JP2005240749A - Blower - Google Patents

Blower Download PDF

Info

Publication number
JP2005240749A
JP2005240749A JP2004054232A JP2004054232A JP2005240749A JP 2005240749 A JP2005240749 A JP 2005240749A JP 2004054232 A JP2004054232 A JP 2004054232A JP 2004054232 A JP2004054232 A JP 2004054232A JP 2005240749 A JP2005240749 A JP 2005240749A
Authority
JP
Japan
Prior art keywords
impeller
blade
blower
pressure surface
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004054232A
Other languages
Japanese (ja)
Inventor
Shoji Yamada
彰二 山田
Kunihiko Kaga
邦彦 加賀
Masahiro Arinaga
政広 有永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004054232A priority Critical patent/JP2005240749A/en
Publication of JP2005240749A publication Critical patent/JP2005240749A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blower capable of easily controlling the direction and capacity of a leak flow sufficiently effective for reducing noise and also suppressing the lowering of the strength of blades. <P>SOLUTION: In this blower having an impeller 1 formed of the plurality of solid resin or metal blades 3, a plurality of independent through holes 7 generating the leak flow for reducing noise are formed in the blades 3 of the impeller 1 starting at the pressure surface 5 to the negative pressure surface 6 thereof. Also, a plurality of independent through holes 7 are formed in the blades 3 of the impeller 1 starting at the pressure surface 5 to the negative pressure surface 6 thereof, and the direction of the through holes 7 relative to the negative pressure surface 6 side blade face is tilted from the vertical direction of the blade surface to the trailing edge 9 side. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は複数枚の翼が中実の樹脂又は金属で構成される羽根車を有する送風機に関し、特に騒音低減を可能にする羽根車構造に係わるものである。   The present invention relates to a blower having an impeller having a plurality of blades made of solid resin or metal, and particularly to an impeller structure that enables noise reduction.

従来の送風機用羽根車の翼は、例えば特許文献1に示されるように、羽根車を構成する複数枚の翼の全面、又は一部に翼の圧力面側と負圧面側を貫通する多数の小孔又は連続気孔をもつポーラスな部材を使用し、翼面上から発生する乱流騒音を低減しようとするものである。   The blades of a conventional blower impeller include, for example, a large number of blades that penetrate the pressure surface side and the suction surface side of the blades on the entire surface or a part of a plurality of blades constituting the impeller, as shown in Patent Document 1, for example. A porous member having small holes or continuous pores is used to reduce turbulent noise generated from the blade surface.

特開平1−237399号公報JP-A-1-237399

このような送風機用羽根車にあっては、騒音源となる境界層の発達を抑制するために有効な漏れ流れの方向、量を充分制御することができない欠点があった。さらにポーラス材の成型コストが高いことや、翼の強度が低いなどの欠点があり、製品化に及んでいない。
この発明はこのような問題を解決しようとするもので、羽根車を構成する中実の翼の圧力面から負圧面にかけて、騒音低減用の漏れ流れを発生する独立した貫通孔を複数設けたことにより、騒音低減に充分効果的な漏れ流れの方向や量を容易に制御することができる送風機を得ることを目的とする。
Such an impeller for a blower has a drawback that the effective direction and amount of leakage flow cannot be sufficiently controlled in order to suppress the development of a boundary layer serving as a noise source. Furthermore, there are disadvantages such as high molding cost of the porous material and low strength of the wings, and it has not been commercialized.
The present invention is intended to solve such a problem, and a plurality of independent through holes for generating a leakage flow for noise reduction are provided from the pressure surface to the suction surface of a solid blade constituting the impeller. Thus, an object of the present invention is to obtain a blower capable of easily controlling the direction and amount of leakage flow sufficiently effective for noise reduction.

