有するドクターブレードを用いて塗工した。   The viscosity was adjusted by adding dimethyl sulfoxide to the mixture. And the mixture was disperse | distributed with the ultrasonic disperser (the SMT Co. make, UH-600S), and this was made into the dispersion liquid for electrode coating. This dispersion was applied onto a 50 μm thick titanium foil using a doctor blade having a 180 μm gap.

第2の工程では、80℃の乾燥機内で30分乾燥させ、触媒電極層とチタン箔との積層体を得た。   In the second step, drying was performed in an oven at 80 ° C. for 30 minutes to obtain a laminate of the catalyst electrode layer and the titanium foil.

第3の工程では、第2の工程で得られた触媒電極層とチタン箔との積層体の触媒電極層を、スルホン酸基を有するパーフルオロカーボン重合体からなる陽イオン交換膜(デュポン社製、Nafion115)の両面に接触させ、上記の触媒電極層を100kg/cm、90℃の条件で加熱圧接することによって転写した。 In the third step, the catalyst electrode layer of the laminate of the catalyst electrode layer and the titanium foil obtained in the second step is used as a cation exchange membrane made of a perfluorocarbon polymer having a sulfonic acid group (manufactured by DuPont, Nafion 115) was brought into contact with both surfaces, and the above-mentioned catalyst electrode layer was transferred by heating and pressing under conditions of 100 kg / cm 2 and 90 ° C.

第4の工程では、第3の工程で得られた陽イオン交換膜/触媒電極接合体を、0.5Mの硫酸水溶液中で1時間煮沸して、ニッケル粉末を除去することによって、本発明の触媒電極を備えた陽イオン交換膜/触媒電極接合体を製作した。得られた触媒電極は、面積が25cmであり、空孔率が74%、白金担持量が0.80mg/cmであった。この接合体を備えた固体高分子形燃料電池を実施例1の燃料電池とした。 In the fourth step, the cation exchange membrane / catalyst electrode assembly obtained in the third step is boiled in a 0.5 M sulfuric acid aqueous solution for 1 hour to remove nickel powder. A cation exchange membrane / catalyst electrode assembly with a catalyst electrode was fabricated. The obtained catalyst electrode had an area of 25 cm 2 , a porosity of 74%, and a platinum loading amount of 0.80 mg / cm 2 . The polymer electrolyte fuel cell provided with this joined body was used as the fuel cell of Example 1.

[実施例2]
第1の工程で用いたニッケル粉末を10.7gにして、170μmのギャップを有するドクターブレードを用いて塗工した以外は、実施例1と同様の手順で空孔率が85%、白金担持量が0.60mg/cmの陽イオン交換膜/触媒電極接合体を製作した。この接合体を備えた固体高分子形燃料電池を実施例2の燃料電池とした。
[Example 2]
The porosity was 85% in the same procedure as in Example 1 except that the nickel powder used in the first step was 10.7 g and coating was performed using a doctor blade having a gap of 170 μm. Produced a cation exchange membrane / catalyst electrode assembly having a mass of 0.60 mg / cm 2 . The polymer electrolyte fuel cell provided with this joined body was used as the fuel cell of Example 2.

[実施例3]
第1の工程で用いたニッケル粉末を2.2gにして、80μmのギャップを有するドクターブレードを用いて塗工した以外は、実施例1と同様の手順で空孔率が65%、白金担持量が0.30mg/cmの陽イオン交換膜/触媒電極接合体を製作した。この接合体を備えた固体高分子形燃料電池を実施例3の燃料電池とした。
[Example 3]
The porosity was 65% and the platinum loading was the same as in Example 1 except that the nickel powder used in the first step was 2.2 g and coating was performed using a doctor blade having a gap of 80 μm. Produced a cation exchange membrane / catalyst electrode assembly having a mass of 0.30 mg / cm 2 . The solid polymer fuel cell provided with this joined body was used as the fuel cell of Example 3.

