JP2005248812A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2005248812A
JP2005248812A JP2004059744A JP2004059744A JP2005248812A JP 2005248812 A JP2005248812 A JP 2005248812A JP 2004059744 A JP2004059744 A JP 2004059744A JP 2004059744 A JP2004059744 A JP 2004059744A JP 2005248812 A JP2005248812 A JP 2005248812A
Authority
JP
Japan
Prior art keywords
air
fuel ratio
valve timing
ratio correction
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004059744A
Other languages
Japanese (ja)
Inventor
Yoshihiko Akagi
好彦 赤城
Akiyoshi Takita
晃良 滝田
Shogo Ide
省吾 井手
Yoichi Ogawa
洋一 小川
Tomohiko Hasegawa
倫彦 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004059744A priority Critical patent/JP2005248812A/en
Publication of JP2005248812A publication Critical patent/JP2005248812A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-cylinder internal combustion engine materializing abnormality detection and fail safe function of a variable valve timing mechanism of a little performance drop at a time of fail safe at a low cost. <P>SOLUTION: This control device for an internal combustion engine is provided with an air fuel ratio correction amount deviation calculation means 251 calculating difference of air fuel ratio correction amount of two systems defined by detection result of the air fuel ration detection means and a judgment means 270 judging that advance values of two system variable valve timing mechanisms are not equal when difference of air fuel ratio correction amount of the two systems calculated by the air fuel ratio correction amount deviation calculation means 251 is large. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、内燃機関の制御装置に関し、特にバルブタイミング可変機構を有する多気筒内燃機関の制御装置に関する。   The present invention relates to a control device for an internal combustion engine, and more particularly to a control device for a multi-cylinder internal combustion engine having a variable valve timing mechanism.

従来の内燃機関制御装置において、バルブタイミング可変機構の異常を判断する場合、カム角センサを用いたフィードバック制御を前提にしているため、カム角センサを介して検出することになる。   In a conventional internal combustion engine control device, when an abnormality of the variable valve timing mechanism is determined, since feedback control using a cam angle sensor is assumed, detection is performed via the cam angle sensor.

従って、カム角センサとカムの取り付け関係に異常がある場合には、異常を検出できない。また、バルブタイミング可変機構を制御するためのアクチュエータの断線検出においても同様の問題がある。
また、バルブタイミング可変機構のフェールセーフについては、制御を停止したり、吸入空気量を制限するものがある(例えば、特許文献1)。
Therefore, when there is an abnormality in the cam angle sensor and cam mounting relationship, the abnormality cannot be detected. There is a similar problem in detecting disconnection of an actuator for controlling the variable valve timing mechanism.
In addition, regarding the fail safe of the variable valve timing mechanism, there is one that stops control or restricts the intake air amount (for example, Patent Document 1).

特開2003−49689号公報Japanese Patent Laid-Open No. 2003-49589

しかし、従来のものは、フェールセーフ制御により、内燃機関の出力などの性能が低下してしまう問題がある。   However, the conventional system has a problem that the performance such as the output of the internal combustion engine is deteriorated by the fail-safe control.

本発明は、前記点に鑑みてなされたものであって、その目的とするところは、異常検出を空燃比センサを用い、最終的なバルブの動作を検出し、空燃比センサを用いたフィードバック制御に切り替えることにより、低コストでフェールセーフ時の性能低下の少ないバルブタイミング可変機構の異常検出、フェールセーフ機能を実現することのできる多気筒内燃機関の制御装置を提供することにある。   The present invention has been made in view of the above points, and its object is to use an air-fuel ratio sensor for abnormality detection, detect the final valve operation, and perform feedback control using the air-fuel ratio sensor. It is an object of the present invention to provide a control device for a multi-cylinder internal combustion engine that can realize an abnormality detection and fail-safe function of a variable valve timing mechanism that is low in cost and has little performance degradation during fail-safe.

前記目的を達成すべく、本発明の内燃機関の制御装置は、吸入空気量を検出する一つの吸入空気量検出手段を有すると共に、、バルブタイミング可変機構と、排気の空燃比を検出する空燃比検出手段と、空燃比検出手段により検出された空燃比に基づいて空燃比補正量を算出する空燃比補正量算出手段をそれぞれ少なくとも2系統有する内燃機関の制御装置であって、前記空燃比検出手段の検出結果から求まる2系統の空燃比補正量の差を算出する空燃比補正量偏差算出手段と、前記空燃比補正量偏差算出手段により算出される2系統の空燃比補正量の差が大きい時に2系統のバルブタイミング可変機構の進角値が等しくないと判断する判定手段と、を有する。   In order to achieve the above object, the control device for an internal combustion engine of the present invention has one intake air amount detection means for detecting the intake air amount, and also has a variable valve timing mechanism and an air / fuel ratio for detecting the air / fuel ratio of the exhaust gas. A control device for an internal combustion engine having at least two systems each of detection means and air-fuel ratio correction amount calculation means for calculating an air-fuel ratio correction amount based on the air-fuel ratio detected by the air-fuel ratio detection means, the air-fuel ratio detection means An air-fuel ratio correction amount deviation calculating means for calculating the difference between the two systems of air-fuel ratio correction amounts obtained from the detection results of the above, and when the difference between the two systems of air-fuel ratio correction amounts calculated by the air-fuel ratio correction amount deviation calculating means is large Determination means for determining that the advance values of the two valve timing variable mechanisms are not equal.

本発明による内燃機関の制御装置は、好ましくは、前記判定手段は、前記空燃比検出手段の検出結果から求まる2系統の空燃比補正量の差が大きく、かつ2系統の空燃比補正値の平均値が中央値付近にあるとき、2系統のバルブタイミング可変機構のうち一つが目標値と異なると判断し、2系統の空燃比補正量の差が更に大きく、かつ2系統の空燃比補正値の平均値が中央値付近にあるとき、2系統のバルブタイミング可変機構の1系統のバルブタイミング作動位置が異常に進角し、他方が異常に遅角していると判断する。   In the control apparatus for an internal combustion engine according to the present invention, preferably, the determination means has a large difference between the two air-fuel ratio correction amounts obtained from the detection result of the air-fuel ratio detection means, and an average of the two air-fuel ratio correction values. When the value is near the median value, it is determined that one of the two valve timing variable mechanisms is different from the target value, the difference between the two air-fuel ratio correction amounts is larger, and the two air-fuel ratio correction values When the average value is in the vicinity of the median value, it is determined that the valve timing operation position of one system of the two valve timing variable mechanisms is abnormally advanced and the other is abnormally retarded.

