JP2005247967A - Polyelectrolyte complex and its preparation process - Google Patents

Polyelectrolyte complex and its preparation process Download PDF

Info

Publication number
JP2005247967A
JP2005247967A JP2004058920A JP2004058920A JP2005247967A JP 2005247967 A JP2005247967 A JP 2005247967A JP 2004058920 A JP2004058920 A JP 2004058920A JP 2004058920 A JP2004058920 A JP 2004058920A JP 2005247967 A JP2005247967 A JP 2005247967A
Authority
JP
Japan
Prior art keywords
chitosan
molecular weight
solution
carboxymethyl cellulose
low molecular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004058920A
Other languages
Japanese (ja)
Other versions
JP4665131B2 (en
Inventor
Sousaku Ichikawa
創作 市川
Satoshi Iwamoto
悟志 岩本
Jun Watanabe
純 渡辺
Mitsutoshi Nakajima
光敏 中嶋
Michiko Watanabe
道子 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Food Research Institute
Original Assignee
National Food Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Food Research Institute filed Critical National Food Research Institute
Priority to JP2004058920A priority Critical patent/JP4665131B2/en
Publication of JP2005247967A publication Critical patent/JP2005247967A/en
Application granted granted Critical
Publication of JP4665131B2 publication Critical patent/JP4665131B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyelectrolyte complex consisting of chitosan and carboxymethyl cellulose whose sizes are controlled. <P>SOLUTION: Chitosan is dissolved in a weak acid, the chitosan molecules are charged with positive electricity, and the chitosan molecules are enzymatically cleaved to form small molecules. Carboxymethyl cellulose is dissolved in water, the carboxymethyl cellulose molecules are charged with negative electricity, and the carboxymethyl cellulose molecules are enzymatically cleaved to form small molecules. The chitosan solution thus made to form small molecules and the carboxymethyl cellulose solution thus made to form small molecules are mixed, and the positive and negative functional groups of each other are allowed to react to combine them into a gel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、キトサンとカルボキシメチルセルロース(CMC)とが結合してゲル状となった高分子電解質複合体とその製造方法に関する。   The present invention relates to a polymer electrolyte composite in which chitosan and carboxymethyl cellulose (CMC) are bonded to form a gel and a method for producing the same.

キチン、キチンの脱アセチル化物であるキトサンおよびカルボキシメチルセルロースは直鎖状の多糖類であり、生体適合性を有するため、医薬、食品或いは農業の分野において注目されている。   Chitin, chitosan and carboxymethylcellulose, which are deacetylated products of chitin, are linear polysaccharides and have biocompatibility, and thus are attracting attention in the fields of medicine, food or agriculture.

例えば、特許文献1にはナノ微粒子に生物活性剤を包含せしめ、このナノ微粒子を生物系の組織または細胞に結合させて、生理活性物質の持続放出性を強化する内容が開示されている。
また特許文献2には、DNAなどの生物学的材料を標的細胞に送達するための
組成物、即ち、DDS(ドラッグデリバリーシステム)の媒体として、カルボキシメチルセルロース、キチンまたはキトサンと多価脂肪族アルコールまたはその誘導体を基にしたものが提案されている。
また特許文献3には、一般式がM−S−L−Z(Mは磁性核粒子、Sはカルボキシメチルセルロースやキチンなどの生体適合性基質、Lはリンカー基、Zは核酸やタンパク質等)で表される磁性ナノ粒子が提案されている。
For example, Patent Document 1 discloses contents in which a bioactive agent is included in a nanoparticle, and the nanoparticle is bound to a biological tissue or cell to enhance the sustained release of a physiologically active substance.
Patent Document 2 discloses a composition for delivering a biological material such as DNA to target cells, that is, as a DDS (drug delivery system) medium, carboxymethylcellulose, chitin or chitosan and a polyhydric aliphatic alcohol or Those based on the derivatives have been proposed.
In Patent Document 3, the general formula is M-S-L-Z (M is a magnetic core particle, S is a biocompatible substrate such as carboxymethylcellulose and chitin, L is a linker group, Z is a nucleic acid, a protein, and the like). Magnetic nanoparticles represented have been proposed.