この発明に係わる送風機は、複数枚の翼が中実の樹脂又は金属で構成される羽根車を有する送風機において、上記羽根車の翼には、その圧力面から負圧面にかけて、騒音低減用の漏れ流れを発生する独立した貫通孔を複数設けたものである。
また、複数枚の翼が中実の樹脂又は金属で構成される羽根車を有する送風機において、上記羽根車の翼には、その圧力面から負圧面にかけて騒音低減用の漏れ流れを発生する複数の独立した貫通孔を設け、上記貫通孔の負圧面側の翼面に対する向きは、翼面に垂直より後縁側に傾いているものである。
さらに、複数枚の翼が中実の樹脂又は金属で構成される羽根車を有する送風機において、上記羽根車の翼には、その圧力面から負圧面にかけて騒音低減用の漏れ流れを発生する複数の独立した貫通孔を設け、上記貫通孔は上記圧力面側の開口が大きく、上記負圧面側の開口が小さいテーパ孔である。
The blower according to the present invention is a blower having an impeller having a plurality of blades made of solid resin or metal, and the blades of the impeller have a noise reduction leak from the pressure surface to the suction surface. A plurality of independent through holes for generating a flow are provided.
Further, in a blower having an impeller having a plurality of blades made of solid resin or metal, a plurality of blades of the impeller generate a leakage flow for noise reduction from the pressure surface to the suction surface. An independent through hole is provided, and the direction of the through hole with respect to the blade surface on the suction surface side is inclined from the perpendicular to the blade surface to the trailing edge side.
Furthermore, in a blower having an impeller in which a plurality of blades are made of solid resin or metal, a plurality of blades of the impeller generate a leakage flow for noise reduction from the pressure surface to the suction surface. An independent through hole is provided, and the through hole is a tapered hole having a large opening on the pressure surface side and a small opening on the negative pressure surface side.

この発明の送風機によれば、羽根車を構成する中実の翼の圧力面から負圧面にかけて、騒音低減用の漏れ流れを発生する独立した貫通孔を複数設けたことにより、騒音低減に充分効果的な漏れ流れの方向や量を容易に制御することができる。また、必要以上に空隙の存在がなく、騒音低減効果を得ることができるので、翼の強度低下も抑制できる。
また、羽根車を構成する中実の翼の圧力面から負圧面にかけて、騒音低減用の漏れ流れを発生する複数の独立した貫通孔を設け、上記貫通孔の負圧面側の翼面に対する向きは、翼面に垂直より後縁側に傾いているので、圧力面から負圧面に抜ける漏れ流れに騒音低減に充分効果的な方向性を与えることができる。
According to the blower of the present invention, by providing a plurality of independent through-holes that generate a leakage flow for noise reduction from the pressure surface to the suction surface of the solid blade constituting the impeller, it is sufficiently effective for noise reduction. The direction and amount of a typical leak flow can be easily controlled. Further, since there is no gap more than necessary and a noise reduction effect can be obtained, it is possible to suppress a decrease in blade strength.
In addition, a plurality of independent through holes that generate a leakage flow for noise reduction are provided from the pressure surface to the suction surface of the solid blade that constitutes the impeller, and the orientation of the through hole with respect to the blade surface on the suction surface side is Since it is inclined from the vertical direction to the trailing edge side with respect to the blade surface, it is possible to give the leakage flow from the pressure surface to the suction surface sufficiently effective for noise reduction.

さらに、羽根車を構成する中実の翼には、その圧力面から負圧面にかけて騒音低減用の漏れ流れを発生する複数の独立した貫通孔を設け、上記貫通孔は圧力面側の開口が大きく、負圧面側の開口が小さいテーパ孔であるので、圧力面から負圧面に抜ける漏れ流れに騒音低減に効果的な方向性を与えることができると共に、製造が容易で整型時のコスト増加を伴わない。   Further, the solid blade constituting the impeller is provided with a plurality of independent through holes that generate a noise reducing leakage flow from the pressure surface to the suction surface, and the through hole has a large opening on the pressure surface side. Since the suction surface has a small opening on the suction side, the leakage flow from the pressure surface to the suction surface can be given an effective direction to reduce noise, and the manufacturing is easy and the cost for molding is increased. Not accompanied.