本発明による内燃機関の制御装置は、さらに、前記判定手段がバルブタイミング可変機構の異常判定を行った場合には、異常が発生した系統の空燃比補正値が、正常な系統と同じになるように正常側のバルブタイミング可変機構を制御する。   The control apparatus for an internal combustion engine according to the present invention further provides that the air-fuel ratio correction value of the system in which the abnormality has occurred is the same as that of a normal system when the determination means performs abnormality determination of the variable valve timing mechanism. The normal side valve timing variable mechanism is controlled.

本発明による内燃機関の制御装置は、排気管に設置された空燃比センサを用いて、複数の系統のそれぞれの空燃比を検出し、実際の充填効率の変化を検出することにより、直接的なバルブタイミング可変機構の異常を判断する。   The control apparatus for an internal combustion engine according to the present invention directly detects an air-fuel ratio of each of a plurality of systems using an air-fuel ratio sensor installed in an exhaust pipe, and detects a change in actual charging efficiency. Determine abnormality of variable valve timing mechanism.

これは、一つの吸入空気量検出手段を用いて吸入空気量を検出した場合、複数の系統を持つ内燃機関の一部の系統で、バルブタイミング可変機構に異常が発生した場合には吸気量が吸気系の系統によって変わることを利用したものである。   This is because when the intake air amount is detected using a single intake air amount detection means, the intake air amount is reduced when an abnormality occurs in the variable valve timing mechanism in some systems of the internal combustion engine having a plurality of systems. It uses changes that vary depending on the system of the intake system.

また、フェールセーフ手段として、排気空燃比が複数の系統で同じになるようにバルブタイミング可変制御が行われる。これにより、内燃機関の出力などの性能が低下してしまう問題を生じることがない。   Further, as a fail-safe means, variable valve timing control is performed so that the exhaust air-fuel ratio becomes the same in a plurality of systems. Thereby, the problem that performance, such as an output of an internal combustion engine, falls does not arise.

本発明の内燃機関の制御装置の実施形態を図面を参照して詳細に説明する。   An embodiment of a control device for an internal combustion engine of the present invention will be described in detail with reference to the drawings.

図1は、本発明の一実施形態の制御装置が適用される内燃機関の全体構成図である。例えば、自動車等の車両に搭載される内燃機関65は、回転トルクを出力する出力軸、即ち、クランク軸67を備えている。クランク軸67の回転トルクは、図示されていないトランスミッションを介して駆動輪に伝達されるものでは、一般の車両と同様である。   FIG. 1 is an overall configuration diagram of an internal combustion engine to which a control device according to an embodiment of the present invention is applied. For example, the internal combustion engine 65 mounted on a vehicle such as an automobile includes an output shaft that outputs rotational torque, that is, a crankshaft 67. The rotational torque of the crankshaft 67 is the same as that of a general vehicle if it is transmitted to the drive wheels via a transmission (not shown).

ここでは、一つの実施形態として、いわゆるMPI(多気筒燃料噴射)方式のV型6気筒内燃機関(V型エンジン)について説明する。   Here, as one embodiment, a so-called MPI (multi-cylinder fuel injection) type V-type 6-cylinder internal combustion engine (V-type engine) will be described.

内燃機関65に吸入される空気は、エアクリーナ60の出口部に設けられたホットワイヤ式エアフローセンサ2に導かれる。ホットワイヤ式エアフローセンサ2には熱線式空気流量センサが使用され、ホットワイヤ式エアフローセンサ2から吸入空気量に相当する信号が出力される。   The air sucked into the internal combustion engine 65 is guided to the hot wire type air flow sensor 2 provided at the outlet of the air cleaner 60. A hot wire air flow sensor is used as the hot wire air flow sensor 2, and a signal corresponding to the intake air amount is output from the hot wire air flow sensor 2.

次に、吸入空気は、ダクト61、空気流量を制御する絞り弁40を通り、コレクタ62に入る。絞り弁40はECU71によって制御されるスロットル駆動モータ42により動かされる。   Next, the intake air enters the collector 62 through the duct 61 and the throttle valve 40 that controls the air flow rate. The throttle valve 40 is moved by a throttle drive motor 42 controlled by the ECU 71.

コレクタ62に入った空気は、内燃機関65の各気筒と直結する各吸気管68に分配され、シリンダ内に吸入される。V型エンジンの場合は、各バンク毎の個別のバルブタイミング可変機構として、吸気弁69(69R、69L)を備える2系統のバルブタイミング可変機構91R、91Lを持ち、それらは同じ動作をするようにフィードバック制御する。詳細は後述する。   The air that has entered the collector 62 is distributed to each intake pipe 68 that is directly connected to each cylinder of the internal combustion engine 65, and is sucked into the cylinder. In the case of a V-type engine, two valve timing variable mechanisms 91R and 91L including intake valves 69 (69R and 69L) are provided as individual valve timing variable mechanisms for each bank so that they operate in the same manner. Feedback control. Details will be described later.

内燃機関65に取り付けられたクランク角センサ7は、所定のクランク角毎にパルスを出力する。この出力は、コントロールユニット71に入力される。   The crank angle sensor 7 attached to the internal combustion engine 65 outputs a pulse every predetermined crank angle. This output is input to the control unit 71.

燃料は、燃料タンク21から燃料ポンプ20で吸引、加圧され、プレッシャレギュレータ22により一定圧力に調圧され、吸気管に設けられたインジェクタ23から前記吸気管68内に噴射される。   The fuel is sucked and pressurized from the fuel tank 21 by the fuel pump 20, adjusted to a constant pressure by the pressure regulator 22, and injected into the intake pipe 68 from the injector 23 provided in the intake pipe.