[実施例4]
第1の工程で用いた白金担持カーボン触媒(田中貴金属工業社製、白金30wt%、担体:Vulcan XC−72)を2.0g、陽イオン交換樹脂を9.3g、ニッケル粉末を9.8gにして、200μmのギャップを有するドクターブレードを用いて塗工した以外は、実施例1と同様の手順で空孔率が79%、白金担持量が1.00mg/cmの陽イオン交換膜/触媒電極接合体を製作した。この接合体を備えた固体高分子形燃料電池を実施例4の燃料電池とした。
[Example 4]
The platinum-supported carbon catalyst used in the first step (Tanaka Kikinzoku Kogyo Co., Ltd., platinum 30 wt%, carrier: Vulcan XC-72) is 2.0 g, the cation exchange resin is 9.3 g, and the nickel powder is 9.8 g. A cation exchange membrane / catalyst having a porosity of 79% and a platinum loading of 1.00 mg / cm 2 in the same procedure as in Example 1 except that coating was performed using a doctor blade having a gap of 200 μm. An electrode assembly was manufactured. A solid polymer fuel cell provided with this joined body was used as a fuel cell of Example 4.

[比較例1]
第1の工程で用いたニッケル粉末を0gにして、100μmのギャップを有するドクターブレードを用いて塗工した以外は、実施例1と同様の手順で空孔率が60%、白金担持量が0.75mg/cmの陽イオン交換膜/触媒電極接合体を製作した。この接合体を備えた固体高分子形燃料電池を比較例1の燃料電池とした。
[Comparative Example 1]
The porosity was 60% and the platinum loading was 0, except that the nickel powder used in the first step was changed to 0 g, and coating was performed using a doctor blade having a gap of 100 μm. A cation exchange membrane / catalyst electrode assembly of .75 mg / cm 2 was produced. A polymer electrolyte fuel cell provided with this joined body was used as a fuel cell of Comparative Example 1.

[比較例2]
第1の工程で用いたニッケル粉末を12.2gにして、170μmのギャップを有するドクターブレードを用いて塗工した以外は、実施例1と同様の手順で空孔率が88%、白金担持量が0.60mg/cmの陽イオン交換膜/触媒電極接合体を製作した。この接合体を備えた固体高分子形燃料電池を比較例2の燃料電池とした。
[Comparative Example 2]
The porosity was 88% in the same procedure as in Example 1 except that the nickel powder used in the first step was 12.2 g and coating was performed using a doctor blade having a gap of 170 μm. Produced a cation exchange membrane / catalyst electrode assembly having a mass of 0.60 mg / cm 2 . The polymer electrolyte fuel cell provided with this joined body was used as a fuel cell of Comparative Example 2.

[比較例3]
第1の工程で用いたニッケル粉末を6.8gにして、200μmのギャップを有するドクターブレードを用いて塗工した以外は、実施例4と同様の手順で空孔率が73%、白金担持量が1.10mg/cmの陽イオン交換膜/触媒電極接合体を製作した。この接合体を備えた固体高分子形燃料電池を比較例3の燃料電池とした。
[Comparative Example 3]
The porosity was 73% and the platinum loading was the same as in Example 4 except that the nickel powder used in the first step was 6.8 g and the coating was performed using a doctor blade having a gap of 200 μm. Produced a cation exchange membrane / catalyst electrode assembly having a weight of 1.10 mg / cm 2 . A polymer electrolyte fuel cell provided with this joined body was used as a fuel cell of Comparative Example 3.

[比較例4]
第1の工程で用いたニッケル金属粉末を6.2gにして、80μmのギャップを有するドクターブレードを用いて塗工した以外は、実施例4と同様の手順で空孔率が74%、白金担持量が0.25mg/cmの陽イオン交換膜/触媒電極接合体を製作した。この接合体を備えた固体高分子形燃料電池を比較例4の燃料電池とした。
[Comparative Example 4]
The porosity was 74% in the same procedure as in Example 4 except that the nickel metal powder used in the first step was 6.2 g and coating was performed using a doctor blade having a gap of 80 μm. A cation exchange membrane / catalyst electrode assembly having an amount of 0.25 mg / cm 2 was produced. A polymer electrolyte fuel cell provided with this joined body was used as a fuel cell of Comparative Example 4.

ここで得られた実施例1〜4および比較例1〜4の固体高分子形燃料電池を用いて、燃料電池の分極特性を測定した。   Using the polymer electrolyte fuel cells of Examples 1 to 4 and Comparative Examples 1 to 4 obtained here, the polarization characteristics of the fuel cells were measured.