実施の形態1.
図1の(a)はこの発明の実施の形態1による送風機の羽根車の翼における気流の流れ方向の翼断面図、および(b)はその部分拡大図である。図4に示すように、羽根車1には羽根ハブ2の周囲に中実の樹脂又は金属で構成された複数枚の翼(ブレード)3が設けられている。図1で、矢印4は気流の流れ方向を示している。この実施の形態1では、中実の翼3の圧力面5から負圧面6にかけて、騒音低減用の漏れ流れを発生する独立したダクト状の貫通孔7を複数設けている。各貫通孔7は拡大図(b)に示すように、テーパ孔(テーパ穴)になっている。矢印8は漏れ流れの方向を示している。
Embodiment 1 FIG.
FIG. 1A is a blade cross-sectional view in the direction of airflow in a blade of an impeller of a blower according to Embodiment 1 of the present invention, and FIG. 1B is a partially enlarged view thereof. As shown in FIG. 4, the impeller 1 is provided with a plurality of blades 3 made of solid resin or metal around the blade hub 2. In FIG. 1, an arrow 4 indicates the flow direction of the airflow. In the first embodiment, a plurality of independent duct-like through-holes 7 that generate a leakage flow for noise reduction are provided from the pressure surface 5 to the negative pressure surface 6 of the solid blade 3. Each through-hole 7 is a tapered hole (tapered hole) as shown in the enlarged view (b). Arrow 8 indicates the direction of leakage flow.

中実の翼3に貫通孔7を点在させて設けるものであるので、その位置、数及びダクト形状を所望に形成できるから、騒音低減に効果的な漏れ流れの方向や量を容易に制御することができる。また、独立したダクト状の貫通孔7であるため製造が容易で、成型時のコスト増加を抑えることができる。   Since the solid blade 3 is provided with the through holes 7 interspersed, its position, number and duct shape can be formed as desired, so the direction and amount of leakage flow effective for noise reduction can be easily controlled. can do. Moreover, since it is the independent duct-shaped through-hole 7, manufacture is easy and it can suppress the cost increase at the time of shaping | molding.

気流の境界層の発達を抑制するのに必要な運動量は非常に小さいので、貫通孔7の大きさは製造限界に伴う最も小さい細孔が好ましい。また貫通孔7の数は多いほど良い。レーザ加工で微細孔を形成してもよい。焼結材料、発泡材料、多孔膜等の通気性材料で形成された翼ではないので、中実の翼3は、必要以上に空隙の存在はなく、騒音低減効果を得る翼3の強度低下も抑制できる。また、貫通孔7をテーパ孔にすると、圧力面5から負圧面6への漏れ流れは、負圧面6側で後縁9側に向かい易いので望ましい。さらに、貫通孔7をテーパ孔にすると、成型時の型抜きが容易になる。なお、10は翼3の前縁である。   Since the momentum necessary for suppressing the development of the boundary layer of the airflow is very small, the size of the through hole 7 is preferably the smallest pore associated with the production limit. The larger the number of through holes 7, the better. Micro holes may be formed by laser processing. Since it is not a wing made of a breathable material such as a sintered material, a foamed material, or a porous film, the solid wing 3 does not have an air gap more than necessary, and the strength of the wing 3 is reduced. Can be suppressed. In addition, if the through hole 7 is a tapered hole, the leakage flow from the pressure surface 5 to the suction surface 6 tends to be directed toward the trailing edge 9 on the suction surface 6 side. Furthermore, when the through hole 7 is a tapered hole, it is easy to remove the mold at the time of molding. Reference numeral 10 denotes a leading edge of the blade 3.

実施の形態2.
図2の(a)は実施の形態2による送風機の羽根車の翼における気流の流れ方向の翼断面図、および(b)はその部分拡大図である。なお、各図中で同一符号は同一または相当部分を示す。羽根車の中実の翼3には、その圧力面5から負圧面6にかけて騒音低減用の漏れ流れを発生する複数の独立したダクト状の貫通孔7を設け、貫通孔7の負圧面6側の翼面に対する向きは、翼面に垂直より後縁9側に傾いている。各貫通孔7は拡大図(b)に示すように、テーパ孔になっており、テーパ孔の負圧面6側の翼面に対する向きは、翼面に垂直より後縁9側に傾いている。矢印8は漏れ流れの方向を示している。
Embodiment 2. FIG.
2A is a blade cross-sectional view in the direction of airflow in the blades of the impeller of the blower according to Embodiment 2, and FIG. 2B is a partially enlarged view thereof. In the drawings, the same reference numerals indicate the same or corresponding parts. The solid blade 3 of the impeller is provided with a plurality of independent duct-like through holes 7 that generate a leakage flow for noise reduction from the pressure surface 5 to the suction surface 6, and the suction surface 6 side of the through hole 7 is provided. Is inclined toward the trailing edge 9 rather than perpendicular to the blade surface. As shown in the enlarged view (b), each through hole 7 is a tapered hole, and the direction of the tapered hole with respect to the blade surface on the suction surface 6 side is inclined to the trailing edge 9 side from the perpendicular to the blade surface. Arrow 8 indicates the direction of leakage flow.