スロットルボディには絞り弁40の開度を検出するスロットルセンサ1が取り付けられている。スロットルセンサ1のセンサ信号はコントロールユニット71に入力され、絞り弁開度のフィードバック制御、全閉位置の検出や加速の検出等を行う。   A throttle sensor 1 for detecting the opening degree of the throttle valve 40 is attached to the throttle body. The sensor signal of the throttle sensor 1 is input to the control unit 71, and performs feedback control of the throttle valve opening, detection of the fully closed position, detection of acceleration, and the like.

内燃機関65には、冷却水温を検出するための水温センサ3が取り付けられている。水温センサ3のセンサ信号は、コントロールユニット71に入力され、内燃機関65の暖機状態を検出し、燃料噴射量の増量や点火時期の補正、ラジエータファン75のオン/オフやアイドル時の目標回転数の設定を行う。   A water temperature sensor 3 for detecting the cooling water temperature is attached to the internal combustion engine 65. The sensor signal of the water temperature sensor 3 is input to the control unit 71 to detect the warm-up state of the internal combustion engine 65, increase the fuel injection amount, correct the ignition timing, turn on / off the radiator fan 75, and target rotation during idling. Set the number.

空燃比センサ8R、8Lは、内燃機関65の各バンクの排気管64R、64Lに装着されており、排気ガスの酸素濃度に応じた信号を出力する。空燃比センサ8R、8Lの信号は、コントロールユニット71に入力され、運転状況に応じて求められる目標空燃比になるように、燃料噴射パルス幅を調整する。   The air-fuel ratio sensors 8R and 8L are mounted on the exhaust pipes 64R and 64L of each bank of the internal combustion engine 65, and output signals corresponding to the oxygen concentration of the exhaust gas. The signals of the air-fuel ratio sensors 8R and 8L are input to the control unit 71, and the fuel injection pulse width is adjusted so that the target air-fuel ratio obtained in accordance with the operation state is obtained.

コントロールユニット71は、図2に示すように、CPU100と、電源IC111とから構成されている。ここで、このコントロールユニット71に入力する信号等について、同図を用いて整理すると、エアーフローセンサ2、クランク角センサ7、スロットルセンサ1、Oセンサ8R、8L、水温センサ3、カム角センサ13R、13L、アクセルセンサ14、スタータスイッチ10、イグニションスイッチ72からの信号を入力する。また、コントロールユニット71からの信号は、インジェクタ23、フューエルポンプ20、点火プラグ33の点火スイッチであるパワートランジスタ30、スロットル駆動モータ42、バルブタイミング可変ソレノイド90R、90Lに出力される。 As illustrated in FIG. 2, the control unit 71 includes a CPU 100 and a power supply IC 111. Here, the signals and the like input to the control unit 71 are organized using the same figure. The air flow sensor 2, the crank angle sensor 7, the throttle sensor 1, the O 2 sensors 8R and 8L, the water temperature sensor 3, and the cam angle sensor. Signals from 13R, 13L, accelerator sensor 14, starter switch 10 and ignition switch 72 are input. A signal from the control unit 71 is output to the injector 23, the fuel pump 20, the power transistor 30 that is an ignition switch of the spark plug 33, the throttle drive motor 42, and valve timing variable solenoids 90R and 90L.

次に、CPU100内の処理について、図3を参照して説明する。
まず、エンジン回転速度Nを求め(ステップS301)、吸入空気量QAを算出する(ステップS302)。
Next, processing in the CPU 100 will be described with reference to FIG.
First, the engine speed N is obtained (step S301), and the intake air amount QA is calculated (step S302).

次に、クランク角及びエンジン回転数を演算し、吸入空気量とエンジン回転数から充填効率に相当する基本パルス幅Tpを求める(ステップS303)。   Next, the crank angle and the engine speed are calculated, and a basic pulse width Tp corresponding to the charging efficiency is obtained from the intake air amount and the engine speed (step S303).

次に、排気管に装着されている空燃比センサ8R(8L)の出力結果がリッチなときには、空燃比フィードバック補正量λを小さくし、空燃比センサ8R(8L)の出力結果がリーンなときには、空燃比フィードバック補正量λを大きくするPI制御を行う(ステップS304)。   Next, when the output result of the air-fuel ratio sensor 8R (8L) attached to the exhaust pipe is rich, the air-fuel ratio feedback correction amount λ is decreased, and when the output result of the air-fuel ratio sensor 8R (8L) is lean, PI control for increasing the air-fuel ratio feedback correction amount λ is performed (step S304).

次に、空燃比フィードバック補正量λを基本噴射パルス幅Tpに乗ずることにより、燃料噴射パルス幅Tiを算出する(ステップS305)。   Next, the fuel injection pulse width Ti is calculated by multiplying the basic injection pulse width Tp by the air-fuel ratio feedback correction amount λ (step S305).

そして、エンジン回転速度Nと基本パルス幅Tpより点火時期(進角度)をマップ検索により算出する(ステップS306)。   Then, the ignition timing (advance angle) is calculated by map search from the engine speed N and the basic pulse width Tp (step S306).

次に、図4、図5を参照してバルブタイミング可変機構91(91R、91L)について説明する。図5に示されているように、バルブタイミング可変機構(VTC)91は、油圧駆動の可変位相カップリング式のものであり、カムシャフト131に連結されたロータ132とカムシャフト駆動ギヤ133との間に進角室134と遅角室135とを有し、進角室134に供給された油圧(非圧縮性流体)を介してカムシャフト駆動ギヤ133の回転をカムシャフト131に伝達するものであり、進角室134、遅角室135に供給されている油圧容量により決まるロータ132とカムシャフト駆動ギヤ133との回転位相(相対回転位置)を連続的に可変設定する。   Next, the variable valve timing mechanism 91 (91R, 91L) will be described with reference to FIGS. As shown in FIG. 5, the variable valve timing mechanism (VTC) 91 is a hydraulically driven variable phase coupling type, and includes a rotor 132 connected to the camshaft 131 and a camshaft drive gear 133. There is an advance chamber 134 and a retard chamber 135 between them, and the rotation of the camshaft drive gear 133 is transmitted to the camshaft 131 via the hydraulic pressure (incompressible fluid) supplied to the advance chamber 134. Yes, the rotational phase (relative rotational position) between the rotor 132 and the camshaft drive gear 133 determined by the hydraulic capacity supplied to the advance chamber 134 and the retard chamber 135 is continuously variably set.

