JP2005248256A - SURFACE HARDENING TREATMENT METHOD FOR beta TYPE TITANIUM, beta TYPE TITANIUM BASED MEMBER AND SURFACE HARDENING TREATMENT DEVICE FOR beta TYPE TITANIUM - Google Patents

SURFACE HARDENING TREATMENT METHOD FOR beta TYPE TITANIUM, beta TYPE TITANIUM BASED MEMBER AND SURFACE HARDENING TREATMENT DEVICE FOR beta TYPE TITANIUM Download PDF

Info

Publication number
JP2005248256A
JP2005248256A JP2004060523A JP2004060523A JP2005248256A JP 2005248256 A JP2005248256 A JP 2005248256A JP 2004060523 A JP2004060523 A JP 2004060523A JP 2004060523 A JP2004060523 A JP 2004060523A JP 2005248256 A JP2005248256 A JP 2005248256A
Authority
JP
Japan
Prior art keywords
type titanium
beta
surface hardening
treatment
hardening treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004060523A
Other languages
Japanese (ja)
Inventor
Toru Iwai
亨 岩井
Kenji Tsubouchi
憲治 坪内
Sachikazu Kashimoto
祥和 樫本
Kentaro Hayashi
健太郎 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimano Inc
Original Assignee
Shimano Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimano Inc filed Critical Shimano Inc
Priority to JP2004060523A priority Critical patent/JP2005248256A/en
Priority to TW093140826A priority patent/TW200536960A/en
Priority to US10/906,696 priority patent/US20050194075A1/en
Priority to EP05004743A priority patent/EP1571233A1/en
Priority to CN200510051900XA priority patent/CN1664160A/en
Publication of JP2005248256A publication Critical patent/JP2005248256A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/10Oxidising

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface hardening treatment method for a β type titanium based metal, in which the thickness of an oxidized layer formed through oxygen pack cementation is suppressed to the minimum, and further, a hardened layer can be formed from the surface to 100 μm. <P>SOLUTION: Regarding the surface hardening treatment device 10 for βtype titanium, a β type titanium based member 11 is subjected to heating treatment in a gaseous mixture of gaseous argon and oxygen, wherein heating treatment is performed in an oxygen concentration of 0.05 to 20 vol% at 700 to 1,000°C for 10 to 30 min, and thereafter, aging treatment is performed at 400 to 550°C for 6 to 12 hr. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、チタン、特にベータ型チタンの表面に硬化層を形成する表面硬化処理方法および表面硬化処理装置、チタン系部材に関する。   The present invention relates to a surface hardening processing method, a surface hardening processing apparatus, and a titanium-based member for forming a hardened layer on the surface of titanium, particularly beta-type titanium.

近年、様々な分野において、軽量で硬度が高いチタン製、あるいはチタン合金製の製品が用いられてきている。このチタンやチタン合金は、活性金属であって耐摩耗性が低く、表面処理が非常に困難であるという欠点があった。
このようなチタンやチタン合金の表面硬度を向上させる方法としては、表面にめっき処理して硬化層を形成する方法や、窒化、浸炭処理等により製品表面そのものを硬化させる処理方法が採用されている。
In recent years, products made of titanium or titanium alloy that are lightweight and have high hardness have been used in various fields. Titanium and titanium alloys are active metals, have low wear resistance, and have a drawback that surface treatment is very difficult.
As a method for improving the surface hardness of such titanium or titanium alloy, a method of plating the surface to form a hardened layer, or a method of hardening the product surface itself by nitriding or carburizing treatment is adopted. .

しかし、めっき処理では、形成層とチタン表面との密着性が低いこと、チタンの概観を損ねる等の問題がある。一方、窒化、浸炭処理による表面硬化処理では、結晶粒の粗大化、処理時間が長い等の問題がある。
チタン製品の耐摩耗性向上を目的とする他の表面硬化処理方法として、酸素拡散を利用した表面硬化処理方法が提案されている(特許文献1〜3参照)。
However, the plating treatment has problems such as low adhesion between the formation layer and the titanium surface and damage to the appearance of titanium. On the other hand, the surface hardening treatment by nitriding or carburizing treatment has problems such as coarsening of crystal grains and a long treatment time.
As another surface hardening method for the purpose of improving the wear resistance of titanium products, a surface hardening method using oxygen diffusion has been proposed (see Patent Documents 1 to 3).

例えば、特許文献1には、酸素吸収性の高い粉体中にチタン系部材を埋没させて処理を行う表面硬化処理方法が開示されている。この表面硬化処理方法では、チタン系材料を粉体中に埋没させた状態で加熱処理を行うため、チタン表面が酸素と接触するのを物理的に阻害することでチタン系材料周辺の雰囲気中における酸素濃度を低く抑えることができる。この結果、酸化層の形成を抑えつつ、チタン系部材の表面に酸素原子を浸透拡散させて、Ti−O固溶体からなる酸素拡散層を形成することができる。
特開2003−73796号公報(平成15年3月12日公開) 特開2002−97914号公報(平成14年4月5日公開) 特開2001−81544号公報(平成13年3月27日公開)
For example, Patent Document 1 discloses a surface hardening treatment method in which a titanium-based member is buried in a powder having a high oxygen-absorbing property. In this surface hardening treatment method, the heat treatment is performed in a state where the titanium-based material is buried in the powder, so that the titanium surface is physically inhibited from coming into contact with oxygen, so that the atmosphere in the atmosphere around the titanium-based material is The oxygen concentration can be kept low. As a result, it is possible to form an oxygen diffusion layer made of a Ti—O solid solution by allowing oxygen atoms to permeate and diffuse on the surface of the titanium-based member while suppressing the formation of the oxide layer.
JP 2003-73796 A (published March 12, 2003) JP 2002-97914 A (published April 5, 2002) JP 2001-81544 A (published March 27, 2001)

しかしながら、上記従来の表面硬化処理方法では、以下に示すような問題点を有している。
すなわち、特許文献1に開示された表面硬化処理方法では、表面硬度を上昇させることはできるものの、処理を行うたびにチタン系部材を酸素吸入性粉体の中に埋没させる必要があるため、処理効率が悪く、コストアップを招く等の問題がある。また、酸素吸入性粉体中に埋没させているため加熱処理後所定の冷却速度が得られず、適切な時効処理を行うことができない。
However, the conventional surface hardening method has the following problems.
That is, although the surface hardness treatment method disclosed in Patent Document 1 can increase the surface hardness, it is necessary to bury the titanium-based member in the oxygen-absorbing powder every time the treatment is performed. There are problems such as inefficiency and cost increase. Moreover, since it is buried in the oxygen-inhalable powder, a predetermined cooling rate cannot be obtained after the heat treatment, and an appropriate aging treatment cannot be performed.

本発明の課題は、加熱処理を経て形成される酸化層の厚みを最小限に抑えるとともに、深部まで硬化層を形成する処理を効率よく行うことが可能なベータ型チタンの表面硬化処理方法、ベータ型チタン系部材およびベータ型チタンの表面硬化処理装置を提供することにある。   An object of the present invention is to provide a beta-type titanium surface hardening method capable of efficiently performing a treatment for forming a hardened layer to a deep part while minimizing the thickness of an oxide layer formed through heat treatment, An object of the present invention is to provide a surface hardening treatment apparatus for a type titanium member and a beta type titanium.

