JP2005247192A - Regenerative power storage system - Google Patents

Regenerative power storage system Download PDF

Info

Publication number
JP2005247192A
JP2005247192A JP2004062288A JP2004062288A JP2005247192A JP 2005247192 A JP2005247192 A JP 2005247192A JP 2004062288 A JP2004062288 A JP 2004062288A JP 2004062288 A JP2004062288 A JP 2004062288A JP 2005247192 A JP2005247192 A JP 2005247192A
Authority
JP
Japan
Prior art keywords
power
regenerative
load
regenerative power
circuit breaker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004062288A
Other languages
Japanese (ja)
Inventor
Masaki Sato
雅紀 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004062288A priority Critical patent/JP2005247192A/en
Publication of JP2005247192A publication Critical patent/JP2005247192A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a regenerative power storage system preventing the occurrence of power reverse supply to a power receiving point or regeneration lapse by storing regenerative power, even when the generated regenerative power cannot be absorbed by power loading. <P>SOLUTION: Direct current power obtained by rectifying alternating current power from a power receiving system 12 is supplied to a train by a feeding system 11, and the alternating current power is supplied to power loading by a distributing system 17. The regenerative power from the train generated in the feeding system 11 is reversely converted by an inverter system 23 to be supplied to the distributing system. A power storage device 27 connecting to the feeding system through a circuit breaker 28 is provided, and regenerative power electric energy in the feeding and power loading electric energy are compared. When the regenerative power electric energy is larger than the power loading electric energy, the circuit breaker 28 is turned on the power, thereby storing the regenerative power. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電鉄き電設備に用いられ、列車から発生する回生電力が、受電点へ流れ込まないように蓄電する回生電力蓄電システムに関する。   TECHNICAL FIELD The present invention relates to a regenerative power storage system that is used in electric railway feeding facilities and stores power so that regenerative power generated from a train does not flow into a power receiving point.

一般に、列車の制動時に回生電力を発生させることが省エネ上好ましいことから、広く行われている。この場合、発生した回生電力を消費(吸収)しないと充分な制動力が得られないので、電鉄き電設備では、回生電力吸収設備を設けている。   Generally, since it is preferable in terms of energy saving to generate regenerative power at the time of train braking, it is widely performed. In this case, a sufficient braking force cannot be obtained unless the generated regenerative power is consumed (absorbed). Therefore, in the electric railway feeding facility, a regenerative power absorption facility is provided.

従来、電鉄き電設備では、受電系からの交流電力を整流した直流電力を列車に供給するき電系と、受電系からの交流電力を動力負荷に供給する配電系と、前記き電系に生じる列車からの回生電力を逆変換して前記配電系に供給するインバータ系とを設け、回生電力を配電系(交流側)に設けた動力負荷により消費するようにした回生電力吸収システムが用いられていた。   Conventionally, in an electric railway power supply facility, a power supply system that supplies DC power obtained by rectifying AC power from a power reception system to a train, a power distribution system that supplies AC power from the power reception system to a power load, and the power supply system A regenerative power absorption system is provided that includes an inverter system that reversely converts the generated regenerative power from the train and supplies it to the power distribution system, and that consumes the regenerative power by a power load provided in the power distribution system (AC side). It was.

すなわち、このシステムでは、回生電力をインバータを用いて交流に変換し、交流の動力負荷等に供給することで吸収している。   That is, in this system, regenerative electric power is converted into alternating current using an inverter and absorbed by supplying it to an alternating power load or the like.

しかし、このような回生電力吸収システムでは、交流負荷側で、電力を必要としない場合でも回生されるため、余分な回生電力が、受電点へ戻ろうとし、受電点へ乱れた波形の電力を逆供給することになる。このような、受電点への逆供給を抑止しようとすると、回生失効となり、列車ブレーキの効きが悪くなる。さらに、回生失効しないように、回生された全ての電力を蓄えようとすると、交流負荷側で利用できるはずの電力までも損なってしまうため、エネルギーの無駄使いとなる。   However, in such a regenerative power absorption system, regenerative power is regenerated on the AC load side even when no power is required, so excess regenerative power tries to return to the power reception point, and the distorted waveform power is received at the power reception point. Reverse supply. If it is attempted to suppress such reverse supply to the power receiving point, the regeneration is invalidated and the effectiveness of the train brake is deteriorated. Furthermore, if all the regenerated electric power is stored so as not to regenerate and expire, even the electric power that should be available on the AC load side is lost, resulting in wasted energy.