特表平10−511957号公報Japanese National Patent Publication No. 10-511957 特表2003−504320号公報Special table 2003-504320 gazette 特表2003−509024号公報JP-T-2003-509024

ところで、キトサンは水には溶解しないが酢酸などの弱酸には溶解する。そしてキトサンが弱酸に溶解すると、キトサンのアミノ基が水素イオンを受け取ってキトサン分子は正に帯電する。
一方、カルボキシメチルセルロースは水に溶解する。そしてカルボキシメチルセルロースが水に溶解すると、カルボキシメチルセルロースのカルボキシメチル基から水素イオンが離脱し、カルボキシメチルセルロース分子は負に帯電する。
By the way, chitosan does not dissolve in water, but dissolves in weak acids such as acetic acid. When chitosan is dissolved in a weak acid, the amino group of chitosan receives hydrogen ions and the chitosan molecule is positively charged.
On the other hand, carboxymethylcellulose is soluble in water. And when carboxymethylcellulose melt | dissolves in water, a hydrogen ion will detach | leave from the carboxymethyl group of carboxymethylcellulose, and a carboxymethylcellulose molecule will be negatively charged.

上記正に帯電したキトサン分子を含む溶液と負に帯電したカルボキシメチルセルロース分子を含む溶液とを混合すると、互いの正負の官能基(アミノ基とカルボキシメチル基)が反応してキトサン分子とカルボキシメチルセルロース分子が絡み合い、これら分子は共に高分子であるため絡み合った高分子鎖が溶液全体に広がりゲルとなる。   When the above solution containing the positively charged chitosan molecule and the solution containing the negatively charged carboxymethylcellulose molecule are mixed, the positive and negative functional groups (amino group and carboxymethyl group) react with each other to cause the chitosan molecule and the carboxymethylcellulose molecule. Since these molecules are both polymers, the entangled polymer chains spread throughout the solution and become a gel.

上記のゲル中には荷電を持った物質を保持することが可能と考えられ、例えば生理活性物質などを保持せしめれば、DDSの媒体として極めて有効である。しかしながら、人体に存在しない物質が人体に入ると、肝臓や腎臓などの働き(異物認識機構)によって体外に排除される。この異物認識機構による異物の認識にも特異性がある。つまり、異物のサイズ(直径)が300nm以下、特に数10nm〜200nm程度のサイズの異物は認識されにくいと考えられている。   It is considered possible to retain a charged substance in the gel. For example, if a physiologically active substance is retained, it is extremely effective as a medium for DDS. However, when a substance that does not exist in the human body enters the human body, it is excluded from the body by the action of the liver and kidney (foreign substance recognition mechanism). The foreign object recognition by this foreign object recognition mechanism is also unique. That is, it is considered that a foreign matter having a size (diameter) of 300 nm or less, particularly a size of several tens of nm to 200 nm, is hardly recognized.

そこで、上記のサイズの媒体を生体適合性に優れた材料で作製すれば、DDSの媒体などに極めて有効であるが、従来の技術ではサイズのコントロールが極めて困難である。
例えば、キトサンの分子量は通常10万〜100万程度であり、カルボキシメチルセルロースの分子量は通常1万〜10万程度であるので、これらが絡まってできる高分子電解質複合体のサイズも大きなものになってしまう。
Therefore, if the medium having the above size is made of a material excellent in biocompatibility, it is extremely effective for a medium of DDS and the like, but it is extremely difficult to control the size with the conventional technique.
For example, the molecular weight of chitosan is usually about 100,000 to 1,000,000, and the molecular weight of carboxymethylcellulose is usually about 10,000 to 100,000. Therefore, the size of the polymer electrolyte complex formed by entanglement thereof becomes large. End up.

本発明は任意の大きさにコントロールされた高分子電解質複合体を提供することを目的とする。この高分子電解質複合体の構造は低分子化され且つ正に帯電したキトサンと、低分子化され且つ負に帯電したカルボキシメチルセルロースが、結合してゲル状となっている。   An object of the present invention is to provide a polyelectrolyte complex controlled to an arbitrary size. The structure of this polyelectrolyte complex is a low molecular weight and positively charged chitosan and a low molecular weight and negatively charged carboxymethyl cellulose bonded to form a gel.

上記の高分子電解質複合体は、その粒径が300nm以下、例えば数10nmに揃えることが可能で、しかも直鎖状の多糖類が絡まって構成されているため、内部に荷電を持った物質を保持させることができる。   The above-mentioned polyelectrolyte complex can have a particle size of 300 nm or less, for example several tens of nm, and is composed of entangled linear polysaccharides. Can be retained.

高分子電解質複合体に内包する荷電物質としてはイオン性官能基(結合点になるので多い方が好ましい)を有する物質、例えば、DNA、RNA、Texas Red、トリプトファン、WSNSG、FITC−卵白アルブミン、サケカルシトニン、トリプシンインヒビターなどが挙げられる。   As a charged substance included in the polyelectrolyte complex, a substance having an ionic functional group (which is preferably a bonding point is preferable), such as DNA, RNA, Texas Red, tryptophan, WSNSG, FITC-ovalbumin, salmon Examples include calcitonin and trypsin inhibitor.

