JP2005241406A - Instrument and method for measuring double refraction dispersion - Google Patents

Instrument and method for measuring double refraction dispersion Download PDF

Info

Publication number
JP2005241406A
JP2005241406A JP2004050991A JP2004050991A JP2005241406A JP 2005241406 A JP2005241406 A JP 2005241406A JP 2004050991 A JP2004050991 A JP 2004050991A JP 2004050991 A JP2004050991 A JP 2004050991A JP 2005241406 A JP2005241406 A JP 2005241406A
Authority
JP
Japan
Prior art keywords
light
wavelength
birefringence
wave plate
incident
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004050991A
Other languages
Japanese (ja)
Inventor
Yukitoshi Otani
幸利 大谷
Tsunehiro Umeda
倫弘 梅田
Toshitaka Wakayama
俊隆 若山
Takashi Kurokawa
隆志 黒川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo University of Agriculture and Technology NUC
Original Assignee
Tokyo University of Agriculture and Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo University of Agriculture and Technology NUC filed Critical Tokyo University of Agriculture and Technology NUC
Priority to JP2004050991A priority Critical patent/JP2005241406A/en
Publication of JP2005241406A publication Critical patent/JP2005241406A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/23Bi-refringence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N2021/216Polarisation-affecting properties using circular polarised light

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Polarising Elements (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To specify wavelength dependency of a double refraction phase difference caused by double refraction dispersion and a principal axis direction under the double refraction dispersion, in a short time. <P>SOLUTION: A phase shifter 4 has two 1/4-wavelength plates 4a, 4b, and a 1/2-wavelength plate 4c arranged between 1/4-wavelength plates 4a, 4b, and rotated at a prescribed revolution speed, and modulates a phase of light passed through a measuring object 101, and an analyzer 5 is rotated at a revolution speed of two times of that in the 1/2-wavelength plate 4c synchronizedly therewith, and brings the light passed through the phase shifter 4 into a linear polarization. A spectrometer 6 separates light of the linear polarization in response to each wavelength, and a photodetector 7 receives the light after spectrally dispersed to be converted into an electric signal in the every wavelength. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、測定対象の複屈折分散を定量的に計測する複屈折分散計測装置および複屈折分散計測方法に関するものである。   The present invention relates to a birefringence dispersion measuring apparatus and a birefringence dispersion measuring method for quantitatively measuring birefringence dispersion to be measured.

近年、液晶を代表とする高分子材料の研究開発の分野で、複屈折分散に起因する複屈折位相差の波長依存性および複屈折分散下での主軸方位の特定について、定量的な測定が望まれている。   In recent years, in the field of research and development of polymer materials typified by liquid crystals, quantitative measurement of the wavelength dependence of the birefringence retardation due to birefringence dispersion and the identification of the principal axis orientation under birefringence dispersion is desired. It is rare.

従来、高分子材料などの複屈折位相差の計測方法が、各種提案されている(例えば特許文献1参照)。従来の複屈折位相差の計測方法では、一定の条件下で材料に所定の偏光状態の光を通過させ、通過後の光を電気信号に変換し、その電気信号をデジタルデータに変換し、そのデジタルデータに対してフーリエ変換などのデータ処理を施して複屈折位相差を計算している。   Conventionally, various methods for measuring a birefringence phase difference of a polymer material or the like have been proposed (see, for example, Patent Document 1). In the conventional method for measuring the birefringence phase difference, light having a predetermined polarization state is allowed to pass through a material under a certain condition, the light after passing is converted into an electric signal, the electric signal is converted into digital data, Birefringence phase difference is calculated by applying data processing such as Fourier transform to digital data.

また、複屈折位相差の波長依存性の計測方法が、例えば特許文献2で提案されている。   Further, for example, Patent Document 2 proposes a method for measuring the wavelength dependence of the birefringence phase difference.

特開2004−20343号公報(明細書)JP 2004-20343 A (specification) 特開2003−172691号公報(明細書)JP 2003-172691 A (specification)

しかしながら、一般的に、従来の複屈折位相差の計測方法を複屈折位相差の波長依存性の計測に適用する場合、波長ごとに測定系の光学素子や位相シフト量を設定する必要があり、一回の計測で、かつ短時間で計測を行うことは困難である。   However, in general, when applying the conventional birefringence phase difference measurement method to the measurement of the wavelength dependence of the birefringence phase difference, it is necessary to set the optical element of the measurement system and the phase shift amount for each wavelength, It is difficult to measure in a short time with a single measurement.

また、従来の複屈折位相差の計測方法では、測定対象の複屈折位相差と主軸方位とをそれぞれ別々の手法で計算する必要があり、測定対象の複屈折位相差と主軸方位とをまとめて計算することが困難である。   In addition, in the conventional birefringence phase difference measurement method, it is necessary to calculate the birefringence phase difference and the main axis direction of the measurement object by different methods, respectively, and the birefringence phase difference and the main axis direction of the measurement object are collected together. It is difficult to calculate.

本発明は、上記の問題に鑑みてなされたものであり、複屈折分散に起因する複屈折位相差の波長依存性や複屈折分散下での主軸方位を短時間で特定可能な複屈折分散計測装置および複屈折分散計測方法を得ることを目的とする。   The present invention has been made in view of the above problems, and is capable of measuring the birefringence phase difference caused by birefringence dispersion in terms of wavelength dependency and the main axis orientation under birefringence dispersion in a short time. An object is to obtain an apparatus and a birefringence dispersion measuring method.

上記の課題を解決するために、本発明に係る複屈折分散計測装置の1つは、測定対象へ円偏光を入射させる入射手段と、2つの1/4波長板と、該2つの1/4波長板の間に配置され所定の回転速度で回転する1/2波長板とを有し、測定対象を通過した光の位相を変調する位相シフタと、位相シフタを通過した光が入射し1/2波長板の2倍以上の所定の整数倍の回転速度で同期して回転する偏光子と、偏光子を通過した光を受光する受光手段とを備える。   In order to solve the above-described problems, one of the birefringence dispersion measuring apparatuses according to the present invention includes an incident unit that makes circularly polarized light incident on a measurement target, two quarter-wave plates, and the two quarters. A half-wave plate disposed between the wave plates and rotating at a predetermined rotation speed; a phase shifter that modulates the phase of the light that has passed through the measurement target; and the light that has passed through the phase shifter is incident to the half-wavelength A polarizer that rotates synchronously at a rotation speed that is a predetermined integer multiple of twice or more that of the plate, and a light receiving means that receives light that has passed through the polarizer.

これにより、位相シフタの位相変調特性が通過光の波長に依存しないため、複数の波長について位相シフタの設定を変えることなく、各波長での複屈折位相差および/または主軸方位を計算することができる。したがって、複屈折分散に起因する複屈折位相差の波長依存性や複屈折分散下での主軸方位を短時間で特定することができる。   Thereby, since the phase modulation characteristic of the phase shifter does not depend on the wavelength of the passing light, the birefringence phase difference and / or the main axis direction at each wavelength can be calculated without changing the setting of the phase shifter for a plurality of wavelengths. it can. Therefore, the wavelength dependence of the birefringence phase difference resulting from the birefringence dispersion and the principal axis orientation under the birefringence dispersion can be specified in a short time.

本発明に係る複屈折分散計測装置の1つは、少なくとも所定の波長帯域の成分を有する円偏光を測定対象へ入射させる入射手段と、2つの1/4波長板と、該2つの1/4波長板の間に配置され所定の回転速度で回転する1/2波長板とを有し、測定対象を通過した光の位相を変調する位相シフタと、位相シフタを通過した光が入射し、1/2波長板の2倍以上の所定の整数倍の回転速度で同期して回転する偏光子と、偏光子を通過した光を波長に応じて分離する分光手段と、分光手段により分光された光を受光し波長ごとの電気信号に変換する受光手段とを備える。   One of the birefringence dispersion measuring apparatuses according to the present invention includes an incident means that makes circularly polarized light having a component of at least a predetermined wavelength band incident on a measurement object, two quarter-wave plates, and the two quarters. A half-wave plate disposed between the wave plates and rotating at a predetermined rotation speed; a phase shifter that modulates the phase of light that has passed through the measurement object; and light that has passed through the phase shifter is incident; A polarizer that rotates synchronously at a rotational speed of a predetermined integer multiple of at least twice that of the wave plate, a spectroscopic unit that separates light that has passed through the polarizer according to the wavelength, and light that is split by the spectroscopic unit And a light receiving means for converting into an electrical signal for each wavelength.

これにより、位相シフタの位相変調特性が通過光の波長に依存しないため、複数の波長について位相シフタの設定を変えることなく、各波長での複屈折位相差および/または主軸方位を計算することができる。さらに、波長ごとに電気信号が得られるため、波長ごとのデータ処理がし易くなる。このため、複屈折分散に起因する複屈折位相差の波長依存性や複屈折分散下での主軸方位を短時間で特定することができる。   Thereby, since the phase modulation characteristic of the phase shifter does not depend on the wavelength of the passing light, the birefringence phase difference and / or the main axis direction at each wavelength can be calculated without changing the setting of the phase shifter for a plurality of wavelengths. it can. Furthermore, since an electrical signal is obtained for each wavelength, data processing for each wavelength is facilitated. For this reason, the wavelength dependence of the birefringence phase difference resulting from birefringence dispersion and the principal axis orientation under birefringence dispersion can be specified in a short time.