このような問題に対し、交流負荷側に電力吸収装置を設け、回生電力を交流負荷で吸収しきれない場合、電力吸収装置を配電系に接続して、この電力吸収装置によって回生電力を吸収することが提案されている(例えば、特許文献1参照)。   For such a problem, if a power absorber is provided on the AC load side and the regenerative power cannot be absorbed by the AC load, connect the power absorber to the distribution system and absorb the regenerative power by this power absorber. Has been proposed (see, for example, Patent Document 1).

しかし、この提案における電力吸収装置は、単に電力を消費するだけのものであり、省エネ上の効果は低い。また、電力吸収装置は交流の配電系に設けているので、回生電力は必ずインバータ系を介して吸収しなければならず、非効率的である。
特開2003−205773号公報
However, the power absorbing device in this proposal merely consumes electric power, and its energy saving effect is low. Further, since the power absorption device is provided in the AC distribution system, the regenerative power must be absorbed through the inverter system, which is inefficient.
JP 2003-205773 A

このように従来の回生電力吸収システムでは、発生した回生電力を動力負荷で吸収しきれない場合、受電点への逆供給や回生失効が発生し、それを改善した提案でも、省エネ上や効率的に改良の余地があった。   In this way, in the conventional regenerative power absorption system, when the generated regenerative power cannot be absorbed by the power load, reverse supply to the power receiving point and regenerative invalidation occur. There was room for improvement.

本発明の目的は、発生した回生電力を動力負荷で吸収しきれない場合でも、この回生電力を蓄電することにより、受電点への逆供給や回生失効が発生せず、高効率で省エネ効果に優れた回生電力蓄電システムを提供することにある。   Even if the generated regenerative power cannot be absorbed by the power load, the object of the present invention is to store this regenerative power, so that reverse supply to the power receiving point and regenerative invalidation do not occur, resulting in high efficiency and energy saving effect. The object is to provide an excellent regenerative power storage system.

本発明の回生電力蓄電システムは、受電系からの交流電力を整流した直流電力を列車に供給するき電系と、前記受電系からの交流電力を動力負荷に供給する配電系と、前記き電系に生じる列車からの回生電力を逆変換して前記配電系に供給するインバータ系とを有する電鉄用き電設備の回生電力蓄電システムであって、前記き電系に遮断器を介して接続する蓄電装置と、前記き電系における回生電力量を計測する回生電力量計測手段と、前記配電系における動力負荷電力量を計測する動力負荷電力量計測手段と、前記計測された回生電力量と動力負荷電力量とを比較し、回生電力量が動力負荷電力量より大きい場合は前記遮断器を投入させる遮断器投入判定手段とを備えたことを特徴とする。   The regenerative power storage system of the present invention includes a feeder system that supplies DC power obtained by rectifying AC power from a power receiving system to a train, a power distribution system that supplies AC power from the power receiving system to a power load, and the power feeder. A regenerative power storage system for a railway power supply facility having an inverter system that reversely converts regenerative power from a train generated in the system and supplies it to the distribution system, and is connected to the feeder system via a circuit breaker A power storage device, a regenerative power amount measuring means for measuring the regenerative power amount in the feeding system, a power load power amount measuring means for measuring a power load power amount in the power distribution system, and the measured regenerative power amount and power Compared with the load power amount, when the regenerative power amount is larger than the power load power amount, the circuit breaker is provided with a circuit breaker on / off judging means for turning on the circuit breaker.

本発明によれば、回生電力を交流側の動力負荷で吸収しきれない場合は、蓄電装置を直流側に接続し、回生電力を蓄電して吸収するようにしたので、受電点への逆供給や回生失効が発生せず、また、インバータを介すことなく直流側で吸収することから高効率であり、省エネ効果にも優れたものとなる。   According to the present invention, when the regenerative power cannot be absorbed by the power load on the AC side, the power storage device is connected to the DC side, and the regenerative power is stored and absorbed. No regenerative loss occurs, and absorption is performed on the direct current side without passing through an inverter, so that the efficiency is high and the energy saving effect is also excellent.

以下、本発明による回生電力蓄電システムの一実施の形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a regenerative power storage system according to the present invention will be described in detail with reference to the drawings.

