JP2005243748A - Nanoscale field-effect device with space between source and drain electrodes processed with self-organized multilayer film, and its manufacturing method - Google Patents

Nanoscale field-effect device with space between source and drain electrodes processed with self-organized multilayer film, and its manufacturing method Download PDF

Info

Publication number
JP2005243748A
JP2005243748A JP2004048833A JP2004048833A JP2005243748A JP 2005243748 A JP2005243748 A JP 2005243748A JP 2004048833 A JP2004048833 A JP 2004048833A JP 2004048833 A JP2004048833 A JP 2004048833A JP 2005243748 A JP2005243748 A JP 2005243748A
Authority
JP
Japan
Prior art keywords
nanometer
field effect
effect element
semiconductor substrate
scale field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004048833A
Other languages
Japanese (ja)
Inventor
Takao Ishida
敬雄 石田
Masayo Horikawa
昌代 堀川
Yoshinori Nakano
美紀 中野
Koji Miyake
晃司 三宅
Yasuhisa Naito
泰久 内藤
Wataru Mizutani
亘 水谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004048833A priority Critical patent/JP2005243748A/en
Publication of JP2005243748A publication Critical patent/JP2005243748A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nanometer-sale field-effect device, wherein a signal responds only to a specific electric field at room temperature, and to provide its manufacturing method. <P>SOLUTION: A field effect device is comprised of a source electrode prepared in nanometer scale, a gate electrode and a drain electrode that are formed on a semiconductor substrate. Then, a space on the semiconductor substrate between the source and drain electrodes is covered by a film, that is formed by stacking a metal thiolate as a compound of carboxy tiol and metal, represented by general Formula, HOOC(CH<SB>2</SB>)<SB>n</SB>SH (n: an integer of 3 to 30), thereby obtaining a nanometer scale field-effect device. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、電界効果素子、特にナノスケールの電界効果素子に関する技術を提供する。
より詳しくは、絶縁性分子多層膜(チオール・金属イオン交互積層膜)をチャンネルにしたナノスケールの電界効果素子を提供する。
The present invention provides a technique related to a field effect element, particularly a nanoscale field effect element.
More specifically, the present invention provides a nanoscale field effect element having an insulating molecular multilayer film (alternate laminated film of thiols and metal ions) as a channel.

単一分子を利用した分子電子素子が作られているが、現在は特性が4K以下の極低温で測定されており、これまでのシリコンなどの素子のようなゲート電圧に対する素直な依存性は見られず、クーロンブロッケードなどに由来する振動的な挙動、すなわち特定のゲート電圧のみで大きな電界効果による電流が観察され、そのゲート電圧が周期的であるということが知られている。このために室温では、熱的な電子の振動などのためにこの振動が見られなくなり、有機分子を用いるナノスケールの電界効果素子では、ゲート電圧に対する電界効果のバラツキが大きいことが知られている(非特許文献1)。
この室温での不安定性のために分子で電子回路網を作成した場合に、電気信号を増幅する機能を付加できない。このために実用にまで至っていない。3端子構造の電界効果素子の試作例も報告されているが(非特許文献2参照)、信号の再現性が悪く、さらに、分子集合体を有効に化学結合で電極と結合させることが出来なかった。
有機分子と微粒子を組み合わせた系においてはこの問題が解決され室温での単一電子素子が既に報告されているが、(特許文献1参照)この場合、試薬として大気中で扱いにくいシラン系化合物を用いており、試薬の扱いに難点があった。また、多層の分子膜については、カルボキシチオールと銅イオンを用いて金属チオレートの多層の分子膜を形成する方法が報告されている (非特許文献2参照)。

ParkなどNature 417(2002)722. S.D. Evans et al. J. Am. Chem. Soc. 113(1991)5866 特開2000−349275号公報
Molecular electronic devices using single molecules have been made, but now the characteristics are measured at an extremely low temperature of 4K or less, and the direct dependence on the gate voltage like devices such as silicon has been observed so far. However, it is known that a vibrational behavior derived from Coulomb blockade or the like, that is, a current due to a large electric field effect is observed only with a specific gate voltage, and that the gate voltage is periodic. For this reason, at room temperature, this vibration is not seen due to thermal vibration of electrons, and it is known that the nanoscale field effect element using organic molecules has a large variation in the field effect with respect to the gate voltage. (Non-Patent Document 1).
Due to the instability at room temperature, when an electronic network is made of molecules, a function of amplifying an electric signal cannot be added. For this reason, it has not reached practical use. Although a prototype of a three-terminal field effect device has been reported (see Non-Patent Document 2), the signal reproducibility is poor, and furthermore, the molecular assembly cannot be effectively bonded to the electrode by chemical bonding. It was.
In a system in which organic molecules and fine particles are combined, this problem has been solved and a single electronic device at room temperature has already been reported (see Patent Document 1). In this case, a silane compound that is difficult to handle in the atmosphere is used as a reagent. However, there was a difficulty in handling the reagents. As for the multilayer molecular film, a method of forming a multilayer molecular film of metal thiolate using carboxythiol and copper ions has been reported (see Non-Patent Document 2).