さらに、本発明に係る複屈折分散計測装置の1つは、上記発明に係る複屈折分散計測装置のいずれかに加え、入射手段に、白色光を生成する白色光源と、白色光源からの白色光を直線偏光とする入射側偏光子と、2つの1/4波長板と、該2つの1/4波長板の間に配置された1/2波長板とを有し入射側偏光子を通過した各波長の光を円偏光とする1/4波長板とを有する。   Furthermore, one of the birefringence dispersion measuring devices according to the present invention includes, in addition to any of the birefringence dispersion measuring devices according to the above invention, a white light source that generates white light and white light from the white light source. Each of which has passed through the incident-side polarizer, including an incident-side polarizer having a linearly polarized light, two quarter-wave plates, and a half-wave plate disposed between the two quarter-wave plates And a quarter-wave plate with circularly polarized light.

これにより、複数の波長の光を計測光として使用することができ、複数の波長での複屈折位相差および/または主軸方位を一括して計算することができる。このため、複屈折分散に起因する複屈折位相差の波長依存性や複屈折分散下での主軸方位を短時間で特定することができる。   Thereby, light of a plurality of wavelengths can be used as measurement light, and birefringence phase differences and / or principal axis directions at a plurality of wavelengths can be calculated collectively. For this reason, the wavelength dependence of the birefringence phase difference resulting from birefringence dispersion and the principal axis orientation under birefringence dispersion can be specified in a short time.

さらに、本発明に係る複屈折分散計測装置の1つは、上記発明に係る複屈折分散計測装置のいずれかに加え、受光手段により得られた各波長の電気信号をフーリエ変換するフーリエ変換処理手段と、フーリエ変換処理手段によるフーリエ変換後のスペクトルに基づいて、複屈折位相差の波長依存特性および/または主軸方位を計算する計算手段とを備える。   Furthermore, one of the birefringence dispersion measuring devices according to the present invention includes, in addition to any of the birefringence dispersion measuring devices according to the above invention, a Fourier transform processing means for performing a Fourier transform on the electrical signal of each wavelength obtained by the light receiving means. And a calculation means for calculating the wavelength-dependent characteristic of the birefringence phase difference and / or the principal axis direction based on the spectrum after the Fourier transform by the Fourier transform processing means.

さらに、本発明に係る複屈折分散計測装置の1つは、上記発明に係る複屈折分散計測装置のいずれかに加え、受光手段により得られた各波長の電気信号における、偏光子の回転角度の2倍と4倍の回転角度成分のみの光強度に基づいて、複屈折位相差の波長依存特性および/または測定対象の主軸方位を計算する計算手段を備える。そして、偏光子は、1/2波長板の2倍の回転速度で回転する。   Furthermore, one of the birefringence dispersion measuring apparatuses according to the present invention is the one of the birefringence dispersion measuring apparatus according to the above invention, and the rotation angle of the polarizer in the electrical signal of each wavelength obtained by the light receiving means. Calculation means for calculating the wavelength-dependent characteristics of the birefringence phase difference and / or the main axis direction of the measurement object based on the light intensity of only the double and quadruple rotation angle components. The polarizer rotates at a rotational speed twice that of the half-wave plate.

これにより、少ない計算量で、複屈折位相差の波長依存特性および/または主軸方位を導出することができる。このため、複屈折分散に起因する複屈折位相差の波長依存性や複屈折分散下での主軸方位を短時間で特定することができる。   Thereby, the wavelength dependence characteristic and / or principal axis direction of the birefringence phase difference can be derived with a small amount of calculation. For this reason, the wavelength dependence of the birefringence phase difference resulting from birefringence dispersion and the principal axis orientation under birefringence dispersion can be specified in a short time.

本発明の複屈折分散計測方法は、少なくとも所定の波長帯域の成分を有する円偏光を測定対象へ入射させ、次に、2つの1/4波長板と、該2つの1/4波長板の間に配置され回転する1/2波長板とを有する位相シフタにより、測定対象を通過した光の位相を変調し、次に、位相シフタを通過した光を、1/2波長板の2倍の回転速度で回転する偏光子へ入射させ、次に、偏光子を通過した光を波長に応じて分光し、次に、分光後の光を受光し波長ごとの電気信号に変換し、次に、各波長についての複屈折位相差および/または主軸方位を計算する。   In the birefringence dispersion measuring method of the present invention, circularly polarized light having at least a component in a predetermined wavelength band is incident on a measurement object, and then disposed between two quarter-wave plates and the two quarter-wave plates. The phase of the light that has passed through the object to be measured is modulated by the phase shifter having the rotating half-wave plate, and then the light that has passed through the phase shifter is rotated at twice the rotational speed of the half-wave plate. The light is incident on a rotating polarizer, and then the light that has passed through the polarizer is dispersed according to the wavelength. Next, the light after the spectrum is received and converted into an electrical signal for each wavelength. The birefringence phase difference and / or the principal axis orientation of is calculated.

これにより、位相シフタの位相変調特性が通過光の波長に依存しないため、複数の波長について位相シフタの設定を変えることなく、各波長での複屈折位相差および/または主軸方位を計算することができる。したがって、複屈折分散に起因する複屈折位相差の波長依存性や複屈折分散下での主軸方位を短時間で特定することができる。   Thereby, since the phase modulation characteristic of the phase shifter does not depend on the wavelength of the passing light, the birefringence phase difference and / or the main axis direction at each wavelength can be calculated without changing the setting of the phase shifter for a plurality of wavelengths. it can. Therefore, the wavelength dependence of the birefringence phase difference resulting from the birefringence dispersion and the principal axis orientation under the birefringence dispersion can be specified in a short time.

本発明によれば、複屈折分散に起因する複屈折位相差の波長依存性や複屈折分散下での主軸方位を短時間で特定可能な複屈折分散計測装置および複屈折分散計測方法を得ることができる。   According to the present invention, it is possible to obtain a birefringence dispersion measuring apparatus and a birefringence dispersion measuring method capable of specifying in a short time the wavelength dependence of the birefringence phase difference caused by birefringence dispersion and the principal axis orientation under birefringence dispersion. Can do.

以下、図に基づいて本発明の実施の形態を説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は、本発明の実施の形態に係る複屈折分散計測装置の構成を示す図である。図1において、白色光源1は、所定の複数の波長の光を含む白色光を生成する光源である。白色光源1には、例えばハロゲンランプが使用される。   FIG. 1 is a diagram showing a configuration of a birefringence dispersion measuring apparatus according to an embodiment of the present invention. In FIG. 1, a white light source 1 is a light source that generates white light including light of a plurality of predetermined wavelengths. As the white light source 1, for example, a halogen lamp is used.

また、偏光子2は、検光子5と対となり、白色光源1からの光を直線偏光とする入射側偏光子である。この偏光子2は、主軸方位が45度となるように配置され直線偏光を出射する。   The polarizer 2 is an incident-side polarizer that is paired with the analyzer 5 and uses the light from the white light source 1 as linearly polarized light. The polarizer 2 is arranged so that the principal axis direction is 45 degrees and emits linearly polarized light.

また、アクロマティック1/4波長板3は、白色光源1からの光のうち、測定条件としての波長範囲における各波長の光を円偏光とする1/4波長板である。アクロマティック1/4波長板3は、固定された2つの1/4波長板3a,3bと、1/4波長板3a,3bの間に配置された1/2波長板3cとを有する。1/4波長板3a,3bの主軸方位はいずれも45度とされる。1/2波長板3cの主軸方位は、112.5度とされる。   The achromatic quarter wavelength plate 3 is a quarter wavelength plate that circularly polarizes light of each wavelength in the wavelength range as a measurement condition among the light from the white light source 1. The achromatic quarter-wave plate 3 has two fixed quarter-wave plates 3a and 3b, and a half-wave plate 3c disposed between the quarter-wave plates 3a and 3b. The principal axis directions of the quarter-wave plates 3a and 3b are both 45 degrees. The principal axis direction of the half-wave plate 3c is 112.5 degrees.

また、アクロマティック1/4波長板3から出射した円偏光は、測定対象101に入射する。つまり、この白色光源1、偏光子2およびアクロマティック1/4波長板3は、少なくとも所定の波長帯域の成分を有する円偏光を測定対象へ入射させる入射手段として機能する。   Further, the circularly polarized light emitted from the achromatic quarter wave plate 3 enters the measurement object 101. That is, the white light source 1, the polarizer 2, and the achromatic quarter wave plate 3 function as an incident unit that makes circularly polarized light having at least a component in a predetermined wavelength band incident on the measurement target.