また、本発明に係る高分子電解質複合体の製造方法は以下の工程からなる。
・ キトサンを弱酸に溶解しキトサン分子を正に帯電させる工程。
・ 正に帯電したキトサン分子をキトサン分解酵素によって切断して低分子化する工程。
・ カルボキシメチルセルロースを水に溶解しカルボキシメチルセルロース分子を負に帯電させる工程。
・ 負に帯電したカルボキシメチルセルロース分子をカルボキシメチルセルロース分解酵素によって切断して低分子化する工程。
前記工程2)で得られた低分子化したキトサン溶液と、前記工程4)で得られた低分子化したカルボキシメチルセルロース溶液とを混合し、互いの正負の官能基を反応させてゲル状に結合する工程。
Moreover, the manufacturing method of the polymer electrolyte composite based on this invention consists of the following processes.
-A process in which chitosan is dissolved in a weak acid to charge the chitosan molecule positively.
A process of reducing positively charged chitosan molecules by cutting them with chitosan degrading enzymes.
A step of dissolving carboxymethylcellulose in water to negatively charge carboxymethylcellulose molecules.
A process of cutting negatively charged carboxymethylcellulose molecules by carboxymethylcellulose degrading enzyme to lower the molecular weight.
The low molecular weight chitosan solution obtained in the step 2) and the low molecular weight carboxymethylcellulose solution obtained in the step 4) are mixed, and the positive and negative functional groups of each other are reacted to form a gel. Process.

尚、上記の製造方法では、キトサン分子を正に帯電させキトサン分子を低分子化した後、カルボキシメチルセルロース分子を負に帯電させカルボキシメチルセルロース分子しているが、これらの工程の前後を逆にしてもよい。
In the above production method, the chitosan molecule is positively charged and the chitosan molecule is reduced in molecular weight, and then the carboxymethylcellulose molecule is negatively charged to form the carboxymethylcellulose molecule. Good.

また、高分子電解質複合体内に内包する荷電物質が負電荷を有する物質である場合には、低分子化されたキトサン溶液に前記被内包物の溶液を添加した後、低分子化されたカルボキシメチルセルロース溶液を添加する。一方、正電荷を有する物質を高分子電解質複合体内に内包せしめる場合には、低分子化されたカルボキシメチルセルロース溶液に被内包物の溶液を添加した後、低分子化されたキトサン溶液を添加する。   In addition, when the charged substance included in the polymer electrolyte complex is a substance having a negative charge, the carboxymethyl cellulose reduced in molecular weight after adding the solution of the inclusion to the reduced molecular chitosan solution. Add the solution. On the other hand, when a positively charged substance is encapsulated in the polyelectrolyte complex, the encapsulated solution is added to the low molecular weight carboxymethylcellulose solution, and then the low molecular weight chitosan solution is added.

本発明に係る高分子電解質複合体は、肝臓や脾臓などの異物認識機構によって検知されにくいサイズの粒子を、低pH(pH3.0〜5.6)、高塩濃度(NaCI:1M)或いは低温(0℃)でも形成することができ、しかも安定に存在する。   The polyelectrolyte complex according to the present invention allows particles having a size difficult to be detected by a foreign body recognition mechanism such as the liver and spleen to have a low pH (pH 3.0 to 5.6), a high salt concentration (NaCI: 1M), or a low temperature. It can be formed even at (0 ° C.) and exists stably.

また、本発明に係る高分子電解質複合体は、荷電を持った物質、例えば活性ペプチドやタンパク質、DNAなどを保持することができる。これらを電解質複合体に取り込むことで、異物認識機構を逃れて体内に長時間滞留させることができ、また経口投与した際にはプロテアーゼなどが入り込めなくなって分解を抑制することができる。   The polyelectrolyte complex according to the present invention can hold a charged substance, such as an active peptide, protein, or DNA. By incorporating them into the electrolyte complex, they can escape the foreign substance recognition mechanism and stay in the body for a long time, and when orally administered, proteases and the like cannot enter and can suppress degradation.

以下に本発明の実施の形態を添付図面に基づいて説明する。本発明に係る高分子電解質複合体は酵素処理されたキトサン溶液と酵素処理されたカルボキシメチルセルロース溶液を混合することで得られ、図1にキトサンの酵素処理法の手順を示し、図2にカルボキシメチルセルロースの酵素処理法の手順を示す。   Embodiments of the present invention will be described below with reference to the accompanying drawings. The polyelectrolyte complex according to the present invention is obtained by mixing an enzyme-treated chitosan solution and an enzyme-treated carboxymethylcellulose solution. FIG. 1 shows the procedure of chitosan enzyme treatment, and FIG. 2 shows carboxymethylcellulose. The procedure of the enzyme treatment method is shown.