発明1のベータ型チタンの表面硬化処理方法は、ベータ型チタン系部材を、不活性ガスと酸素との混合気体中において加熱処理し、酸素浸透拡散層を形成する。
この表面硬化処理方法によれば、大気中よりも低い特定酸素濃度の条件下において加熱処理を行うことができる。このため、比較的硬くて脆く剥離しやすい酸化層の厚さを従来よりも薄く、例えば、約5μm厚以下にすることができる。このため、形成される酸化層が薄いために寸法精度を高レベルで維持することができる。また、表面硬化処理後の酸化層を除去する後処理が容易になる。そして、酸化層が残ることに起因する色むら等の製品外観の質低下を抑制できる。
In the surface hardening treatment method for beta-type titanium of the invention 1, the beta-type titanium-based member is heat-treated in a mixed gas of an inert gas and oxygen to form an oxygen permeation diffusion layer.
According to this surface hardening treatment method, the heat treatment can be performed under the condition of a specific oxygen concentration lower than that in the atmosphere. For this reason, the thickness of the oxide layer that is relatively hard, brittle and easily peeled off can be made thinner than before, for example, about 5 μm or less. For this reason, since the formed oxide layer is thin, dimensional accuracy can be maintained at a high level. Moreover, the post-process which removes the oxide layer after a surface hardening process becomes easy. And deterioration of the quality of the product appearance such as uneven color due to the remaining oxide layer can be suppressed.

同時に、酸素が浸透拡散して硬化した硬化層を、例えば表面から約100μmの深部まで形成することができる。このため、表面硬度を向上させつつ、耐摩耗性に優れたベータ型チタン系部材を得ることができる。
以上のように、本発明のベータ型チタンの表面硬化処理方法では、ベータ型チタンの外観を損なうことなく、表面硬度を向上させて耐摩耗性に優れたベータ型チタン系部材を得ることができる。
At the same time, a hardened layer in which oxygen has penetrated and diffused and hardened can be formed, for example, from the surface to a depth of about 100 μm. For this reason, it is possible to obtain a beta-type titanium-based member having excellent wear resistance while improving the surface hardness.
As described above, in the surface hardening treatment method for beta-type titanium according to the present invention, it is possible to obtain a beta-type titanium-based member with improved surface hardness and excellent wear resistance without impairing the appearance of beta-type titanium. .

発明2のベータ型チタンの表面硬化処理方法は、発明1のベータ型チタンの表面硬化処理方法であって、混合気体は、0.05〜20vol%の酸素濃度である。
ここでは、この酸素濃度条件下で処理を行うことで、チタンの表面に形成される酸化層が厚くなることを防止しつつ、硬化層をチタンの深部まで形成することが可能になる。
The beta-type titanium surface hardening method of the invention 2 is the beta-type titanium surface hardening method of the invention 1, and the mixed gas has an oxygen concentration of 0.05 to 20 vol%.
Here, by performing the treatment under this oxygen concentration condition, it becomes possible to form the hardened layer up to the deep part of titanium while preventing the oxide layer formed on the surface of titanium from becoming thick.

なお、上記酸素濃度条件の下限値である0.05vol%は、酸素浸透拡散処理を行うために最低限必要な酸素濃度であり、上限値である20vol%は、酸化層の形成が促進されて酸素浸透拡散処理を妨げることのない限界となる酸素濃度である。
発明3のベータ型チタンの表面硬化処理方法は、発明1または2のベータ型チタンの表面硬化処理方法であって、混合気体は、1〜10vol%の酸素濃度である。
The lower limit of 0.05 vol% of the oxygen concentration condition is the minimum oxygen concentration necessary for performing the oxygen permeation diffusion treatment, and the upper limit of 20 vol% is promoted by formation of an oxide layer. The oxygen concentration is a limit that does not hinder the oxygen permeation diffusion treatment.
The beta-type titanium surface hardening method of the invention 3 is the beta-type titanium surface hardening method of the invention 1 or 2, wherein the mixed gas has an oxygen concentration of 1 to 10 vol%.

ここでは、この温度条件下で加熱処理を行うことで、さらに効果的にベータ型チタンの表面を溶体化して効果的に酸素浸透拡散処理を行うことができる。
発明4のベータ型チタンの表面硬化処理方法は、発明1から3のいずれか1つのベータ型チタンの表面硬化処理方法であって、加熱処理は、700〜1000℃の温度範囲内で行われる。
Here, by performing the heat treatment under this temperature condition, the surface of the beta-type titanium can be more effectively solutioned to effectively perform the oxygen permeation diffusion treatment.
The surface hardening treatment method for beta-type titanium according to the invention 4 is the surface hardening treatment method for beta-type titanium according to any one of the inventions 1 to 3, wherein the heat treatment is performed within a temperature range of 700 to 1000 ° C.

ここでは、この温度条件下で加熱処理を行うことで、ベータ型チタンの表面を溶体化して効果的に酸素浸透拡散処理を行うことができる。
なお、上記温度条件の下限値である700℃は、ベータ型チタンの溶体化温度を考慮した温度であり、上限値である1000℃は、ベータ型チタンの結晶粒の粗大化につながらないようにするための限界温度である。
Here, by performing the heat treatment under this temperature condition, the surface of the beta-type titanium can be formed into a solution and the oxygen permeation diffusion treatment can be effectively performed.
In addition, 700 degreeC which is the lower limit value of the said temperature conditions is the temperature which considered the solution temperature of beta type titanium, and 1000 degreeC which is an upper limit value should not lead to the coarsening of the crystal grain of beta type titanium. It is the limit temperature for.

発明5のベータ型チタンの表面硬化処理方法は、発明1から4のいずれか1つのベータ型チタンの表面硬化処理方法であって、加熱処理は、850〜950℃の温度範囲内で行われる。
ここでは、このような温度条件下で処理を行うことで、特にベータ型チタンの表面硬度を効果的に上昇させることができる。
The surface hardening treatment method for beta-type titanium according to the invention 5 is the surface hardening treatment method for beta-type titanium according to any one of the inventions 1 to 4, wherein the heat treatment is performed within a temperature range of 850 to 950 ° C.
Here, by performing the treatment under such a temperature condition, the surface hardness of the beta-type titanium can be particularly effectively increased.

発明6のベータ型チタンの表面硬化処理方法は、発明1から5のいずれか1つのベータ型チタンの表面硬化処理方法であって、加熱処理は、10〜30分間行われる。
ここでは、このような加熱条件下で処理を行うことで、酸素浸透拡散層を効果的に形成することができる。
The surface hardening treatment method for beta-type titanium according to the invention 6 is the surface hardening treatment method for beta-type titanium according to any one of the inventions 1 to 5, wherein the heat treatment is performed for 10 to 30 minutes.
Here, the oxygen permeation diffusion layer can be effectively formed by performing the treatment under such heating conditions.

発明7のベータ型チタンの表面硬化処理方法は、発明1から6のいずれか1つのベータ型チタンの表面硬化処理方法であって、加熱処理は、15〜25分間行われる。
ここでは、このような加熱条件下で処理を行うことで、さらに効果的に酸素浸透拡散層を効果的に形成することができる。
The surface hardening treatment method for beta-type titanium according to the invention 7 is the surface hardening treatment method for beta-type titanium according to any one of the inventions 1 to 6, wherein the heat treatment is performed for 15 to 25 minutes.
Here, by performing the treatment under such heating conditions, the oxygen permeation diffusion layer can be more effectively formed.