また、位相シフタ4は、測定対象101を通過した光の位相を変調するアクロマティックな位相シフタである。位相シフタ4は、固定された2つの1/4波長板4a,4bと、1/4波長板4a,4bの間に配置され光軸を中心として回転可能な1/2波長板4cとを有する。1/4波長板4a,4bの主軸方位は、いずれも45度とされる。そして、1/2波長板4cが回転するため、1/2波長板4cの主軸方位は、回転角θとされる。   The phase shifter 4 is an achromatic phase shifter that modulates the phase of light that has passed through the measurement object 101. The phase shifter 4 includes two fixed quarter-wave plates 4a and 4b and a half-wave plate 4c that is disposed between the quarter-wave plates 4a and 4b and that can rotate around the optical axis. . The principal axis directions of the quarter-wave plates 4a and 4b are both 45 degrees. Since the half-wave plate 4c rotates, the principal axis direction of the half-wave plate 4c is set to the rotation angle θ.

また、検光子5は、偏光子2と対になる出射側の偏光子である。検光子5は、光軸を中心として回転可能に配置され、1/2波長板4cの回転角θの2倍の回転角度を保ちつつ回転する。   The analyzer 5 is an exit-side polarizer that is paired with the polarizer 2. The analyzer 5 is disposed so as to be rotatable about the optical axis, and rotates while maintaining a rotation angle twice as large as the rotation angle θ of the half-wave plate 4c.

また、分光器6は、検光子5から出射した光を、波長に応じて分離する分光手段として機能する。分光器6としては、回折格子、グリズムなどが使用される。   The spectroscope 6 functions as a spectroscopic unit that separates the light emitted from the analyzer 5 according to the wavelength. As the spectroscope 6, a diffraction grating, a grism, or the like is used.

また、光検出器7は、CCD(Charge Coupled Device )などの受光素子を有し、分光器6により分離された各波長の光を別々に検出し、各波長の光の光強度に応じた電気信号を出力する装置である。   The photodetector 7 has a light receiving element such as a CCD (Charge Coupled Device), separately detects the light of each wavelength separated by the spectroscope 6, and generates electricity corresponding to the light intensity of the light of each wavelength. It is a device that outputs a signal.

そして、図1に示すように、上述した偏光子2、アクロマティック1/4波長板3、測定対象101、位相シフタ4、検光子5および分光器6が、白色光源1から光検出器7までの光路にそって配置される。   As shown in FIG. 1, the polarizer 2, the achromatic quarter wave plate 3, the measurement object 101, the phase shifter 4, the analyzer 5, and the spectroscope 6 are from the white light source 1 to the photodetector 7. Arranged along the optical path.

また、演算装置8は、光検出器7により検出された各波長の光強度に応じた電気信号から各波長についての複屈折位相差および/または主軸方位を計算する装置である。   The computing device 8 is a device that calculates the birefringence phase difference and / or the main axis direction for each wavelength from an electrical signal corresponding to the light intensity of each wavelength detected by the photodetector 7.

図2は、本発明の実施の形態に係る複屈折分散計測装置における演算装置の構成例を示すブロック図である。図2に示す演算装置8において、A/D変換器21は、アナログの電気信号をデジタル信号に変換する回路である。また、インタフェース22は、A/D変換器21からデジタル信号を取得し、デジタルデータとして記憶手段23に記憶する。   FIG. 2 is a block diagram showing a configuration example of the arithmetic unit in the birefringence dispersion measuring apparatus according to the embodiment of the present invention. In the arithmetic device 8 shown in FIG. 2, the A / D converter 21 is a circuit that converts an analog electric signal into a digital signal. The interface 22 acquires a digital signal from the A / D converter 21 and stores it in the storage means 23 as digital data.

また、記憶手段23は、光検出器7からのデジタルデータ、計算途中のデータ、計算結果のデータなどを記憶する半導体メモリである。   The storage means 23 is a semiconductor memory that stores digital data from the photodetector 7, data being calculated, data of calculation results, and the like.

また、フーリエ変換処理手段24は、高速フーリエ変換などのフーリエ変換アルゴリズムに従って、光検出器7からのデジタルデータに対してフーリエ変換処理を行う。   Further, the Fourier transform processing means 24 performs a Fourier transform process on the digital data from the photodetector 7 according to a Fourier transform algorithm such as a fast Fourier transform.

また、計算手段25は、フーリエ変換処理手段24によるフーリエ変換処理後に得られるスペクトルに基づいて、各波長での複屈折位相差を計算する複屈折位相差計算手段25aと、フーリエ変換処理手段24によるフーリエ変換処理後に得られるスペクトルに基づいて、各波長での主軸方位を計算する主軸方位計算手段25bとを有する。つまり、計算手段25は、波長ごとの同一のスペクトルデータから、複屈折位相差と主軸方位を計算する。   The calculation means 25 includes a birefringence phase difference calculation means 25a for calculating a birefringence phase difference at each wavelength based on a spectrum obtained after the Fourier transformation processing by the Fourier transformation processing means 24, and a Fourier transformation processing means 24. Main axis direction calculating means 25b for calculating the main axis direction at each wavelength based on the spectrum obtained after the Fourier transform processing. That is, the calculation means 25 calculates the birefringence phase difference and the principal axis direction from the same spectrum data for each wavelength.

また、データ格納手段26は、光検出器7からのデジタルデータ、計算結果である各波長での複屈折位相差のデータおよび/または各波長での主軸方位のデータを格納する。表示手段27は、光検出器7からのデジタルデータ、計算結果である各波長での複屈折位相差のデータおよび/または各波長での主軸方位のデータに基づいて、光検出器7の出力波形、計算結果である各波長での複屈折位相差、各波長での主軸方位などを表示する。   Further, the data storage means 26 stores digital data from the photodetector 7, birefringence phase difference data at each wavelength, and / or principal axis direction data at each wavelength, which are calculation results. The display means 27 outputs the output waveform of the photodetector 7 based on the digital data from the photodetector 7, the birefringence phase difference data at each wavelength and / or the principal axis orientation data at each wavelength as the calculation result. The birefringence phase difference at each wavelength, the principal axis orientation at each wavelength, and the like, which are calculation results, are displayed.

なお、フーリエ変換処理手段24および計算手段25は、所定のプログラムとそのプログラムに従って動作するCPU、DSP(Digital Signal Processor)などのプロセッサを有するコンピュータにより実現可能である。また、そのように実現した場合には、インタフェース22、データ格納手段26および表示手段27と記憶手段23との間のデータの授受も、そのコンピュータによる制御に従って行われる。   The Fourier transform processing means 24 and the calculation means 25 can be realized by a computer having a predetermined program and a processor such as a CPU or a DSP (Digital Signal Processor) that operates according to the program. In such a case, the data transfer between the interface 22, the data storage means 26, the display means 27 and the storage means 23 is also performed according to the control by the computer.

図1に戻り、駆動機構9は、位相シフタ4の1/2波長板4cを所定の各速度で回転させる機構である。駆動機構9は、例えば、円盤形状の1/2波長板4cの外縁に設けられたギアと、そのギアに噛み合う歯車と、その歯車を回転させるモータとにより構成される。あるいは、円盤形状の1/2波長板4cをベルト駆動するモータとそのベルトにより構成されるようにしてもよいし、また、円盤形状の1/2波長板4cに接触する摩擦車とその摩擦車を駆動するモータとにより構成されるようにしてもよい。あるいは、1/2波長板4cをモータのロータやステータの一部として使用して直接駆動する機構としてもよい。   Returning to FIG. 1, the drive mechanism 9 is a mechanism that rotates the half-wave plate 4 c of the phase shifter 4 at each predetermined speed. The drive mechanism 9 includes, for example, a gear provided on the outer edge of the disc-shaped half-wave plate 4c, a gear that meshes with the gear, and a motor that rotates the gear. Alternatively, the disk-shaped half-wave plate 4c may be constituted by a motor that drives the belt and the belt, or the friction wheel that contacts the disk-shaped half-wave plate 4c and the friction wheel. The motor may be configured to drive the motor. Or it is good also as a mechanism driven directly using the half-wave plate 4c as a part of a rotor or stator of a motor.

また、駆動機構10は、検光子5を1/2波長板4cの2倍の回転速度で回転させる機構である。駆動機構10は、例えば、円盤形状の検光子5の外縁に設けられたギアと、そのギアに噛み合う歯車と、その歯車を回転させるモータとにより構成される。あるいは、円盤形状の検光子5をベルト駆動するモータとそのベルトにより構成されるようにしてもよいし、また、円盤形状の検光子5に接触する摩擦車とその摩擦車を駆動するモータとにより構成されるようにしてもよい。あるいは、検光子5をモータのロータやステータの一部として使用して直接駆動する機構としてもよい。   The drive mechanism 10 is a mechanism that rotates the analyzer 5 at twice the rotational speed of the half-wave plate 4c. The drive mechanism 10 includes, for example, a gear provided on the outer edge of the disk-shaped analyzer 5, a gear that meshes with the gear, and a motor that rotates the gear. Alternatively, the disk-shaped analyzer 5 may be configured by a motor that drives the belt and the belt, or by a friction wheel that contacts the disk-shaped analyzer 5 and a motor that drives the friction wheel. It may be configured. Or it is good also as a mechanism which uses the analyzer 5 as a part of a rotor or stator of a motor, and drives directly.