燃料電池の分極特性の測定は、常圧にて、水素(利用率80%)/空気(利用率40%)を供給して、電池温度を75℃、アノードガスの加湿温度75℃、カソードガスの加湿温度75℃にし、電流密度0.2A/cmにおける電池電圧を測定した。 The measurement of the polarization characteristics of the fuel cell is performed by supplying hydrogen (utilization rate 80%) / air (utilization rate 40%) at normal pressure, battery temperature 75 ° C., anode gas humidification temperature 75 ° C., cathode gas The battery voltage at a current density of 0.2 A / cm 2 was measured at a humidification temperature of 75 ° C.

実施例1〜4および比較例1〜4の固体高分子形燃料電池についての測定結果を表1に示す。   Table 1 shows the measurement results for the polymer electrolyte fuel cells of Examples 1 to 4 and Comparative Examples 1 to 4.

Figure 2005251701
Figure 2005251701


表1から明らかなように、実施例1〜4の本発明の固体高分子形燃料電池は、比較例1〜4の固体高分子形燃料電池にくらべて、分極特性に非常に優れていることがわかる。この結果から、電極の空孔率を65%以上、85%以下とし、さらにその電極の白金担持量を0.3mg/cm以上、1.0mg/cm以下にすることが好適であることがわかる。

As is apparent from Table 1, the polymer electrolyte fuel cells of the present invention of Examples 1 to 4 are very excellent in polarization characteristics as compared with the polymer electrolyte fuel cells of Comparative Examples 1 to 4. I understand. From this result, it is preferable that the porosity of the electrode is 65% or more and 85% or less, and the platinum carrying amount of the electrode is 0.3 mg / cm 2 or more and 1.0 mg / cm 2 or less. I understand.

この理由は上述したように、電極の空孔率が65%未満の場合は、電極中のガスの拡散性と生成水の排出性との低下によって分極が増大したものと考えられる。逆に、電極の空孔率が85%を越える場合は、炭素材料同士の接触抵抗が大きくなるので、固体高分子形燃料電池の分極が増大したものと考えられる。   As described above, the reason is that when the porosity of the electrode is less than 65%, the polarization is increased due to a decrease in the diffusibility of the gas in the electrode and the discharge of the generated water. On the contrary, when the porosity of the electrode exceeds 85%, the contact resistance between the carbon materials increases, which is considered to increase the polarization of the polymer electrolyte fuel cell.

さらに、白金担持量が0.3mg/cm未満の場合は、電極反応に必要な白金量が少ないために、初期からの出力特性が低下したものと考えられる。白金担持量が1.0mg/cmよりも大きい場合は、触媒層が厚くなりすぎることによって、ガスの拡散性あるいは生成水の排出性が低下したものと考えられる。 Furthermore, when the amount of platinum supported is less than 0.3 mg / cm 2 , the amount of platinum necessary for the electrode reaction is small, and thus the output characteristics from the initial stage are considered to have deteriorated. When the amount of platinum supported is larger than 1.0 mg / cm 2 , it is considered that the gas diffusibility or the generated water discharge performance is lowered because the catalyst layer becomes too thick.

[実施例5〜8]
[実施例5]
第1の工程で、塗工用分散液を塗工するシ−トとして、チタン箔に代えて、厚さ5μmのポリエチレンシートを用いたこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例5の燃料電池とした。
[Examples 5 to 8]
[Example 5]
In the first step, the porosity is the same as in Example 1 except that a 5 μm thick polyethylene sheet is used instead of the titanium foil as the sheet for coating the coating dispersion. Was 74% and the platinum loading was 0.80 mg / cm 2. A cation exchange membrane / catalyst electrode assembly was produced, and a polymer electrolyte fuel cell equipped with this assembly was designated as a fuel cell of Example 5.

[実施例6]
第1の工程で、塗工用分散液を塗工するシ−トとして、チタン箔に代えて、厚さ30μmのポリテトラフルオロエチレンシートを用いたこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例6の燃料電池とした。
[Example 6]
In the first step, as a sheet for applying the coating dispersion, instead of titanium foil, a procedure similar to that in Example 1 was used except that a 30 μm thick polytetrafluoroethylene sheet was used. A cation exchange membrane / catalyst electrode assembly having a porosity of 74% and a platinum loading of 0.80 mg / cm 2 was manufactured, and a polymer electrolyte fuel cell equipped with this assembly was used as a fuel cell of Example 6. It was.