発明8のベータ型チタンの表面硬化処理方法は、発明1から7のいずれか1つのベータ型チタンの表面硬化処理方法であって、加熱処理後、400〜550℃で6〜16時間の時効処理を行う。
ここでは、上記条件下において時効処理を行うことで、さらに表面硬度を向上させて耐摩耗性を高めることができる。
The beta-type titanium surface hardening treatment method of the invention 8 is the beta-type titanium surface hardening treatment method according to any one of the inventions 1 to 7, wherein the heat treatment is followed by aging treatment at 400 to 550 ° C. for 6 to 16 hours. I do.
Here, by performing the aging treatment under the above conditions, the surface hardness can be further improved and the wear resistance can be enhanced.

発明9のベータ型チタンの表面硬化処理方法は、発明1から8のいずれか1つのベータ型チタンの表面硬化処理方法であって、加熱処理後、450〜500℃で10〜14時間の時効処理を行う。
ここでは、上記条件下において時効処理を行うことで、さらに効果的に表面硬度を向上させて耐摩耗性を高めることができる。
The beta-type titanium surface hardening method of the invention 9 is any one of the beta-type titanium surface hardening treatment methods of the inventions 1 to 8, and is an aging treatment at 450 to 500 ° C. for 10 to 14 hours after the heat treatment. I do.
Here, by performing the aging treatment under the above conditions, the surface hardness can be further effectively improved and the wear resistance can be enhanced.

発明10のベータ型チタンの表面硬化処理方法は、発明1から9のいずれか1つのベータ型チタンの表面硬化処理方法であって、不活性ガスは、アルゴンガスである。
ここでは、酸素とアルゴンガスとの混合気体を用いることで、特定の酸素濃度範囲で酸素浸透拡散処理を行うことができる。
The beta-type titanium surface hardening method of the invention 10 is the beta-type titanium surface hardening method of any one of the inventions 1 to 9, wherein the inert gas is argon gas.
Here, by using a mixed gas of oxygen and argon gas, oxygen permeation diffusion treatment can be performed in a specific oxygen concentration range.

発明11のベータ型チタン系部材は、発明1から10のいずれか1つのベータ型チタンの表面硬化処理方法によって処理されて、表面層側から5μm以下の厚さの酸化層と、70μm以上の厚さの酸素浸透拡散層とが形成される。
ここでは、上記の処理方法により、酸化層の形成を抑えつつ、深部まで酸素拡散層が形成された表面硬度の高いベータ型チタン系部材を得ることができる。
The beta-type titanium-based member of the invention 11 is treated by any one of the beta-type titanium surface hardening methods of the inventions 1 to 10, and an oxide layer having a thickness of 5 μm or less and a thickness of 70 μm or more from the surface layer side. The oxygen permeation diffusion layer is formed.
Here, by the above processing method, it is possible to obtain a beta-type titanium-based member having a high surface hardness on which an oxygen diffusion layer is formed deeply while suppressing formation of an oxide layer.

発明12のベータ型チタンの表面硬化処理装置は、発明1から10のいずれか1つのベータ型チタンの表面硬化処理方法によってベータ型チタン系部材に対して処理を行う。
ここでは、ベータ型チタン系部材に対して上記の処理を施すことで、酸化層の形成を抑えつつ、深部まで酸素拡散層が形成された表面硬度の高いベータ型チタン系部材を形成することが可能なベータ型チタンの表面硬化処理装置を得ることができる。
The beta-type titanium surface hardening treatment apparatus according to the twelfth aspect of the present invention performs the treatment on the beta-type titanium-based member by any one of the beta-type titanium surface-hardening treatment methods of the first to tenth aspects.
Here, by performing the above-described treatment on the beta-type titanium-based member, it is possible to form a beta-type titanium-based member having a high surface hardness in which the oxygen diffusion layer is formed deeply while suppressing the formation of the oxide layer. It is possible to obtain a possible beta-type titanium surface hardening treatment apparatus.

発明1のベータ型チタンの表面硬化処理方法によれば、酸化層の形成を抑えつつ、深部まで酸素拡散層が形成された表面硬度の高いベータ型チタン系部材を形成することができる。
発明2のベータ型チタンの表面硬化処理方法によれば、チタンの表面に形成される酸化層が厚くなることを防止しつつ、硬化層をチタンの深部まで形成することが可能になる。
According to the surface hardening treatment method for beta-type titanium according to the first aspect, a beta-type titanium-based member having a high surface hardness in which an oxygen diffusion layer is formed deeply can be formed while suppressing formation of an oxide layer.
According to the beta-type titanium surface hardening method of the invention 2, it is possible to form the hardened layer up to the deep part of the titanium while preventing the oxide layer formed on the surface of the titanium from becoming thick.

発明3のベータ型チタンの表面硬化処理方法によれば、より効果的に酸化層の形成を抑制しつつ、硬化層を深部まで形成することができる。
発明4のベータ型チタンの表面硬化処理方法によれば、ベータ型チタンの表面を溶体化して効果的に酸素浸透拡散処理を行うことができる。
According to the surface hardening treatment method for beta-type titanium of the invention 3, the hardened layer can be formed to a deep part while suppressing the formation of the oxide layer more effectively.
According to the surface hardening treatment method of the beta type titanium of the invention 4, the surface of the beta type titanium can be formed into a solution and the oxygen permeation diffusion treatment can be effectively performed.

発明5のベータ型チタンの表面硬化処理方法によれば、特にチタン表面の硬度を効果的に上昇させることができる。
発明6のベータ型チタンの表面硬化処理方法によれば、酸素浸透拡散層を効果的に形成することができる。
According to the surface hardening treatment method of the beta-type titanium of the invention 5, particularly the hardness of the titanium surface can be effectively increased.
According to the surface hardening treatment method of the beta type titanium of the invention 6, the oxygen permeation diffusion layer can be effectively formed.

発明7のベータ型チタンの表面硬化処理方法によれば、さらに効果的に酸素浸透拡散層を効果的に形成することができる。
発明8のベータ型チタンの表面硬化処理方法によれば、さらに表面硬度を向上させて耐摩耗性を高めることができる。
According to the surface hardening treatment method for beta-type titanium of the invention 7, the oxygen permeation diffusion layer can be effectively formed more effectively.
According to the surface hardening treatment method for beta-type titanium of the invention 8, the surface hardness can be further improved and the wear resistance can be enhanced.

発明9のベータ型チタンの表面硬化処理方法によれば、さらに効果的に表面硬度を向上させて耐摩耗性を高めることができる。
発明10のベータ型チタンの表面硬化処理方法によれば、特定の酸素濃度範囲で酸素浸透拡散処理を行うことができる。
According to the beta titanium surface hardening treatment method of the invention 9, the surface hardness can be further effectively improved and the wear resistance can be enhanced.
According to the surface hardening treatment method for beta-type titanium of the tenth invention, the oxygen permeation diffusion treatment can be performed in a specific oxygen concentration range.

発明11のベータ型チタン系部材によれば、酸化層の形成を抑えつつ、深部まで酸素拡散層が形成されており、表面硬度を向上させることができる。
発明12のベータ型チタンの表面硬化処理装置によれば、酸化層の形成を抑えつつ、深部まで酸素拡散層が形成された表面硬度の高いベータ型チタン系部材を形成する装置を得ることができる。
According to the beta-type titanium-based member of the invention 11, the oxygen diffusion layer is formed to the deep part while suppressing the formation of the oxide layer, and the surface hardness can be improved.
According to the beta-type titanium surface hardening apparatus of the twelfth aspect, an apparatus for forming a beta-type titanium-based member having a high surface hardness in which an oxygen diffusion layer is formed deeply can be obtained while suppressing formation of an oxide layer. .