バルブタイミング可変機構91(91R、91L)の進角室134、遅角室135に対する油圧の給排は、図4に示されているように、バルブタイミング制御弁90(90R、90L)により個別に行われる。バルブタイミング制御弁90は、電磁コイル121の励磁力とばね122のばね力との平衡関係により動作するスプール弁123を有する。   As shown in FIG. 4, the supply and discharge of hydraulic pressure to and from the advance chamber 134 and the retard chamber 135 of the variable valve timing mechanism 91 (91R, 91L) are individually performed by the valve timing control valves 90 (90R, 90L). Done. The valve timing control valve 90 has a spool valve 123 that operates by an equilibrium relationship between the exciting force of the electromagnetic coil 121 and the spring force of the spring 122.

バルブタイミング制御弁90の電磁コイル121の電流値を減らす(駆動デュティを小さくする)と、プランジャ129およびスプール弁123が図中の右方向へ移動し、油圧供給ポート124と遅角ポート125とが連通し、バルブタイミング可変機構91の遅角室135に油圧が供給される。このとき、進角ポート126とドレーンポート127とが連通し、バルブタイミング可変機構91の進角室134を満たしていた作動油が排出される。   When the current value of the electromagnetic coil 121 of the valve timing control valve 90 is decreased (driving duty is decreased), the plunger 129 and the spool valve 123 move in the right direction in the drawing, and the hydraulic pressure supply port 124 and the retard port 125 are moved. The hydraulic pressure is supplied to the retard chamber 135 of the variable valve timing mechanism 91 in communication. At this time, the advance port 126 and the drain port 127 communicate with each other, and the hydraulic oil that has filled the advance chamber 134 of the variable valve timing mechanism 91 is discharged.

よって、バルブタイミング可変機構91のロータ132がカムシャフト駆動ギヤ133に対して遅角方向に変位し、ロータ132に固定されているカムシャフト131が遅角方向へ位相を変化する。   Therefore, the rotor 132 of the variable valve timing mechanism 91 is displaced in the retarding direction with respect to the camshaft drive gear 133, and the camshaft 131 fixed to the rotor 132 changes its phase in the retarding direction.

これに対し、電磁コイル121の電流値を増やす(駆動Dutyを大きくする)と、プランジャ129およびスプール弁123が図中の左方向へ移動し、油圧供給ポート124と進角ポート126が連通し、バルブタイミング可変機構91の進角室134に油圧が供給される。このとき、遅角ポート125とドレーンポート128が連通し、バルブタイミング可変機構91の遅角室135を満たしていた作動油が排出される。   On the other hand, when the current value of the electromagnetic coil 121 is increased (the drive duty is increased), the plunger 129 and the spool valve 123 move to the left in the figure, and the hydraulic pressure supply port 124 and the advance port 126 communicate with each other. Hydraulic pressure is supplied to the advance chamber 134 of the variable valve timing mechanism 91. At this time, the retard port 125 and the drain port 128 communicate with each other, and the hydraulic oil that has filled the retard chamber 135 of the variable valve timing mechanism 91 is discharged.

よって、バルブタイミング可変機構91のロータ132がカムシャフト駆動ギヤ133に対して進角方向に変位し、ロータ132に固定されている吸気カムシャフト131が進角方向へ位相を変化する。   Therefore, the rotor 132 of the variable valve timing mechanism 91 is displaced in the advance direction with respect to the camshaft drive gear 133, and the intake camshaft 131 fixed to the rotor 132 changes the phase in the advance direction.

また、バルブタイミング可変機構91が遅角方向に動作するスプール弁位置と、バルブタイミング可変機構91が進角方向に動作するスプール弁位置との中間は、中立点となり、バルブタイミング可変機構91の位相は固定となる。   An intermediate point between the spool valve position where the valve timing variable mechanism 91 operates in the retarding direction and the spool valve position where the valve timing variable mechanism 91 operates in the advance direction is a neutral point, and the phase of the valve timing variable mechanism 91 is Is fixed.

以上の動作内容をグラフにしたのが図6であり、コイル電流が小さいと遅角方向へ、コイル電流が大きいと進角方向へ、コイル電流が中程度では位相が固定となることがわかる。   FIG. 6 is a graph showing the above operation contents. It can be seen that the phase is fixed when the coil current is small, the phase is fixed when the coil current is medium, and the phase is fixed when the coil current is medium.

図7は、中〜高負荷運転時におけるバルブタイミング可変機構91の動作量と充填効率の関係を表した図である。中〜高負荷運転時には吸気カムシャフト131が進角方向に動くことにより充填効率が高くなることがわかる。このことは、V型エンジンなど複数の吸気カムシャフトがあるエンジンでは、バルブタイミング可変機構の故障により、V型エンジンのバンク間に充填効率の差が発生し、排気のA/Fがバンク間で大きく異なると云う現象が発生する。この結果、充填効率が高い方のバンクはA/Fがリーンになり、充填効率が低い側のバンクはA/Fがリッチになる。また、前記V型の外、水平対抗等複数のバルブタイミング可変機構が複数の系統を有するエンジンでも同等の現象が発生する。   FIG. 7 is a diagram showing the relationship between the operation amount of the variable valve timing mechanism 91 and the charging efficiency during medium to high load operation. It can be seen that the charging efficiency is increased by the intake camshaft 131 moving in the advance direction during medium to high load operation. This is because, in an engine having a plurality of intake camshafts such as a V-type engine, a difference in charging efficiency occurs between banks of the V-type engine due to a failure of the variable valve timing mechanism, and the exhaust A / F varies between banks. A phenomenon that is greatly different occurs. As a result, the bank with the higher filling efficiency has a lean A / F, and the bank with the lower filling efficiency has a rich A / F. In addition, the same phenomenon occurs even in an engine having a plurality of valve timing variable mechanisms such as a horizontal countermeasure in addition to the V type.