図1は、この実施の形態による回生電力蓄電システムのシステム構成を示しており、図2はその制御ブロックを示している。   FIG. 1 shows a system configuration of a regenerative power storage system according to this embodiment, and FIG. 2 shows its control block.

11はき電系で、受電系12から変圧器13を介して供給される交流電力をコンバータ14で整流した直流電力を、それぞれ遮断器15を介して図示しない列車に供給する。17は配電系で、受電系12からしゃ断器18,19や変圧器20を介して供給される交流電力を、それぞれ配電用遮断器21を介して図示しない動力負荷に供給する。23はインバータ系で、き電系11に生じる列車からの回生電力をインバータ24で逆変換し、変圧器25を介して配電系17に供給する。27は列車からの回生電力を蓄電する蓄電装置で、き電系(直流側)11に遮断器28を介して接続している。この遮断器28は、蓄電装置27が動作するタイミングを限定するもので、図2で示す制御ブロックにより制御される。   11 is a feeder system, and DC power obtained by rectifying AC power supplied from the power receiving system 12 via the transformer 13 by the converter 14 is supplied to a train (not shown) via the circuit breaker 15. A power distribution system 17 supplies AC power supplied from the power receiving system 12 through the circuit breakers 18 and 19 and the transformer 20 to a power load (not shown) via the power distribution circuit breaker 21. Reference numeral 23 denotes an inverter system, which reversely converts regenerative power from the train generated in the feeder system 11 by the inverter 24 and supplies it to the distribution system 17 via the transformer 25. Reference numeral 27 denotes a power storage device that stores regenerative power from the train, and is connected to the feeder system (DC side) 11 via a circuit breaker 28. This circuit breaker 28 limits the timing at which the power storage device 27 operates, and is controlled by the control block shown in FIG.

図2において、31はき電電流入力部、32はき電電圧入力部で、き電系統11に生じる回生電力分の電流ID、電圧VDを入力し、その電流、電圧を数値データに変換する。33は方向判定部で、き電電流入力部31とき電電圧入力部32とからのデータによって、電流IDの方向を判別する。34は回生電力量計測手段で、き電電流入力部31とき電電圧入力部32とからのデータによって、回生された電力量を計測する。すなわち、き電系11における回生電力量を計測する。   In FIG. 2, at 31 feeding current input unit and 32 feeding voltage input unit, current ID and voltage VD corresponding to regenerative power generated in feeding system 11 are inputted, and the current and voltage are converted into numerical data. . Reference numeral 33 denotes a direction determining unit that determines the direction of the current ID based on data from the feeding current input unit 31 and the feeding voltage input unit 32. Reference numeral 34 denotes a regenerative electric energy measuring means which measures the regenerated electric energy based on data from the feeding current input unit 31 and the electric voltage input unit 32. That is, the regenerative electric energy in the feeding system 11 is measured.

35は動力負荷電流入力部、36は動力負荷電圧入力部で、配電系17から動力負荷に供給される動力負荷電流IA、動力負荷電圧VAを入力し、その電流、電圧を数値データに変換する。37は動力負荷電力量計測部で、動力負荷電流入力部35と、動力負荷電圧入力部36とからのデータによって、動力負荷電力量を計測する。すなわち、配電系17における動力負荷電力量を計測する。   A power load current input unit 35 and a power load voltage input unit 36 input the power load current IA and the power load voltage VA supplied from the power distribution system 17 to the power load, and convert the current and voltage into numerical data. . Reference numeral 37 denotes a power load power amount measuring unit that measures the power load power amount based on data from the power load current input unit 35 and the power load voltage input unit 36. That is, the power load electric energy in the power distribution system 17 is measured.