このような構成にすると、圧力面5から負圧面6に抜ける漏れ流れは負圧面6側において、後縁9側に向かう斜めの方向をもつので、騒音低減に充分効果的な方向性を与えることができ、翼面上の気流の流れと漏れ流れの合流による乱れを抑制し、騒音低減効果を増すことができる。   With such a configuration, the leakage flow that escapes from the pressure surface 5 to the suction surface 6 has an oblique direction toward the trailing edge 9 side on the suction surface 6 side, and therefore provides a direction that is sufficiently effective for noise reduction. It is possible to suppress the turbulence caused by the flow of the airflow and the leakage flow on the blade surface, and increase the noise reduction effect.

実施の形態3.
図3は実施の形態3による送風機の羽根車の翼における圧力面から見た貫通孔の形状図、およびその部分の翼断面図であり、(a)(b)(c)で種々異なる形状のものを示している。(a)(b)(c)共、貫通孔7は圧力面5側でその開口を最も大きくし、負圧面6側でその開口を最も小さくしたテーパ孔である。(a)は圧力面5側の開口が円形で、負圧面6側の開口も圧力面5側の開口の中央で円形である。テーパ孔の形状として2種類を示している。(b)は圧力面5側の開口が円形で、負圧面6側の開口は圧力面5側の開口の後縁側に偏って円形である。(c)は圧力面5側の開口が楕円形で、負圧面6側の開口は圧力面5側の開口の後縁側に偏って楕円形である。負圧面6側の開口が圧力面5側の開口の後縁側に偏ることにより、負圧面6側の開口から出る漏れ流れの方向が後縁側に向きやすくなる。
Embodiment 3 FIG.
FIG. 3 is a shape diagram of a through hole seen from the pressure surface in the blade of an impeller of a blower according to Embodiment 3, and a blade cross-sectional view of the portion, and (a), (b), and (c) have various shapes. Shows things. In both (a), (b), and (c), the through hole 7 is a tapered hole having the largest opening on the pressure surface 5 side and the smallest opening on the negative pressure surface 6 side. In (a), the opening on the pressure surface 5 side is circular, and the opening on the suction surface 6 side is also circular at the center of the opening on the pressure surface 5 side. Two types of tapered hole shapes are shown. In (b), the opening on the pressure surface 5 side is circular, and the opening on the suction surface 6 side is circular with a bias toward the trailing edge of the opening on the pressure surface 5 side. In (c), the opening on the pressure surface 5 side is elliptical, and the opening on the suction surface 6 side is elliptical with a bias toward the rear edge of the opening on the pressure surface 5 side. Since the opening on the suction surface 6 side is biased toward the trailing edge side of the opening on the pressure surface 5 side, the direction of leakage flow from the opening on the suction surface 6 side is easily directed toward the trailing edge side.

このような構成にすれば、圧力面から負圧面への漏れ量は最小孔径で制御できる。さらに、テーパ孔であるので、漏れ流れの方向が後縁側に向きやすく、成型が容易となるばかりか貫通孔7部の清掃性や排水性も向上し、過酷な条件下でも騒音の低減効果を損なわない。また圧力面側で翼面の流れを乱流遷移し、大規模な剥離を抑制するディンプル効果を有する。   With this configuration, the amount of leakage from the pressure surface to the suction surface can be controlled by the minimum hole diameter. Furthermore, since it is a tapered hole, the direction of leakage flow is easily directed toward the trailing edge, which facilitates molding and improves the cleanability and drainage of the through-hole 7 part, resulting in a noise reduction effect even under severe conditions. No damage. It also has a dimple effect that suppresses large-scale separation by turbulent transition of the blade surface flow on the pressure surface side.