図8は、低負荷運転時におけるバルブタイミング可変機構91の動作量と充填効率の関係を表した図である。低負荷運転時には吸気カムシャフト131が進角方向に動いても充填効率が変わらないことが解る。これは、スロットルバルブの開口部が絞り状態となるので、そこでソニック状態となり、バルブタイミング可変機構による充填効率の変化が発生しにくいことを示している。このことは、V型エンジンなど複数の吸気カムシャフトがあるエンジンでは、バルブタイミング可変機構が片バンクで故障し、エンジン負荷が低い場合、一定の空気量で充填効率のバンク間の差が発生するため、一方の片バンクがリッチ、他方の片バンクがリーンとなる。従って、両バンクの空燃比補正値の平均は補正量の中央値付近となる。   FIG. 8 is a diagram showing the relationship between the operation amount of the variable valve timing mechanism 91 and the charging efficiency during low load operation. It can be seen that during low load operation, the charging efficiency does not change even if the intake camshaft 131 moves in the advance direction. This indicates that since the opening of the throttle valve is in a throttle state, the throttle valve is in a sonic state, and a change in charging efficiency due to the variable valve timing mechanism hardly occurs. This is because, in an engine having a plurality of intake camshafts such as a V-type engine, when the variable valve timing mechanism fails in one bank and the engine load is low, a difference in charging efficiency between banks occurs at a constant air amount. For this reason, one bank is rich and the other bank is lean. Therefore, the average of the air-fuel ratio correction values of both banks is near the median value of the correction amount.

図9は、V型エンジンにおける左右バンク間吸気カムシャフトの位相差と、左右バンク間のλ補正値の差との関係を表した図である。左右バンク間の吸気カムシャフト131の位相差が増えると、λ補正値のバンク間の差も増えることが解る。このことは、左右のバンク間のA/F間の差が大きい時には、左右の吸気カムシャフトの位相差が大きい可能性が高いことが解る。更に、本発明の前提となるエンジンの制御装置は、吸入空気量を計測するエアフローセンサを一つ持ち、その計測結果を基に燃料噴射量を算出する装置である。バルブタイミング可変機構の故障によってV型エンジンの左右のバンク間の充填効率に差が生じることにより、左右のバンク間のA/Fの差が大きくなり、排気A/Fセンサの故障など、左右のバンク間のA/Fの差が大きくなる他の要因を排除することにより、バルブタイミング可変機構の故障を診断することが可能となる。   FIG. 9 is a diagram showing the relationship between the phase difference of the intake camshaft between the left and right banks and the difference in λ correction value between the left and right banks in the V-type engine. It can be seen that as the phase difference of the intake camshaft 131 between the left and right banks increases, the difference between the banks of λ correction values also increases. This indicates that there is a high possibility that the phase difference between the left and right intake camshafts is large when the difference between the A / F between the left and right banks is large. Furthermore, the engine control device that is the premise of the present invention is a device that has one airflow sensor that measures the intake air amount and calculates the fuel injection amount based on the measurement result. The difference in the charging efficiency between the left and right banks of the V-type engine due to the failure of the variable valve timing mechanism increases the A / F difference between the left and right banks, and the exhaust A / F sensor failure By eliminating other factors that increase the A / F difference between the banks, it is possible to diagnose a failure of the variable valve timing mechanism.

次に、図10を参照して、コントロールユニット71によるバルブタイミング可変機構91の制御の詳細を説明する。   Next, details of control of the variable valve timing mechanism 91 by the control unit 71 will be described with reference to FIG.

吸気弁69(69R、69L)の開閉位置は、直接的には、カム角センサ13によって検出される。位置検出手段232は、カム角センサ13の検出信号とクランク角センサ7の検出信号とにより、クランク角センサ7の検出信号に対するカム角センサ13の検出信号(可変バルブタイミング信号)の位置を算出する。   The opening / closing position of the intake valve 69 (69R, 69L) is directly detected by the cam angle sensor 13. The position detection means 232 calculates the position of the detection signal (variable valve timing signal) of the cam angle sensor 13 with respect to the detection signal of the crank angle sensor 7 based on the detection signal of the cam angle sensor 13 and the detection signal of the crank angle sensor 7. .

そして、この算出値は可変バルブタイミング信号位置算出手段233に入力され、可変バルブタイミング信号位置算出手段233によって可変バルブタイミング信号の信号位置の認識がなされてカム角センサ13の信号位置を補正し、該補正値に基づいて、実進角値算出手段234がバルブタイミング可変機構91の実進角値RLVVTを算出する。   Then, this calculated value is input to the variable valve timing signal position calculating means 233, the signal position of the variable valve timing signal is recognized by the variable valve timing signal position calculating means 233, and the signal position of the cam angle sensor 13 is corrected. Based on the correction value, the actual advance value calculation means 234 calculates the actual advance value RLVVT of the valve timing variable mechanism 91.

目標進角値算出手段236は、エンジンの運転状態等に応じてバルブタイミング可変機構91の目標進角値TAGVVTを算出する。目標進角値TAGVVTと実進角値RLVVTは目標偏差算出手段237に入力され、目標偏差算出手段237は目標偏差DEFCAを算出する。   The target advance value calculation means 236 calculates the target advance value TAGVVT of the variable valve timing mechanism 91 according to the operating state of the engine or the like. The target advance value TAGVVT and the actual advance value RLVVT are input to the target deviation calculation means 237, and the target deviation calculation means 237 calculates the target deviation DEFCA.

速度補正算出手段239は、目標偏差DEFCAの推移とエンジン回転数及びエンジン水温とから、速度補正分の駆動デュティを算出し、速度補正値VVTPを求める。   The speed correction calculation means 239 calculates a drive duty for speed correction from the transition of the target deviation DEFCA, the engine speed and the engine water temperature, and obtains a speed correction value VVTP.