38は遮断器投入判定手段で、方向判定部33、回生電力量計測手段34、動力負荷電力量計測手段37からのデータにより、遮断器28の投入可否を判断する。例えば、き電電流IDの方向が回生された電流を表し、かつ動力負荷電力量よりも回生電力量の方が大きい場合は、回生電力を動力負荷側で消費しきれないと判断し、蓄電装置27用の遮断器28に投入指令を出力する。すなわち、計測された回生電力量と動力負荷電力量とを比較し、回生電力量が動力負荷電力量より大きい場合は遮断器28を投入させ、消費できない分だけの電力を蓄電装置27に蓄電させる。反対に、回生電力量が動力負荷電力量より少ない場合は、回生電力を動力負荷側で消費しきれると判断し、遮断器28を遮断させて、回生電力をすべて配電系17に供給するように構成したものである。   Reference numeral 38 denotes a circuit breaker insertion determination unit, which determines whether or not the circuit breaker 28 can be input based on data from the direction determination unit 33, the regenerative electric energy measurement unit 34, and the power load electric energy measurement unit 37. For example, when the direction of the feeding current ID represents the regenerated current and the regenerative power amount is larger than the power load power amount, it is determined that the regenerative power cannot be consumed on the power load side, and the power storage device A closing command is output to the circuit breaker 28 for 27. That is, the measured regenerative power amount is compared with the power load power amount. If the regenerative power amount is larger than the power load power amount, the circuit breaker 28 is turned on, and the power storage device 27 stores the power that cannot be consumed. . On the contrary, when the regenerative power amount is smaller than the power load power amount, it is determined that the regenerative power can be consumed on the power load side, and the circuit breaker 28 is cut off so that all the regenerative power is supplied to the power distribution system 17. It is composed.

上記構成において、受電系12からの交流電力はコンバータ14で直流電力に変換され、き電系11により遮断器15を介して図示しない列車に、その運転動力として供給される。また、受電系12からの交流電力は配電系17から遮断器21を介して図示しない動力負荷に供給される。   In the above configuration, AC power from the power receiving system 12 is converted into DC power by the converter 14 and supplied as operating power to a train (not shown) via the circuit breaker 15 by the feeder system 11. In addition, AC power from the power receiving system 12 is supplied from the power distribution system 17 to a power load (not shown) via the circuit breaker 21.

このような状態において、列車が制動を行うと、き電系11に回生電力が発生する。この回生電力の大きさは、同時に制動された列車数などによって異なる。また、配電系17における動力負荷への電力供給量も負荷状態などにより変化する。これら回生電力量及び動力負荷電力量は図2で示した各計測手段34,37により計測され、遮断器投入判定手段38により互いに比較されている。   In such a state, when the train brakes, regenerative power is generated in the feeder system 11. The magnitude of this regenerative power varies depending on the number of trains braked at the same time. In addition, the amount of power supplied to the power load in the power distribution system 17 also changes depending on the load state. These regenerative electric energy and power load electric energy are measured by the measuring means 34 and 37 shown in FIG.

ここで、回生電力量が動力負荷電力量より少ない場合は、発生した回生電力は配電系17に接続された動力負荷により吸収可能であり、すべての回生電力はインバータ系23を介して配電系17に供給され、動力負荷により消費される。このように回生電力が動力負荷で消費されることにより、その分、受電系12からの受電電力量が低減されるため、省エネとなる。   Here, when the regenerative power amount is smaller than the power load power amount, the generated regenerative power can be absorbed by the power load connected to the power distribution system 17, and all the regenerative power is distributed via the inverter system 23. Is consumed by the power load. Since the regenerative power is consumed by the power load in this way, the amount of power received from the power receiving system 12 is reduced accordingly, and thus energy saving is achieved.

これに対し、回生電力量が動力負荷電力量より大きい場合は、発生した回生電力すべてを配電系17に接続された動力負荷だけでは吸収しきれなくなり、このままでは受電点への電力逆供給や回生失効が発生する。そこで、遮断器投入判定手段38は、回生電力量が動力負荷電力量より大きい場合は、遮断器27を投入し蓄電装置27をき電系(直流側)28に接続する。この結果、配電系17に接続された動力負荷では吸収しきれない分の回生電力は、直流側において蓄電装置27に蓄電される。   On the other hand, when the regenerative power amount is larger than the power load power amount, all the generated regenerative power cannot be absorbed by only the power load connected to the power distribution system 17, and in this state, the reverse power supply or regenerative power to the power receiving point is not possible. Expiry occurs. Therefore, when the regenerative electric energy is larger than the power load electric energy, the circuit breaker input determining means 38 inputs the circuit breaker 27 and connects the power storage device 27 to the feeder system (DC side) 28. As a result, the regenerative power that cannot be absorbed by the power load connected to the power distribution system 17 is stored in the power storage device 27 on the DC side.