Nature 417 (2002) 722. SD Evans et al. J. Am. Chem. Soc. 113 (1991) 5866 JP 2000-349275 A

本発明は、3端子構造の電界効果素子を作成するに際して、ナノメートルスケール間隔を有する電極上に、本発明では室温、大気中で扱いやすい単純な有機硫黄化合物であるカルボキシチオールと金属イオンの化合物(金属チオレート)を用いて、この試薬を電極間に確実に分子を吸着させて、ソース、ドレイン間を流れるナノ電極を流れる電流が特定のゲート電圧でのみ動作する電界効果素子を見出し、本発明を完成させるに至った。 The present invention provides a compound of carboxythiol and a metal ion, which is a simple organic sulfur compound that is easy to handle in the atmosphere at room temperature in the present invention, on an electrode having a nanometer-scale interval when a field effect device having a three-terminal structure is produced. Using the (metal thiolate), a molecule is reliably adsorbed between the electrodes, and a field effect element in which the current flowing through the nanoelectrode flowing between the source and drain operates only at a specific gate voltage is found. It came to complete.

本発明は、一般式
H OOC(CHSH(式中、nは3〜30の整数である。)で表わされるチオール、と金、銀、銅、鈴、ニッケルなどの金属との化合物である金属チオレートを用いてソース、ドレイン間を流れる電流が特定のゲート電圧でのみ動作する電界効果素子を得る。 すなわち、
半導体基板に設けられ、ナノメートルスケールで作成されたソース電極、ゲート電極、ドレイン電極からなる電界効果素子において、ソース電極とドレイン電極間を結ぶ半導体基板上の空間を、一般式HOOC(CHSH(式中、nは3〜30の整数である。)で表わされるカルボキシチオールと金属の化合物である金属チオレートを積層して作製した膜で被覆したナノメートルスケール電界効果素子に関する。
The present invention provides a general formula
A metal thiolate which is a compound of a thiol represented by H 2 OOC (CH 2 ) n SH (where n is an integer of 3 to 30) and a metal such as gold, silver, copper, bell or nickel is used. Thus, a field effect element is obtained in which the current flowing between the source and drain operates only at a specific gate voltage. That is,
In a field effect element provided on a semiconductor substrate and made of a source electrode, a gate electrode, and a drain electrode made on a nanometer scale, a space on the semiconductor substrate connecting the source electrode and the drain electrode is represented by a general formula HOOC (CH 2 ) The present invention relates to a nanometer-scale field effect element coated with a film prepared by laminating carboxythiol represented by n SH (wherein n is an integer of 3 to 30) and a metal thiolate that is a metal compound.

本発明によりソース、ドレイン間を流れる電流が特定のゲート電圧でのみ動作する電界効果素子を得ることができた。 According to the present invention, it is possible to obtain a field effect element in which a current flowing between a source and a drain operates only at a specific gate voltage.

本発明において用いる金属チオレートの金属イオンとしては、従来から自己組織化多層分子膜用のイオンとして用いられている金属なら何でも良いが、代表的には金、銀、銅、鈴、ニッケルから選ばれる1種を挙げることができる。 The metal ion of the metal thiolate used in the present invention may be any metal conventionally used as an ion for a self-assembled multilayer molecular film, but is typically selected from gold, silver, copper, bell, and nickel. One type can be mentioned.

本発明において用いるチオールは、HOOC(CHSH(式中、nは3〜30の整数である。)で表わされるカルボキシチオールであるが、nが3以下では、又はnが30以上では、効果が得られない。代表的には、メルカプトテトラデカン酸(HOOC(CH2)15 SH)を挙げることができる。 The thiol used in the present invention is a carboxythiol represented by HOOC (CH 2 ) n SH (where n is an integer of 3 to 30), but n is 3 or less, or n is 30 or more. The effect is not obtained. A typical example is mercaptotetradecanoic acid (HOOC (CH 2 ) 15 SH).