先ず、キトサンを用意する。キトサンはキチンからアセチル基を外して抽出精製したものであり、キチンのアセチル基に代わってアミノ基が結合している。それぞれの構造式を以下に示す。   First, prepare chitosan. Chitosan is obtained by removing and purifying chitin from the acetyl group, and has an amino group bonded in place of the acetyl group of chitin. Each structural formula is shown below.







上記のキトサン0.5gに酢酸1mlと純水90mlを加え、更に4M−NaOHを用いてpH5.6に調整し、この後、純水を加えて100mlにして、キトサンの0.5%溶液を得る。
キトサンは水には不溶であるが酸には溶解する。キトサンを酢酸などの弱酸に溶解せしめると、以下の構造式に示すようにアミノ基が水素イオンを受け取りキトサン分子は正に帯電する。
To 0.5 g of the above chitosan, add 1 ml of acetic acid and 90 ml of pure water, adjust to pH 5.6 using 4M NaOH, and then add pure water to 100 ml to obtain a 0.5% solution of chitosan. obtain.
Chitosan is insoluble in water but soluble in acid. When chitosan is dissolved in a weak acid such as acetic acid, the amino group receives hydrogen ions and the chitosan molecule is positively charged as shown in the following structural formula.



次いで、上記0.5%キトサン溶液を45℃に加温し、キトサン分解酵素であるキトサナーゼを用いて分解(低分子化)する。   Next, the 0.5% chitosan solution is heated to 45 ° C. and decomposed (lower molecular weight) using chitosanase which is a chitosan degrading enzyme.

一方、カルボキシメチルセルロース(CMC)を用意する。カルボキシメチルセルロース(CMC)の構造式を以下に示す。   On the other hand, carboxymethylcellulose (CMC) is prepared. The structural formula of carboxymethylcellulose (CMC) is shown below.





上記のカルボキシメチルセルロース(CMC)0.5gに純水90mlを加え、2M−HClを用いてpH5.6に調整し、この後、純水を加えて100mlにして、カルボキシメチルセルロース(CMC)の0.5%溶液を得る。
カルボキシメチルセルロース(CMC)を水に溶かすと、以下の構造式に示すように、カルボキシメチル基が電離して負に帯電する。
90 ml of pure water is added to 0.5 g of the above carboxymethyl cellulose (CMC), adjusted to pH 5.6 using 2M HCl, and then made up to 100 ml with pure water to give a carboxymethyl cellulose (CMC) of 0.5. A 5% solution is obtained.
When carboxymethylcellulose (CMC) is dissolved in water, the carboxymethyl group is ionized and negatively charged as shown in the following structural formula.




次いで、上記0.5%カルボキシメチルセルロース溶液を45℃に加温し、多糖分解酵素であるセルラーゼを用いて分解(低分子化)する。   Next, the 0.5% carboxymethylcellulose solution is heated to 45 ° C. and decomposed (lower molecular weight) using cellulase which is a polysaccharide degrading enzyme.

このようにしてキトサンの部分分解物とカルボキシメチルセルロースの部分分解物が得られたら、図3に示すように、これらを混合する。すると、キトサンの部分分解物のアミノ基とカルボキシメチルセルロースのカルボキシル基がイオン相互作用で結合しゲルが形成される。キトサンの部分分解物及びカルボキシメチルセルロースの部分分解物は短く切断されているのでこれらが絡まって形成されるゲルの粒子径も小さくなる。   When a partially decomposed product of chitosan and a partially decomposed product of carboxymethylcellulose are obtained in this way, they are mixed as shown in FIG. Then, the amino group of the partially decomposed product of chitosan and the carboxyl group of carboxymethyl cellulose are bonded by ionic interaction to form a gel. Since the partially decomposed product of chitosan and the partially decomposed product of carboxymethyl cellulose are cut short, the particle diameter of the gel formed by entanglement thereof becomes small.

形成されるゲルの粒子径は、キトサンの部分分解物及びカルボキシメチルセルロースの部分分解物の分子量によってコントロールすることができる。また各分解物の分子量は酵素による分解の度合いによって定まる。また、キトサンとカルボキシメチルセルロースとの混合比を変えることでサイズをコントロールすることもできる。したがって、酵素による反応時間や混合比などによって得られるゲルの粒子径をコントロールすることができる。   The particle diameter of the gel formed can be controlled by the molecular weight of the partially decomposed product of chitosan and the partially decomposed product of carboxymethyl cellulose. The molecular weight of each degradation product is determined by the degree of degradation by the enzyme. The size can also be controlled by changing the mixing ratio of chitosan and carboxymethylcellulose. Therefore, the particle diameter of the gel obtained can be controlled by the reaction time and mixing ratio of the enzyme.