本発明の一実施形態に係るベータ型チタンの表面硬化処理方法、ベータ型チタンの表面硬化処理装置、ベータ型チタン系部材について、図1〜図4を用いて説明すれば以下の通りである。
本実施形態のベータ型チタンの表面硬化処理装置10は、例えば、チタンの溶体化炉を備えており、以下に示すような処理方法によってベータ型チタンの表面硬度を向上させる。
A beta-type titanium surface hardening method, a beta-type titanium surface hardening apparatus, and a beta-type titanium-based member according to an embodiment of the present invention will be described below with reference to FIGS.
The beta-type titanium surface hardening treatment apparatus 10 of the present embodiment includes, for example, a titanium solution furnace, and improves the surface hardness of the beta-type titanium by a treatment method as described below.

すなわち、ベータ型チタンの表面硬化処理装置10の処理空間S内にベータ型チタン系部材11をセットし、酸素とアルゴンガス(不活性ガス)とからなる混合気体の雰囲気中において加熱処理を行う。これにより、ベータ型チタン系部材11がセットされた処理空間Sにおいて、大気中よりも酸素濃度が低い状態で加熱処理を行うことができる。   That is, the beta-type titanium-based member 11 is set in the processing space S of the beta-type titanium surface hardening apparatus 10 and heat treatment is performed in an atmosphere of a mixed gas composed of oxygen and argon gas (inert gas). Thereby, in the processing space S in which the beta-type titanium-based member 11 is set, the heat treatment can be performed in a state where the oxygen concentration is lower than in the atmosphere.

このときの処理条件としては、酸素濃度が0.05〜20vol%、加熱処理の温度が700〜1000℃、加熱処理時間が10〜30分であることが好ましい。
そして、この処理の後、400〜550℃の温度範囲内で、6〜16時間の時効処理が行われる。
As processing conditions at this time, it is preferable that oxygen concentration is 0.05-20 vol%, the temperature of heat processing is 700-1000 degreeC, and heat processing time is 10 to 30 minutes.
And after this process, the aging process for 6 to 16 hours is performed within the temperature range of 400-550 degreeC.

以下に、上記の処理条件を満たす条件下で処理を行ったベータ型チタン系部材11について、表面硬度を測定した結果を示す。
図2(a)に示すように、温度条件850℃、加熱処理時間10分、酸素濃度5vol%の条件下で処理されたベータ型チタン系部材では、未処理のベータ型チタン系部材のHV硬度が約400でほぼ一定であるのに対し、表面から0.10mm(100μm)の深さまでのHV硬度が570〜400まで上昇している。特に、表面から0.05mm(50μm)の範囲では、570〜450までHV硬度が上昇している。
Below, the result of having measured the surface hardness about the beta-type titanium-type member 11 processed on the conditions which satisfy | fill said process conditions is shown.
As shown in FIG. 2 (a), in the case of a beta-type titanium-based member treated under conditions of a temperature condition of 850 ° C., a heat treatment time of 10 minutes, and an oxygen concentration of 5 vol%, the HV hardness of the untreated beta-type titanium-based member. Is approximately constant at about 400, whereas the HV hardness from the surface to a depth of 0.10 mm (100 μm) increases to 570 to 400. In particular, in the range of 0.05 mm (50 μm) from the surface, the HV hardness increases from 570 to 450.

また、温度条件850℃、加熱処理時間10分、酸素濃度10vol%の条件下で処理されたベータ型チタン系部材では、上記酸素濃度5vol%の場合と同様に、表面から0.10mm(100μm)の深さまでのHV硬度が570〜400まで上昇している。特に、表面から0.05mm(50μm)の範囲では、570〜450までHV硬度が上昇している。   In addition, in the case of a beta-type titanium-based member treated under the conditions of a temperature condition of 850 ° C., a heat treatment time of 10 minutes, and an oxygen concentration of 10 vol%, as in the case of the oxygen concentration of 5 vol%, 0.10 mm (100 μm) from the surface. The HV hardness up to a depth of 570 to 400 increases. In particular, in the range of 0.05 mm (50 μm) from the surface, the HV hardness increases from 570 to 450.

さらに、図2(b)に示すように、温度条件900℃、加熱処理時間10分、酸素濃度1.7vol%の条件下で処理されたベータ型チタン系部材は、未処理のベータ型チタン系部材が450HV硬度前後であるのに対して、表面から0.10mm(100μm)の深さまでのHV硬度が590〜420まで上昇している。特に、表面から0.05mm(50μm)の範囲では、590〜495までHV硬度が上昇している。   Furthermore, as shown in FIG. 2 (b), a beta-type titanium-based member treated under the conditions of a temperature condition of 900 ° C., a heat treatment time of 10 minutes, and an oxygen concentration of 1.7 vol% is an untreated beta-type titanium-based member. While the member is around 450 HV hardness, the HV hardness from the surface to a depth of 0.10 mm (100 μm) is increased to 590-420. In particular, in the range of 0.05 mm (50 μm) from the surface, the HV hardness increases from 590 to 495.

また、温度条件900℃、加熱処理時間10分、酸素濃度5vol%の条件下で処理されたベータ型チタン系部材は、表面から0.10mm(100μm)の深さまでのHV硬度が580〜470まで上昇している。特に、表面から0.05mm(50μm)の範囲では、580〜515までHV硬度が上昇している。   Further, the beta-type titanium-based member treated under the conditions of a temperature condition of 900 ° C., a heat treatment time of 10 minutes, and an oxygen concentration of 5 vol% has an HV hardness of 580 to 470 up to a depth of 0.10 mm (100 μm) from the surface. It is rising. In particular, in the range of 0.05 mm (50 μm) from the surface, the HV hardness increases from 580 to 515.

さらに、温度条件900℃、加熱処理時間10分、酸素濃度10vol%の条件下で処理されたベータ型チタン系部材は、表面から0.10mm(100μm)の深さまでのHV硬度が545〜395まで上昇している。特に、表面から0.05mm(50μm)の範囲では、545〜490までHV硬度が上昇している。   Further, the beta-type titanium-based member treated under the conditions of a temperature condition of 900 ° C., a heat treatment time of 10 minutes, and an oxygen concentration of 10 vol% has an HV hardness of 545 to 395 up to a depth of 0.10 mm (100 μm) from the surface. It is rising. In particular, in the range of 0.05 mm (50 μm) from the surface, the HV hardness increases from 545 to 490.

以上のように、図2(a)および図2(b)に示す実験結果から、上述した表面硬化処理条件の中の温度条件については、900℃の方が850℃で処理するよりも硬度が上昇することがわかる。特に、900℃の処理を行った場合には、表面から0.02mm(20μm)以降の深さのHV硬度が、850℃で処理を行った場合よりも緩やかに下降していくのがわかる。よって、ベータ型チタンの溶融温度等を考慮すれば、表面硬化処理条件として850〜950℃で加熱処理を行うことがより好ましい。   As described above, from the experimental results shown in FIGS. 2 (a) and 2 (b), regarding the temperature conditions in the surface hardening treatment conditions described above, the hardness at 900 ° C. is higher than that at 850 ° C. You can see that it rises. In particular, when the treatment at 900 ° C. is performed, it can be seen that the HV hardness at a depth of 0.02 mm (20 μm) or more from the surface gradually decreases as compared with the case where the treatment is performed at 850 ° C. Therefore, considering the melting temperature of beta-type titanium and the like, it is more preferable to perform heat treatment at 850 to 950 ° C. as the surface hardening treatment condition.