また、制御装置11は、駆動機構9および駆動機構10を電気的に制御する装置である。なお、制御装置11による駆動機構9および駆動機構10の電気的な制御に基づいて検光子5の回転速度を1/2波長板4cの2倍の回転速度に維持するようにしてもよいし、駆動機構9と駆動機構10とを速度比1:2の変速機などで接続し機械的に検光子5の回転速度を1/2波長板4cの2倍の回転速度に維持するようにしてもよい。   The control device 11 is a device that electrically controls the drive mechanism 9 and the drive mechanism 10. The rotational speed of the analyzer 5 may be maintained at a rotational speed twice that of the half-wave plate 4c based on electrical control of the drive mechanism 9 and the drive mechanism 10 by the control device 11. The drive mechanism 9 and the drive mechanism 10 are connected by a transmission having a speed ratio of 1: 2, and the rotational speed of the analyzer 5 is mechanically maintained at twice the rotational speed of the half-wave plate 4c. Good.

次に、上記装置の動作について説明する。   Next, the operation of the above apparatus will be described.

白色光源1は、波長依存性を測定する波長帯域の成分を含む白色光を生成する。この白色光は、偏光子2に入射する。偏光子2は、各波長成分についての45度の直線偏光を出射する。なお、偏光子2の偏光特性は、通過光の波長に依存しない。   The white light source 1 generates white light including a component in a wavelength band for measuring wavelength dependency. This white light is incident on the polarizer 2. The polarizer 2 emits 45-degree linearly polarized light for each wavelength component. Note that the polarization characteristics of the polarizer 2 do not depend on the wavelength of the passing light.

偏光子2からの各波長の直線偏光は、アクロマティック1/4波長板3に入射する。このアクロマティック1/4波長板3は、1/4波長板3a,3bおよび1/2波長板3cで構成されるアクロマティックな1/4波長板となっており、各波長の光を円偏光とする。   The linearly polarized light of each wavelength from the polarizer 2 is incident on the achromatic quarter wave plate 3. The achromatic quarter-wave plate 3 is an achromatic quarter-wave plate composed of quarter-wave plates 3a and 3b and a half-wave plate 3c, and circularly polarized light of each wavelength. And

図3は、本発明の実施の形態に係る複屈折分散計測装置におけるアクロマティック1/4波長板3の複屈折分散特性の一例を示す図である。図3(A)は、アクロマティック1/4波長板3の複屈折位相差の波長依存性を示し、図3(B)は、アクロマティック1/4波長板3の主軸方位を示している。   FIG. 3 is a diagram showing an example of the birefringence dispersion characteristic of the achromatic quarter wave plate 3 in the birefringence dispersion measuring apparatus according to the embodiment of the present invention. 3A shows the wavelength dependence of the birefringence phase difference of the achromatic quarter-wave plate 3, and FIG. 3B shows the principal axis orientation of the achromatic quarter-wave plate 3.

図3のアクロマティック1/4波長板3は、ポリエチレン(ポリマーの一種)の構成されたものであり、図中「QHQ型ポリマー」としているものである。図3(A)に示すように、このアクロマティック1/4波長板3では、雲母単体からなる1/4波長板やポリエチレン単体からなるアクロマティック1/4波長板と比較して、波長に対して平坦な複屈折位相差が得られている。また、主軸方位についても、波長に対して45度で平坦な主軸方位が得られている。   The achromatic quarter wave plate 3 in FIG. 3 is made of polyethylene (a kind of polymer), and is “QHQ type polymer” in the drawing. As shown in FIG. 3 (A), the achromatic quarter-wave plate 3 is more sensitive to the wavelength than a quarter-wave plate made of mica alone or an achromatic quarter-wave plate made of polyethylene alone. And a flat birefringence phase difference is obtained. As for the main axis direction, a flat main axis direction is obtained at 45 degrees with respect to the wavelength.

したがって、このアクロマティック1/4波長板3では、各波長の入射光が円偏光とされ出射される。   Therefore, in this achromatic quarter wave plate 3, incident light of each wavelength is emitted as circularly polarized light.

アクロマティック1/4波長板3からの光は、測定対象101を通過し、位相シフタ4に入射する。その際、通過する光は、測定対象101の各波長での複屈折特性および主軸方位によって影響を受ける。測定対象101の配向状態や応力状態に応じて、各波長での複屈折特性や主軸方位が変化するため、測定対象101から出射する光は、これらの情報を内包する。   Light from the achromatic quarter-wave plate 3 passes through the measurement object 101 and enters the phase shifter 4. At that time, the light passing therethrough is affected by the birefringence characteristics and the principal axis orientation of each wavelength of the measuring object 101. Since the birefringence characteristic and the principal axis direction at each wavelength change according to the orientation state and stress state of the measurement object 101, the light emitted from the measurement object 101 includes these pieces of information.

可視光範囲内での波長変化に対する複屈折特性の変動量は微小であるため、そのまま測定対象101からの出射光を検出しても、各波長での複屈折特性の変動量を抽出することは難しい。そのため、位相シフタ4により通過光に位相変調が施される。   Since the amount of fluctuation of the birefringence characteristic with respect to the wavelength change within the visible light range is very small, it is possible to extract the amount of fluctuation of the birefringence characteristic at each wavelength even if the emitted light from the measurement object 101 is detected as it is. difficult. Therefore, phase modulation is performed on the passing light by the phase shifter 4.

位相シフタ4の1/2波長板4cは、駆動機構9により駆動され所定の回転速度ωで回転している。これにより、位相シフタ4は、1/2波長板4cの回転角度θ(=ω・t)によって通過光の光強度を周期的に変動させる。また、この位相シフタ4により変調される位相量である幾何学的位相Ωは、回転角度をθとすると、Ω(θ)=4θとされる。   The half-wave plate 4c of the phase shifter 4 is driven by the drive mechanism 9 and is rotated at a predetermined rotational speed ω. Thereby, the phase shifter 4 periodically varies the light intensity of the passing light according to the rotation angle θ (= ω · t) of the half-wave plate 4c. The geometric phase Ω, which is the phase amount modulated by the phase shifter 4, is Ω (θ) = 4θ, where θ is the rotation angle.

図4は、本発明の実施の形態に係る複屈折分散計測装置における位相シフタ4の特性の一例を示す図である。図4に示す特性は、位相シフタ4単体に対して書く波長の光を入射しそれに対応する出射光から得られたものである。図4(A)は、1/2波長板4cの回転角度θに対する、位相シフタ4単体の通過光の光強度を示す(なお、入射光の光強度を100とする)。図4(B)は、回転角度θに対する幾何学的位相Ωを示す。図4(B)に示すように、各波長について、回転角度θに対する幾何学的位相Ωの関係は、略同一となっている。   FIG. 4 is a diagram showing an example of the characteristics of the phase shifter 4 in the birefringence dispersion measuring apparatus according to the embodiment of the present invention. The characteristics shown in FIG. 4 are obtained from incident light having a wavelength to be written on the phase shifter 4 alone and corresponding output light. FIG. 4A shows the light intensity of the light passing through the phase shifter 4 alone with respect to the rotation angle θ of the half-wave plate 4c (note that the light intensity of the incident light is 100). FIG. 4B shows the geometric phase Ω with respect to the rotation angle θ. As shown in FIG. 4B, the relationship of the geometric phase Ω with respect to the rotation angle θ is substantially the same for each wavelength.

したがって、位相シフタ4により、各波長の光に対して同様の位相変調が行われる。位相シフタ4を通過した光は、検光子5に入射する。検光子5は、駆動機構10により駆動され、1/2波長板4cの2倍の回転速度で同方向に回転している。つまり、検光子5の主軸方位もその速度で回転する。検光子5から出射した直線偏光は、分光器6に入射する。なお、検光子5の偏光特性は、通過光の波長に依存しない。   Therefore, the phase shifter 4 performs similar phase modulation on the light of each wavelength. The light that has passed through the phase shifter 4 enters the analyzer 5. The analyzer 5 is driven by the drive mechanism 10 and rotates in the same direction at a rotational speed twice that of the half-wave plate 4c. That is, the main axis direction of the analyzer 5 also rotates at that speed. The linearly polarized light emitted from the analyzer 5 enters the spectroscope 6. The polarization characteristic of the analyzer 5 does not depend on the wavelength of the passing light.

分光器6は、検光子5から入射した光を各波長成分に分離し各波長成分の光を別々の方向に出射する。分光器6により分離された各波長の光は、空間的に分離した状態で光検出器7に入射する。光検出器7は、波長ごとに光強度を電気信号に変換しそのアナログ信号を出力する。この光検出器7から出力された信号は、演算装置8に供給される。なお、光検出器7では、波長ごとに別々の受光素子を使用してもよいし、1つのCCDなどの面受光素子を使用してもよい。1つのCCDなどを使用する場合には、受光面の各受光領域から各波長成分の信号を得るようにすればよい。   The spectroscope 6 separates the light incident from the analyzer 5 into each wavelength component and emits light of each wavelength component in different directions. The light of each wavelength separated by the spectroscope 6 enters the photodetector 7 in a spatially separated state. The photodetector 7 converts the light intensity into an electrical signal for each wavelength and outputs the analog signal. The signal output from the photodetector 7 is supplied to the arithmetic unit 8. In the photodetector 7, a separate light receiving element may be used for each wavelength, or a single surface receiving element such as a CCD may be used. When one CCD or the like is used, a signal of each wavelength component may be obtained from each light receiving area of the light receiving surface.