[実施例7]
第1の工程で、塗工用分散液を塗工するシ−トとして、チタン箔に代えて、厚さ10μmのアルミニウム箔を用いたこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例7の燃料電池とした。
[Example 7]
In the first step, the porosity is the same as in Example 1 except that a 10 μm thick aluminum foil is used instead of the titanium foil as the sheet for coating the coating dispersion. Was 74% and the platinum loading was 0.80 mg / cm 2. A cation exchange membrane / catalyst electrode assembly was produced, and a polymer electrolyte fuel cell equipped with this assembly was designated as a fuel cell of Example 7.

[実施例8]
第1の工程で、塗工用分散液を塗工するシ−トとして、チタン箔に代えて、厚さ50μmのステンレス板(SUS316)を用いたこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例8の燃料電池とした。
[Example 8]
In the first step, as a sheet for coating the coating dispersion, the same procedure as in Example 1 except that a stainless steel plate (SUS316) having a thickness of 50 μm was used instead of the titanium foil. A cation exchange membrane / catalyst electrode assembly having a porosity of 74% and a platinum loading of 0.80 mg / cm 2 was manufactured, and a polymer electrolyte fuel cell equipped with this assembly was used as a fuel cell of Example 8. It was.

実施例5〜8の固体高分子形燃料電池についての分極特性の測定は、実施例1と同様の条件で行った。測定結果を表2に示す。なお、表2には、比較のため、実施例1の結果も掲載した。   The measurement of the polarization characteristics for the polymer electrolyte fuel cells of Examples 5 to 8 was performed under the same conditions as in Example 1. The measurement results are shown in Table 2. In Table 2, the results of Example 1 are also listed for comparison.

Figure 2005251701
Figure 2005251701


表2から、第1の工程における、塗工用分散液を塗工するシ−トの材質が異なる場合でも、固体高分子形燃料電池の分極特性に大きな変化はないことがわかった。ただし、シ−トの材質にポリエチレンを用いた実施例5の場合は、第4の工程で触媒電極から剥離が困難で、作業性がよくなかった。ポリテトラフルオロエチレンを用いた実施例6の場合は、第3工程の熱転写に時間がかかり、陽イオン交換膜と触媒電極との接合が不十分であった。また、アルミニウムを用いた実施例7やステンレスを用いた実施例8の場合には、実施例1に比べて分極特性はやや劣っていた。したがって、実施例1および実施例5〜8の比較から、塗工用分散液を塗工するシ−トの材質としてはチタンが最適であることがわかった。

From Table 2, it was found that there was no significant change in the polarization characteristics of the polymer electrolyte fuel cell even when the material of the sheet on which the coating dispersion was applied in the first step was different. However, in the case of Example 5 in which polyethylene was used as the material for the sheet, peeling from the catalyst electrode was difficult in the fourth step, and workability was not good. In the case of Example 6 using polytetrafluoroethylene, the thermal transfer in the third step took time, and the joining of the cation exchange membrane and the catalyst electrode was insufficient. Further, in Example 7 using aluminum and Example 8 using stainless steel, the polarization characteristics were slightly inferior to those in Example 1. Therefore, from comparison between Example 1 and Examples 5 to 8, it was found that titanium was the most suitable material for the sheet on which the coating dispersion was applied.

[実施例9〜13]
[実施例9]
第1の工程で、酸に溶解する粉末としてのニッケル粉末に代えて、亜鉛粉末(高純度化学研究所製、平均粒径0.60μm)を用いたこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例9の燃料電池とした。
[Examples 9 to 13]
[Example 9]
In the first step, the same procedure as in Example 1 was used except that zinc powder (manufactured by High Purity Chemical Laboratory, average particle size 0.60 μm) was used instead of nickel powder as powder dissolved in acid. A cation exchange membrane / catalyst electrode assembly having a porosity of 74% and a platinum loading of 0.80 mg / cm 2 was manufactured, and a solid polymer fuel cell equipped with this assembly was used as the fuel of Example 9. A battery was obtained.