実施の形態4.
図4は実施の形態4における翼に設ける貫通孔の分布を示す軸流羽根車の正面図である。矢印11は、羽根車1の回転方向を示す。実施の形態4は羽根車1の外周縁部12に騒音低減用の漏れ流れを発生する複数の貫通孔7を点在させて設けている。このような構成にすれば、最も周速が速い外周縁部の翼面で発生した乱れに起因する騒音を強度の低下を招くことなく低減することができる。軸流送風機を例にとって述べたが、他の送風機形態でも周速の大きな箇所に貫通孔を配置すれば、効果的である。
Embodiment 4 FIG.
FIG. 4 is a front view of an axial-flow impeller showing the distribution of through holes provided in the blade in the fourth embodiment. An arrow 11 indicates the rotation direction of the impeller 1. In the fourth embodiment, a plurality of through holes 7 that generate a leakage flow for noise reduction are provided in the outer peripheral edge 12 of the impeller 1 in a dotted manner. With such a configuration, it is possible to reduce noise caused by the turbulence generated on the blade surface at the outer peripheral edge with the fastest peripheral speed without causing a decrease in strength. Although an axial blower has been described as an example, it is effective to arrange a through hole at a location where the peripheral speed is large even in other blower configurations.

実施の形態5.
図5は実施の形態5における翼に設ける貫通孔の分布を示す軸流羽根車の正面図である。実施の形態5では、翼3の後縁9側に騒音低減用の漏れ流れを発生する複数の貫通孔7を点在させて設けている。このような構成にすれば、翼面で発生した乱れが翼3の後縁9から放出されることに起因する騒音を強度の低下を招くことなく低減することができる。軸流送風機を例にとって述べたが、他の送風機形態でも翼の後縁9側に貫通孔を配置すれば効果的である。
Embodiment 5 FIG.
FIG. 5 is a front view of an axial-flow impeller showing the distribution of through holes provided in the blade in the fifth embodiment. In the fifth embodiment, a plurality of through holes 7 that generate a leakage flow for noise reduction are provided on the trailing edge 9 side of the blade 3 in a dotted manner. With such a configuration, it is possible to reduce noise caused by the turbulence generated on the blade surface being emitted from the trailing edge 9 of the blade 3 without causing a decrease in strength. Although an axial blower has been described as an example, it is effective to arrange a through hole on the trailing edge 9 side of the blade even in other blower configurations.

実施の形態6.
図6は実施の形態6における翼に設ける貫通孔の分布を示す軸流羽根車の正面図である。実施の形態6では、羽根車1の外周縁部12と翼3の後縁9側に複数の貫通孔7を点在させて設けている。このような構成にすれば、強度の低下を招くことなく、羽根車外周縁部と翼後縁から発生する騒音を低減することができる。軸流送風機を例にとって述べたが、他の送風機形態でも周速の大きな箇所および翼の後縁側に貫通孔を配置すれば、効果的である。
Embodiment 6 FIG.
FIG. 6 is a front view of an axial-flow impeller showing the distribution of through holes provided in the blade in the sixth embodiment. In the sixth embodiment, a plurality of through holes 7 are provided on the outer peripheral edge portion 12 of the impeller 1 and the rear edge 9 side of the blade 3. With such a configuration, it is possible to reduce noise generated from the outer peripheral edge of the impeller and the blade trailing edge without causing a decrease in strength. Although an axial blower has been described as an example, other types of blowers are effective if a through hole is disposed at a location where the peripheral speed is large and the trailing edge side of the blade.