演算装置8では、A/D変換器21が、その信号をデジタル信号に変換し、インタフェース22が、そのデジタル信号をデジタルデータに変換する。そして、受光された光の光強度を示すデータが、波長ごとに時系列に沿って収集され、記憶手段23に記憶される。   In the arithmetic unit 8, the A / D converter 21 converts the signal into a digital signal, and the interface 22 converts the digital signal into digital data. Data indicating the light intensity of the received light is collected along the time series for each wavelength and stored in the storage unit 23.

そして、このデータに基づいて、各波長についての、測定対象101の複屈折位相差および主軸方位がまとめて計算される。   Based on this data, the birefringence phase difference and the principal axis direction of the measurement object 101 for each wavelength are calculated together.

ここで、各波長の光強度のデータから測定対象101の複屈折位相差および主軸方位が得られる原理について説明する。   Here, the principle of obtaining the birefringence phase difference and the principal axis direction of the measurement object 101 from the light intensity data of each wavelength will be described.

まず、上記の光学系を介して光検出器7に入射する光強度Iは、位相シフタ4の回転角θに基づく位相変調を受けているため、式(1)に示すように回転角θと通過光の波長λの関数となる。   First, since the light intensity I incident on the photodetector 7 through the optical system is subjected to phase modulation based on the rotation angle θ of the phase shifter 4, the rotation angle θ and It becomes a function of the wavelength λ of the passing light.

Figure 2005241406
Figure 2005241406

ここで、Δ(λ)は、波長λについての測定対象101の複屈折位相差を表し、φは、測定対象101の主軸方位を表し、Ω(θ)は、位相シフタ4による位相変動量である。   Here, Δ (λ) represents the birefringence phase difference of the measuring object 101 with respect to the wavelength λ, φ represents the principal axis direction of the measuring object 101, and Ω (θ) is the amount of phase fluctuation by the phase shifter 4. is there.

また、上述のように、この実施の形態では、Ω(θ)は4θであるので、式(1)は、式(2)で表される。   Further, as described above, in this embodiment, since Ω (θ) is 4θ, the expression (1) is expressed by the expression (2).

Figure 2005241406
Figure 2005241406

式(2)において時系列に沿って変動するのは回転角θのみであるため、時系列に沿って変動しない要素を、係数a0,a4,a8,b8とおくと、式(2)は、式(3)および式(4a)〜(4c)で表される。   Since only the rotation angle θ varies along the time series in the equation (2), if the elements that do not vary along the time series are coefficients a0, a4, a8, and b8, the equation (2) becomes It is represented by Formula (3) and Formula (4a)-(4c).

Figure 2005241406
Figure 2005241406

Figure 2005241406
Figure 2005241406

そして、式(4a)〜(4c)から、波長λについての測定対象101の複屈折位相差Δ(λ)を導出するための式(5)が得られる。   Then, from the equations (4a) to (4c), the equation (5) for deriving the birefringence phase difference Δ (λ) of the measurement object 101 with respect to the wavelength λ is obtained.

Figure 2005241406
Figure 2005241406

また、式(4a),(4c)から、測定対象101の主軸方位φを導出するための式(6)が得られる。

Figure 2005241406
Further, from the equations (4a) and (4c), the equation (6) for deriving the principal axis azimuth φ of the measurement object 101 is obtained.
Figure 2005241406

以上の式(5),(6)を使用することで、光強度の測定値のうち、1/2波長板4cの回転速度ω(=θ/t)の4倍の周波数成分4ω(=4θ/t)と8倍の周波数成分8ω(=8θ/t)の光強度の値、つまり各波長についてのa4,a8,b8から、各波長λについての測定対象101の複屈折位相差Δ(λ)と主軸方位φを導出することができる。   By using the above equations (5) and (6), the frequency component 4ω (= 4θ) that is four times the rotational speed ω (= θ / t) of the half-wave plate 4c among the measured values of light intensity. / T) and the light intensity value of 8 times frequency component 8ω (= 8θ / t), that is, from a4, a8, b8 for each wavelength, birefringence phase difference Δ (λ (λ) of measurement object 101 for each wavelength λ ) And the principal axis direction φ can be derived.

このような原理に基づいて、演算装置8のフーリエ変換処理手段24および計算手段25により、各波長の受光強度の時系列データから、各波長λについての測定対象101の複屈折位相差Δ(λ)と主軸方位φが導出される。   Based on this principle, the birefringence phase difference Δ (λ (λ) of the measuring object 101 for each wavelength λ is obtained from the time-series data of the received light intensity of each wavelength by the Fourier transform processing unit 24 and the calculation unit 25 of the arithmetic unit 8. ) And the principal axis direction φ are derived.

まず、フーリエ変換処理手段24は、所定のフーリエ変換アルゴリズムに従って、各波長の受光強度の時系列データから、所定の範囲(例えば0〜8θ)の周波数スペクトル(つまり、各周波数でのフーリエ係数の値)を計算し、各波長についての周波数スペクトルのデータを記憶手段23に記憶する。なお、回転速度θは光の周波数に比べ十分低いため、問題なくフーリエ変換が行われる。   First, according to a predetermined Fourier transform algorithm, the Fourier transform processing means 24 calculates a frequency spectrum (that is, a value of a Fourier coefficient at each frequency) within a predetermined range (for example, 0 to 8θ) from time-series data of received light intensity of each wavelength. ) And the frequency spectrum data for each wavelength is stored in the storage means 23. Since the rotation speed θ is sufficiently lower than the light frequency, the Fourier transform is performed without any problem.

次に、計算手段25の複屈折位相差計算手段25aは、記憶手段23に記憶された各波長についての周波数スペクトルのデータから、回転速度の4倍の周波数成分a4および回転速度の8倍の周波数成分a8,b8を取得し、式(5)に従って、各波長λについての複屈折位相差Δ(λ)を計算する。なお、回転速度の4倍の周波数成分a4および回転速度の8倍の周波数成分a8,b8は、各周波数成分のフーリエ係数の絶対値と位相から計算される。   Next, the birefringence phase difference calculating unit 25a of the calculating unit 25 calculates a frequency component a4 that is four times the rotational speed and a frequency that is eight times the rotational speed from the frequency spectrum data for each wavelength stored in the storage unit 23. The components a8 and b8 are acquired, and the birefringence phase difference Δ (λ) for each wavelength λ is calculated according to the equation (5). The frequency component a4 that is four times the rotational speed and the frequency components a8 and b8 that are eight times the rotational speed are calculated from the absolute value and phase of the Fourier coefficient of each frequency component.

また、計算手段25の主軸方位計算手段25bは、記憶手段23に記憶された各波長についての周波数スペクトルのデータ(つまり、複屈折位相差計算手段25aが使用するものと同一のデータ)から、回転速度の4倍の周波数成分a4および回転速度の8倍の周波数成分b8を取得し、式(6)に従って、各波長λについての主軸方位φを計算する。なお、主軸方位φは波長λに依存しないため、代表する1つの波長について主軸方位φを計算するようにしてもよいし、複数の波長について主軸方位φを計算しそれらの平均値を主軸方位φとしてもよい。   Further, the main axis direction calculating means 25b of the calculating means 25 rotates from the frequency spectrum data (that is, the same data used by the birefringence phase difference calculating means 25a) for each wavelength stored in the storage means 23. A frequency component a4 that is four times the speed and a frequency component b8 that is eight times the rotational speed are obtained, and the principal axis direction φ for each wavelength λ is calculated according to equation (6). Since the main axis direction φ does not depend on the wavelength λ, the main axis direction φ may be calculated for one representative wavelength, or the main axis direction φ may be calculated for a plurality of wavelengths, and the average value thereof may be calculated as the main axis direction φ. It is good.

計算手段25により計算された各波長λについての複屈折位相差Δ(λ)および主軸方位φのデータは、記憶手段23に記憶される。そして、必要に応じて、それらのデータは、データ格納手段26に格納される。また、必要に応じて、それらのデータに基づき、各波長λについての複屈折位相差Δ(λ)および主軸方位φの情報が、表示手段27により表示される。   Data of the birefringence phase difference Δ (λ) and the main axis direction φ for each wavelength λ calculated by the calculation unit 25 is stored in the storage unit 23. These data are stored in the data storage means 26 as necessary. Further, if necessary, information on the birefringence phase difference Δ (λ) and the main axis direction φ for each wavelength λ is displayed by the display means 27 based on the data.

次に、上記実施の形態に係る複屈折分散計測装置による測定例について説明する。   Next, a measurement example using the birefringence dispersion measuring apparatus according to the above embodiment will be described.

まず、バビネソレイユ補償器を測定対象101として使用した場合の本実施の形態に係る装置の検証について説明する。図5は、本発明の実施の形態に係る複屈折分散計測装置による、バビネソレイユ補償器の複屈折位相差と主軸方位の測定結果の一例を示す図である。   First, verification of the apparatus according to the present embodiment when a Babinet Soleil compensator is used as the measurement object 101 will be described. FIG. 5 is a diagram illustrating an example of measurement results of the birefringence phase difference and the principal axis direction of the Babinet Soleil compensator by the birefringence dispersion measuring apparatus according to the embodiment of the present invention.