また、本発明に、周知のタイプの電界効果素子において、本発明を実施することが出来る。すなわち、ゲート電極が、半導体基板の裏面にあるバックゲート型であるナノメートルスケール電界効果素子及びゲート電極が、半導体基板の表面にあるトップゲート型であるナノメートルスケール電界効果素子において本発明を実施することが出来る。
In addition, the present invention can be implemented in a field effect element of a known type. That is, the present invention is implemented in a nanometer-scale field effect element that is a back gate type whose gate electrode is on the back surface of the semiconductor substrate and in a nanometer scale field effect element that is a top gate type in which the gate electrode is on the surface of the semiconductor substrate. I can do it.

さらに、本発明は、どのような半導体基板でも利用することが出来るが、とくに半導体基板が、シリコンであることが望ましい。通常、ソース電極、ドレイン電極、ゲート電極は、シリコン半導体の表面に薄いシリコン酸化物(絶縁体)を作成し、これを介してこれらの電極が設けられている。
Furthermore, the present invention can be used with any semiconductor substrate, but it is particularly desirable that the semiconductor substrate be silicon. Usually, a source electrode, a drain electrode, and a gate electrode are formed by forming a thin silicon oxide (insulator) on the surface of a silicon semiconductor, and these electrodes are provided therebetween.

本発明の電界効果素子の典型的な製造方法は、図1に示すような金で作成したソースとドレインの電極を有する電界効果素子を、金で作成したソースとドレインの電極間に、(1)一般式HS−(CH−COOH(式中、nは3〜30の整数である。)で表わされるメルカプトカルボン酸のアルコール溶液に浸漬し2〜72時間放置し、続いて、(2) 一般式Cu−(COOH)で表わされるカルボン酸銅のアルコール溶液に1〜30分浸漬し、さらに、(1),(2)のプロセスを交互に繰り返すことで得られる交互多層膜を作成することにより、製造することが出来る。
ここで、アルコールとしては、メタノール、エタノール、プロパノール等が用いられるが、エタノールが好ましい。カルボン酸金属塩として、酢酸金属塩、プロピオン酸金属塩を用いることが出来る。
プロセスの温度は、0〜50℃であり、室温が好ましい。
A typical method of manufacturing a field effect element according to the present invention includes a field effect element having source and drain electrodes made of gold as shown in FIG. ) in the general formula HS- (CH 2) n -COOH (wherein, n is an integer from 3 to 30.) immersed in an alcohol solution of mercapto carboxylic acids represented by the left for 2 to 72 hours, followed by ( 2) An alternating multilayer film obtained by immersing in an alcohol solution of copper carboxylate represented by the general formula Cu- (COOH) 2 for 1 to 30 minutes and further repeating the processes (1) and (2) alternately. It can be manufactured by creating.
Here, methanol, ethanol, propanol or the like is used as the alcohol, but ethanol is preferable. As the carboxylic acid metal salt, an acetic acid metal salt or a propionic acid metal salt can be used.
The temperature of the process is 0-50 ° C., preferably room temperature.

次に、実施例を挙げて本発明を具体的に説明するが、本発明はそれらの実施例のみに限定されるものではない。
(実施例1)
図1に示す20ナノメートル間隔を持つ金製のナノ電極が形成されたシリコン酸化膜付きシリコン基板を、一層目の自己組織化膜形成のため、メルカプトヘキサデカン酸(HS(CH2)15COOH、以後MHDAと略す)をエタノール中に1mMの濃度に希釈した溶液中に24時間浸漬した。
続いて、一層目と二層目の分子の結合に用いる金属イオンの供給のため、酢酸銅((CH3COO)2Cu)をエタノール中に1 mMの濃度に希釈した溶液に、一層目を形成したシリコン基板を5分間浸漬させた。
このプロセスを6回繰り返すことにより12層の多層膜が形成され、電極間に分子が架橋され、図1に示すようなデバイス(電界効果素子)を作成した。またこのナノ電極に分子が付着していることを、X線光電子分光法で確認した。
電界をシリコン基板側から印加した状態(バックゲート型)でナノ電極間の電気特性を測定した。
その結果を図2に示す。ある特定のゲート電圧のみにて、ナノ電極を流れる電流が増加した。これは単一電子素子に固有な性質である。またこれは室温で観察された。
Next, although an Example is given and this invention is demonstrated concretely, this invention is not limited only to those Examples.
(Example 1)
A silicon substrate with a silicon oxide film on which gold nanoelectrodes having a spacing of 20 nanometers shown in FIG. 1 are formed is formed by using mercaptohexadecanoic acid (HS (CH2) 15COOH, MHDA And dipped in a solution diluted to a concentration of 1 mM in ethanol for 24 hours.
Subsequently, the first layer of silicon is formed in a solution of copper acetate ((CH3COO) 2Cu) diluted to 1 mM in ethanol to supply metal ions for bonding the first and second layer molecules. The substrate was immersed for 5 minutes.
By repeating this process 6 times, a 12-layer multilayer film was formed, and molecules were cross-linked between the electrodes, and a device (field effect element) as shown in FIG. 1 was produced. Further, it was confirmed by X-ray photoelectron spectroscopy that molecules were attached to the nanoelectrode.
The electrical characteristics between the nanoelectrodes were measured with an electric field applied from the silicon substrate side (back gate type).
The result is shown in FIG. The current flowing through the nanoelectrode increased only at a specific gate voltage. This is an inherent property of a single electronic device. This was also observed at room temperature.