同様に、酸素濃度に関しては、図2(b)に示す結果から判断して、1.7vol%で処理を行った方が5vol%で処理を行うよりも、また、5vol%で処理を行った方が10vol%で処理を行うよりもHV硬度が高くなる。よって、HV硬度を上昇させるとともに表面に酸化層が形成されることを抑えるためには、1〜10vol%の酸素濃度で処理を行うことがより好ましい。   Similarly, regarding the oxygen concentration, judging from the result shown in FIG. 2 (b), the treatment at 1.7 vol% was performed at 5 vol% rather than the treatment at 5 vol%. The HV hardness is higher than when the treatment is performed at 10 vol%. Therefore, in order to increase the HV hardness and suppress the formation of an oxide layer on the surface, it is more preferable to perform the treatment at an oxygen concentration of 1 to 10 vol%.

ここでさらに、これら表面硬化処理済のベータ型チタン系部材11の摩耗試験の結果について、図3を用いて説明すれば以下の通りである。
ここでは、未処理のベータ型チタン系部材、加熱温度850℃、加熱時間10分、酸素濃度5vol%で処理されたベータ型チタン系部材(第1サンプル)、加熱温度900℃、加熱時間10分、酸素濃度10vol%で処理されたベータ型チタン系部材(第2サンプル)、加熱温度900℃、加熱時間10分、酸素濃度5vol%で処理されたベータ型チタン系部材(第3サンプル)、加熱温度900℃、加熱時間10分、酸素濃度1.7vol%で処理されたベータ型チタン系部材(第4サンプル)の結果を示す。
Here, the results of the wear test of these surface-hardened beta-type titanium-based members 11 will be described below with reference to FIG.
Here, an untreated beta-type titanium-based member, a heating temperature of 850 ° C., a heating time of 10 minutes, a beta-type titanium-based member treated with an oxygen concentration of 5 vol% (first sample), a heating temperature of 900 ° C., and a heating time of 10 minutes , A beta-type titanium-based member treated with an oxygen concentration of 10 vol% (second sample), a heating temperature of 900 ° C., a heating time of 10 minutes, a beta-type titanium-based member treated with an oxygen concentration of 5 vol% (third sample), heating The result of the beta-type titanium system member (4th sample) processed by the temperature of 900 degreeC, the heating time for 10 minutes, and oxygen concentration 1.7vol% is shown.

図3に示すように、未処理のベータ型チタン系部材の平均摩耗量は0.158mmであるのに対し、第1サンプルは0.138mm、第2サンプルは0.132mm、第3サンプルは0.110mm、第4サンプルは0.104mmと、処理を行ったベータ型チタン系部材の方が、未処理のベータ型チタン系部材と比較して平均摩耗量が減少していることがわかる。特に、900℃×10分の条件下で処理を行った第3サンプル、第4サンプルでは、未処理のベータ型チタン系部材と比較して、約30%平均摩耗量が減少している。   As shown in FIG. 3, the average wear amount of the untreated beta-type titanium-based member is 0.158 mm, whereas the first sample is 0.138 mm, the second sample is 0.132 mm, and the third sample is 0. .110 mm, the fourth sample is 0.104 mm, and it can be seen that the average wear amount of the treated beta-type titanium-based member is smaller than that of the untreated beta-type titanium-based member. In particular, in the third sample and the fourth sample processed under the condition of 900 ° C. × 10 minutes, the average wear amount is reduced by about 30% as compared with the untreated beta-type titanium-based member.

この結果からも、温度条件850〜900℃の温度範囲内で処理を行った場合には、未処理のベータ型チタン系部材よりも耐摩耗性が向上し、表面硬度が向上していることがわかる。
また、第1サンプルと第3サンプルとの比較から加熱温度条件は850℃よりも900℃の方が平均摩耗量を減少させることができ、好ましいことがわかる。さらに、第2サンプル〜第4サンプルまでの比較により、酸素濃度条件は10vol%から1.7vol%に減少するにしたがって平均摩耗量を減少させることができ、好ましいことがわかる。
Also from this result, when the treatment is performed within the temperature range of 850 to 900 ° C., the wear resistance is improved and the surface hardness is improved as compared with the untreated beta-type titanium-based member. Understand.
Further, it can be seen from the comparison between the first sample and the third sample that the heating temperature condition is preferably 900 ° C. rather than 850 ° C. because the average wear amount can be reduced. Furthermore, it can be seen from the comparison from the second sample to the fourth sample that the average wear amount can be reduced as the oxygen concentration condition is decreased from 10 vol% to 1.7 vol%, which is preferable.

〔ベータ型チタン系部材の表面構造〕
以上のような表面効果処理を施されたベータ型チタン系部材11は、図4に示すような表面構造となる。
すなわち、本実施形態の表面強化処理後のベータ型チタン系部材11の表面の最上層には、図4に示すように、酸化層11aが形成され、酸化層11aの下層には硬化層11bが形成される。そして、硬化層11bの下層には未処理層11cが存在する。
酸化層11aは、表面から0〜5μmの厚さで形成される。このように、本実施形態の表面硬化処理を施されたベータ型チタン系部材11では、表面に形成される酸化層11aの厚さが従来の大気中で加熱処理を行った場合よりも格段に薄くできるため、処理後の酸化層11aを除去する後処理が非常に容易になる。
[Surface structure of beta-type titanium-based member]
The beta-type titanium-based member 11 subjected to the surface effect treatment as described above has a surface structure as shown in FIG.
That is, as shown in FIG. 4, an oxide layer 11a is formed on the uppermost layer of the surface of the beta-type titanium-based member 11 after the surface strengthening treatment of the present embodiment, and a hardened layer 11b is formed below the oxide layer 11a. It is formed. And the untreated layer 11c exists in the lower layer of the hardened layer 11b.
The oxide layer 11a is formed with a thickness of 0 to 5 μm from the surface. As described above, in the beta-type titanium-based member 11 subjected to the surface hardening treatment of the present embodiment, the thickness of the oxide layer 11a formed on the surface is markedly higher than that in the case where the heat treatment is performed in the conventional atmosphere. Since the thickness can be reduced, post-processing for removing the processed oxide layer 11a is very easy.

硬化層11bは、上記酸化層11aの下層に形成されており、酸素が浸透拡散して硬度が上昇した厚さ100μm程度の層である。
このように、本実施形態のベータ型チタンの表面硬化処理装置10では、酸化層11aの厚さを抑えつつ、硬化層11bを70μm以上(100μm)の厚さまで形成することができるため、効率よく表面硬度が上昇したベータ型チタン系部材11を得ることができる。
The hardened layer 11b is formed in the lower layer of the oxide layer 11a, and is a layer having a thickness of about 100 μm in which oxygen has penetrated and diffused to increase the hardness.
Thus, in the beta-type titanium surface hardening processing apparatus 10 of this embodiment, since the hardened layer 11b can be formed to a thickness of 70 μm or more (100 μm) while suppressing the thickness of the oxide layer 11a, it is efficient. A beta-type titanium-based member 11 having an increased surface hardness can be obtained.