バビネソレイユ補償器は、任意の複屈折位相差と主軸方位を作りだせるものであり、マイクロメータの送り量に対して複屈折位相差が直線的に変化する光学素子である。バビネソレイユ補償器を測定対象101として使用し、マイクロメータの送り量を変化させて、3つの波長について本実施の形態に係る装置により複屈折位相差を測定した結果が図5である。図5に示すように、各波長について、マイクロメータの送り量に対してほぼ直線的な複屈折位相差が測定されており、複屈折位相差が正確に計測されている。また、主軸方位についても、送り量に対して22.5度で一定しており、正確に計測されている。   The Babinet Soleil compensator is an optical element that can create an arbitrary birefringence phase difference and principal axis direction, and the birefringence phase difference changes linearly with respect to the feed amount of a micrometer. FIG. 5 shows the result of measuring the birefringence phase difference with the apparatus according to the present embodiment for three wavelengths by using the Babinet Soleil compensator as the measurement object 101 and changing the feed amount of the micrometer. As shown in FIG. 5, for each wavelength, the birefringence phase difference substantially linear with respect to the feed amount of the micrometer is measured, and the birefringence phase difference is accurately measured. Further, the spindle direction is also constant at 22.5 degrees with respect to the feed amount, and is accurately measured.

次に、測定対象101として液晶デバイス用の位相差フィルムを使用した場合の本実施の形態に係る装置の測定結果について説明する。図6は、本発明の実施の形態に係る複屈折分散計測装置により得られた、測定対象101としての位相差フィルムの複屈折分散の測定結果を示す図である。この位相差フィルムは、ポリカーボネート製の高分子フィルムであって、波長550nmでの複屈折位相差が90度のものである。また、計測時には、この位相差フィルムは、主軸方位が90度となるように配置されている。   Next, measurement results of the apparatus according to the present embodiment when a retardation film for a liquid crystal device is used as the measurement object 101 will be described. FIG. 6 is a diagram showing the measurement result of the birefringence dispersion of the retardation film as the measurement object 101 obtained by the birefringence dispersion measuring apparatus according to the embodiment of the present invention. This retardation film is a polymer film made of polycarbonate and has a birefringence retardation of 90 degrees at a wavelength of 550 nm. Moreover, at the time of measurement, this retardation film is arrange | positioned so that a principal axis direction may be 90 degree | times.

図6に示すように、本実施の形態で測定された複屈折位相差は、従来の回転検光子法で光学系の設定を波長ごとに調整して得られた測定結果と同様の値となっている。したがって、本実施の形態によれば各波長での複屈折位相差が、まとめて正確に測定される。また、主軸方位についても、波長に対して均一なほぼ90度の値が得られており、主軸方位が正確に測定されることがわかる。   As shown in FIG. 6, the birefringence phase difference measured in the present embodiment is the same value as the measurement result obtained by adjusting the setting of the optical system for each wavelength by the conventional rotational analyzer method. ing. Therefore, according to the present embodiment, the birefringence phase difference at each wavelength is accurately measured collectively. Also, with respect to the main axis direction, a uniform value of about 90 degrees with respect to the wavelength is obtained, and it can be seen that the main axis direction is accurately measured.

以上のように、上記実施の形態によれば、位相シフタ4が、2つの1/4波長板4a,4bと、1/4波長板4a,4bの間に配置され所定の回転速度で回転する1/2波長板4cとを有し、測定対象101を通過した光の位相を変調し、検光子5が、1/2波長板4cの2倍の回転速度で同期して回転し、位相シフタ4を通過した光を直線偏光とする。そして、分光器6が、その直線偏光の光を波長に応じて分離し、光検出器7が、分光後の光を受光し波長ごとの電気信号に変換する。   As described above, according to the above embodiment, the phase shifter 4 is disposed between the two quarter-wave plates 4a and 4b and the quarter-wave plates 4a and 4b and rotates at a predetermined rotational speed. And a half-wave plate 4c, which modulates the phase of the light that has passed through the measurement object 101, and the analyzer 5 rotates in synchronization with the rotational speed twice that of the half-wave plate 4c. The light that has passed through 4 is linearly polarized light. Then, the spectroscope 6 separates the linearly polarized light according to the wavelength, and the photodetector 7 receives the light after the spectrum and converts it into an electrical signal for each wavelength.

これにより、位相シフタ4の位相変調特性が通過光の波長に依存しないため、複数の波長について位相シフタの設定を変えることなく、各波長での、計測対象101の複屈折位相差および/または主軸方位を計算することができる。さらに、波長ごとに電気信号が得られるため、波長ごとのデータ処理がし易くなる。このため、複屈折分散に起因する複屈折位相差の波長依存性や複屈折分散下での主軸方位を、短時間で特定することができる。   Thereby, since the phase modulation characteristic of the phase shifter 4 does not depend on the wavelength of the passing light, the birefringence phase difference and / or the main axis of the measurement object 101 at each wavelength can be obtained without changing the setting of the phase shifter for a plurality of wavelengths. The azimuth can be calculated. Furthermore, since an electrical signal is obtained for each wavelength, data processing for each wavelength is facilitated. For this reason, the wavelength dependence of the birefringence phase difference resulting from birefringence dispersion and the principal axis orientation under birefringence dispersion can be specified in a short time.

さらに、上記実施の形態によれば、アクロマティック1/4波長板3が、2つの1/4波長板3a,3bと、1/4波長板3a,3bの間に配置された1/2波長板3cとを有し偏光子2を通過した各波長の光を円偏光とする。   Furthermore, according to the above-described embodiment, the achromatic quarter wave plate 3 is a half wavelength disposed between the two quarter wave plates 3a and 3b and the quarter wave plates 3a and 3b. The light of each wavelength having the plate 3c and passing through the polarizer 2 is circularly polarized light.

これにより、アクロマティック1/4波長板3の偏光特性が通過光の波長に依存しないため、測定対象101の前段の1/4波長板を変更せずに複数の波長の光を計測光として使用することができ、複数の波長での、計測対象101の複屈折位相差および/または主軸方位を一括して計算することができる。このため、複屈折分散に起因する複屈折位相差の波長依存性や複屈折分散下での主軸方位を、短時間で特定することができる。   As a result, since the polarization characteristics of the achromatic quarter-wave plate 3 do not depend on the wavelength of the passing light, light of a plurality of wavelengths is used as measurement light without changing the previous quarter-wave plate of the measurement object 101. The birefringence phase difference and / or principal axis direction of the measurement object 101 at a plurality of wavelengths can be calculated in a lump. For this reason, the wavelength dependence of the birefringence phase difference resulting from birefringence dispersion and the principal axis orientation under birefringence dispersion can be specified in a short time.

さらに、上記実施の形態によれば、計算手段25は、検光子5の回転角度の2倍と4倍の回転角度成分のみの光強度に基づいて、測定対象101の複屈折位相差の波長依存特性および/または測定対象の主軸方位を計算する。   Furthermore, according to the above embodiment, the calculation means 25 is based on the wavelength dependence of the birefringence phase difference of the measuring object 101 based on the light intensity of only the rotation angle components twice and four times the rotation angle of the analyzer 5. Calculate the characteristics and / or the principal axis orientation of the measurement object.

これにより、少ない計算量で、複屈折位相差の波長依存特性および/または主軸方位を導出することができる。このため、複屈折分散に起因する複屈折位相差の波長依存性や複屈折分散下での主軸方位を、短時間で特定することができる。   Thereby, the wavelength dependence characteristic and / or principal axis direction of the birefringence phase difference can be derived with a small amount of calculation. For this reason, the wavelength dependence of the birefringence phase difference resulting from birefringence dispersion and the principal axis orientation under birefringence dispersion can be specified in a short time.

なお、上述の実施の形態は、本発明の好適な例であるが、本発明は、これらに限定されるものではなく、本発明の要旨を逸脱しない範囲において、種々の変形、変更が可能である。   The above-described embodiments are preferred examples of the present invention, but the present invention is not limited to these, and various modifications and changes can be made without departing from the scope of the present invention. is there.

例えば、上記実施の形態では、1/2波長板4cと検光子5との回転速度比を1:2としているが、回転速度比を1:4などといった別の整数比としてもよい。その場合、光強度の時系列データから、その整数比に応じた周波数成分を抽出し、その周波数成分の値に応じて、各波長についての複屈折位相差と主軸方位を計算すればよい。   For example, in the above embodiment, the rotational speed ratio between the half-wave plate 4c and the analyzer 5 is 1: 2, but the rotational speed ratio may be another integer ratio such as 1: 4. In that case, a frequency component corresponding to the integer ratio is extracted from the time-series data of the light intensity, and the birefringence phase difference and the main axis direction for each wavelength may be calculated according to the value of the frequency component.