実施の形態7.
図7の(a)は実施の形態7における翼に設ける貫通孔の分布を示す軸流羽根車の正面図である。(b)は翼の半径(中央の一点鎖線)位置での円筒断面の展開図である。実施の形態7では、展開図の展開面における翼形状の反り高さが最も大きい箇所(最大反り高さh)の近傍に騒音低減用の漏れ流れを発生する複数の貫通孔7を点在させて設けている。このような構成にすれば、気流の境界層の不安定が生じる箇所で境界層に運動量を注入することができ、強度の低下を招くことなく、効果的に境界層の発達を抑制することができ、発生する騒音を低減することができる。軸流送風機を例にとって述べたが、他の送風機形態でも翼の最大反り位置近傍に貫通孔を配置すれば効果的である。
Embodiment 7 FIG.
(A) of FIG. 7 is a front view of the axial-flow impeller which shows distribution of the through-hole provided in the blade | wing in Embodiment 7. FIG. (B) is a development view of a cylindrical cross section at the position of the radius of the blade (one-dot chain line). In the seventh embodiment, a plurality of through-holes 7 that generate a leakage flow for noise reduction are dotted in the vicinity of a portion (maximum warp height h) where the blade shape warpage height is the largest on the development surface of the development view. Provided. With such a configuration, momentum can be injected into the boundary layer where airflow boundary layer instability occurs, and the development of the boundary layer can be effectively suppressed without causing a decrease in strength. And noise generated can be reduced. Although an axial blower has been described as an example, it is effective to arrange a through hole in the vicinity of the maximum warp position of a blade even in other blower configurations.

実施の形態8.
図8は実施の形態8における翼に設ける貫通孔の分布を示す軸流羽根車の側面図である。実施の形態8では、羽根車1の外周縁部12において、ベルマウス13より翼の前縁10側が吸気側の空間に突出している場合に、羽根車1の外周縁部12とベルマウス13とが近接した箇所の外周縁部12に騒音低減用の漏れ流れを発生する複数の貫通孔7を設けている。このような構成にすれば、吸気側に突出した羽根車1の外周縁部12側で発生する翼端渦と、ベルマウス13および羽根車1の外周縁部12の隙間で生じる翼端漏れ流れの干渉部において、強度の低下を招くことなく、両者の干渉に伴う非定常な変動を緩和し、騒音の発生を低減することができる。
Embodiment 8 FIG.
FIG. 8 is a side view of an axial-flow impeller showing the distribution of through holes provided in the blade in the eighth embodiment. In the eighth embodiment, in the outer peripheral edge 12 of the impeller 1, when the front edge 10 side of the wing projects from the bell mouth 13 into the space on the intake side, the outer peripheral edge 12 of the impeller 1, the bell mouth 13, A plurality of through-holes 7 that generate a leakage flow for noise reduction are provided in the outer peripheral edge portion 12 at a location close to each other. With this configuration, the blade tip vortex generated on the outer peripheral edge 12 side of the impeller 1 projecting toward the intake side and the blade tip leakage flow generated in the gap between the bell mouth 13 and the outer peripheral edge 12 of the impeller 1. In the interfering portion, unsteady fluctuations caused by the interference between the two can be mitigated and the generation of noise can be reduced without causing a decrease in strength.

この発明は軸流送風機、軸流型のプロペラファン、シロッコファン、ターボファン等の遠心送風機、及び貫流型のクロスフローファンの翼に適用して同様な効果が得られる。   The present invention can be applied to centrifugal fans such as an axial flow fan, an axial flow type propeller fan, a sirocco fan, and a turbo fan, and a blade of a cross flow type cross flow fan to obtain the same effect.

この発明の実施の形態1による送風機の羽根車の翼における気流の流れ方向の翼断面図、およびその部分拡大図である。It is the blade | wing sectional drawing of the flow direction of the airflow in the blade | wing of the impeller of the air blower by Embodiment 1 of this invention, and its partial enlarged view. 実施の形態2による送風機の羽根車の翼における気流の流れ方向の翼断面図、およびその部分拡大図である。It is the blade | wing sectional drawing of the flow direction of the airflow in the blade | wing of the impeller of the air blower by Embodiment 2, and its partial enlarged view. 実施の形態3による送風機の羽根車の翼における圧力面から見た貫通孔の形状図、およびその部分の翼断面図である。It is the shape figure of the through-hole seen from the pressure surface in the blade | wing of the impeller of the air blower by Embodiment 3, and the blade | wing sectional drawing of the part. 実施の形態4における翼に設ける貫通孔の分布を示す軸流羽根車の正面図である。It is a front view of the axial-flow impeller which shows distribution of the through-hole provided in the blade | wing in Embodiment 4. 実施の形態5における翼に設ける貫通孔の分布を示す軸流羽根車の正面図である。It is a front view of the axial-flow impeller which shows distribution of the through-hole provided in the blade | wing in Embodiment 5. 実施の形態6における翼に設ける貫通孔の分布を示す軸流羽根車の正面図である。It is a front view of the axial-flow impeller which shows distribution of the through-hole provided in the blade | wing in Embodiment 6. 実施の形態7における翼に設ける貫通孔の分布を示す軸流羽根車の正面図である。It is a front view of the axial-flow impeller which shows distribution of the through-hole provided in the blade | wing in Embodiment 7. 実施の形態8における翼に設ける貫通孔の分布を示す軸流羽根車の側面図である。FIG. 20 is a side view of an axial-flow impeller showing a distribution of through holes provided in a blade in an eighth embodiment.

符号の説明Explanation of symbols

1 羽根車 2 羽根ハブ
3 翼 4 矢印
5 圧力面 6 負圧面
7 貫通孔 8 矢印
9 後縁 10 前縁
11 矢印 12 外周縁部
13 ベルマウス。
DESCRIPTION OF SYMBOLS 1 Impeller 2 Blade hub 3 Blade 4 Arrow 5 Pressure surface 6 Negative pressure surface 7 Through hole 8 Arrow 9 Rear edge 10 Front edge 11 Arrow 12 Outer peripheral edge 13 Bell mouth

Claims (7)

複数枚の翼が中実の樹脂又は金属で構成される羽根車を有する送風機において、上記羽根車の翼には、その圧力面から負圧面にかけて、騒音低減用の漏れ流れを発生する独立した貫通孔を複数設けたことを特徴とする送風機。   In an air blower having an impeller having a plurality of blades made of solid resin or metal, the blades of the impeller are independently penetrated to generate a noise reduction leakage flow from the pressure surface to the suction surface. A blower comprising a plurality of holes. 複数枚の翼が中実の樹脂又は金属で構成される羽根車を有する送風機において、上記羽根車の翼には、その圧力面から負圧面にかけて騒音低減用の漏れ流れを発生する複数の独立した貫通孔を設け、上記貫通孔の負圧面側の翼面に対する向きは、翼面に垂直より後縁側に傾いていることを特徴とする送風機。   In a blower having an impeller having a plurality of blades made of solid resin or metal, the blades of the impeller have a plurality of independent flows that generate a noise reduction leakage flow from the pressure surface to the suction surface. A blower characterized in that a through hole is provided, and the direction of the through hole with respect to the blade surface on the suction surface side is inclined from the vertical to the trailing edge side of the blade surface. 複数枚の翼が中実の樹脂又は金属で構成される羽根車を有する送風機において、上記羽根車の翼には、その圧力面から負圧面にかけて騒音低減用の漏れ流れを発生する複数の独立した貫通孔を設け、上記貫通孔は上記圧力面側の開口が大きく、上記負圧面側の開口が小さいテーパ孔であることを特徴とする送風機。   In a blower having an impeller having a plurality of blades made of solid resin or metal, the blades of the impeller have a plurality of independent flows that generate a noise reduction leakage flow from the pressure surface to the suction surface. A blower comprising a through hole, wherein the through hole is a tapered hole having a large opening on the pressure surface side and a small opening on the negative pressure surface side. 上記貫通孔は上記圧力面側の開口が大きく、上記負圧面側の開口が小さいテーパ孔であり、上記負圧面側の開口は、上記圧力面側の開口の後縁側に偏って形成されていることを特徴とする請求項3に記載の送風機。   The through hole is a tapered hole having a large opening on the pressure surface side and a small opening on the suction surface side, and the opening on the suction surface side is formed to be biased toward the rear edge side of the opening on the pressure surface side. The blower according to claim 3. 上記貫通孔は羽根車の外周縁部に点在させて設けたことを特徴とする請求項1〜請求項4のいずれか1項に記載の送風機。   The blower according to any one of claims 1 to 4, wherein the through holes are provided to be scattered on the outer peripheral edge of the impeller. 上記貫通孔は翼の後縁に点在させて設けたことを特徴とする請求項1〜請求項4のいずれか1項に記載の送風機。   The blower according to any one of claims 1 to 4, wherein the through holes are provided in a dotted manner on a rear edge of the blade. 上記貫通孔は翼の最大反り位置近傍に点在させて設けたことを特徴とする請求項1〜請求項4のいずれか1項に記載の送風機。   The blower according to any one of claims 1 to 4, wherein the through holes are provided in the vicinity of a maximum warp position of the blade.
JP2004054232A 2004-02-27 2004-02-27 Blower Pending JP2005240749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004054232A JP2005240749A (en) 2004-02-27 2004-02-27 Blower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004054232A JP2005240749A (en) 2004-02-27 2004-02-27 Blower