(比較例1)
実施例1においてMHDAに代えて、メルカプトビフェニルメタン酸を用いてデバイス(電界効果素子)を作成した。電界をシリコン基板側から印加した状態でナノ電極間の電気特性を測定した。その結果を図3に示す。
電界強度に依存したナノ電極を流れる電流は、測定できなかった。
(Comparative Example 1)
In Example 1, a device (field effect element) was prepared using mercaptobiphenylmethanoic acid instead of MHDA. The electrical characteristics between the nanoelectrodes were measured with an electric field applied from the silicon substrate side. The result is shown in FIG.
The current flowing through the nanoelectrode depending on the electric field strength could not be measured.

本発明のナノメートルスケール電界効果素子は、ナノ電極を流れる電流が特定のゲート電圧でのみ動作するため、電界効果素子として有望なばかりか、センサーなど他のナノメートルスケールの素子への応用が期待できる。 The nanometer-scale field effect element of the present invention is not only promising as a field effect element because the current flowing through the nanoelectrode operates only at a specific gate voltage, but is expected to be applied to other nanometer-scale elements such as sensors. it can.

本発明の電界効果素子の模式図Schematic diagram of the field effect element of the present invention 実施例1における電界―電流特性図Electric field-current characteristic diagram in Example 1 比較例における電界―電流特性図Electric field-current characteristics in comparative example

Claims (8)

半導体基板に設けられ、ナノメートルスケールで作成されたソース電極、ゲート電極、ドレイン電極からなる電界効果素子において、ソース電極とドレイン電極間を結ぶ半導体基板上の空間を、一般式HOOC(CHSH(式中、nは3〜30の整数である。)で表わされるカルボキシチオールと金属によってできる化合物である金属チオレートを積層して作製した膜で被覆したナノメートルスケール電界効果素子。
In a field effect element provided on a semiconductor substrate and made of a source electrode, a gate electrode, and a drain electrode made on a nanometer scale, a space on the semiconductor substrate connecting the source electrode and the drain electrode is represented by a general formula HOOC (CH 2 ) A nanometer-scale field effect element coated with a film prepared by laminating a metal thiolate which is a compound made of metal and a carboxythiol represented by n SH (where n is an integer of 3 to 30).
金属イオンが、金、銀、銅、鈴、ニッケルから選ばれる1種である請求項1に記載したナノメートルスケール電界効果素子。 The nanometer-scale field effect element according to claim 1, wherein the metal ion is one selected from gold, silver, copper, bell, and nickel. 積層が自己組織化膜形成により行われる請求項1又は請求項2に記載したナノメートルスケール電界効果素子。 The nanometer-scale field effect element according to claim 1 or 2, wherein the lamination is performed by forming a self-assembled film. ゲート電極が、半導体基板の裏面にあるバックゲート型である請求項1ないし請求項3のいずれかひとつに記載したナノメートルスケール電界効果素子。 The nanometer-scale field effect element according to any one of claims 1 to 3, wherein the gate electrode is of a back gate type on the back surface of the semiconductor substrate. ゲート電極が、半導体基板の表面にあるトップゲート型である請求項1ないし請求項3のいずれかひとつに記載したナノメートルスケール電界効果素子。 4. The nanometer-scale field effect element according to claim 1, wherein the gate electrode is a top gate type on the surface of the semiconductor substrate. 半導体基板が、シリコンである請求項1ないし4のいずれかひとつに記載したナノメートルスケール電界効果素子。 The nanometer-scale field effect element according to any one of claims 1 to 4, wherein the semiconductor substrate is silicon. ナノメートル間隔を持つナノ電極が形成されたシリコン酸化膜付きシリコン基板を、一般式HOOC(CHSH(式中、nは3〜30の整数である。)で表わされるカルボキシチオールのアルコール溶液中に浸漬して2〜72時間放置し、次いで、有機金属塩のアルコール溶液に当該シリコン基板を浸漬して1〜30分放置し、乾燥後、このプロセスを複数回繰り返すことを特徴とするナノメートルスケール電界効果素子の製造方法。 A silicon substrate with a silicon oxide film on which nanoelectrodes having nanometer intervals are formed is a carboxythiol alcohol represented by the general formula HOOC (CH 2 ) n SH (where n is an integer of 3 to 30). Immerse in a solution and leave for 2 to 72 hours, then immerse the silicon substrate in an alcohol solution of an organometallic salt and leave for 1 to 30 minutes, and after drying, repeat this process multiple times Manufacturing method of nanometer scale field effect element. ナノ電極が金であり、アルコールがエタノールであり、有機酸が酢酸である請求項7に記載したナノメートルスケール電界効果素子の製造方法。
The method for producing a nanometer-scale field effect element according to claim 7, wherein the nanoelectrode is gold, the alcohol is ethanol, and the organic acid is acetic acid.
JP2004048833A 2004-02-24 2004-02-24 Nanoscale field-effect device with space between source and drain electrodes processed with self-organized multilayer film, and its manufacturing method Pending JP2005243748A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004048833A JP2005243748A (en) 2004-02-24 2004-02-24 Nanoscale field-effect device with space between source and drain electrodes processed with self-organized multilayer film, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048833A JP2005243748A (en) 2004-02-24 2004-02-24 Nanoscale field-effect device with space between source and drain electrodes processed with self-organized multilayer film, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005243748A true JP2005243748A (en) 2005-09-08

Family

ID=35025188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048833A Pending JP2005243748A (en) 2004-02-24 2004-02-24 Nanoscale field-effect device with space between source and drain electrodes processed with self-organized multilayer film, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005243748A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681837A (en) * 2013-11-19 2014-03-26 浙江大学 Molybdenum disulfide-cadmium selenide quantum dot hybrid field effect opto-transistor and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681837A (en) * 2013-11-19 2014-03-26 浙江大学 Molybdenum disulfide-cadmium selenide quantum dot hybrid field effect opto-transistor and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4527194B1 (en) Graphene structure, method for producing graphene structure, and electronic device
Fang et al. Area-selective atomic layer deposition: conformal coating, subnanometer thickness control, and smart positioning
Kim et al. Two-dimensional NbS2 gas sensors for selective and reversible NO2 detection at room temperature
Park et al. Self-assembled and highly selective sensors based on air-bridge-structured nanowire junction arrays
US9568447B2 (en) Fluid sensor chip and method for manufacturing the same
JP4825863B2 (en) Manufacture of graphene nanodevices
Gao et al. Site-selective deposition and micropatterning of SrTiO3 thin film on self-assembled monolayers by the liquid phase deposition method
JP2008053631A (en) Organic thin film having electrochemical activity, method of manufacturing the same, and device using the same
KR101212012B1 (en) Patterning method of graphene using microfluidic systems
GB2496956A (en) Hybrid layered nanotubes/graphene film is a transparent conductor
WO2004106223A1 (en) Carbon nanotube device, process for producing the same and carbon nanotube transcriptional body
US20160072085A1 (en) Organic-Inorganic Hybrid Multilayer Gate Dielectrics for Thin Film Transistors
US9331151B2 (en) Method for coupling a graphene layer and a substrate and device comprising the graphene/substrate structure obtained
US9691998B2 (en) Single-walled carbon nanotubes/quantum dot hybrid structures and methods of making and use of the hybrid structures
TWI229704B (en) Molecular electronic device using metal-metal bonded complexes
Wu et al. Graphene oxide/graphene hybrid film with ultrahigh ammonia sensing performance
JP4622424B2 (en) Method for manufacturing insulated gate field effect transistor
Agbonlahor et al. Interfacial ammonia selectivity, atmospheric passivation, and molecular identification in graphene-nanopored activated carbon molecular-sieve gas sensors
KR20180069372A (en) ZnO nanowire gas sensor functionalized with Au, Pt and Pd nanoparticle using room temperature sensing properties and method of manufacturing the same
Lin et al. Comparison between performances of In2O3 and In2TiO5-based EIS biosensors using post plasma CF4 treatment applied in glucose and urea sensing
US8178787B2 (en) Circuit board including aligned nanostructures
JP2005243748A (en) Nanoscale field-effect device with space between source and drain electrodes processed with self-organized multilayer film, and its manufacturing method
KR20120100536A (en) Gas sensor having ag-doped zno nanowire and method of manufacturing the same
KR101213190B1 (en) Fabricating method of piezoelectric nanogenerator
JP2008153257A (en) Semiconductor device, and its fabrication method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112