すなわち、通常運用状態では、列車から回生された回生電力は、動力負荷等に吸収される。しかし、動力負荷側で吸収できない電力量の場合は、蓄電装置27用の遮断器28を投入し、余分な電力量のみを蓄電装置27にて電力蓄積する。つまり、回生失効させることなく、回生電力を蓄積できるように働かせる。   That is, in the normal operation state, regenerative power regenerated from the train is absorbed by a power load or the like. However, in the case of the amount of power that cannot be absorbed on the power load side, the circuit breaker 28 for the power storage device 27 is turned on, and only the excess power amount is stored in the power storage device 27. In other words, it works so that regenerative power can be accumulated without causing regeneration to expire.

このように回生電力を交流側の動力負荷で吸収しきれない場合は、蓄電装置を直流側に接続し、回生電力を蓄電して吸収するようにしたので、受電点への電力逆供給や回生失効が発生しない。また、交流側で吸収しきれない回生電力は、インバータを介すことなく直流側で吸収することから高効率であり、省エネ効果にも優れたものとなる。   When the regenerative power cannot be absorbed by the power load on the AC side in this way, the power storage device is connected to the DC side so that the regenerative power can be stored and absorbed. No revocation occurs. In addition, the regenerative power that cannot be absorbed on the AC side is absorbed on the DC side without going through the inverter, so it is highly efficient and has an excellent energy saving effect.

本発明による回生電力蓄電システムの一実施の形態を示すシステム構成図である。1 is a system configuration diagram showing an embodiment of a regenerative power storage system according to the present invention. 同上一実施の形態に用いられる制御機能を示すブロック図である。It is a block diagram which shows the control function used for one embodiment same as the above.

符号の説明Explanation of symbols

11 き電系
12 受電系
17 配電系
23 インバータ系
27 蓄電装置
28 蓄電装置用の遮断器
34 回生電力量計測手段
37 動力負荷電力量計測手段
38 遮断器投入判定手段
DESCRIPTION OF SYMBOLS 11 Feeding system 12 Power receiving system 17 Distribution system 23 Inverter system 27 Power storage device 28 Circuit breaker for power storage device 34 Regenerative electric energy measuring means 37 Power load electric energy measuring means 38 Breaker input judging means

Claims (1)

受電系からの交流電力を整流した直流電力を列車に供給するき電系と、前記受電系からの交流電力を動力負荷に供給する配電系と、前記き電系に生じる列車からの回生電力を逆変換して前記配電系に供給するインバータ系とを有する電鉄用き電設備の回生電力蓄電システムであって、
前記き電系に遮断器を介して接続する蓄電装置と、
前記き電系における回生電力量を計測する回生電力量計測手段と、
前記配電系における動力負荷電力量を計測する動力負荷電力量計測手段と、
前記計測された回生電力量と動力負荷電力量とを比較し、回生電力量が動力負荷電力量より大きい場合は前記遮断器を投入させる遮断器投入判定手段と
を備えたことを特徴とする回生電力蓄電システム。
A feeder system that supplies a train with DC power rectified from the AC power received from the power receiving system, a power distribution system that supplies AC power from the power receiving system to a power load, and a regenerative power generated from the train that is generated in the power feeding system. A regenerative power storage system for electric railway equipment having an inverter system that reversely converts and supplies the power distribution system,
A power storage device connected to the feeder via a circuit breaker;
Regenerative energy measuring means for measuring the regenerative energy in the feeding system;
Power load energy measuring means for measuring the power load energy in the distribution system;
A circuit breaker input determining means for comparing the measured regenerative power amount with the power load power amount and, when the regenerative power amount is larger than the power load power amount, for turning on the circuit breaker. Electric power storage system.
JP2004062288A 2004-03-05 2004-03-05 Regenerative power storage system Pending JP2005247192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004062288A JP2005247192A (en) 2004-03-05 2004-03-05 Regenerative power storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004062288A JP2005247192A (en) 2004-03-05 2004-03-05 Regenerative power storage system

Publications (1)

Publication Number Publication Date
JP2005247192A true JP2005247192A (en) 2005-09-15

Family

ID=35028097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004062288A Pending JP2005247192A (en) 2004-03-05 2004-03-05 Regenerative power storage system

Country Status (1)