図4は、上記によって得られた高分子電解質複合体の経過日数と粒子径との関係を示すグラフであり、条件はpH5.6,25℃で、粒子径は動的光散乱法で測定した。このグラフから、1週間経過しても粒径は殆ど変化せず、本発明によって得られたゲル粒子の安定性が高いことがわかる。   FIG. 4 is a graph showing the relationship between the number of days elapsed and the particle size of the polymer electrolyte composite obtained as described above. The conditions were pH 5.6 and 25 ° C., and the particle size was measured by a dynamic light scattering method. . From this graph, it can be seen that the particle size hardly changes even after one week, and the stability of the gel particles obtained by the present invention is high.

また、以下の(表1)は高分子電解質複合体粒子の分散している溶液の条件を変化させた時の粒子径について試験した結果を示すものである。尚、粒径の経時変化についても測定したが、前記同様、極めて安定していた。   The following (Table 1) shows the results of testing the particle diameter when the conditions of the solution in which the polymer electrolyte composite particles are dispersed are changed. In addition, although the change with time of the particle diameter was also measured, it was extremely stable as described above.



この(表)から本発明に係る高分子電解質複合体粒子は、低pH、高塩濃度あるいは低温条件においても安定していることが分かる。   From this (table), it can be seen that the polymer electrolyte composite particles according to the present invention are stable even under low pH, high salt concentration or low temperature conditions.

図5は高分子電解質複合体に荷電物質としてTexas Redを内包せしめる手順を示した図、図6はTexas Redの内包率を示すグラフである。
Texas Redを内包せしめるには、前記で得られた低分子化されたキトサン溶液(キトサン部分水解物)にTexas Redの10mM溶液を加え、この後、前記で得られた低分子化されたカルボキシメチルセルロース溶液(CMC部分水解物)を添加する。
FIG. 5 is a diagram showing a procedure for encapsulating Texas Red as a charged substance in a polyelectrolyte complex, and FIG. 6 is a graph showing the encapsulation rate of Texas Red.
To enclose Texas Red, a 10 mM solution of Texas Red was added to the low molecular weight chitosan solution (chitosan partial hydrolyzate) obtained above, and then the low molecular weight carboxymethyl cellulose obtained above was added. Add the solution (CMC partial hydrolyzate).

図6はTexas Redの内包率を示すグラフであり、内包率は、前記で得られた
Texas Redを内包するナノ粒子をPBSに懸濁せしめ、37℃で2,4,8,24時間経過した後、HPLC分析(カラム;CM cellulose、検出;蛍光550/603nm)によって得た。このグラフから本願の高分子電解質複合体はTexas Redを高効率に且つ安定して長時間内包することができることが分かる。
FIG. 6 is a graph showing the inclusion rate of Texas Red, and the inclusion rate was obtained as described above.
Nanoparticles containing Texas Red were suspended in PBS, and after 2, 4, 8, and 24 hours at 37 ° C., they were obtained by HPLC analysis (column; CM cellulose, detection; fluorescence 550/603 nm). From this graph, it can be seen that the polymer electrolyte composite of the present application can encapsulate Texas Red with high efficiency and stability for a long time.

図7は高分子電解質複合体に負の荷電を有する物質(以下、代表して酸性物質とする)を内包せしめる手順を示した図であり、酸性物質を高分子電解質複合体内に内包せしめる場合には、低分子化されたキトサン溶液(キトサン部分水解物)に酸性物質溶液を加え、この後、低分子されたカルボキシメチルセルロース溶液(CMC部分水解物)を添加してナノ粒子を得る。   FIG. 7 is a diagram showing a procedure for encapsulating a negatively charged substance (hereinafter referred to as an acidic substance) in the polymer electrolyte complex. In the case where an acidic substance is encapsulated in the polymer electrolyte complex, FIG. Add an acidic substance solution to a low molecular weight chitosan solution (chitosan partial hydrolyzate), and then add a low molecular weight carboxymethylcellulose solution (CMC partial hydrolyzate) to obtain nanoparticles.

各種酸性物質を内包物としたナノ粒子を上記の工程で作製し、得られたナノ粒子をゲルろ過しまたはイオン交換カラムに供し、カプセル・非カプセルを分離・定量して内包率を測定した結果を以下の(表2)に示す。この(表2)から酸性物質であるTexas RedとFITC−卵白アルブミンの内包率は高いことが分かる。   Result of producing nanoparticles with inclusions of various acidic substances in the above process, subjecting the obtained nanoparticles to gel filtration or ion exchange column, separating and quantifying capsules and non-capsules and measuring the encapsulation rate Is shown in the following (Table 2). From this (Table 2), it can be seen that the inclusion rate of the acidic substances Texas Red and FITC-ovalbumin is high.