また、上記実施の形態では、白色光源1を使用しているが、分光器6を外し、白色光源1の代わりに複数の単色光源を使用し、単色光源を切り換えて測定を行うようにしてもよい。その場合にも、偏光子2から検光子5までの光学系の設定を、光源の波長に応じて変える必要は特にない。その場合の単色光源としては、He−Neレーザといった各種レーザ光源を使用することができる。   In the above embodiment, the white light source 1 is used. However, the spectroscope 6 is removed, a plurality of monochromatic light sources are used in place of the white light source 1, and the monochromatic light source is switched to perform measurement. Good. Even in that case, it is not particularly necessary to change the setting of the optical system from the polarizer 2 to the analyzer 5 in accordance with the wavelength of the light source. In this case, various laser light sources such as a He—Ne laser can be used as the monochromatic light source.

また、上記実施の形態において、フーリエ変換処理手段24は、複数の波長についてのフーリエ変換処理を、複数のプロセッサやプロセスにより並列に行うようにしてもよい。同様に、計算手段25も、複数の波長についての複屈折位相差および主軸方位の計算を並列に行うようにしてもよい。   In the above embodiment, the Fourier transform processing unit 24 may perform the Fourier transform processing for a plurality of wavelengths in parallel by a plurality of processors and processes. Similarly, the calculation means 25 may calculate the birefringence phase difference and the principal axis direction for a plurality of wavelengths in parallel.

本発明は、例えば、高分子材料や液晶などの複屈折分散の計測に適用可能である。ひいては、高分子材料や液晶の配向状態や内部応力の評価に応用可能である。   The present invention is applicable to, for example, measurement of birefringence dispersion of a polymer material or liquid crystal. As a result, it can be applied to the evaluation of the orientation state and internal stress of polymer materials and liquid crystals.

図1は、本発明の実施の形態に係る複屈折分散計測装置の構成を示す図である。FIG. 1 is a diagram showing a configuration of a birefringence dispersion measuring apparatus according to an embodiment of the present invention. 図2は、本発明の実施の形態に係る複屈折分散計測装置における演算装置の構成例を示すブロック図である。FIG. 2 is a block diagram showing a configuration example of the arithmetic unit in the birefringence dispersion measuring apparatus according to the embodiment of the present invention. 図3は、本発明の実施の形態に係る複屈折分散計測装置における1/4波長板の複屈折分散特性の一例を示す図である。FIG. 3 is a diagram showing an example of the birefringence dispersion characteristic of the quarter-wave plate in the birefringence dispersion measuring apparatus according to the embodiment of the present invention. 図4は、本発明の実施の形態に係る複屈折分散計測装置における位相シフタの特性の一例を示す図である。FIG. 4 is a diagram illustrating an example of characteristics of the phase shifter in the birefringence dispersion measuring apparatus according to the embodiment of the present invention. 図5は、本発明の実施の形態に係る複屈折分散計測装置による、バビネソレイユ補償器の複屈折位相差と主軸方位の測定結果の一例を示す図である。FIG. 5 is a diagram illustrating an example of measurement results of the birefringence phase difference and the principal axis direction of the Babinet Soleil compensator by the birefringence dispersion measuring apparatus according to the embodiment of the present invention. 図6は、本発明の実施の形態に係る複屈折分散計測装置により得られた、測定対象としての位相差フィルムの複屈折分散の測定結果を示す図である。FIG. 6 is a diagram showing a measurement result of birefringence dispersion of a retardation film as a measurement target obtained by the birefringence dispersion measuring apparatus according to the embodiment of the present invention.

符号の説明Explanation of symbols

1 白色光源(入射手段の一部)
2 偏光子(入射側偏光子、入射手段の一部)
3 アクロマティック1/4波長板(入射手段の一部)
3a,3b 1/4波長板(アクロマティック1/4波長板の一部)
3c 1/2波長板(アクロマティック1/4波長板の一部)
4 位相シフタ
4a,4b 1/4波長板(位相シフタの一部)
4c 1/2波長板(位相シフタの一部)
5 検光子(偏光子)
6 分光器(分光手段)
7 光検出器(受光手段)
24 フーリエ変換処理手段
25 計算手段
101 測定対象
1 White light source (part of incident means)
2 Polarizer (incident side polarizer, part of incident means)
3 Achromatic quarter wave plate (part of the incident means)
3a, 3b quarter wave plate (part of achromatic quarter wave plate)
3c 1/2 wave plate (part of achromatic quarter wave plate)
4 Phase shifter 4a, 4b 1/4 wavelength plate (part of phase shifter)
4c 1/2 wavelength plate (part of phase shifter)
5 Analyzer (polarizer)
6 Spectrometer (spectral means)
7 Photodetector (light receiving means)
24 Fourier transform processing means 25 Calculation means 101 Measurement object

Claims (6)

測定対象の複屈折分散を計測する複屈折分散計測装置において、
測定対象へ円偏光を入射させる入射手段と、
2つの1/4波長板と、該2つの1/4波長板の間に配置され所定の回転速度で回転する1/2波長板とを有し、測定対象を通過した光の位相を変調する位相シフタと、
上記位相シフタを通過した光が入射し、上記1/2波長板の2倍以上の所定の整数倍の回転速度で同期して回転する偏光子と、
上記偏光子を通過した光を受光する受光手段と、
を備えることを特徴とする複屈折分散計測装置。
In the birefringence dispersion measuring device that measures the birefringence dispersion of the measurement object,
An incident means for making circularly polarized light incident on the measurement object;
A phase shifter that includes two quarter-wave plates and a half-wave plate that is disposed between the two quarter-wave plates and rotates at a predetermined rotation speed, and modulates the phase of light that has passed through the measurement target. When,
A light incident through the phase shifter, and a polarizer that rotates synchronously at a rotation speed that is a predetermined integer multiple of twice or more that of the half-wave plate;
A light receiving means for receiving light that has passed through the polarizer;
A birefringence dispersion measuring apparatus comprising:
測定対象の複屈折分散を計測する複屈折分散計測装置において、
少なくとも所定の波長帯域の成分を有する円偏光を測定対象へ入射させる入射手段と、
2つの1/4波長板と、該2つの1/4波長板の間に配置され所定の回転速度で回転する1/2波長板とを有し、測定対象を通過した光の位相を変調する位相シフタと、
上記位相シフタを通過した光が入射し、上記1/2波長板の2倍以上の所定の整数倍の回転速度で同期して回転する偏光子と、
上記偏光子を通過した光を波長に応じて分離する分光手段と、
上記分光手段により分光された光を受光し波長ごとの電気信号に変換する受光手段と、
を備えることを特徴とする複屈折分散計測装置。
In the birefringence dispersion measuring device that measures the birefringence dispersion of the measurement object,
An incident means for causing circularly polarized light having a component of at least a predetermined wavelength band to be incident on the measurement object;
A phase shifter that includes two quarter-wave plates and a half-wave plate that is disposed between the two quarter-wave plates and rotates at a predetermined rotation speed, and modulates the phase of light that has passed through the measurement target. When,
A light incident through the phase shifter, and a polarizer that rotates synchronously at a rotation speed that is a predetermined integer multiple of twice or more that of the half-wave plate;
Spectroscopic means for separating the light that has passed through the polarizer according to the wavelength,
A light receiving means for receiving the light split by the spectroscopic means and converting it into an electrical signal for each wavelength;
A birefringence dispersion measuring apparatus comprising:
前記入射手段は、
白色光を生成する白色光源と、
上記白色光源からの白色光を直線偏光とする入射側偏光子と、
2つの1/4波長板と、該2つの1/4波長板の間に配置された1/2波長板とを有し、上記入射側偏光子を通過した各波長の光を円偏光とするアクロマティック1/4波長板と、
を有することを特徴とする請求項1または請求項2記載の複屈折分散計測装置。
The incident means is
A white light source that produces white light;
An incident-side polarizer that makes white light from the white light source linearly polarized light;
Achromatic having two quarter-wave plates and a half-wave plate disposed between the two quarter-wave plates, wherein light of each wavelength that has passed through the incident-side polarizer is circularly polarized. A quarter wave plate,
The birefringence dispersion measuring apparatus according to claim 1 or 2, characterized by comprising:
前記受光手段により得られた各波長の電気信号をフーリエ変換するフーリエ変換処理手段と、
上記フーリエ変換処理手段によるフーリエ変換後のスペクトルに基づいて、複屈折位相差の波長依存特性および/または主軸方位を計算する計算手段と、
を備えることを特徴とする請求項1または請求項2記載の複屈折分散計測装置。
Fourier transform processing means for Fourier transforming the electrical signal of each wavelength obtained by the light receiving means;
Calculation means for calculating the wavelength-dependent characteristics of the birefringence phase difference and / or the principal axis direction based on the spectrum after Fourier transform by the Fourier transform processing means;
The birefringence dispersion measuring apparatus according to claim 1 or 2, further comprising:
前記受光手段により得られた各波長の電気信号における、前記偏光子の回転角度の2倍と4倍の回転角度成分のみの光強度に基づいて、複屈折位相差の波長依存特性および/または測定対象の主軸方位を計算する計算手段を備え、
前記偏光子は、前記1/2波長板の2倍の回転速度で回転すること、
を特徴とする請求項1または請求項2記載の複屈折分散計測装置。
The wavelength-dependent characteristics and / or measurement of the birefringence phase difference based on the light intensity of only the rotation angle components twice and four times the rotation angle of the polarizer in the electrical signal of each wavelength obtained by the light receiving means. A calculation means for calculating the principal axis direction of the object,
The polarizer rotates at a rotational speed twice that of the half-wave plate;
The birefringence dispersion measuring apparatus according to claim 1 or 2, characterized in that:
測定対象の複屈折分散を計測する複屈折分散計測方法において、
少なくとも所定の波長帯域の成分を有する円偏光を測定対象へ入射させ、
2つの1/4波長板と、該2つの1/4波長板の間に配置され回転する1/2波長板とを有する位相シフタにより、測定対象を通過した光の位相を変調し、
上記位相シフタを通過した光を、上記1/2波長板の2倍以上の所定の整数倍の回転速度で同期して回転する偏光子へ入射させ、
上記偏光子を通過した光を波長に応じて分光し、
分光後の光を受光し波長ごとの電気信号に変換し、
各波長についての複屈折位相差および/または主軸方位を計算すること、
を特徴とする複屈折分散計測方法。
In the birefringence dispersion measuring method for measuring the birefringence dispersion of the measurement object,
Make circularly polarized light having at least a component in a predetermined wavelength band incident on the object to be measured,
A phase shifter having two quarter-wave plates and a half-wave plate rotating between the two quarter-wave plates, modulates the phase of the light that has passed through the measurement object,
The light that has passed through the phase shifter is incident on a polarizer that rotates synchronously at a rotation speed that is a predetermined integer multiple of twice or more that of the half-wave plate,
Spectroscopy the light that has passed through the polarizer according to the wavelength,
Receives the light after spectroscopy and converts it into an electrical signal for each wavelength.
Calculating the birefringence phase difference and / or principal axis orientation for each wavelength;
A birefringence dispersion measuring method characterized by:
JP2004050991A 2004-02-26 2004-02-26 Instrument and method for measuring double refraction dispersion Pending JP2005241406A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004050991A JP2005241406A (en) 2004-02-26 2004-02-26 Instrument and method for measuring double refraction dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004050991A JP2005241406A (en) 2004-02-26 2004-02-26 Instrument and method for measuring double refraction dispersion