〔比較例1〕
ベータ型チタンの表面硬化処理を、アルゴンガスと酸素との混合気体中で行うのではなく、大気中において行った比較例について説明する。
本比較例では、硬化層を300μm厚まで形成することができ、表面層のHV硬度が500まで上昇したものの、最上層には100μm厚の酸化層が形成される。酸化層は比較的硬くて脆いという性質を有するため、本比較例のように100μm厚まで形成された酸化層は、製品化する前に除去する作業が非常に面倒で生産効率が低下する。さらに、製品表面の酸化層は製品外観を低下させるという面で好ましくない。
[Comparative Example 1]
A comparative example in which the surface hardening treatment of beta-type titanium is not performed in a mixed gas of argon gas and oxygen but in the atmosphere will be described.
In this comparative example, the hardened layer can be formed to a thickness of 300 μm, and although the HV hardness of the surface layer has increased to 500, an oxide layer having a thickness of 100 μm is formed as the uppermost layer. Since the oxide layer has the property of being relatively hard and brittle, the oxide layer formed to a thickness of 100 μm as in this comparative example is very troublesome to remove before commercialization, and the production efficiency is lowered. Furthermore, an oxide layer on the product surface is not preferable in terms of deteriorating the product appearance.

このように、酸素濃度条件以外の条件を本発明と同様にして処理を行った場合でも、表面硬度は高くなるものの、最上層に形成される酸化層が厚くなってしまうことから、大気中における加熱処理は好ましくないことがわかる。   As described above, even when the conditions other than the oxygen concentration condition are processed in the same manner as in the present invention, the surface hardness increases, but the oxide layer formed in the uppermost layer becomes thick. It can be seen that heat treatment is not preferred.

〔比較例2〕
表面硬化処理を行う対象として、ベータ型チタン以外に純チタン、α+β型チタンを用いて本発明と同様の処理を行った比較例について説明する。
本比較例では、上述した表面硬化処理を行ったにもかかわらず、表層部分に酸素が浸透拡散した硬化層を形成することができなかった。これは、純チタン、α+β型チタンでは、表面を溶体化して酸素浸透拡散層を形成できないためと考えられる。
この結果、本発明の表面強化処理方法は、純チタン、α+β型チタンに対しては有効ではなく、ベータ型チタンの表面硬化処理に対して有効であることがわかる。
[Comparative Example 2]
A comparative example in which the same treatment as that of the present invention is performed using pure titanium and α + β-type titanium in addition to beta-type titanium will be described.
In this comparative example, despite the surface hardening treatment described above, a hardened layer in which oxygen penetrated and diffused into the surface layer portion could not be formed. This is presumably because pure titanium and α + β type titanium cannot form an oxygen permeation diffusion layer by forming a solution on the surface.
As a result, it can be seen that the surface strengthening treatment method of the present invention is not effective for pure titanium and α + β type titanium but is effective for surface hardening treatment of beta type titanium.

[ベータ型チタンの表面硬化処理装置の特徴]
(1)
本実施形態のベータ型チタンの表面硬化処理装置10は、アルゴンガス(不活性ガス)と酸素の混合気体中において、ベータ型チタン系部材11を加熱処理する。
これにより、ベータ型チタン系部材11を、大気中の酸素濃度よりも低い特定の酸素濃度の中で加熱処理を行うことができる。この結果、図4に示すように、表面に形成される酸化層11aの厚さを抑えつつ、その下層に酸素が浸透拡散した硬化層11bを深部まで形成することが可能になる。
[Features of beta-type titanium surface hardening treatment equipment]
(1)
The beta-type titanium surface hardening apparatus 10 of this embodiment heat-treats the beta-type titanium-based member 11 in a mixed gas of argon gas (inert gas) and oxygen.
Thereby, the beta-type titanium-based member 11 can be heat-treated in a specific oxygen concentration lower than the oxygen concentration in the atmosphere. As a result, as shown in FIG. 4, it is possible to form the hardened layer 11 b in which oxygen penetrates and diffuses to the lower layer while suppressing the thickness of the oxide layer 11 a formed on the surface.

例えば、以下で示す条件下において処理されたベータ型チタン系部材11では、図3に示すように、未処理のベータ型チタン系部材と比較して、約30%摩耗量を減少させることができ、耐摩耗性の向上が図れる。   For example, in the beta-type titanium-based member 11 treated under the conditions shown below, as shown in FIG. 3, the wear amount can be reduced by about 30% compared to the untreated beta-type titanium-based member. The wear resistance can be improved.

(2)
本実施形態のベータ型チタンの表面硬化処理装置10は、酸素濃度0.05〜20vol%のアルゴンガス−酸素の混合気体中において加熱処理を行う。
これにより、大気中において加熱処理を行った場合と比較して、表面に形成される酸化層11aが厚くなることを抑制し、かつ深部まで硬化層11bを形成することができる。この結果、表面硬度が上昇し、耐摩耗性に優れたベータ型チタン系部材11を得ることができる。
なお、上記酸素濃度範囲は、1〜10vol%の範囲内であることがより好ましい。
(2)
The surface hardening treatment apparatus 10 for beta-type titanium according to this embodiment performs heat treatment in an argon gas-oxygen mixed gas having an oxygen concentration of 0.05 to 20 vol%.
Thereby, compared with the case where it heat-processes in air | atmosphere, it can suppress that the oxide layer 11a formed in the surface becomes thick, and can form the hardened layer 11b to a deep part. As a result, the beta-type titanium-based member 11 having an increased surface hardness and excellent wear resistance can be obtained.
The oxygen concentration range is more preferably in the range of 1 to 10 vol%.

(3)
本実施形態のベータ型チタンの表面硬化処理装置10は、700〜1000℃の範囲の温度条件下において加熱処理を行う。
これにより、ベータ型チタン系部材11の表面が溶体化して酸素が浸透拡散し、硬化層11bを深部まで形成することができる。
なお、上記温度範囲は、850〜950℃で行われることがより好ましい。
(3)
The surface hardening treatment apparatus 10 for beta-type titanium according to the present embodiment performs heat treatment under temperature conditions in the range of 700 to 1000 ° C.
Thereby, the surface of the beta-type titanium-based member 11 is in solution, oxygen penetrates and diffuses, and the hardened layer 11b can be formed deep.
In addition, it is more preferable that the said temperature range is performed at 850-950 degreeC.

(4)
本実施形態のベータ型チタンの表面硬化処理装置10は、上記酸素濃度条件、温度条件下において、10〜30分間加熱処理を行う。
これにより、酸化層の形成を抑えつつ、酸素浸透拡散層を効果的に深部まで形成することができる。
なお、上記加熱時間は、15〜25分間であることがより好ましい。
(4)
The surface hardening treatment apparatus 10 for beta-type titanium according to the present embodiment performs heat treatment for 10 to 30 minutes under the above oxygen concentration condition and temperature condition.
Thereby, an oxygen osmosis | permeation diffused layer can be effectively formed to the deep part, suppressing formation of an oxide layer.
The heating time is more preferably 15 to 25 minutes.

(5)
本実施形態のベータ型チタンの表面硬化処理装置10は、上述したように、加熱処理後、400〜550℃の温度条件下において6〜16時間の時効処理(焼きなまし)を行う。
これにより、硬化層11bを安定した状態で形成することができ、さらに表面硬度を向上させて耐摩耗性を高めることができる。
なお、上記時効処理は、450〜500℃の温度条件下において、10〜14時間行われることがより好ましい。
(5)
As described above, the beta-type titanium surface hardening apparatus 10 of the present embodiment performs an aging treatment (annealing) for 6 to 16 hours under a temperature condition of 400 to 550 ° C. after the heat treatment.
Thereby, the hardened layer 11b can be formed in a stable state, and the surface hardness can be further improved to improve the wear resistance.
The aging treatment is more preferably performed for 10 to 14 hours under a temperature condition of 450 to 500 ° C.