図8は高分子電解質複合体に正の荷電を有する物質(以下、代表して塩基性物質とする)を内包せしめる手順を示した図であり、塩基物質を高分子電解質複合体内に内包せしめる場合には、低分子されたカルボキシメチルセルロース溶液(CMC部分水解物)に塩基性物質溶液を加え、この後、低分子化されたキトサン溶液(キトサン部分水解物)を添加してナノ粒子を得る。   FIG. 8 is a diagram showing a procedure for encapsulating a positively charged substance (hereinafter referred to as a basic substance) in the polyelectrolyte complex, where the basic substance is encapsulated in the polyelectrolyte complex. For example, a basic substance solution is added to a low molecular weight carboxymethylcellulose solution (CMC partial hydrolyzate), and then a low molecular weight chitosan solution (chitosan partial hydrolyzate) is added to obtain nanoparticles.

前記同様、塩基性物質としてサケカルシトニンとトリプシンインヒビターを選定した場合の内包率を測定した結果を以下の(表3)に示す。この(表3)から、塩基性物質については、先ず、低分子化されたカルボキシメチルセルロース溶液に加えることで内包率が高くなることが分かる。   As described above, the results of measuring the encapsulation rate when salmon calcitonin and trypsin inhibitor are selected as basic substances are shown in the following (Table 3). From this (Table 3), it is understood that the inclusion rate of the basic substance is increased by first adding it to the carboxymethylcellulose solution having a reduced molecular weight.

キトサンの酵素処理法の手順を示した図Diagram showing the procedure for enzymatic treatment of chitosan カルボキシメチルセルロースの酵素処理法の手順を示した図The figure which showed the procedure of the enzyme treatment method of carboxymethylcellulose キトサンの部分分解物とカルボキシメチルセルロースの部分分解物とが混合して本発明に係る高分子電解質複合体になる過程を説明した図The figure explaining the process in which the partial decomposition product of chitosan and the partial decomposition product of carboxymethylcellulose are mixed to form the polymer electrolyte composite according to the present invention. 本発明方法によって得られた高分子電解質複合体の経過日数と粒子径との関係を示すグラフThe graph which shows the relationship between the elapsed days and particle diameter of the polyelectrolyte complex obtained by the method of the present invention 高分子電解質複合体にTexas Redを内包せしめる手順を示した図Diagram showing the procedure for encapsulating Texas Red in a polyelectrolyte complex Texas Redの内包率を示すグラフGraph showing the inclusion rate of Texas Red 高分子電解質複合体に酸性物質を内包せしめる手順を示した図Diagram showing the procedure for encapsulating an acidic substance in a polyelectrolyte complex 高分子電解質複合体に塩基性物質を内包せしめる手順を示した図Diagram showing the procedure for encapsulating a basic substance in a polyelectrolyte complex

Claims (5)