[実施例10]
第1の工程で、ニッケル粉末に代えて、鉄粉末(高純度化学研究所製、平均粒径0.60μm)を用いたこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例10の燃料電池とした。
[Example 10]
In the first step, the porosity was 74% in the same procedure as in Example 1 except that iron powder (manufactured by High-Purity Chemical Laboratory, average particle size 0.60 μm) was used instead of nickel powder. Then, a cation exchange membrane / catalyst electrode assembly having a platinum loading of 0.80 mg / cm 2 was manufactured, and a polymer electrolyte fuel cell equipped with this assembly was used as a fuel cell of Example 10.

[実施例11]
第1の工程で、ニッケル粉末に代えて、炭酸カルシウム粉末(ナカライテスク社製、試薬特級、平均粒径0.60μm)を用いたこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例11の燃料電池とした。
[Example 11]
In the first step, the porosity is the same as in Example 1 except that calcium carbonate powder (manufactured by Nacalai Tesque, reagent grade, average particle size 0.60 μm) is used instead of nickel powder. A cation exchange membrane / catalyst electrode assembly having 74% and a platinum loading of 0.80 mg / cm 2 was produced, and a polymer electrolyte fuel cell equipped with this assembly was designated as a fuel cell of Example 11.

[実施例12]
第1の工程で、ニッケル粉末に代えて、コバルト粉末(高純度化学研究所製、平均粒径0.60μm)を用いたこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例12の燃料電池とした。
[Example 12]
In the first step, the porosity was 74% in the same procedure as in Example 1 except that cobalt powder (manufactured by High Purity Chemical Laboratory, average particle size 0.60 μm) was used instead of nickel powder. A cation exchange membrane / catalyst electrode assembly having a platinum loading of 0.80 mg / cm 2 was manufactured, and a polymer electrolyte fuel cell equipped with this assembly was used as a fuel cell of Example 12.

[実施例13]
第1の工程で、ニッケル粉末に代えて、炭酸リチウム粉末(ナカライテスク社製、平均粒径0.60μm)を用いたこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例13の燃料電池とした。
[Example 13]
In the first step, the porosity was 74% in the same procedure as in Example 1 except that lithium carbonate powder (manufactured by Nacalai Tesque, average particle size 0.60 μm) was used instead of nickel powder. A cation exchange membrane / catalyst electrode assembly having a platinum loading of 0.80 mg / cm 2 was manufactured, and a polymer electrolyte fuel cell equipped with this assembly was designated as a fuel cell of Example 13.

実施例9〜13の固体高分子形燃料電池についての分極特性の測定は、実施例1と同様の条件で行った。測定結果を表3に示す。なお、表3には、比較のため、実施例1の結果も掲載した。   The polarization characteristics of the polymer electrolyte fuel cells of Examples 9 to 13 were measured under the same conditions as in Example 1. Table 3 shows the measurement results. In Table 3, the results of Example 1 are also listed for comparison.

Figure 2005251701
Figure 2005251701


表3から、第1の工程における、酸に溶解する粉末の材質が異なる場合でも、固体高分子形燃料電池の分極特性に大きな変化はないことがわかった。ただし、酸に溶解する粉末の材質にコバルトを用いた実施例12や炭酸リチウムを用いた実施例13の場合には、実施例1に比べて分極特性はわずかに劣っていた。したがって、実施例1および実施例9〜13の比較から、酸に溶解する粉末の材質としては、ニッケル、亜鉛、鉄、炭酸カルシウムが最適であることがわかった。

From Table 3, it was found that there was no significant change in the polarization characteristics of the polymer electrolyte fuel cell even when the material of the powder dissolved in the acid in the first step was different. However, in Example 12 using cobalt as the material of the powder dissolved in acid and Example 13 using lithium carbonate, the polarization characteristics were slightly inferior to Example 1. Therefore, from comparison between Example 1 and Examples 9 to 13, it was found that nickel, zinc, iron, and calcium carbonate were most suitable as the material of the powder dissolved in the acid.

[実施例14〜17]
[実施例14]
第4の工程で、第3の工程で得られた陽イオン交換膜/触媒電極接合体を、1.0Mの硫酸水溶液中で30分間煮沸したこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例14の燃料電池とした。
[Examples 14 to 17]
[Example 14]
In the fourth step, the cation exchange membrane / catalyst electrode assembly obtained in the third step was emptied in the same procedure as in Example 1 except that it was boiled in 1.0 M sulfuric acid aqueous solution for 30 minutes. A cation exchange membrane / catalyst electrode assembly having a porosity of 74% and a platinum loading of 0.80 mg / cm 2 was manufactured. A polymer electrolyte fuel cell equipped with this assembly was used as the fuel cell of Example 14. did.