(6)
本実施形態のベータ型チタンの表面硬化処理装置10により形成されたベータ型チタン系部材11は、上記の条件下において処理が施される。
これにより、酸化層11aの厚さを約5μm程度に抑え、かつ約100μmの深部まで硬化層11bが形成されたベータ型チタン系部材11を得ることができる。
(6)
The beta-type titanium-based member 11 formed by the beta-type titanium surface hardening apparatus 10 of the present embodiment is treated under the above conditions.
Thereby, the beta-type titanium-based member 11 in which the thickness of the oxide layer 11a is suppressed to about 5 μm and the hardened layer 11b is formed to a depth of about 100 μm can be obtained.

[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
[Other Embodiments]
As mentioned above, although one Embodiment of this invention was described, this invention is not limited to the said embodiment, A various change is possible in the range which does not deviate from the summary of invention.

(A)
上記実施形態では、酸素と混合する気体としてアルゴンガスを用いた例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、アルゴンガス以外の不活性ガスを用いた場合でも、上記と同様の効果を得ることができる。
(A)
In the said embodiment, the example which used argon gas as a gas mixed with oxygen was given and demonstrated. However, the present invention is not limited to this.
For example, even when an inert gas other than argon gas is used, the same effect as described above can be obtained.

(B)
上記実施形態では、酸素とアルゴンガスとの混合気体中において、加熱処理する例を挙げて説明した。しかし、本発明はこれに限定されるものではない。
例えば、アルゴンガスだけでなく、アルゴンガスとその他の不活性ガスとの混合気体を酸素を混合させた気体中において加熱処理を行ってもよい。
(B)
In the said embodiment, the example which heat-processes in the mixed gas of oxygen and argon gas was given and demonstrated. However, the present invention is not limited to this.
For example, the heat treatment may be performed not only in argon gas but also in a gas obtained by mixing a mixed gas of argon gas and other inert gas with oxygen.

本発明は、酸化層の形成を抑えつつ、酸素浸透拡散層を深部まで形成できるという効果を奏することから、ベータ型チタンを材料として用いた各種部材の表面硬化処理に広く適用可能である。   The present invention exerts an effect that the oxygen permeation diffusion layer can be formed to a deep portion while suppressing the formation of the oxide layer, and thus can be widely applied to the surface hardening treatment of various members using beta-type titanium as a material.

本発明の一実施形態に係るベータ型チタンの表面硬化処理装置を示す概略図。Schematic which shows the surface hardening processing apparatus of the beta type titanium which concerns on one Embodiment of this invention. (a),(b)は、本発明のベータ型チタンの表面硬化処理方法によって処理されたベータ型チタン系部材の表面硬度を測定した結果を示すグラフ。(A), (b) is a graph which shows the result of having measured the surface hardness of the beta type titanium-type member processed by the surface hardening processing method of the beta type titanium of this invention. 本発明のベータ型チタンの表面硬化処理方法によって処理されたベータ型チタン系部材の摩耗試験の結果を示すグラフ。The graph which shows the result of the abrasion test of the beta type titanium-type member processed by the surface hardening processing method of the beta type titanium of this invention. 本発明のベータ型チタンの表面硬化処理方法によって処理されたベータ型チタン系部材の表面構造を示す概略図。Schematic which shows the surface structure of the beta type titanium-type member processed by the surface hardening processing method of the beta type titanium of this invention.

符号の説明Explanation of symbols

10 ベータ型チタンの表面硬化処理装置
11 ベータ型チタン系部材
11a 酸化層
11b 硬化層
11c 未処理層
S 処理空間
10 Beta-type titanium surface hardening treatment device 11 Beta-type titanium-based member 11a Oxide layer 11b Hardened layer 11c Untreated layer S Treatment space

Claims (12)

ベータ型チタン系部材を、不活性ガスと酸素との混合気体中において加熱処理し、酸素浸透拡散層を形成する、
ベータ型チタンの表面硬化処理方法。
A beta-type titanium-based member is heat-treated in a mixed gas of an inert gas and oxygen to form an oxygen permeation diffusion layer.
Beta-type titanium surface hardening method.
前記混合気体は、0.05〜20vol%の酸素濃度である、
請求項1に記載のベータ型チタンの表面硬化処理方法。
The mixed gas has an oxygen concentration of 0.05 to 20 vol%.
The surface hardening treatment method of beta type titanium according to claim 1.
前記混合気体は、1〜10vol%の酸素濃度である、
請求項1または2に記載のベータ型チタンの表面硬化処理方法。
The mixed gas has an oxygen concentration of 1 to 10 vol%.
The surface hardening treatment method for beta-type titanium according to claim 1 or 2.
前記加熱処理は、700〜1000℃の温度範囲内で行われる、
請求項1から3のいずれか1項に記載のベータ型チタンの表面硬化処理方法。
The heat treatment is performed within a temperature range of 700 to 1000 ° C.
The surface hardening treatment method for beta-type titanium according to any one of claims 1 to 3.
前記加熱処理は、850〜950℃の温度範囲内で行われる、
請求項1から4のいずれか1項に記載のベータ型チタンの表面硬化処理方法。
The heat treatment is performed within a temperature range of 850 to 950 ° C.
The surface hardening treatment method for beta-type titanium according to any one of claims 1 to 4.
前記加熱処理は、10〜30分間行われる、
請求項1から5のいずれか1項に記載のベータ型チタンの表面硬化処理方法。
The heat treatment is performed for 10 to 30 minutes.
The surface hardening treatment method for beta-type titanium according to any one of claims 1 to 5.
前記加熱処理は、15〜25分間行われる、
請求項1から6のいずれか1項に記載のベータ型チタンの表面硬化処理方法。
The heat treatment is performed for 15 to 25 minutes,
The surface hardening treatment method for beta-type titanium according to any one of claims 1 to 6.
前記加熱処理後、400〜550℃で6〜16時間の時効処理を行う、
請求項1から7のいずれか1項に記載のベータ型チタンの表面硬化処理方法。
After the heat treatment, an aging treatment is performed at 400 to 550 ° C. for 6 to 16 hours.
The surface hardening treatment method for beta-type titanium according to any one of claims 1 to 7.
前記加熱処理後、450〜500℃、10〜14時間の時効処理を行う、
請求項1から8のいずれか1項に記載のベータ型チタンの表面硬化処理方法。
After the heat treatment, an aging treatment is performed at 450 to 500 ° C. for 10 to 14 hours.
The surface hardening treatment method for beta-type titanium according to any one of claims 1 to 8.
前記不活性ガスは、アルゴンガスである、
請求項1から9のいずれか1項に記載のベータ型チタンの表面硬化処理方法。
The inert gas is argon gas.
The surface hardening treatment method for beta-type titanium according to any one of claims 1 to 9.
請求項1から10のいずれか1項に記載のベータ型チタンの表面硬化処理方法によって処理されて、表面層側から5μm以下の厚さの酸化層と、70μm厚以上の酸素浸透拡散層とが形成される、
ベータ型チタン系部材。
An oxide layer having a thickness of 5 μm or less and a oxygen permeation diffusion layer having a thickness of 70 μm or more processed from the surface layer side by the surface hardening treatment method for beta-type titanium according to claim 1. It is formed,
Beta-type titanium-based member.
請求項1から10のいずれか1項に記載のベータ型チタンの表面硬化処理方法により、ベータ型チタン系部材の処理を行う、
ベータ型チタンの表面硬化処理装置。
The beta-type titanium-based member is treated by the beta-type titanium surface hardening method according to any one of claims 1 to 10.
Beta-type titanium surface hardening treatment equipment.
JP2004060523A 2004-03-04 2004-03-04 SURFACE HARDENING TREATMENT METHOD FOR beta TYPE TITANIUM, beta TYPE TITANIUM BASED MEMBER AND SURFACE HARDENING TREATMENT DEVICE FOR beta TYPE TITANIUM Pending JP2005248256A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004060523A JP2005248256A (en) 2004-03-04 2004-03-04 SURFACE HARDENING TREATMENT METHOD FOR beta TYPE TITANIUM, beta TYPE TITANIUM BASED MEMBER AND SURFACE HARDENING TREATMENT DEVICE FOR beta TYPE TITANIUM
TW093140826A TW200536960A (en) 2004-03-04 2004-12-27 Beta titanium surface hardening method, beta titanium member and beta titanium surface hardening apparatus
US10/906,696 US20050194075A1 (en) 2004-03-04 2005-03-02 Method of hardening a beta titanium member
EP05004743A EP1571233A1 (en) 2004-03-04 2005-03-03 Method of hardening a beta titanium member
CN200510051900XA CN1664160A (en) 2004-03-04 2005-03-04 Method of hardening a beta titanium member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004060523A JP2005248256A (en) 2004-03-04 2004-03-04 SURFACE HARDENING TREATMENT METHOD FOR beta TYPE TITANIUM, beta TYPE TITANIUM BASED MEMBER AND SURFACE HARDENING TREATMENT DEVICE FOR beta TYPE TITANIUM