低分子化され且つ正に帯電したキトサンと、低分子化され且つ負に帯電したカルボキシメチルセルロースが、結合してゲル状となっていることを特徴とする高分子電解質複合体。 A polyelectrolyte complex characterized in that a low molecular weight and positively charged chitosan and a low molecular weight and negatively charged carboxymethyl cellulose are bonded to form a gel. 請求項1に記載の高分子電解質複合体において、この高分子電解質複合体は内部に荷電を持った物質を保持していることを特徴とする高分子電解質複合体。 2. The polymer electrolyte complex according to claim 1, wherein the polymer electrolyte complex holds a charged substance therein. 請求項1または請求項2に記載の高分子電解質複合体において、前記ゲル状となった高分子電解質複合体の粒子径は300nm以下であることを特徴とする高分子電解質複合体。 3. The polymer electrolyte composite according to claim 1, wherein the gel-like polymer electrolyte composite has a particle diameter of 300 nm or less. 4. 以下の工程からなることを特徴とする高分子電解質複合体の製造方法。
1) キトサンを弱酸に溶解しキトサン分子を正に帯電させる工程。
・ 正に帯電したキトサン分子をキトサン分解酵素によって切断して低分子化する工程。
・ カルボキシメチルセルロースを水に溶解しカルボキシメチルセルロース分子を負に帯電させる工程。
・ 負に帯電したカルボキシメチルセルロース分子をカルボキシメチルセルロース分解酵素によって切断して低分子化する工程。
・ 前記工程2)で得られた低分子化したキトサン溶液と、前記工程4)で得られた低分子化したカルボキシメチルセルロース溶液とを混合し、互いの正負の官能基を反応させてゲル状に結合する工程。
A method for producing a polymer electrolyte composite comprising the following steps.
1) A process in which chitosan is dissolved in a weak acid to charge the chitosan molecule positively.
A process of reducing positively charged chitosan molecules by cutting them with chitosan degrading enzymes.
A step of dissolving carboxymethyl cellulose in water to negatively charge carboxymethyl cellulose molecules.
-A process of cutting negatively charged carboxymethylcellulose molecules by carboxymethylcellulose degrading enzyme to reduce the molecular weight.
-The low molecular weight chitosan solution obtained in the step 2) and the low molecular weight carboxymethyl cellulose solution obtained in the step 4) are mixed and reacted with each other's positive and negative functional groups to form a gel. The process of combining.
請求項4に記載の高分子電解質複合体の製造方法において、負の荷電を有する物質を高分子電解質複合体内に内包せしめる場合には、低分子化されたキトサン溶液に負の荷電を有する物質の溶液を添加した後、低分子化されたカルボキシメチルセルロース溶液を添加し、正の荷電を有する物質を高分子電解質複合体内に内包せしめる場合には、低分子化されたカルボキシメチルセルロース溶液に正の荷電を有する物質の溶液を添加した後、低分子化されたキトサン溶液を添加することを特徴とする高分子電解質複合体の製造方法。 5. The method for producing a polyelectrolyte complex according to claim 4, wherein a substance having a negative charge is contained in a low molecular weight chitosan solution when a substance having a negative charge is encapsulated in the polyelectrolyte complex. After adding the solution, when adding a low molecular weight carboxymethyl cellulose solution and encapsulating a positively charged substance in the polyelectrolyte complex, the low molecular weight carboxymethyl cellulose solution must be positively charged. A method for producing a polymer electrolyte complex, comprising: adding a solution of a substance having a reduced molecular weight, and then adding a chitosan solution having a reduced molecular weight.
JP2004058920A 2004-03-03 2004-03-03 POLYMER ELECTROLYTE COMPOSITE AND METHOD FOR PRODUCING THE SAME Expired - Fee Related JP4665131B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004058920A JP4665131B2 (en) 2004-03-03 2004-03-03 POLYMER ELECTROLYTE COMPOSITE AND METHOD FOR PRODUCING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004058920A JP4665131B2 (en) 2004-03-03 2004-03-03 POLYMER ELECTROLYTE COMPOSITE AND METHOD FOR PRODUCING THE SAME

Publications (2)

Publication Number Publication Date
JP2005247967A true JP2005247967A (en) 2005-09-15
JP4665131B2 JP4665131B2 (en) 2011-04-06

Family

ID=35028762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004058920A Expired - Fee Related JP4665131B2 (en) 2004-03-03 2004-03-03 POLYMER ELECTROLYTE COMPOSITE AND METHOD FOR PRODUCING THE SAME

Country Status (1)