[実施例15]
第4の工程で、第3の工程で得られた陽イオン交換膜/触媒電極接合体を、0.2Mの硫酸水溶液中で3時間煮沸したこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例15の燃料電池とした。
[Example 15]
In the fourth step, the cation exchange membrane / catalyst electrode assembly obtained in the third step was emptied in the same procedure as in Example 1, except that it was boiled in 0.2 M sulfuric acid aqueous solution for 3 hours. A cation exchange membrane / catalyst electrode assembly having a porosity of 74% and a platinum loading of 0.80 mg / cm 2 was produced. A polymer electrolyte fuel cell equipped with this assembly was used as the fuel cell of Example 15. did.

[実施例16]
第4の工程で、第3の工程で得られた陽イオン交換膜/触媒電極接合体を、0.5Mの塩酸水溶液中で1時間煮沸したこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例16の燃料電池とした。
[Example 16]
In the fourth step, the cation exchange membrane / catalyst electrode assembly obtained in the third step was emptied in the same procedure as in Example 1 except that it was boiled in 0.5 M aqueous hydrochloric acid for 1 hour. A cation exchange membrane / catalyst electrode assembly having a porosity of 74% and a platinum loading of 0.80 mg / cm 2 was produced. A polymer electrolyte fuel cell equipped with this assembly was used as the fuel cell of Example 16. did.

[実施例17]
第4の工程で、第3の工程で得られた陽イオン交換膜/触媒電極接合体を、0.5Mの硝酸水溶液中で1時間煮沸したこと以外は実施例1と同様の手順で、空孔率が74%、白金担持量が0.80mg/cmの陽イオン交換膜/触媒電極接合体を製作し、この接合体を備えた固体高分子形燃料電池を実施例17の燃料電池とした。
[Example 17]
In the fourth step, the cation exchange membrane / catalyst electrode assembly obtained in the third step was emptied in the same procedure as in Example 1 except that the cation exchange membrane / catalyst electrode assembly was boiled in a 0.5 M nitric acid aqueous solution for 1 hour. A cation exchange membrane / catalyst electrode assembly having a porosity of 74% and a platinum loading of 0.80 mg / cm 2 was produced. A polymer electrolyte fuel cell equipped with this assembly was used as the fuel cell of Example 17. did.

実施例14〜17の固体高分子形燃料電池についての分極特性の測定は、実施例1と同様の条件で行った。測定結果を表4に示す。なお、表4には、比較のため、実施例1の結果も掲載した。   The polarization characteristics of the polymer electrolyte fuel cells of Examples 14 to 17 were measured under the same conditions as in Example 1. Table 4 shows the measurement results. Table 4 also shows the results of Example 1 for comparison.

Figure 2005251701
Figure 2005251701


表4から、第4の工程における、酸に溶解する粉末を溶解する酸の種類が異なる場合でも、固体高分子形燃料電池の分極特性に大きな変化はないことがわかった。ただし、塩酸を用いた実施例16や硝酸を用いた実施例17の場合には、実施例1に比べて分極特性はわずかに劣っていた。したがって、実施例1および実施例14〜17の比較から、酸の種類としては、硫酸が最適であることがわかった。







From Table 4, it was found that there was no significant change in the polarization characteristics of the polymer electrolyte fuel cell even when the type of acid used to dissolve the powder dissolved in the acid in the fourth step was different. However, in the case of Example 16 using hydrochloric acid and Example 17 using nitric acid, the polarization characteristics were slightly inferior to those of Example 1. Therefore, from the comparison between Example 1 and Examples 14 to 17, it was found that sulfuric acid is optimal as the acid type.






Claims (1)

固体高分子形燃料電池用陽イオン交換膜/触媒電極接合体の製造方法において、前記触媒電極は炭素材料、陽イオン交換樹脂および触媒金属を含み、炭素材料、陽イオン交換樹脂、触媒金属、酸に溶解する粉末および溶媒を含む混合物をシート上に塗工する第1の工程と、前記シート上に塗工した混合物を乾燥して、触媒電極層とシ−トとの積層体を作製する第2の工程と、前記積層体から触媒電極層を陽イオン交換膜表面に熱転写して陽イオン交換膜/触媒電極接合体を得る第3の工程と、前記陽イオン交換膜/触媒電極接合体を酸と接触させる第4の工程とを経ることを特徴とする固体高分子形燃料電池用陽イオン交換膜/触媒電極接合体の製造方法。






























In the method for producing a cation exchange membrane / catalyst electrode assembly for a polymer electrolyte fuel cell, the catalyst electrode includes a carbon material, a cation exchange resin, and a catalyst metal, and the carbon material, the cation exchange resin, the catalyst metal, and the acid A first step of applying a mixture containing a powder and a solvent that dissolves in a sheet onto a sheet, and drying the mixture applied onto the sheet to produce a laminate of a catalyst electrode layer and a sheet. A third step of thermally transferring the catalyst electrode layer from the laminate to the cation exchange membrane surface to obtain a cation exchange membrane / catalyst electrode assembly, and the cation exchange membrane / catalyst electrode assembly. A method for producing a cation exchange membrane / catalyst electrode assembly for a polymer electrolyte fuel cell, comprising a fourth step of contacting with an acid.






























JP2004064505A 2004-03-08 2004-03-08 Method of manufacturing polymer electrolyte fuel cell electrode Pending JP2005251701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004064505A JP2005251701A (en) 2004-03-08 2004-03-08 Method of manufacturing polymer electrolyte fuel cell electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004064505A JP2005251701A (en) 2004-03-08 2004-03-08 Method of manufacturing polymer electrolyte fuel cell electrode

Publications (1)

Publication Number Publication Date
JP2005251701A true JP2005251701A (en) 2005-09-15

Family

ID=35031953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004064505A Pending JP2005251701A (en) 2004-03-08 2004-03-08 Method of manufacturing polymer electrolyte fuel cell electrode

Country Status (1)

Country Link
JP (1) JP2005251701A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084729A (en) * 2006-09-28 2008-04-10 Dainippon Printing Co Ltd Catalyst transfer film for solid polymer fuel cell

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008084729A (en) * 2006-09-28 2008-04-10 Dainippon Printing Co Ltd Catalyst transfer film for solid polymer fuel cell

Similar Documents

Publication Publication Date Title
JP2006054165A (en) Polymer fuel electrolyte cell and manufacturing method of polymer electrolyte fuel cell
JP2006202740A (en) Direct methanol type fuel cell
JP2009059524A (en) Fuel cell, gas diffusion layer for the same, method of manufacturing the same
JP2010505222A (en) Structure for gas diffusion electrode
JP4826057B2 (en) Fuel cell
JP4919005B2 (en) Method for producing electrode for fuel cell
JP2007501496A (en) Hybrid membrane / electrode assembly with reduced interfacial resistance and method for producing the same
JP4693442B2 (en) Gas diffusion electrode, manufacturing method thereof, and electrode-electrolyte membrane laminate
JP2006134752A (en) Solid polymer fuel cell and vehicle
US20050147868A1 (en) Fuel cell
US20050271930A1 (en) Polymer electrolyte fuel cell and manufacturing method thereof
JP2007027064A (en) Catalyst layer for polymer electrolyte fuel cell and polymer electrolyte fuel cell equipped with the same
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP2003142111A (en) Electrode for solid high polymer type fuel cell and its manufacturing method
JP2008016270A (en) Electrode/polymer electrolyte assembly and fuel cell
JP4271127B2 (en) Electrode structure of polymer electrolyte fuel cell
JPH1116586A (en) Manufacture of high polymer electrolyte film-gas diffusion electrode body
JP2009170243A (en) Membrane electrode assembly
JP2005251701A (en) Method of manufacturing polymer electrolyte fuel cell electrode
JP2007103175A (en) Electrode for polymeric fuel cell and polymeric fuel cell using the same
JP2005339962A (en) Polymer membrane electrode jointed body, polymer electrolyte fuel cell and manufacturing method for polymer membrane electrode jointed body
JP2006331845A (en) Catalyst powder for polymer electrolyte fuel cell and its manufacturing method, and electrode for polymer electrolyte fuel cell containing catalyst powder
JP4787474B2 (en) Method for producing laminated film for membrane-electrode assembly
JP2004063167A (en) Fuel cell and fuel cell system
JP2006066309A (en) Method of manufacturing catalyst for solid polymer type fuel cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213