実進角値RLVVTはカム移動速度算出手段238にも入力され、カム移動速度算出手段238は、実進角値RLVVTの変化からカム移動速度SPOCVを算出する。   The actual advance value RLVVT is also input to the cam movement speed calculation means 238, and the cam movement speed calculation means 238 calculates the cam movement speed SPOCV from the change in the actual advance value RLVVT.

動作開始デュティ算出手段241aは、目標偏差DEFCAと、速度補正値VVTPと、カム移動速度SPOCVとから、動作開始デュティを算出する。また、動作開始デュティ算出手段241aは、動作開始デュティから進角側への動作開始デュティKLDTYAと、遅角側への動作開始デュティKLDTYRを算出し、バルブタイミング可変機構91の動作方向に応じて出力を切り替えた結果を動作開始デュティ算出値KLDTYとして出力する。   The operation start duty calculating means 241a calculates the operation start duty from the target deviation DEFCA, the speed correction value VVTP, and the cam moving speed SPOCV. Further, the operation start duty calculating means 241a calculates the operation start duty KLDTYA from the operation start duty to the advance side and the operation start duty KLDTYR from the retard side, and outputs it according to the operation direction of the valve timing variable mechanism 91. The result of switching is output as the operation start duty calculated value KLDTY.

駆動出力算出手段242は、動作開始デュティ算出値KLDTYと、停止デュティ算出手段241bより求まる停止デュティ算出値VVTIと、速度補正VVTPとに、基本デュティ算出手段230によりエンジン回転数と水温とから求める基本デュティを加えることによって、バルブタイミング制御弁90の出力駆動デュティVVTDTYVを算出する。   The drive output calculation means 242 is based on the operation start duty calculation value KLDTY, the stop duty calculation value VVTI obtained from the stop duty calculation means 241b, and the speed correction VVTP, and the basic duty calculated by the basic duty calculation means 230 from the engine speed and the water temperature. By adding the duty, the output drive duty VVTDTYV of the valve timing control valve 90 is calculated.

このように、バルブタイミング制御弁90の動作開始デュティ及び停止デュティが算出され、目標進角値TAGVVTの動きに対して、速度補正値VVTPが加わり、実進角値RLVVTは、目標進角値TAGVVTに追従して変化する。   Thus, the operation start duty and stop duty of the valve timing control valve 90 are calculated, the speed correction value VVTP is added to the movement of the target advance value TAGVVT, and the actual advance value RLVVT is the target advance value TAGVVT. It changes following.

つぎに、V型エンジンを例に、空燃比フィードバック制御のパラメータをもってバルブタイミング可変機構91をフィードバック制御する実施形態を、図11を参照して説明する。   Next, an embodiment in which the valve timing variable mechanism 91 is feedback-controlled with parameters of air-fuel ratio feedback control will be described with reference to FIG. 11, taking a V-type engine as an example.

この実施形態では、バルブタイミング可変機構91のフィードバック制御を、右バンクλ補正量算出手段250Rで求めたλ補正係数Rαと、左バンクλ補正量算出手段250Lで求めたλ補正係数Lαとの差分を、λ補正量偏差算出手段251で求め、偏差に応じてDEFCAを求めてバルブタイミング可変機構をフィードバック制御する。   In this embodiment, the feedback control of the variable valve timing mechanism 91 is the difference between the λ correction coefficient Rα obtained by the right bank λ correction amount calculating means 250R and the λ correction coefficient Lα obtained by the left bank λ correction amount calculating means 250L. Is calculated by the λ correction amount deviation calculating means 251, and DEFCA is obtained according to the deviation to feedback control the variable valve timing mechanism.

図12は図10に示されている通常のバルブタイミング可変機構91の制御と、図11に示されているλ補正量によりバルブタイミング可変機構91をフィードバック制御する制御とを切り替える実施形態を示している。   FIG. 12 shows an embodiment in which the control of the normal valve timing variable mechanism 91 shown in FIG. 10 and the control for feedback control of the valve timing variable mechanism 91 by the λ correction amount shown in FIG. 11 are switched. Yes.

これにより、バルブタイミング可変機構91の異常判定を行った場合には、異常が発生した系統の空燃比補正値が、正常な系統と同じになるように正常側のバルブタイミング可変機構91が制御される。   Thereby, when the abnormality determination of the valve timing variable mechanism 91 is performed, the valve timing variable mechanism 91 on the normal side is controlled so that the air-fuel ratio correction value of the system in which the abnormality has occurred is the same as that of the normal system. The

この実施形態では、バルブタイミング可変機構91が正常である場合には、目標進角値算出手段236が生成する目標値TAGVVTにバルブタイミングが合うようにフィードバック制御を行い、フェールセーフ選択処理手段260が、フェールセーフを選択した場合には、図11に示されているλ補正係数によるフィードバック制御を選択する。   In this embodiment, when the valve timing variable mechanism 91 is normal, feedback control is performed so that the valve timing matches the target value TAGVVT generated by the target advance value calculation means 236, and the fail safe selection processing means 260 When fail-safe is selected, feedback control by the λ correction coefficient shown in FIG. 11 is selected.

図13は、V型エンジンのλ補正量の左右バンク間の差の大きさに応じてフェールセーフ処理を切り替える実施形態を示したものである。この実施形態では、λ補正量偏差算出手段251から求まる空燃比補正量差値と、λ補正量偏差異常判定しきい値算出手段249により算出された異常判定しきい値との比較をλ補正量偏差異常判定手段270で行う。そしてλ補正量の左右バンクの平均をλ補正量左右バンク平均値算出手段271で求め、左右バンク平均値分類処理手段272で故障の程度を算出する機能を持つ。   FIG. 13 shows an embodiment in which fail-safe processing is switched according to the magnitude of the difference between the left and right banks of the λ correction amount of the V-type engine. In this embodiment, the comparison between the air-fuel ratio correction amount difference value obtained from the λ correction amount deviation calculating unit 251 and the abnormality determination threshold value calculated by the λ correction amount deviation abnormality determining threshold value calculating unit 249 is performed. This is performed by the deviation abnormality determination means 270. The left and right banks average of the λ correction amount is obtained by the λ correction amount left and right bank average value calculating means 271 and the right and left bank average value classification processing means 272 has a function of calculating the degree of failure.