Country Link
JP (1) JP4665131B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008033497A1 (en) * 2006-09-14 2008-03-20 The Research Foundation Of State University Of New York Nanostructured smart gel for time release drug delivery
JP2008280407A (en) * 2007-05-09 2008-11-20 Shiseido Co Ltd Production method of sphere-shaped composite gel particles
WO2018038669A1 (en) * 2016-08-24 2018-03-01 Organoclick Ab Bio-based polyelectrolyte complex compositions comprising non-water soluble particles
WO2018038671A1 (en) * 2016-08-24 2018-03-01 Organoclick Ab Bio-based pec compositions as binders for fiber based materials, textiles, woven and nonwoven materials
CN109844005A (en) * 2016-08-24 2019-06-04 有机点击股份公司 Biological poly polyelectrolyte complex composition with increased hydrophobic fatty compounds of group
WO2022203407A1 (en) * 2021-03-23 2022-09-29 한양대학교 에리카산학협력단 Composite fiber, solid electrolyte including same, and process for mass production thereof
CN115322444A (en) * 2022-07-12 2022-11-11 常州大学 Antibacterial polyelectrolyte compound and preparation method thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008033497A1 (en) * 2006-09-14 2008-03-20 The Research Foundation Of State University Of New York Nanostructured smart gel for time release drug delivery
JP2008280407A (en) * 2007-05-09 2008-11-20 Shiseido Co Ltd Production method of sphere-shaped composite gel particles
JP2019526717A (en) * 2016-08-24 2019-09-19 オルガノクリック アーベー Bio-based polyelectrolyte complex composition comprising water-insoluble particles
WO2018038671A1 (en) * 2016-08-24 2018-03-01 Organoclick Ab Bio-based pec compositions as binders for fiber based materials, textiles, woven and nonwoven materials
CN109844005A (en) * 2016-08-24 2019-06-04 有机点击股份公司 Biological poly polyelectrolyte complex composition with increased hydrophobic fatty compounds of group
JP2019526716A (en) * 2016-08-24 2019-09-19 オルガノクリック アーベー Bio-based PEC compositions as binders for textile substrates, woven, woven and nonwoven materials
WO2018038669A1 (en) * 2016-08-24 2018-03-01 Organoclick Ab Bio-based polyelectrolyte complex compositions comprising non-water soluble particles
US11319673B2 (en) 2016-08-24 2022-05-03 Organoclick Ab Bio-based PEC compositions as binders for fiber based materials, textiles, woven and nonwoven materials
CN109844005B (en) * 2016-08-24 2022-05-10 有机点击股份公司 Bio-based polyelectrolyte complex compositions containing aliphatic compounds with increased hydrophobicity
JP7131832B2 (en) 2016-08-24 2022-09-06 オルガノクリック アーベー Bio-based polyelectrolyte complex compositions containing water-insoluble particles
JP7162347B2 (en) 2016-08-24 2022-10-28 オルガノクリック アーベー Bio-based PEC compositions as binders for textile substrates, textiles, woven and non-woven materials
US11525211B2 (en) 2016-08-24 2022-12-13 Organoclick Ab Bio-based polyelectrolyte complex compositions comprising non-water soluble particles
US11685820B2 (en) 2016-08-24 2023-06-27 Organoclick Ab Bio-based polyelectrolyte complex compositions with increased hydrophobicity comprising fatty compounds
WO2022203407A1 (en) * 2021-03-23 2022-09-29 한양대학교 에리카산학협력단 Composite fiber, solid electrolyte including same, and process for mass production thereof
CN115322444A (en) * 2022-07-12 2022-11-11 常州大学 Antibacterial polyelectrolyte compound and preparation method thereof

Also Published As

Publication number Publication date
JP4665131B2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
Remuñán-López et al. Effect of formulation and process variables on the formation of chitosan-gelatin coacervates
Fan et al. Development and characterization of soybean protein isolate and fucoidan nanoparticles for curcumin encapsulation
Peniche et al. Chitosan: an attractive biocompatible polymer for microencapsulation
Hein et al. Chitosan composites for biomedical applications: status, challenges and perspectives
Rawat et al. Development and in vitro evaluation of alginate gel–encapsulated, chitosan-coated ceramic nanocores for oral delivery of enzyme
Win et al. Formulation and characterization of pH sensitive drug carrier based on phosphorylated chitosan (PCS)
Peniche et al. Formation and stability of shark liver oil loaded chitosan/calcium alginate capsules
Khan et al. Chitosan-based polymer matrix for pharmaceutical excipients and drug delivery
NZ551326A (en) Gelatine nanoparticles, for use in medicine, and method for the production thereof
US20060115861A1 (en) Structure and method for releasing substance therefrom
WO2005032512A2 (en) Capsules of multilayered neutral polymer films associated by hydrogen bonding
Okhamafe et al. Modulation of protein release from chitosan-alginate microcapsules using the pH-sensitive polymer hydroxypropyl methylcellulose acetate succinate
CN108578357A (en) A kind of protein-polysaccharide self-assembled nanometer gel and the preparation method and application thereof with nucleocapsid structure
Xiong et al. Structure and properties of hybrid biopolymer particles fabricated by co-precipitation cross-linking dissolution procedure
Rufato et al. Hydrogels based on chitosan and chitosan derivatives for biomedical applications
JP4665131B2 (en) POLYMER ELECTROLYTE COMPOSITE AND METHOD FOR PRODUCING THE SAME
CN111743880B (en) Oral nano-microsphere preparation of monoclonal antibody medicines and preparation method thereof
JP2009215220A (en) Microcapsule and method for producing the same
CN111249469B (en) Peptide nanoparticle capable of escaping lysosome and preparation method and application thereof
CN103319733B (en) Method for preparing glycan-negative ion polysaccharide compound nanoparticles from micro-emulsions
CN104710630A (en) Bovine serum albumin nano microsphere preparation method
CN2920163Y (en) Nanometer hemostatic plaster
CN100374477C (en) Nano granules adhesive to mucous membrane, preparation method and application
CN113244189A (en) Preparation method of ultra-small bionic nanoparticles based on erythrocyte membranes
Guerrero et al. Preparation of crosslinked alginate-cellulose derivative microparticles for protein delivery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060919

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061106

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070123

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091225

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101214

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees