JP2005243303A - Member for electrochemical element and its manufacturing method, and the electrochemical element using it - Google Patents

Member for electrochemical element and its manufacturing method, and the electrochemical element using it Download PDF

Info

Publication number
JP2005243303A
JP2005243303A JP2004048605A JP2004048605A JP2005243303A JP 2005243303 A JP2005243303 A JP 2005243303A JP 2004048605 A JP2004048605 A JP 2004048605A JP 2004048605 A JP2004048605 A JP 2004048605A JP 2005243303 A JP2005243303 A JP 2005243303A
Authority
JP
Japan
Prior art keywords
active material
material layer
polymer compound
electrochemical element
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004048605A
Other languages
Japanese (ja)
Inventor
Hiromi Totsuka
博己 戸塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tomoegawa Co Ltd
Original Assignee
Tomoegawa Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tomoegawa Paper Co Ltd filed Critical Tomoegawa Paper Co Ltd
Priority to JP2004048605A priority Critical patent/JP2005243303A/en
Priority to KR1020050013866A priority patent/KR100647966B1/en
Priority to CNB2005100074824A priority patent/CN1327546C/en
Priority to US11/064,379 priority patent/US20050186479A1/en
Publication of JP2005243303A publication Critical patent/JP2005243303A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a member for electrochemical elements consisting of an electrode and a separator, which has superior durability, when the battery is assembled and further has improved battery performance, and thus to provide the member for electrochemical elements and its manufacturing method in which missing of an active material layer can be prevented, the manufacturing speed of lithium batteries can be improved, and low-cost production is made possible in a manufacturing process of wound lithium batteries, and to provide an electrochemical element which uses it. <P>SOLUTION: In the member for electrochemical elements, in which a porous layer made of a polymer compound is integrally formed on the active material layer of the electrode, in which a collector and the active material layer are laminated, the polymer compound is preferably at least one kind selected from among a fluororesin, a polyacrylonitrile resin, a polyimide resin, and a polysulfone resin. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、ポリマーリチウム電池、リチウムイオン二次電池、電気二重層キャパシタなどの電気化学素子に用いる電極と高分子化合物からなる多孔質層とを一体的に形成した電気化学素子用部材及びその製造方法、並びにそれを用いた電気化学素子に関する。   The present invention relates to a member for an electrochemical element in which an electrode used for an electrochemical element such as a polymer lithium battery, a lithium ion secondary battery, and an electric double layer capacitor and a porous layer made of a polymer compound are integrally formed, and the production thereof The present invention relates to a method and an electrochemical device using the method.

ポリマーリチウム電池、リチウムイオン電池などのリチウム系二次電池は、従来の二次電池に比べてエネルギー密度が高く、携帯機器から大型の車載用途までその適用が幅広く検討されている。同電池は、薄型化、更なる高容量化などの性能面での向上が期待され、一方では更なる普及を目指して低コスト化に直結する生産性向上が非常に重要な課題となりつつある。一般的なリチウム系電池の製法としては、正極及び負極の両電極をセパレータを介して積層するにあたり、捲回方式と呼ばれる円筒型に同軸に捲く方式が主流である。この方式は生産プロセスの速度は比較的早いものの、更なる速度アップにおいては、いくつかの課題がある。すなわち、捲回時においてはセパレータと電極面は円筒形に捲かれるために、電極の活物質層上面とセパレータ面の接触部において摩擦抵抗が生ずる。この際に、摩擦抵抗が過大であると活物質層が剥がれ落ちる問題が生じ、製造速度を上げられない要因となっている。このような工程上の制約から、セパレータ表面と活物質層上面との摩擦係数を種々の方法で調整する必要があるが、界面の状態は電池性能への影響が大きいことから、摩擦抵抗に強い電極とセパレータとの積層体が望まれている。   Lithium secondary batteries such as polymer lithium batteries and lithium ion batteries have a higher energy density than conventional secondary batteries, and their application is widely studied from portable devices to large-scale in-vehicle applications. The battery is expected to improve in terms of performance such as thinning and further increase in capacity, and on the other hand, improving the productivity that directly leads to cost reduction is becoming a very important issue aiming at further popularization. As a general method for producing a lithium-based battery, a method in which both a positive electrode and a negative electrode are stacked via a separator is coaxially wound in a cylindrical shape called a winding method. Although this method has a relatively fast production process, there are some problems in further speeding up. That is, since the separator and the electrode surface are wound in a cylindrical shape during winding, a frictional resistance is generated at the contact portion between the upper surface of the active material layer of the electrode and the separator surface. At this time, if the frictional resistance is excessive, there is a problem that the active material layer is peeled off, which is a factor that cannot increase the production speed. Due to these process restrictions, it is necessary to adjust the friction coefficient between the separator surface and the upper surface of the active material layer by various methods. However, the interface state has a large influence on battery performance, so it is resistant to frictional resistance. A laminate of an electrode and a separator is desired.

また、リチウム系電池は、上記の捲回物をプレスして板上にしたものを、従来は金属製のケースに入れて電池化しているが、近年、この金属ケースに代えて、低コストかつ形状の自由度が高いラミネート袋にパックする方法も用いられるようになった。しかし、このラミパック方式の場合は、電極とセパレータとの捲回物に対して、ケース内壁からの押圧力がかからないため、電極とセパレータの密着性が悪く、電池性能を十分に向上できない場合があった。そこで、予めセパレータに接着性の塗料を塗布した後に電極と貼り合わせることで、ラミパック方式でも電極とセパレータが密着可能となる電池製法が提案されている(例えば、特許文献1参照)。この方式では、電極とセパレータの密着性は向上するものの、工程上、接着剤に含まれる溶媒を乾燥する必要があり、製造速度の向上の観点からは、必ずしも望ましい電池製法とはいえない。更には、同接着剤層を多孔質化する提案がなされている(例えば、特許文献2参照)。この方式では、接着剤層が多孔質となることで、電解液の流通性が向上する等の利点を有するものの、電池をアセンブルする段階で溶媒を乾燥しながら接着剤層を多孔質化する必要があることから、製造速度があげられないばかりか、セパレータと電極で覆われた接着剤層の溶剤を乾燥する必要がある。そのために、捲回端部と内部、あるいは、捲回の中心部と外表に近い部分における溶媒の蒸発速度の相違に由来して多孔質化の度合いが電池の面部位によって異なるものとなる。その結果、電極反応が、電池内部の三次元的な各部位によって不均一になる問題が生じていた。また、同方法では、接着剤層の厚さ制御が難しいために、例えば安全性を向上するために接着剤層の厚さを厚めに設計することが困難であった。
特許第3225867号公報 特許第3225864号公報
In addition, lithium-based batteries, which are obtained by pressing the above-described wound material on a plate, have been conventionally put into a battery by placing it in a metal case. A method of packing in a laminated bag having a high degree of freedom in shape has also been used. However, in the case of this Lamipack method, since the pressing force from the inner wall of the case is not applied to the wound product between the electrode and the separator, the adhesion between the electrode and the separator is poor, and the battery performance may not be sufficiently improved. It was. Therefore, a battery manufacturing method has been proposed in which the electrode and the separator can be brought into close contact with each other even by a lami-pack method by applying an adhesive paint to the separator in advance and then bonding it to the electrode (see, for example, Patent Document 1). Although this method improves the adhesion between the electrode and the separator, it is necessary to dry the solvent contained in the adhesive in the process, which is not necessarily a desirable battery production method from the viewpoint of improving the production rate. Furthermore, the proposal which makes the adhesive bond layer porous is made | formed (for example, refer patent document 2). In this method, the adhesive layer becomes porous, which has the advantage of improving the flowability of the electrolyte, but it is necessary to make the adhesive layer porous while drying the solvent at the stage of assembling the battery. Therefore, it is necessary not only to increase the production speed but also to dry the solvent of the adhesive layer covered with the separator and the electrode. Therefore, the degree of porosity varies depending on the surface area of the battery due to the difference in the evaporation rate of the solvent at the winding end and inside, or at the center and the outer surface of the winding. As a result, there has been a problem that the electrode reaction becomes non-uniform depending on each three-dimensional part inside the battery. Further, in this method, since it is difficult to control the thickness of the adhesive layer, it is difficult to design the adhesive layer with a large thickness in order to improve safety, for example.
Japanese Patent No. 3225867 Japanese Patent No. 3225864

本発明は、電池組み立て時の耐久性に優れ、電池性能も向上した電極とセパレータとからなる電気化学素子用部材を提供することを目的とし、これにより捲回方式のリチウム系電池の製造過程において、活物質層が欠落することがなく、従来よりもリチウム系電池の製造スピードが向上でき、低コスト化が可能な電気化学素子用部材及びその製造方法、並びにそれを用いた電気化学素子を提供することを目的とする。   An object of the present invention is to provide a member for an electrochemical element composed of an electrode and a separator, which has excellent durability during battery assembly and improved battery performance. Provided is a member for an electrochemical element that does not lose an active material layer, can improve the production speed of a lithium-based battery, and can be reduced in cost, and a production method thereof, and an electrochemical element using the same. The purpose is to do.

本発明者らは上記の課題に鑑みて本発明を成すに至った。すなわち、本発明の電気化学素子用部材は、集電体と活物質層が積層された電極の活物質層上に、高分子化合物からなる多孔質層が一体的に形成されてなることを特徴とする。
また、本発明の電気化学素子用部材の製造方法は、集電体と活物質層が積層された電極の活物質層上に、高分子化合物を含有する塗料を塗工した後、乾燥することによって高分子化合物からなる多孔質層を形成することを特徴とする。
また、本発明の電気化学素子は、上記電気化学素子用部材を用いたことを特徴とする。
In view of the above problems, the present inventors have made the present invention. That is, the electrochemical device member of the present invention is characterized in that a porous layer made of a polymer compound is integrally formed on an active material layer of an electrode in which a current collector and an active material layer are laminated. And
In the method for producing an electrochemical element member of the present invention, a coating containing a polymer compound is applied on an active material layer of an electrode in which a current collector and an active material layer are laminated, and then dried. A porous layer made of a polymer compound is formed by the method.
The electrochemical element of the present invention is characterized by using the above-described electrochemical element member.

本発明によれば、リチウム系電池の製造過程における捲回時において、電極の活物質層が欠落することを防止し、セパレータを省いても十分な電気絶縁性を有する高分子化合物からなる多孔質層と電極とが一体化された電気化学素子用部材及びその製造方法、並びにそれを用いた電気化学素子を提供することができる。
本発明の電気化学素子用部材を用いることにより、電池を捲回する際の電極へのダメージを防ぐことが可能となり、従って、電池の製造効率向上に繋げることが可能となった。
According to the present invention, the porous material is made of a polymer compound that prevents the active material layer of the electrode from being lost during winding in the manufacturing process of the lithium battery, and has sufficient electrical insulation even if the separator is omitted. A member for an electrochemical element in which a layer and an electrode are integrated, a method for producing the same, and an electrochemical element using the same can be provided.
By using the electrochemical element member of the present invention, it is possible to prevent damage to the electrode when winding the battery, and thus it is possible to improve the manufacturing efficiency of the battery.

本発明によれば、電極の活物質層表面に高分子化合物を主体とする多孔質を配することで、該多孔質層が従来のセパレータの役割を果たすことが可能となった。従来のようにセパレータの併用を必要としないばかりでなく、該多孔質層が電極面の保護層となるため、電極の活物質層の欠落を防ぐことが可能となった。   According to the present invention, by providing a porous mainly composed of a polymer compound on the surface of the active material layer of the electrode, the porous layer can function as a conventional separator. Not only does the separator need not be used together as in the prior art, but the porous layer serves as a protective layer for the electrode surface, so that it is possible to prevent the electrode active material layer from being lost.

本発明の電気化学素子用部材における電極は、正極と負極があり、両者共に集電体と活物質層が積層されている。集電体としては、電気化学的に安定であり導電性を有するものではあればいずれも使用可能であるが、正極ではアルミニウム、負極では銅が好適に用いられる。また、正極に用いる活物質層を構成する活物質としては、リチウムとコバルトの複合酸化物が一般的であるが、このほかにも、例えば、リチウムと、ニッケル、マンガン等の遷移金属との複合酸化物などが好適に用いられる。負極に用いる活物質層を構成する活物質としては、カーボンブラック、黒鉛などのリチウムイオンを吸蔵及び放出できるものであって、電気化学的に安定なものであればいずれも使用可能である。これらの活物質は粒子状のものをバインダーに含有させ、これを集電体上に積層・固定させ活物質層とする。上記バインダーとして、例えばポリフッ化ビニリデン樹脂あるいはその共重合体樹脂、ポリアクリロニトリル樹脂等が挙げられるが、電解液に不溶であり、電気化学的に安定なものであればいずれも使用可能である。   The electrode in the member for an electrochemical element of the present invention includes a positive electrode and a negative electrode, and a current collector and an active material layer are both laminated. Any current collector can be used as long as it is electrochemically stable and conductive, but aluminum is preferably used for the positive electrode and copper is used for the negative electrode. In addition, as an active material constituting the active material layer used for the positive electrode, a composite oxide of lithium and cobalt is generally used. In addition, for example, a composite of lithium and a transition metal such as nickel or manganese is used. An oxide or the like is preferably used. As the active material constituting the active material layer used in the negative electrode, any material can be used as long as it can occlude and release lithium ions such as carbon black and graphite and is electrochemically stable. These active materials contain a particulate material in a binder and are laminated and fixed on a current collector to form an active material layer. Examples of the binder include a polyvinylidene fluoride resin or a copolymer resin thereof, a polyacrylonitrile resin, and the like, and any of them can be used as long as they are insoluble in an electrolytic solution and are electrochemically stable.

本発明の電気化学素子用部材は、前記活物質層上に、高分子化合物からなる多孔質層が一体的に形成されてなるものである。この一体的とは、予め自立性のある高分子化合物からなる多孔質膜を活物質層と熱圧接着することによって多孔質層を形成し、該活物質層上から多孔質層が容易に剥がれない状態をいう。または、流動性を有する高分子化合物(例えば、溶剤に溶解された高分子化合物)を活物質層上に塗工や印刷等により形成し、その後該高分子化合物が固体化することによって多孔質層を形成し、該活物質層上から多孔質層が容易に剥がれない状態をいう。   The electrochemical device member of the present invention is formed by integrally forming a porous layer made of a polymer compound on the active material layer. This integral means that a porous layer made of a self-supporting polymer compound is bonded to the active material layer by heat and pressure, and the porous layer is easily peeled off from the active material layer. It means no state. Alternatively, a porous polymer layer is formed by forming a polymer compound having fluidity (for example, a polymer compound dissolved in a solvent) on the active material layer by coating or printing, and then the polymer compound is solidified. And the porous layer is not easily peeled off from the active material layer.

活物質層上に高分子化合物からなる多孔質層を一体的に形成される方法として次の方法が挙げられる。例えば、高分子化合物を該高分子化合物が溶解する溶媒(以下、良溶媒という)に溶解し、該溶液中に該高分子化合物が溶解しないか、又は溶解しにくい溶媒(以下、貧溶媒という)を混合して塗料とする。次に該塗料を活物質層上に塗工した後、活物質層上に塗工され膜状となった塗料における溶媒を乾燥させる。この時、溶媒に対する乾燥速度、温度、風量などの乾燥条件を制御することで、貧溶媒を高分子化合物中でミクロ相分離させて多孔質化し、固体化するこによって、活物質層上に高分子化合物からなる多孔質層を一体的に形成することができる。また、高分子化合物を良溶媒に溶解して塗料とし、該塗料を活物質層上に塗工した後、上記溶媒と親和性があり、かつ高分子化合物に対しては貧溶媒である溶媒に塗料を塗工された活物質層を浸漬し、溶媒置換することで貧溶媒を高分子中にミクロ相分離させて多孔質化し、乾燥・固体化するこによって、活物質層上に高分子化合物からなる多孔質層を一体的に形成することができる。但し、活物質層上に高分子化合物からなる多孔質層を一体的に形成される方法としては、これらに限定されるものではない。また、上記塗料を活物質層上に塗工する方法としては、様々な塗工方式が適用可能であるが、例えばバーコーター、アプリケータ、スクリーン印刷、スプレー塗工法などが挙げられる。   As a method for integrally forming a porous layer made of a polymer compound on the active material layer, the following method may be mentioned. For example, a polymer compound is dissolved in a solvent in which the polymer compound is dissolved (hereinafter referred to as a good solvent), and the polymer compound is not dissolved or is difficult to dissolve in the solution (hereinafter referred to as a poor solvent). To make a paint. Next, after coating the coating material on the active material layer, the solvent in the coating material coated on the active material layer to form a film is dried. At this time, by controlling the drying conditions such as the drying speed, temperature, and air volume with respect to the solvent, the poor solvent is microphase-separated in the polymer compound to become porous and solidified, thereby increasing the amount of the high solvent on the active material layer. A porous layer made of a molecular compound can be integrally formed. In addition, a polymer compound is dissolved in a good solvent to form a paint, and after the paint is applied on the active material layer, the solvent is compatible with the solvent and is a poor solvent for the polymer compound. A polymer compound is formed on the active material layer by immersing the active material layer coated with paint and substituting the solvent to make the poor solvent microphase-separated into a polymer, making it porous, drying and solidifying it. A porous layer made of can be integrally formed. However, the method for integrally forming the porous layer made of the polymer compound on the active material layer is not limited to these. In addition, various coating methods can be applied as a method of applying the coating material on the active material layer, and examples thereof include a bar coater, an applicator, screen printing, and a spray coating method.

本発明においては、上記方法により活物質層上に高分子化合物からなる多孔質層が一体的に形成されてなるものであるが、上記形成方法において、活物質層及び高分子化合物からなる多孔質層には、実質的に高分子化合物の溶媒または電解液を含まないことが望ましい。良溶媒が親水性である場合には、該溶媒中に混入した水分が電池等の電気化学素子の性能に悪影響を及ぼす場合があり好ましくない。また、該溶媒が電解液を構成する溶媒種とした場合も同様の不具合が生じることがある他、電解液の定量性が損なわれるために好ましくない。   In the present invention, a porous layer made of a polymer compound is integrally formed on the active material layer by the above method. In the formation method, a porous layer made of the active material layer and the polymer compound is used. It is desirable that the layer is substantially free of a polymer solvent or electrolyte. When the good solvent is hydrophilic, moisture mixed in the solvent may adversely affect the performance of electrochemical elements such as batteries, which is not preferable. In addition, when the solvent is a solvent species that constitutes the electrolytic solution, the same problems may occur, and the quantitative property of the electrolytic solution is impaired, which is not preferable.

本発明に用いる高分子化合物は、多孔質化が可能であり電気化学的に安定性のあるものであればいずれも使用できるが、フッ素樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリスルホン樹脂は高分子化合物の中でも電気化学的に安定性であるため何れも好適に使用できる。またこれらの材質は複合して使用することもでき、多孔質層が少なくともこれらの樹脂1種からなることが好ましい。その他の樹脂の例としては、ポリエステル樹脂、メチルメタアクリレート樹脂、ポリエーテルスルホン樹脂などが挙げられるが、これらに限定されるものではない。また上記の高分子化合物の中では、フッ素樹脂のうち、とりわけポリフッ化ビニリデン樹脂またはその共重合体樹脂が好適に用いられる。この樹脂は非常に柔軟性に富むため、多孔質層として用いた場合に屈曲性に優れるほか、多孔質化しやすいこと、更には電解液への親和性が非常に良好であるため特に好ましい。ポリフッ化ビニリデン樹脂は、その共重合体樹脂よりも電解液に対する溶解しにくいため、電池の内部ではゲル化せず多孔質状態を保つことが可能である。従って、電解液の流通状態を良好に保つためにはポリフッ化ビニリデン樹脂を単独で用いることが望ましいが、ゲル化することで安全性を向上する目的では、ポリフッ化ビニリデン樹脂と、その共重合体樹脂を混合して用いれば適度なゲル化性を多孔質層に与えることができ、本発明では好適に用いることができる。
上記本発明の多孔質層を構成する高分子化合物は、一般的な電解液に対する親和性が良好であるため、非常に抽液性が良好である。従って、あえて電池組み立て前に多孔質層に電解液を含浸していなくとも、電池組み立て後の電解液抽液性は良好であり、良好な生産性を維持することが可能である。
As the polymer compound used in the present invention, any polymer compound can be used as long as it can be made porous and is electrochemically stable. Fluorine resin, polyacrylonitrile resin, polyimide resin, and polysulfone resin are polymer compounds. Among these, since they are electrochemically stable, any of them can be suitably used. These materials can also be used in combination, and the porous layer is preferably composed of at least one of these resins. Examples of other resins include, but are not limited to, polyester resins, methyl methacrylate resins, polyethersulfone resins, and the like. Among the above polymer compounds, among the fluororesins, in particular, polyvinylidene fluoride resin or a copolymer resin thereof is preferably used. Since this resin is very flexible, it is particularly preferable because it has excellent flexibility when used as a porous layer, is easily made porous, and has a very good affinity for an electrolytic solution. Since the polyvinylidene fluoride resin is less soluble in the electrolytic solution than the copolymer resin, it is not gelled inside the battery and can remain porous. Therefore, it is desirable to use a polyvinylidene fluoride resin alone in order to keep the flow state of the electrolytic solution good, but for the purpose of improving safety by gelling, the polyvinylidene fluoride resin and its copolymer If the resin is mixed and used, an appropriate gelling property can be imparted to the porous layer, which can be suitably used in the present invention.
Since the polymer compound constituting the porous layer of the present invention has a good affinity for a general electrolytic solution, it has a very good extractability. Therefore, even if the porous layer is not impregnated with the electrolyte before assembling the battery, the electrolyte extractability after the battery is assembled is good, and it is possible to maintain good productivity.

本発明において活物質層上に形成される高分子化合物からなる多孔質層は、その層厚が1〜100μmであることが望ましい。特に電池用途では、その層厚は薄い方が望ましいが、1μm未満の層厚の場合短絡する恐れがあり望ましくない。一方100μmを超える範囲であると、電池の厚さが厚くなりすぎて望ましくない。電池の厚さを勘案した場合は、1〜50μm、更に好ましくは1〜35μmである。多孔質層の空隙率は、10〜90%、より好ましくは20〜80%である。10%未満の場合は電解液の透過性が悪くイオン移動など電気化学的な性能に悪影響が生ずる。90%を超す場合は、微小短絡などの不具合が生ずる場合がある。   In the present invention, the porous layer made of a polymer compound formed on the active material layer preferably has a layer thickness of 1 to 100 μm. Particularly for battery applications, it is desirable that the layer thickness is thin. On the other hand, if the thickness exceeds 100 μm, the thickness of the battery becomes too thick, which is not desirable. When the thickness of the battery is taken into consideration, the thickness is 1 to 50 μm, more preferably 1 to 35 μm. The porosity of the porous layer is 10 to 90%, more preferably 20 to 80%. If it is less than 10%, the electrolyte permeability is poor and the electrochemical performance such as ion migration is adversely affected. If it exceeds 90%, a problem such as a micro short circuit may occur.

また、高分子化合物からなる多孔質層の透気度は、1〜200sec/100cc、より好ましくは、2〜150sec/100cc、更に好ましくは、5〜100sec/100ccである。透気度が1sec/100cc未満の場合は、微小短絡を起こしやすく好ましくない。一方、200sec/100ccを越す場合は、イオン移動などの電気化学的な性能に悪影響を及ぼす場合がある。
ここで、透気度は、JIS P 8117に基づくガーレー試験機法によるものである。
The air permeability of the porous layer made of the polymer compound is 1 to 200 sec / 100 cc, more preferably 2 to 150 sec / 100 cc, and still more preferably 5 to 100 sec / 100 cc. When the air permeability is less than 1 sec / 100 cc, a minute short circuit is likely to occur, which is not preferable. On the other hand, when it exceeds 200 sec / 100 cc, electrochemical performance such as ion migration may be adversely affected.
Here, the air permeability is based on the Gurley tester method based on JIS P 8117.

また本発明では、高分子化合物からなる多孔質層に電解液に不溶の無機または有機フィラーを含むことが望ましい。高分子化合物がゲル化した場合には、電解液に対して不溶の無機または有機フィラーを多孔質層に混入・分散することで、これらの粒子が正極及び負極間のスペーサーとして機能し短絡を防止することが可能となる。無機フィラーであれば例えばガラス球やシリカ、ジルコニウムなどがあげられる。有機フィラーであれば、メチルメタアクリレートやスチレンなどの架橋粒子が挙げられるが、必ずしもこれらに限定されるものではない。   In the present invention, the porous layer made of a polymer compound preferably contains an inorganic or organic filler that is insoluble in the electrolytic solution. When the polymer compound is gelled, inorganic particles or organic fillers that are insoluble in the electrolyte are mixed and dispersed in the porous layer so that these particles function as a spacer between the positive electrode and the negative electrode to prevent short circuits. It becomes possible to do. Examples of inorganic fillers include glass spheres, silica, and zirconium. Examples of the organic filler include cross-linked particles such as methyl methacrylate and styrene, but are not necessarily limited thereto.

また本発明では、高分子化合物からなる多孔質層の表面に不織布や微多孔膜を重ねたり、または高分子化合物からなる多孔質層の内部に不織布や微多孔膜を含有させて用いることも可能である。この目的は、上記のフィラーの混合と同じく電極間の短絡防止性を更に向上する目的の他、多孔質層との滑り性を適度に調整し捲回性を向上する目的もある。また、キャパシタの場合には電解液を多量に用いる場合もあるため、空隙率の高い不織布や微多孔膜を用いることで電解液を多量に投入することも可能となる。また、これらの有機フィラーや不織布、微多孔膜の融点を適度に調整することで、シャットダウン効果をもたせることが可能である。   In the present invention, the surface of the porous layer made of a polymer compound may be overlaid with a nonwoven fabric or a microporous film, or the inside of the porous layer made of a polymer compound may be used with a nonwoven fabric or a microporous film. It is. In addition to the purpose of further improving the short-circuit preventing property between the electrodes as in the case of mixing the filler, the purpose is to appropriately adjust the slipperiness with the porous layer to improve the winding property. In the case of a capacitor, a large amount of electrolytic solution may be used. Therefore, a large amount of electrolytic solution can be added by using a non-woven fabric or a microporous film having a high porosity. Moreover, it is possible to have a shutdown effect by appropriately adjusting the melting points of these organic fillers, nonwoven fabrics, and microporous membranes.

本発明においては、前記電気化学素子用部材を、ポリマーリチウム電池、リチウムイオン二次電池、電気二重層キャパシタなどの電気化学素子に用いることによって、その製造時に活物質層が欠落することがないため、従来よりもリチウムム系電池等の製造スピードが向上でき、低コスト化が可能となる。
なお、本発明の電気化学素子用部材を電気化学素子に用いる場合には、高分子化合物からなる多孔質層を、正極からなる活物質層及び負極からなる活物質層のいずれにも一体的に形成させたものを使用することが望ましいが、該多孔質層にセパレータ機能だけを求める場合においては、いずれか一方の活物質層上に該高分子化合物からなる多孔質層を形成させたものだけを使用してもよい。
In the present invention, since the electrochemical element member is used for an electrochemical element such as a polymer lithium battery, a lithium ion secondary battery, or an electric double layer capacitor, the active material layer is not lost during the production. Thus, the production speed of the lithium-based battery or the like can be improved as compared with the prior art, and the cost can be reduced.
When the electrochemical device member of the present invention is used for an electrochemical device, the porous layer made of the polymer compound is integrated with both the active material layer made of the positive electrode and the active material layer made of the negative electrode. It is desirable to use the formed layer, but when only the separator function is required for the porous layer, only the porous layer made of the polymer compound is formed on any one of the active material layers. May be used.

例えば、本発明の電気化学素子用部材を用いて電気化学素子であるリチウムイオン二次電池を作製するには、正極の本発明の電気化学素子用部材と負極の本発明の電気化学素子用部材を、互いの高分子化合物からなる多孔質層が向かい合うように積層し、圧着して外装材に充填することにより得ることができる。なお、圧着する際にあらかじめ高分子化合物からなる多孔質層に電解液を含浸しておいてもよいし、積層体を外装材に充填してから電解液を注入してもよい。その後、電極端子、安全装置などを適宜接続した後、外装材を封止する。   For example, in order to produce a lithium ion secondary battery which is an electrochemical element using the electrochemical element member of the present invention, the electrochemical element member of the present invention as a positive electrode and the electrochemical element member of the present invention as a negative electrode Can be obtained by laminating the porous layers made of the polymer compounds so as to face each other, pressing and filling the outer packaging material. Note that a porous layer made of a polymer compound may be impregnated in advance with the electrolyte when the pressure bonding is performed, or the electrolyte may be injected after filling the laminate with the exterior material. Then, after connecting an electrode terminal, a safety device, etc. suitably, an exterior material is sealed.

電解液としては、有機溶媒に電解質塩を溶解した混合溶液が使用される。さらに、有機溶媒としては、高い電圧をかけた場合でも分解が起こらないものが好ましく、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、アセトニトリル、ジメチルホルムアミド、ジメチルアセトアミド、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトロヒドラフラン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテートなどの極性溶媒、もしくはこれら溶媒の2種類以上の混合物が挙げられる。電解液に溶解する電解質塩としては、リチウムイオン二次電池の場合、LiClO、LiPF、LiBF、LiAsF、LiCF、LiCFCO、LiPFSO、LiN(SOCF、Li(SOCFCF、LiN(COCFおよびLiN(COCFCFなどのリチウムを含む塩、またはこれらの2種以上の混合物を使用できる。 As the electrolytic solution, a mixed solution in which an electrolyte salt is dissolved in an organic solvent is used. Furthermore, as the organic solvent, those that do not decompose even when a high voltage is applied are preferable. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, γ-butyrolactone, sulfolane, dimethyl sulfoxide, acetonitrile, dimethylformamide, dimethylacetamide, Examples include polar solvents such as 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrohydrafuran, 2-methyltetrahydrofuran, dioxolane, and methyl acetate, or a mixture of two or more of these solvents. As the electrolyte salt dissolved in the electrolytic solution, in the case of a lithium ion secondary battery, LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiCF 6 , LiCF 3 CO 2 , LiPF 6 SO 3 , LiN (SO 3 CF 3 ) 2 , lithium-containing salts such as Li (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2 and LiN (COCF 2 CF 3 ) 2 , or mixtures of two or more thereof.

実施例1
〔正極の作製〕
活物質としてLiCoOを100重量部、黒鉛を10重量部及びポリフッ化ビニリデン樹脂7重量部をN−メチルピロリドンに分散させて乳鉢ですり潰しながらペーストを作製した。このペーストをアプリケータを用いてアルミニウム箔上に塗工したのち、70℃で45分間乾燥し半湿潤状態に調整した後、活物質層の層厚が塗工後の半湿潤状態の活物質層の厚さの80%となるようにプレスした後に、更に60℃にて5時間乾燥して正極を得た。
〔電気化学素子用部材の作製〕
高分子化合物としてポリフッ化ビニリデン樹脂20重量部をN−メチルピロリドン(ポリフッ化ビニリデン樹脂に対して良溶媒)100重量部に溶解後、エチレングリコール(ポリフッ化ビニリデン樹脂に対して貧溶媒)20重量部を添加・混合して多孔質層用の塗料を調製した。この塗料を上記の正極の活物質層上にドクターブレード法で塗工した後に70℃にて30分間乾燥し多孔質層を形成し本発明の電気化学素子用部材を得た。多孔質層の厚さは25μmであった。また電極に塗工した多孔質層の一部をはがして、その面積、膜厚と重量から空隙率を計算したところ55%であった。またガーレー透気度を測定したところ、65sec/100ccであった。
Example 1
[Production of positive electrode]
A paste was prepared by dispersing 100 parts by weight of LiCoO 2 as active materials, 10 parts by weight of graphite and 7 parts by weight of polyvinylidene fluoride resin in N-methylpyrrolidone and grinding in a mortar. After applying this paste on an aluminum foil using an applicator, the paste was dried at 70 ° C. for 45 minutes and adjusted to a semi-moist state, and then the active material layer was coated in a semi-moist active material layer. After pressing to a thickness of 80%, the film was further dried at 60 ° C. for 5 hours to obtain a positive electrode.
[Preparation of Electrochemical Element Components]
As a polymer compound, 20 parts by weight of polyvinylidene fluoride resin is dissolved in 100 parts by weight of N-methylpyrrolidone (good solvent for polyvinylidene fluoride resin) and then 20 parts by weight of ethylene glycol (poor solvent for polyvinylidene fluoride resin). Were added and mixed to prepare a coating material for the porous layer. This paint was applied onto the positive electrode active material layer by the doctor blade method and then dried at 70 ° C. for 30 minutes to form a porous layer, thereby obtaining the electrochemical device member of the present invention. The thickness of the porous layer was 25 μm. A part of the porous layer coated on the electrode was peeled off, and the porosity was calculated from the area, film thickness and weight, and it was 55%. The Gurley air permeability was measured and found to be 65 sec / 100 cc.

実施例2
〔負極の作製〕
黒鉛粒子を100重量部及びポリフッ化ビニリデン樹脂を5重量部を実施例1の正極活物質層と同様の方法にてペースト化し、同じく実施例1と同様の方法にて銅箔上に塗工プレスし負極を得た。
〔電気化学素子用部材の作製〕
この負極の活物質層上に実施例1と同様の方法で層厚25μmの多孔質層を形成し本発明の電気化学素子用部材を得た。得られた多孔質層の一部を剥離して空隙率を測定したところ55%であり、ガーレー透気度は63sec/100ccであった。
Example 2
(Production of negative electrode)
100 parts by weight of graphite particles and 5 parts by weight of polyvinylidene fluoride resin were made into a paste by the same method as the positive electrode active material layer of Example 1, and coated on a copper foil by the same method as in Example 1. The negative electrode was obtained.
[Preparation of Electrochemical Element Components]
A porous layer having a layer thickness of 25 μm was formed on the negative electrode active material layer in the same manner as in Example 1 to obtain a member for an electrochemical device of the present invention. When a part of the obtained porous layer was peeled and the porosity was measured, it was 55% and the Gurley air permeability was 63 sec / 100 cc.

実施例3
実施例1に用いたポリフッ化ビニリデン樹脂を含む多孔質層用の塗料に有機フィラーとして体積平均粒子径が10μmの架橋を施したスチレン粒子を15重量部混合、分散して実施例3の塗料とした。この多孔質層用の塗料を実施例1で得た正極の活物質層上に実施例1と同様の方法にて塗工し本発明の電気化学素子用部材を得た。得られた多孔質層の厚さは30μmであり、空隙率は45%、ガーレー透気度は70sec/100ccであった。
Example 3
The paint for Example 3 was prepared by mixing and dispersing 15 parts by weight of styrene particles having a volume average particle diameter of 10 μm as an organic filler in the paint for the porous layer containing the polyvinylidene fluoride resin used in Example 1. did. This porous layer coating was applied to the positive electrode active material layer obtained in Example 1 in the same manner as in Example 1 to obtain a member for an electrochemical device of the present invention. The thickness of the obtained porous layer was 30 μm, the porosity was 45%, and the Gurley air permeability was 70 sec / 100 cc.

実施例4
実施例3の多孔質層用の塗料を用いて、実施例2で得た負極の活物質層上に実施例2と同様の手順で多孔質層を形成し本発明の電気化学素子用部材を得た。得られた多孔質層の厚さは30μmであり、空隙率は45%、ガーレー透気度は68sec/100ccであった。
Example 4
Using the porous layer coating material of Example 3, a porous layer was formed on the negative electrode active material layer obtained in Example 2 in the same procedure as in Example 2, and the electrochemical device member of the present invention was formed. Obtained. The thickness of the obtained porous layer was 30 μm, the porosity was 45%, and the Gurley air permeability was 68 sec / 100 cc.

比較例1
実施例1で作製した正極そのものを比較例1の電気化学素子用部材とした。
比較例2
実施例2で作製した負極そのものを比較例2の電気化学素子用部材とした。
Comparative Example 1
The positive electrode itself produced in Example 1 was used as the electrochemical device member of Comparative Example 1.
Comparative Example 2
The negative electrode itself produced in Example 2 was used as the electrochemical device member of Comparative Example 2.

〔活物質層の欠落性〕
前記実施例1と実施例2の電気化学素子用部材をそれぞれ多孔質層面を対向させて積層し、正電極が下になるように水平ガラス板上に重ねて置き、その上に重さ300gのステンレス円筒(底面:5cm)を静置した。この際に、下側の電極のアルミニウム箔は両面粘着テープでガラス板に固定した。次に、ガラス板に固定されていない上側の電気化学素子用部材をゆっくり引いた後に、多孔質層面及び電極の活物質層面の損傷を確認した。その結果、積層した両者の電気化学素子用部材における多孔質層面及び電極の活物質層面のいずれも傷等の発生がなく、また電気化学素子用部材から活物質層が欠落することもなかった。
更に、前記実施例3と実施例4の電気化学素子用部材についてもそれぞれ多孔質層面を対向させて積層し、上記と同様にして活物質層の欠落性を評価したところ上記と同様の結果が得られた。
[Missing active material layer]
The electrochemical device members of Example 1 and Example 2 were laminated with the porous layer surfaces facing each other, placed on a horizontal glass plate with the positive electrode facing down, and a weight of 300 g was placed thereon. A stainless cylinder (bottom surface: 5 cm 2 ) was allowed to stand. At this time, the aluminum foil of the lower electrode was fixed to the glass plate with a double-sided adhesive tape. Next, after slowly pulling the upper electrochemical element member not fixed to the glass plate, damage to the porous layer surface and the active material layer surface of the electrode was confirmed. As a result, neither the porous layer surface nor the active material layer surface of the electrode in both the laminated members for an electrochemical element was damaged, and the active material layer was not missing from the electrochemical device member.
Further, the electrochemical element members of Example 3 and Example 4 were laminated with the porous layer surfaces facing each other, and the missing property of the active material layer was evaluated in the same manner as above, and the same result as above was obtained. Obtained.

また、前記実施例1と実施例2の電気化学素子用部材をそれぞれ多孔質層面を対向させ、その間に市販のポリエチレンからなるセパレータを挟んで積層し、正電極が下になるように水平ガラス板上に重ねて置き、その上に重さ300gのステンレス円筒(底面:5cm)を静置した。この際に、下側の電極のアルミニウム箔は両面粘着テープでガラス板に固定した。次に、ポリエチレンからなるセパレータをゆっくり引いた後に、多孔質層面及び電極の活物質層面の損傷を確認した。その結果、積層した両者の電気化学素子用部材における多孔質層面及び電極の活物質層面のいずれも傷等の発生がなく、また電気化学素子用部材から活物質層が欠落することもなかった。
更に、前記実施例3と実施例4の電気化学素子用部材についてもそれぞれ多孔質層面を対向させ、その間に市販のポリエチレンからなるセパレータを挟んで積層し、上記と同様にして活物質層の欠落性を評価したところ上記と同様の結果が得られた。
Further, the members for electrochemical elements of Example 1 and Example 2 were laminated with the porous layer surfaces facing each other, with a commercially available polyethylene separator interposed therebetween, and a horizontal glass plate with the positive electrode facing down. A stainless steel cylinder (bottom surface: 5 cm 2 ) having a weight of 300 g was allowed to stand thereon. At this time, the aluminum foil of the lower electrode was fixed to the glass plate with a double-sided adhesive tape. Next, after slowly pulling a separator made of polyethylene, damage to the porous layer surface and the active material layer surface of the electrode was confirmed. As a result, neither the porous layer surface nor the active material layer surface of the electrode in both the laminated members for an electrochemical element was damaged, and the active material layer was not missing from the electrochemical device member.
Furthermore, the electrochemical element members of Example 3 and Example 4 were laminated with the porous layer surfaces facing each other, with a commercially available polyethylene separator interposed therebetween, and the active material layer was missing in the same manner as described above. When the properties were evaluated, the same results as above were obtained.

また、前記比較例1と比較例2の電極の活物質層面を対向させ、その間に市販のポリエチレンからなるセパレータを挟んで積層し、正電極が下になるように水平ガラス板上に重ねて置き、その上に重さ300gのステンレス円筒(底面:5cm)を静置した。この際に、下側の電極のアルミニウム箔は両面粘着テープでガラス板に固定した。次に、ガラス板に固定されていない市販のポリエチレンからなるセパレータをゆっくり引いた後に、電極の活物質層面の損傷を確認した。その結果、正及び負の活物質層に傷が認められ、また一部の電極活物質の欠落が認められた。
以上の結果から、本発明の電気化学素子用部材に形成された多孔質層は、これと捲回時に接触し擦られる他部材との摩擦によっても何ら損傷することなく活物質層を保護する層として機能していることが明らかとなった。また、このように活物質層の欠落が生じにくいため、リチウムイオン二次電池等の電気化学素子を製造するスピードを向上することができ、低コスト化が可能であることが確認された。
Further, the active material layer surfaces of the electrodes of Comparative Example 1 and Comparative Example 2 are opposed to each other, and a commercially available polyethylene separator is sandwiched between them, and the layers are placed on a horizontal glass plate with the positive electrode facing down. Then, a stainless steel cylinder (bottom: 5 cm 2 ) having a weight of 300 g was allowed to stand. At this time, the aluminum foil of the lower electrode was fixed to the glass plate with a double-sided adhesive tape. Next, after slowly pulling a separator made of commercially available polyethylene not fixed to the glass plate, damage to the active material layer surface of the electrode was confirmed. As a result, scratches were observed in the positive and negative active material layers, and some electrode active materials were missing.
From the above results, the porous layer formed on the electrochemical device member of the present invention is a layer that protects the active material layer without being damaged even by friction between the porous layer and another member that comes into contact with and rubs when wound. It became clear that it is functioning. In addition, since it is difficult for the active material layer to be lost as described above, it was confirmed that the speed of manufacturing an electrochemical element such as a lithium ion secondary battery can be improved and the cost can be reduced.

〔微小短絡性〕
前記実施例1〜4の電気化学素子用部材を真空乾燥後、実施例1と実施例2の電気化学素子用部材、及び実施例3と実施例4の電気化学素子用部材を、セパレータを有さないでそれぞれの多孔質層面が対向するように重ね合わせて更にその外側をガラス板に挟んで評価試料を作製した。次にこの評価試料を、不活性ガス中でエチレンカーボネート及びプロピレンカーボネートがそれぞれ等重量となるように調整した混合溶媒に対してLiPFを1モル溶解した電解液を0.01cc/cmの割合で多孔質層面に抽入した後にガラス板の外側から対向する外力をかけて加圧することで狭持した。集電体であるアルミニウム箔と銅箔との間に4.2Vの定電圧を印加し、電流を少しずつ増加することで、微小短絡の発生の有無を確認した。その結果、実用域での電流範囲で微小短絡の発生はなく、本発明の電気化学装置用部材の多孔質層はセパレータの機能である電気絶縁性が実用レベルであることが確認された。
[Micro short circuit]
After vacuum drying the members for electrochemical elements of Examples 1 to 4, the members for electrochemical elements of Examples 1 and 2 and the members for electrochemical elements of Examples 3 and 4 have separators. Without being superposed, the respective porous layer surfaces were overlapped with each other and the outer side was sandwiched between glass plates to prepare an evaluation sample. Next, an electrolytic solution in which 1 mol of LiPF 6 was dissolved in a mixed solvent in which ethylene carbonate and propylene carbonate were adjusted to have an equal weight in an inert gas was added to this evaluation sample at a rate of 0.01 cc / cm 2 . Then, after drawing into the porous layer surface, it was sandwiched by applying an external force facing from the outside of the glass plate and applying pressure. A constant voltage of 4.2 V was applied between the aluminum foil and the copper foil as the current collector, and the current was increased little by little to confirm the presence or absence of the occurrence of a micro short circuit. As a result, it was confirmed that there was no occurrence of a short-circuit in the current range in the practical range, and that the porous layer of the electrochemical device member of the present invention had a practical level of electrical insulation as a function of the separator.

本発明の電気化学素子用部材が備えられたリチウムイオン二次電池、ポリマーリチウム二次電池、アルミニウム電解コンデンサ、電気二重層キャパシタは長寿命化、高機能化されたものであるから、ハイブリッド自動車、パーソナルコンピュータ、携帯電話、携帯情報端末(PDA)等において好適に用いられる。   Since the lithium ion secondary battery, the polymer lithium secondary battery, the aluminum electrolytic capacitor, and the electric double layer capacitor provided with the electrochemical device member of the present invention have long life and high functionality, a hybrid vehicle, It is suitably used in personal computers, mobile phones, personal digital assistants (PDAs) and the like.

Claims (6)

集電体と活物質層が積層された電極の活物質層上に、高分子化合物からなる多孔質層が一体的に形成されてなることを特徴とする電気化学素子用部材。   A member for an electrochemical element, wherein a porous layer made of a polymer compound is integrally formed on an active material layer of an electrode in which a current collector and an active material layer are laminated. 前記高分子化合物が、フッ素樹脂、ポリアクリロニトリル樹脂、ポリイミド樹脂、ポリスルホン樹脂から選ばれた少なくとも1種であることを特徴とする請求項1に記載の電気化学素子用部材。   2. The member for an electrochemical element according to claim 1, wherein the polymer compound is at least one selected from a fluororesin, a polyacrylonitrile resin, a polyimide resin, and a polysulfone resin. 前記フッ素樹脂が、ポリフッ化ビニリデン樹脂またはその共重合体樹脂であることを特徴とする請求項2に記載の電気化学素子用部材。   The member for an electrochemical element according to claim 2, wherein the fluororesin is a polyvinylidene fluoride resin or a copolymer resin thereof. 前記高分子化合物からなる多孔質層に、電解液に不溶の無機または有機フィラーが含有されていることを特徴とする請求項1乃至3のいずれかに記載の電気化学素子用部材。   The electrochemical element member according to any one of claims 1 to 3, wherein the porous layer made of the polymer compound contains an inorganic or organic filler insoluble in the electrolytic solution. 集電体と活物質層が積層された電極の活物質層上に、高分子化合物を含有する塗料を塗工した後、乾燥することによって高分子化合物からなる多孔質層を形成することを特徴とする電気化学素子用部材の製造方法。   A porous layer made of a polymer compound is formed by applying a paint containing a polymer compound on an active material layer of an electrode in which a current collector and an active material layer are laminated, and then drying. A method for producing an electrochemical element member. 請求項1乃至4のいずれかに記載の電気化学素子用部材を用いたことを特徴とする電気化学素子。   An electrochemical element comprising the electrochemical element member according to claim 1.
JP2004048605A 2004-02-24 2004-02-24 Member for electrochemical element and its manufacturing method, and the electrochemical element using it Pending JP2005243303A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2004048605A JP2005243303A (en) 2004-02-24 2004-02-24 Member for electrochemical element and its manufacturing method, and the electrochemical element using it
KR1020050013866A KR100647966B1 (en) 2004-02-24 2005-02-19 Separator for electronic components and process for producing the same
CNB2005100074824A CN1327546C (en) 2004-02-24 2005-02-22 Separator for electronic component and method for producing the same
US11/064,379 US20050186479A1 (en) 2004-02-24 2005-02-23 Separator for electronic component and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004048605A JP2005243303A (en) 2004-02-24 2004-02-24 Member for electrochemical element and its manufacturing method, and the electrochemical element using it

Publications (1)

Publication Number Publication Date
JP2005243303A true JP2005243303A (en) 2005-09-08

Family

ID=35024824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004048605A Pending JP2005243303A (en) 2004-02-24 2004-02-24 Member for electrochemical element and its manufacturing method, and the electrochemical element using it

Country Status (1)

Country Link
JP (1) JP2005243303A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007087690A (en) * 2005-09-21 2007-04-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2007280918A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2007280911A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and manufacturing method thereof
JP2007280917A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2008053208A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2008053207A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2008053206A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JPWO2007029742A1 (en) * 2005-09-08 2009-03-19 株式会社クラレ Polarized electrode
JP2011198559A (en) * 2010-03-18 2011-10-06 Nissan Motor Co Ltd Electrode manufacturing method, electrode manufacturing apparatus, and electrode
JP2011216228A (en) * 2010-03-31 2011-10-27 Nissan Motor Co Ltd Electrode manufacturing device and method
WO2012002358A1 (en) * 2010-06-28 2012-01-05 株式会社村田製作所 Electric storage device and method for manufacturing same
KR101251742B1 (en) 2011-04-14 2013-04-05 경북대학교 산학협력단 Organic-radical polyimide electrode active material and electrochemical device using the same
WO2013099541A1 (en) * 2011-12-27 2013-07-04 株式会社村田製作所 Electricity storage device and method for manufacturing same
WO2014115538A1 (en) * 2013-01-23 2014-07-31 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, manufacturing method for same, and lithium ion secondary battery
JP5610076B2 (en) * 2011-06-28 2014-10-22 株式会社村田製作所 Electric storage device and manufacturing method thereof
US9077024B2 (en) 2006-03-17 2015-07-07 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
JP2015207523A (en) * 2014-04-23 2015-11-19 株式会社日立ハイテクノロジーズ Manufacturing method of electrode plate of lithium ion secondary battery and manufacturing device therefor
JP2016532996A (en) * 2013-10-31 2016-10-20 エルジー・ケム・リミテッド Method for producing electrode-separation membrane composite, electrode-separation membrane composite produced by the production method, and lithium secondary battery including the same
US9853269B2 (en) 2013-12-03 2017-12-26 Sekisui Chemical Co., Ltd. Electrical insulation layer and battery device
US11233231B2 (en) 2016-09-29 2022-01-25 Nec Corporation Electrode with heat-resistant insulating layer
WO2023002229A1 (en) * 2021-07-21 2023-01-26 Некоммерческое Акционерное Общество "Атырауский Университет Имени Х.Досмухамедова" Polymeric ion-conducting membrane material based on plasticized polysulphone

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345606A (en) * 1998-06-02 1999-12-14 Toyota Motor Corp Battery and manufacture thereof
JP2001325951A (en) * 2000-05-16 2001-11-22 Denso Corp Nonaqueous electrolyte secondary cell electrode, its manufacturing method and nonaqueous electrolyte secondary cell
JP2002042891A (en) * 2000-07-27 2002-02-08 Toshiba Battery Co Ltd Thin-type lithium secondary battery
JP2003123726A (en) * 2001-10-15 2003-04-25 Matsushita Electric Ind Co Ltd Battery and its manufacturing method
JP2003257496A (en) * 2001-12-28 2003-09-12 Tdk Corp Lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11345606A (en) * 1998-06-02 1999-12-14 Toyota Motor Corp Battery and manufacture thereof
JP2001325951A (en) * 2000-05-16 2001-11-22 Denso Corp Nonaqueous electrolyte secondary cell electrode, its manufacturing method and nonaqueous electrolyte secondary cell
JP2002042891A (en) * 2000-07-27 2002-02-08 Toshiba Battery Co Ltd Thin-type lithium secondary battery
JP2003123726A (en) * 2001-10-15 2003-04-25 Matsushita Electric Ind Co Ltd Battery and its manufacturing method
JP2003257496A (en) * 2001-12-28 2003-09-12 Tdk Corp Lithium secondary battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007029742A1 (en) * 2005-09-08 2009-03-19 株式会社クラレ Polarized electrode
JP2007087690A (en) * 2005-09-21 2007-04-05 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2008053206A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2007280917A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
JP2008053208A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2008053207A (en) * 2006-03-17 2008-03-06 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2007280911A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and manufacturing method thereof
JP2007280918A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery
US9761880B2 (en) 2006-03-17 2017-09-12 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
US10388960B2 (en) 2006-03-17 2019-08-20 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
US9077024B2 (en) 2006-03-17 2015-07-07 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery and method of manufacturing the same
JP2011198559A (en) * 2010-03-18 2011-10-06 Nissan Motor Co Ltd Electrode manufacturing method, electrode manufacturing apparatus, and electrode
JP2011216228A (en) * 2010-03-31 2011-10-27 Nissan Motor Co Ltd Electrode manufacturing device and method
WO2012002358A1 (en) * 2010-06-28 2012-01-05 株式会社村田製作所 Electric storage device and method for manufacturing same
JP5435131B2 (en) * 2010-06-28 2014-03-05 株式会社村田製作所 Electric storage device and manufacturing method thereof
US9368776B2 (en) 2010-06-28 2016-06-14 Murata Manufacturing Co., Ltd. Power storage device and manufacturing method therefor
KR101251742B1 (en) 2011-04-14 2013-04-05 경북대학교 산학협력단 Organic-radical polyimide electrode active material and electrochemical device using the same
JP5610076B2 (en) * 2011-06-28 2014-10-22 株式会社村田製作所 Electric storage device and manufacturing method thereof
JPWO2013002138A1 (en) * 2011-06-28 2015-02-23 株式会社村田製作所 Electric storage device and manufacturing method thereof
US9514893B2 (en) 2011-06-28 2016-12-06 Murata Manufacturing Co., Ltd. Electrical storage device and method for manufacturing the same
JPWO2013099541A1 (en) * 2011-12-27 2015-04-30 株式会社村田製作所 Electric storage device and manufacturing method thereof
WO2013099541A1 (en) * 2011-12-27 2013-07-04 株式会社村田製作所 Electricity storage device and method for manufacturing same
US9911547B2 (en) 2011-12-27 2018-03-06 Murata Manufacturing Co., Ltd. Electric storage device and method for manufacturing the same
WO2014115538A1 (en) * 2013-01-23 2014-07-31 株式会社豊田自動織機 Positive electrode for lithium ion secondary battery, manufacturing method for same, and lithium ion secondary battery
JP2016532996A (en) * 2013-10-31 2016-10-20 エルジー・ケム・リミテッド Method for producing electrode-separation membrane composite, electrode-separation membrane composite produced by the production method, and lithium secondary battery including the same
US11450925B2 (en) 2013-10-31 2022-09-20 Lg Energy Solution, Ltd. Method of manufacturing electrode-separator composite, electrode-separator composite manufactured by the manufacturing method and lithium secondary battery comprising the same
US9853269B2 (en) 2013-12-03 2017-12-26 Sekisui Chemical Co., Ltd. Electrical insulation layer and battery device
JP2015207523A (en) * 2014-04-23 2015-11-19 株式会社日立ハイテクノロジーズ Manufacturing method of electrode plate of lithium ion secondary battery and manufacturing device therefor
US11233231B2 (en) 2016-09-29 2022-01-25 Nec Corporation Electrode with heat-resistant insulating layer
WO2023002229A1 (en) * 2021-07-21 2023-01-26 Некоммерческое Акционерное Общество "Атырауский Университет Имени Х.Досмухамедова" Polymeric ion-conducting membrane material based on plasticized polysulphone

Similar Documents

Publication Publication Date Title
JP2005243303A (en) Member for electrochemical element and its manufacturing method, and the electrochemical element using it
JP4431304B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery provided with the same
US20200119420A1 (en) Lithium oxygen batteries having a carbon cloth current collector and method of producing same
CN108352484B (en) Separator for nonaqueous secondary battery and nonaqueous secondary battery
JP2020038843A (en) Electrode, electrode manufacturing method, and secondary battery and manufacturing method thereof
TWI501451B (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
EP1401037A2 (en) Separator for lithium ion secondary battery and lithium ion secondary battery provided therewith
KR20180077190A (en) Separator for non-aqueous secondary battery and non-aqueous secondary battery
WO2013080946A1 (en) Separator for non-aqueous electrolyte cell and non-aqueous electrolyte cell using same
JP4414165B2 (en) Electronic component separator and electronic component
KR100547085B1 (en) Manufacturing method of polymer porous separator and lithium ion polymer battery
WO1999026307A1 (en) Lithium ion secondary battery and manufacture thereof
JP2015069957A (en) Separator for lithium ion secondary battery and method for manufacturing the same, and lithium ion secondary battery and method for manufacturing the same
CN104508863A (en) Nonaqueous electrolyte battery separator and nonaqueous electrolyte battery
WO2013049460A1 (en) Lithium oxygen batteries having a carbon cloth current collector and method of producing same
JP2017073328A (en) Nonaqueous electrolyte secondary battery
JP2005019156A (en) Separator for electronic component, and electronic component
JP5804712B2 (en) Nonaqueous electrolyte secondary battery
JP4699256B2 (en) Lithium secondary battery
JP4490055B2 (en) Separator for lithium ion secondary battery or polymer lithium battery
KR100490642B1 (en) A multi-layered polymer electrolyte and lithium secondary battery comprising the same
JP2006351365A (en) Separator for electronic components, and the electronic component
JP2011228188A (en) Separator for electrochemical element, electrochemical element, and method of manufacturing the same
JP6415312B2 (en) Separator and electrochemical device
JP2006179205A (en) Nonaqueous electrolytic solution battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100817