この場合、左右バンクの空燃比補正量の差が大きく、かつ左右バンクの空燃比補正値の平均値が中央値付近にあるとき、左右バンクのバルブタイミング作動位置の進角値が等しくないと判断する。つまり、左右バンクのバルブタイミング可変機構91のうち一つが目標値と異なると判断する。そして、左右バンクの空燃比補正量の差が更に大きく、かつ、左右バンクの空燃比補正値の平均値が中央値付近にあるとき、左右バンクのバルブタイミング可変機構91の1系統のバルブタイミング作動位置が異常に進角し、他方が異常に遅角していると判断する。   In this case, when the difference in the air-fuel ratio correction amount between the left and right banks is large and the average value of the air-fuel ratio correction values in the left and right banks is close to the median value, the advance values of the valve timing operation positions in the left and right banks are not equal. To do. That is, it is determined that one of the valve timing variable mechanisms 91 in the left and right banks is different from the target value. When the difference in the air-fuel ratio correction amount between the left and right banks is further large and the average value of the air-fuel ratio correction values in the left and right banks is near the median value, one valve timing operation of the valve timing variable mechanism 91 in the left and right banks is performed. It is determined that the position is advanced abnormally and the other is abnormally retarded.

本発明の内燃機関の制御装置の一実施形態が適用された内燃機関の全体のシステム構成図。1 is an overall system configuration diagram of an internal combustion engine to which an embodiment of a control device for an internal combustion engine of the present invention is applied. 図1の内燃機関の制御装置(コントロールユニット)の内部構成図。The internal block diagram of the control apparatus (control unit) of the internal combustion engine of FIG. 図1の内燃機関の制御装置の制御フローチャート。2 is a control flowchart of the control device for the internal combustion engine of FIG. 1. 図1の内燃機関のバルブタイミング可変機構のバルブタイミング制御弁の断面図。Sectional drawing of the valve timing control valve of the valve timing variable mechanism of the internal combustion engine of FIG. 図1の内燃機関のバルブタイミング可変機構の部分(可変位相部分)の構造図。FIG. 2 is a structural diagram of a portion (variable phase portion) of a valve timing variable mechanism of the internal combustion engine of FIG. 1. 制御パラメータとバルブタイミング動作との関係を示すグラフ。The graph which shows the relationship between a control parameter and valve timing operation. 中〜高負荷運転時の吸気カムシャフトの進角量と充填効率の関係を示すグラフ。The graph which shows the relationship between the amount of advancement of an intake camshaft and filling efficiency at the time of medium to high load operation. 低負荷分運転時の吸気カムシャフトの進角量と充填効率の関係を示すグラフ。The graph which shows the relationship between the amount of advance of an intake camshaft at the time of low load operation, and filling efficiency. 左右バンク間のカムシャフトの位相差と左右バンク間の空燃比補正値の関係を示すグラフ。The graph which shows the relationship between the phase difference of the cam shaft between right-and-left banks, and the air-fuel ratio correction value between right-and-left banks. 図1の内燃機関の制御装置の制御ブロック図。The control block diagram of the control apparatus of the internal combustion engine of FIG. 本発明の他の実施形態の内燃機関の制御装置の空燃比フィードバック制御のパラメータをもとにバルブタイミング可変機構をフィードバック制御ブロック図。The feedback control block diagram of a valve timing variable mechanism based on the parameter of the air fuel ratio feedback control of the control apparatus of the internal combustion engine of other embodiment of this invention. 本発明の更に他の実施形態の内燃機関の制御装置の通常のバルブタイミング可変機構の制御と、λ補正量によりバルブタイミング可変機構をフィードバック制御する制御とを切り替える制御ブロック図。The control block diagram which switches the control of the normal valve timing variable mechanism of the control apparatus of the internal combustion engine of further another embodiment of this invention, and the control which feedback-controls a valve timing variable mechanism with (lambda) correction amount. 本発明の更に他の実施形態の内燃機関の制御装置のV型エンジンのλ補正量の左右バンク間の差の大きさに応じてフェールセーフ処理を切り替える制御ブロック図。The control block diagram which switches a fail safe process according to the magnitude | size of the difference between the right-and-left banks of (lambda) correction amount of the V type engine of the control apparatus of the internal combustion engine of other embodiment of this invention.

符号の説明Explanation of symbols

1 スロットルセンサ
2 エアフローセンサ
3 水温センサ
7 クランク角センサ
8R、8L Oセンサ
13R、13L カム角センサ
23 インジェクタ
40 スロットルバルブ
65 内燃機関
71 コントロールユニット(ECU)
90(90R、90L) バルブタイミング制御弁
91(91R、91L) バルブタイミング可変機構
100 CPU
236 目標進角値算出手段
237 目標偏差算出手段
242 駆動出力算出手段
250R 右バンクλ補正量算出手段
250L 左バンクλ補正量算出手段
251 λ補正量偏差算出手段
260 フェールセーフ選択処理手段
270 λ補正量偏差異常判定手段
271 λ補正量左右バンク平均値算出手段
DESCRIPTION OF SYMBOLS 1 Throttle sensor 2 Air flow sensor 3 Water temperature sensor 7 Crank angle sensor 8R, 8L O 2 sensor 13R, 13L Cam angle sensor 23 Injector 40 Throttle valve 65 Internal combustion engine 71 Control unit (ECU)
90 (90R, 90L) Valve timing control valve 91 (91R, 91L) Valve timing variable mechanism 100 CPU
236 Target advance value calculation means 237 Target deviation calculation means 242 Drive output calculation means 250R Right bank λ correction amount calculation means 250L Left bank λ correction amount calculation means 251 λ correction amount deviation calculation means 260 Fail safe selection processing means 270 λ correction amount Deviation abnormality determining means 271 λ correction amount left and right bank average value calculating means

Claims (3)