Publications (1)

Publication Number Publication Date
JP2005248256A true JP2005248256A (en) 2005-09-15

Family

ID=34747667

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004060523A Pending JP2005248256A (en) 2004-03-04 2004-03-04 SURFACE HARDENING TREATMENT METHOD FOR beta TYPE TITANIUM, beta TYPE TITANIUM BASED MEMBER AND SURFACE HARDENING TREATMENT DEVICE FOR beta TYPE TITANIUM

Country Status (5)

Country Link
US (1) US20050194075A1 (en)
EP (1) EP1571233A1 (en)
JP (1) JP2005248256A (en)
CN (1) CN1664160A (en)
TW (1) TW200536960A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128160A1 (en) * 2017-01-03 2018-07-12 カシオ計算機株式会社 Alloy member and method for hardening surface thereof
JPWO2018128160A1 (en) * 2017-01-03 2019-11-07 カシオ計算機株式会社 Alloy member and surface hardening method thereof
JP2020007625A (en) * 2018-07-11 2020-01-16 株式会社オー・ケー・シー β TYPE TITANIUM ALLOY AND METHOD OF MANUFACTURING THE SAME

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8566943B2 (en) * 2009-10-01 2013-10-22 Kaspersky Lab, Zao Asynchronous processing of events for malware detection
CN102162080A (en) * 2011-03-31 2011-08-24 戚培毅 Medicinal titanium implanting apparatus surface modification layer and preparation method thereof
CN105349934B (en) * 2015-07-03 2018-03-20 苏州大学 A kind of method for surface hardening of titanium alloy
CN113174511A (en) * 2021-04-02 2021-07-27 西安交通大学 Beta titanium alloy material with excellent mechanical property and preparation method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0852164B1 (en) * 1995-09-13 2002-12-11 Kabushiki Kaisha Toshiba Method for manufacturing titanium alloy turbine blades and titanium alloy turbine blades
GB9614967D0 (en) * 1996-07-17 1996-09-04 Univ Birmingham Surface treatment process
JPH11223221A (en) * 1997-07-01 1999-08-17 Nippon Seiko Kk Rolling bearing
FR2778845B1 (en) * 1998-05-25 2001-05-04 Oreal DYE COMPOSITION FOR KERATINIC FIBERS WITH CATIONIC DIRECT DYE AND SUBSTANTIVE POLYMER
WO2002008623A1 (en) * 2000-07-18 2002-01-31 Nsk Ltd. Rolling apparatus
JP2002097914A (en) * 2000-07-18 2002-04-05 Fuji Oozx Inc Engine valve made of titanium alloy and method of manufacturing it
JP2003073796A (en) * 2001-09-03 2003-03-12 Fuji Oozx Inc Surface treatment method for titanium-based material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018128160A1 (en) * 2017-01-03 2018-07-12 カシオ計算機株式会社 Alloy member and method for hardening surface thereof
JPWO2018128160A1 (en) * 2017-01-03 2019-11-07 カシオ計算機株式会社 Alloy member and surface hardening method thereof
US11578399B2 (en) 2017-01-03 2023-02-14 Casio Computer Co., Ltd. Alloy member and method for hardening surface thereof
JP2020007625A (en) * 2018-07-11 2020-01-16 株式会社オー・ケー・シー β TYPE TITANIUM ALLOY AND METHOD OF MANUFACTURING THE SAME
JP7107501B2 (en) 2018-07-11 2022-07-27 株式会社オー・ケー・シー β-type titanium alloy and its manufacturing method

Also Published As

Publication number Publication date
TW200536960A (en) 2005-11-16
US20050194075A1 (en) 2005-09-08
EP1571233A1 (en) 2005-09-07
CN1664160A (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP2007077411A (en) Machine structural component having excellent fatigue strength and wear property, and method for producing the same
US8349093B2 (en) Method of plasma nitriding of alloys via nitrogen charging
EP1571233A1 (en) Method of hardening a beta titanium member
US20080017278A1 (en) High Melting Point Metal Based Alloy Material Lexhibiting High Strength and High Recrystallization Temperature and Method for Production Thereof
JP5457000B2 (en) Surface treatment method of steel material, steel material and mold obtained thereby
JP6321982B2 (en) Method for surface treatment of metal material
JP2004043962A (en) Surface hardening treatment method for maraging steel and belt for belt type continuously variable transmission produced by the method
JP6485859B2 (en) Titanium copper alloy material with surface coating and method for producing the same
US20100037991A1 (en) Diffusion promoters for low temperature case hardening
JP2015190005A (en) Cast product having alumina barrier layer
JP2009041063A (en) Method for gas-nitriding die for warm/hot forming, and die for warm/hot forming obtained thereby
EP2602337A1 (en) Cast base for biomedical use formed of cobalt/chromium-based alloy and having excellent diffusion hardening treatability, sliding alloy member for biomedical use and artificial joint
EP2154263A1 (en) Case hardening titanium and its alloys
JP6225510B2 (en) Vacuum carburizing and nitriding method
JP2584551B2 (en) Surface hardening method for titanium material
JPH08104970A (en) Method of surface hardening treatment for titanium material
JP6610062B2 (en) Titanium plate
JP2005068491A (en) Surface hardening treatment method for titanium material
JPH05331617A (en) Surface treatment for titanium alloy member
JP2010222649A (en) Production method of carbon steel material and carbon steel material
JP3486506B2 (en) Gas carburizing method
JP6759842B2 (en) Steel manufacturing method
CN111315914A (en) Carburizing method
US20050028891A1 (en) Method for producing an oxide layer on metallic elements
JP3995178B2 (en) Gas nitriding treatment method for maraging steel

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905