Country Link
JP (1) JP2005247192A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055918A (en) * 2006-08-29 2008-03-13 Meidensha Corp Control method for dc feeder system
DE102006062424A1 (en) * 2006-12-27 2008-07-03 Siemens Ag Method for regenerating electrical energy of rail vehicles
JP2010132209A (en) * 2008-12-08 2010-06-17 Railway Technical Res Inst Electric power interchange system in direct-current electric railroad and alternating-current electric railroad
DE102009035263A1 (en) * 2009-07-29 2011-02-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device for supplying electrical power to rail-bound vehicle, has energy storage devices storing electricity and delivering stored electricity into power supply network with respect to electrical power requirement of vehicle
JP2011056996A (en) * 2009-09-07 2011-03-24 Toshiba Corp Electric power system for electric railway
WO2014033862A1 (en) * 2012-08-29 2014-03-06 三菱電機株式会社 Station building power supply device and method for controlling same
WO2014068815A1 (en) * 2012-10-31 2014-05-08 株式会社 東芝 Power management device and power management system
JP2014088157A (en) * 2012-10-31 2014-05-15 Toshiba Corp Power management device
JP2014104935A (en) * 2012-11-29 2014-06-09 Toshiba Corp Power management system and power management device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008055918A (en) * 2006-08-29 2008-03-13 Meidensha Corp Control method for dc feeder system
DE102006062424A1 (en) * 2006-12-27 2008-07-03 Siemens Ag Method for regenerating electrical energy of rail vehicles
DE102006062424B4 (en) * 2006-12-27 2009-02-12 Siemens Ag Method for regenerating electrical energy of rail vehicles
JP2010132209A (en) * 2008-12-08 2010-06-17 Railway Technical Res Inst Electric power interchange system in direct-current electric railroad and alternating-current electric railroad
DE102009035263B4 (en) * 2009-07-29 2015-10-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Electrical power supply of a rail-bound vehicle
DE102009035263A1 (en) * 2009-07-29 2011-02-03 Deutsches Zentrum für Luft- und Raumfahrt e.V. Device for supplying electrical power to rail-bound vehicle, has energy storage devices storing electricity and delivering stored electricity into power supply network with respect to electrical power requirement of vehicle
JP2011056996A (en) * 2009-09-07 2011-03-24 Toshiba Corp Electric power system for electric railway
WO2014033862A1 (en) * 2012-08-29 2014-03-06 三菱電機株式会社 Station building power supply device and method for controlling same
CN104584378A (en) * 2012-08-29 2015-04-29 三菱电机株式会社 Station building power supply device and method for controlling same
AU2012388975B2 (en) * 2012-08-29 2016-04-14 Mitsubishi Electric Corporation Station building power supply device and method for controlling same
US9859715B2 (en) 2012-08-29 2018-01-02 Mitsubishi Electric Corporation Station-building power supply device and method of controlling the same
JP2014088157A (en) * 2012-10-31 2014-05-15 Toshiba Corp Power management device
WO2014068815A1 (en) * 2012-10-31 2014-05-08 株式会社 東芝 Power management device and power management system
JP2014104935A (en) * 2012-11-29 2014-06-09 Toshiba Corp Power management system and power management device

Similar Documents

Publication Publication Date Title
US7451842B2 (en) Control system for electric motor car
WO2002029952A1 (en) Power supply/demand control system
JP2005247192A (en) Regenerative power storage system
JP6004833B2 (en) Station building power supply
RU2492072C1 (en) Electric rolling stock electric power converter
US9859715B2 (en) Station-building power supply device and method of controlling the same
CA2506221A1 (en) Vehicle auxiliary electric-power-supplying system
JP2010158098A (en) Power supply unit and electronic apparatus
JP2009089503A (en) Vehicle controller with storage device
JP4432675B2 (en) Power converter
EP3281820B1 (en) Station building power supply device
KR101273267B1 (en) Smart energy management system using energy storage system
JP5398433B2 (en) Electric railway power system
JP2004217205A (en) Brake effort monitor
RU2238199C2 (en) Brake system control device
JP3684200B2 (en) Regenerative braking control device
JP2005075318A (en) Regenerative braking controller
JP6132753B2 (en) Station building power supply
JP6597168B2 (en) Control method and control device for regenerative inverter for electric railway
KR100862288B1 (en) Device for detecting circulating current of regenerative inverter in current substation and control method thereof
KR100865167B1 (en) Control method of regenerative inverter in current substation
KR100758979B1 (en) Regenerative inverter system for DC railway system and method thereof
JPH05338481A (en) Feeding method for ac electric railway
CN111016688B (en) Tramcar based on hydrogen energy
JP5383169B2 (en) Power interchange system for DC electric railway and AC electric railway