吸入空気量を検出する一つの吸入空気量検出手段を有すると共に、バルブタイミング可変機構と、排気の空燃比を検出する空燃比検出手段と、空燃比検出手段により検出された空燃比に基づいて空燃比補正量を算出する空燃比補正量算出手段と、をそれぞれ少なくとも2系統有する内燃機関の制御装置であって、
該制御装置は、前記空燃比検出手段の検出結果から求まる2系統の空燃比補正量の差を算出する空燃比補正量偏差算出手段と、前記空燃比補正量偏差算出手段により算出される2系統の空燃比補正量の差が大きい時に2系統のバルブタイミング可変機構の進角値が等しくないと判断する判定手段と、を有することを特徴とする内燃機関の制御装置。
In addition to having one intake air amount detection means for detecting the intake air amount, the valve timing variable mechanism, the air / fuel ratio detection means for detecting the air / fuel ratio of the exhaust, and the air / fuel ratio based on the air / fuel ratio detected by the air / fuel ratio detection means. An internal combustion engine control device having at least two systems each of air-fuel ratio correction amount calculation means for calculating an air-fuel ratio correction amount,
The control device includes an air-fuel ratio correction amount deviation calculating means for calculating a difference between the two systems of air-fuel ratio correction amounts obtained from the detection result of the air-fuel ratio detecting means, and two systems calculated by the air-fuel ratio correction amount deviation calculating means. And a determining means for determining that the advance angle values of the two valve timing variable mechanisms are not equal when the difference between the air-fuel ratio correction amounts is large.
前記判定手段は、前記空燃比検出手段の検出結果から求まる2系統の空燃比補正量の差が大きく、かつ2系統の空燃比補正値の平均値が中央値付近にあるとき、2系統のバルブタイミング可変機構のうち一つが目標値と異なると判断し、2系統の空燃比補正量の差が更に大きく、かつ2系統の空燃比補正値の平均値が中央値付近にあるとき、2系統のバルブタイミング可変機構の1系統のバルブタイミング作動位置が異常に進角し、他方が異常に遅角していると判断することを特徴とする請求項1に記載の内燃機関の制御装置。   When the difference between the two air-fuel ratio correction amounts obtained from the detection result of the air-fuel ratio detecting means is large and the average value of the two air-fuel ratio correction values is in the vicinity of the median value, When one of the timing variable mechanisms is determined to be different from the target value, the difference between the two air-fuel ratio correction amounts is further large, and the average value of the two air-fuel ratio correction values is near the median value. 2. The control apparatus for an internal combustion engine according to claim 1, wherein it is determined that the valve timing operation position of one system of the variable valve timing mechanism is abnormally advanced and the other is abnormally retarded. 前記判定手段がバルブタイミング可変機構の異常判定を行った場合には、異常が発生した系統の空燃比補正値が、正常な系統と同じになるように正常側のバルブタイミング可変機構を制御することを特徴とする請求項1又は2に記載の内燃機関の制御装置。   When the determination means performs abnormality determination of the variable valve timing mechanism, the normal valve timing variable mechanism is controlled so that the air-fuel ratio correction value of the system in which the abnormality has occurred is the same as that of the normal system. The control device for an internal combustion engine according to claim 1, wherein the control device is an internal combustion engine.
JP2004059744A 2004-03-03 2004-03-03 Control device for internal combustion engine Pending JP2005248812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004059744A JP2005248812A (en) 2004-03-03 2004-03-03 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004059744A JP2005248812A (en) 2004-03-03 2004-03-03 Control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2005248812A true JP2005248812A (en) 2005-09-15

Family

ID=35029528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004059744A Pending JP2005248812A (en) 2004-03-03 2004-03-03 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2005248812A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110224861A1 (en) * 2010-03-12 2011-09-15 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus and abnormality diagnosis method for internal combustion engine
CN115217569A (en) * 2021-08-24 2022-10-21 广州汽车集团股份有限公司 Phase adjusting method, device and equipment of engine camshaft and engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110224861A1 (en) * 2010-03-12 2011-09-15 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus and abnormality diagnosis method for internal combustion engine
US8718865B2 (en) * 2010-03-12 2014-05-06 Toyota Jidosha Kabushiki Kaisha Abnormality diagnosis apparatus and abnormality diagnosis method for internal combustion engine
CN115217569A (en) * 2021-08-24 2022-10-21 广州汽车集团股份有限公司 Phase adjusting method, device and equipment of engine camshaft and engine
CN115217569B (en) * 2021-08-24 2023-11-21 广州汽车集团股份有限公司 Phase adjustment method, device and equipment for engine camshaft and engine

Similar Documents

Publication Publication Date Title
US8838368B2 (en) Device and method for controlling timing at which ignition is stopped when internal combustion engine becomes stopped
EP2888464B1 (en) Control device and control method for internal combustion engine
US20080135002A1 (en) Controller for internal combustion engine and method for variable valve timing control for the same
JP2004316544A (en) Fuel cut control device for compression ignition type internal combustion engine
EP0866219B1 (en) Fuel cut control apparatus for internal combustion engine
US7036358B2 (en) Diagnostic apparatus for valve timing control system
JP2014020265A (en) Control device for internal combustion engine
JP4221001B2 (en) Control device for internal combustion engine
JP5900701B2 (en) Control device and control method for internal combustion engine
JP2005248812A (en) Control device for internal combustion engine
JP3975642B2 (en) Engine output control device
JP2015078628A (en) Control device of internal combustion engine
JP4542000B2 (en) Control device and control method for variable valve of internal combustion engine
JP2016011609A (en) Internal combustion engine control unit
JP7034561B2 (en) Internal combustion engine
JP6371040B2 (en) Control device and control method for internal combustion engine
JP4160745B2 (en) Control method for internal combustion engine
JPH1113493A (en) Intake-air controller for engine
JP5151875B2 (en) Control method and control device for spark ignition engine
JP5658205B2 (en) Start control device for internal combustion engine
JP4760793B2 (en) Control device for internal combustion engine
JP2007170198A (en) Torque control device of internal combustion engine
JPH0612227Y2 (en) Valve lift characteristic switching control device for internal combustion engine
JP2023082331A (en) Controller of internal combustion engine
JP4661792B2 (en) Exhaust noise suppression device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090630