Publications (1)

Publication Number Publication Date
JP2005241406A true JP2005241406A (en) 2005-09-08

Family

ID=35023293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004050991A Pending JP2005241406A (en) 2004-02-26 2004-02-26 Instrument and method for measuring double refraction dispersion

Country Status (1)

Country Link
JP (1) JP2005241406A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099791A1 (en) * 2006-02-28 2007-09-07 National University Corporation Tokyo University Of Agriculture And Technology Measuring instrument and measuring method
JP2007232550A (en) * 2006-02-28 2007-09-13 Tokyo Univ Of Agriculture & Technology Optical characteristic measuring instrument and optical characteristic measuring method
JP2007286011A (en) * 2006-04-20 2007-11-01 Toray Ind Inc Device and method for measuring optical characteristics
US8107075B2 (en) 2005-03-28 2012-01-31 Utsunomiya University Optical characteristic measuring apparatus and optical characteristics measuring method
JP2012103222A (en) * 2010-11-15 2012-05-31 Mitsubishi Electric Corp Evaluation method and evaluation device for optical anisotropy
JP2017508301A (en) * 2014-03-17 2017-03-23 メンロ システムズ ゲーエムベーハー Method of operating a laser device, use of a resonance device and a phase shifter
JP2018010048A (en) * 2016-07-11 2018-01-18 キヤノン株式会社 Optical device and imaging apparatus
JP2018010049A (en) * 2016-07-11 2018-01-18 キヤノン株式会社 Optical device and imaging apparatus
JP2019523446A (en) * 2016-09-02 2019-08-22 エルジー・ケム・リミテッド Optical characteristic inspection machine and optical characteristic inspection method
JP2020030372A (en) * 2018-08-24 2020-02-27 オリンパス株式会社 Polarization observation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281137A (en) * 1992-04-06 1993-10-29 Asahi Optical Co Ltd Double-refraction measuring apparatus
JP2000507349A (en) * 1996-03-19 2000-06-13 アボツト・ラボラトリーズ Non-invasive measurement of optically active compounds
JP2000515247A (en) * 1996-07-24 2000-11-14 サーマ―ウェイブ・インク Broadband spectral rotation compensator ellipsometer
JP2001141602A (en) * 1999-11-12 2001-05-25 Unie Opt:Kk System and method for evaluating double refraction

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05281137A (en) * 1992-04-06 1993-10-29 Asahi Optical Co Ltd Double-refraction measuring apparatus
JP2000507349A (en) * 1996-03-19 2000-06-13 アボツト・ラボラトリーズ Non-invasive measurement of optically active compounds
JP2000515247A (en) * 1996-07-24 2000-11-14 サーマ―ウェイブ・インク Broadband spectral rotation compensator ellipsometer
JP2001141602A (en) * 1999-11-12 2001-05-25 Unie Opt:Kk System and method for evaluating double refraction

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8107075B2 (en) 2005-03-28 2012-01-31 Utsunomiya University Optical characteristic measuring apparatus and optical characteristics measuring method
KR101267119B1 (en) 2006-02-28 2013-05-23 고꾸리쯔 다이가꾸호우징 도쿄노우코우다이가쿠 Measuring instrument and measuring method
JP2007232550A (en) * 2006-02-28 2007-09-13 Tokyo Univ Of Agriculture & Technology Optical characteristic measuring instrument and optical characteristic measuring method
JPWO2007099791A1 (en) * 2006-02-28 2009-07-16 国立大学法人東京農工大学 Measuring device and measuring method
JP4677570B2 (en) * 2006-02-28 2011-04-27 国立大学法人東京農工大学 Measuring device and measuring method
WO2007099791A1 (en) * 2006-02-28 2007-09-07 National University Corporation Tokyo University Of Agriculture And Technology Measuring instrument and measuring method
JP2007286011A (en) * 2006-04-20 2007-11-01 Toray Ind Inc Device and method for measuring optical characteristics
JP2012103222A (en) * 2010-11-15 2012-05-31 Mitsubishi Electric Corp Evaluation method and evaluation device for optical anisotropy
JP2017508301A (en) * 2014-03-17 2017-03-23 メンロ システムズ ゲーエムベーハー Method of operating a laser device, use of a resonance device and a phase shifter
US10720750B2 (en) 2014-03-17 2020-07-21 Menlo Systems Gmbh Method for operating a laser device, resonator arrangement and use of a phase shifter
JP2018010048A (en) * 2016-07-11 2018-01-18 キヤノン株式会社 Optical device and imaging apparatus
JP2018010049A (en) * 2016-07-11 2018-01-18 キヤノン株式会社 Optical device and imaging apparatus
JP2019523446A (en) * 2016-09-02 2019-08-22 エルジー・ケム・リミテッド Optical characteristic inspection machine and optical characteristic inspection method
JP2020030372A (en) * 2018-08-24 2020-02-27 オリンパス株式会社 Polarization observation device
JP7137995B2 (en) 2018-08-24 2022-09-15 株式会社エビデント Polarization observation device

Similar Documents

Publication Publication Date Title
JP3909363B2 (en) Spectral polarization measurement method
JP4926957B2 (en) Optical characteristic measuring apparatus and optical characteristic measuring method
KR101267119B1 (en) Measuring instrument and measuring method
JP4224644B2 (en) Spectral polarization measurement method
JP5904793B2 (en) Spectroscopic polarimetry apparatus and method in visible and near infrared region
JP6632059B2 (en) Polarimetry apparatus and polarization measurement method using dual-com spectroscopy
JP2005241406A (en) Instrument and method for measuring double refraction dispersion
JP4011902B2 (en) Birefringence measuring apparatus and method considering wavelength dependence
WO2006103953A1 (en) Optical characteristics measuring device and optical characteristics measuring method
JP5116346B2 (en) Phase difference measuring device using a spectroscope
JP2001141602A (en) System and method for evaluating double refraction
JP5041508B2 (en) Optical characteristic measuring apparatus and method
JP2000509830A (en) Rotation compensator-type spectroscopic ellipsometer system with regression calibration with photoarray detector
JP4700667B2 (en) Measuring device and measuring method
JP5747317B2 (en) Polarization measuring apparatus and polarization measuring method
JP6239336B2 (en) Circular dichroism measuring method and circular dichroic measuring device
EP0080540A1 (en) Method and apparatus for measuring quantities which characterize the optical properties of substances
JPH06288835A (en) Ellipsometer
JP5140789B2 (en) Spectroscopic polarimeter
JP5469590B2 (en) Magneto-optical spectrum spectrometer, magneto-optical spectrum measuring method and program
JP6239335B2 (en) Circular dichroism measuring method and circular dichroic measuring device
JP6180311B2 (en) Ellipsometer
RU2805776C1 (en) Method for measuring anisotropic reflection spectrum of semiconductor materials and device for its implementation
JP2004184225A (en) Double refraction measuring instrument, method for detecting axial orientation of double refraction sample and method for calibrating the instrument
KR102281167B1 (en) Apparatus and method for measuring the retardation of a retarder based on a stokes polarimeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100511