Publications (1)

Publication Number Publication Date
JP2005240749A true JP2005240749A (en) 2005-09-08

Family

ID=35022737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004054232A Pending JP2005240749A (en) 2004-02-27 2004-02-27 Blower

Country Status (1)

Country Link
JP (1) JP2005240749A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2481822A (en) * 2010-07-07 2012-01-11 Rolls Royce Plc Rotor blade with air flow passages
US8133008B2 (en) 2006-04-07 2012-03-13 Ihi Corporation Axial flow fluid apparatus and blade
CN102635572A (en) * 2012-04-27 2012-08-15 浙江理工大学 Blade perforated small axial fan
JP2014185551A (en) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd Propeller fan
CN104454641A (en) * 2014-11-13 2015-03-25 中国北车集团大连机车研究所有限公司 Low-noise axial flow fan impeller for high-speed electric multiple unit cooling system
CN106930977A (en) * 2017-03-17 2017-07-07 中国大唐集团科技工程有限公司 A kind of direct-cooled noise reduction axial flow blower
CN107355425A (en) * 2017-07-26 2017-11-17 奥克斯空调股份有限公司 Strong noise elimination degree axial-flow leaf
WO2018046976A1 (en) * 2016-09-07 2018-03-15 Nyiri Attila Aerodynamic regulation of airscrew-, fan- and wind turbine blades with bores and/or cutting and/or notching
WO2018206978A1 (en) * 2017-05-11 2018-11-15 Oscar Propulsion Ltd Propeller cavitation and noise reduction
CN110228586A (en) * 2019-05-07 2019-09-13 刘羽双 A kind of unmanned plane rotor eddy current crack reduction method based on blade perforation
EP3702620A1 (en) * 2019-02-28 2020-09-02 ebm-papst St. Georgen GmbH & Co. KG Axial fan with noise reducing fan impeller vanes having bores
WO2021087640A1 (en) * 2019-11-04 2021-05-14 江苏大学 Blade tip structure for suppressing tip leakage vortex of axial-flow pump as well as cavitation thereof
US20210214071A1 (en) * 2016-06-07 2021-07-15 Attila NYIRI Propeller and propeller blade

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3298636A (en) * 1965-01-15 1967-01-17 Arnholdt Eric Airfoil
JPS51123905A (en) * 1975-04-23 1976-10-29 Nissan Motor Co Ltd Fan
JPS554931B2 (en) * 1975-10-31 1980-02-01
JPS5564497U (en) * 1978-10-30 1980-05-02
JPS5872496U (en) * 1981-11-10 1983-05-17 カルソニックカンセイ株式会社 cooling fan
JPS5872498U (en) * 1981-11-10 1983-05-17 カルソニックカンセイ株式会社 cooling fan
JPS61279800A (en) * 1985-06-06 1986-12-10 Nissan Motor Co Ltd Fan
JPH01203698A (en) * 1988-02-10 1989-08-16 Hitachi Ltd Blower and its manufacture
JPH07243397A (en) * 1994-03-02 1995-09-19 Matsushita Refrig Co Ltd Air blower
JPH0979187A (en) * 1995-09-13 1997-03-25 Matsushita Electric Ind Co Ltd Axial flow air blower impeller

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3298636A (en) * 1965-01-15 1967-01-17 Arnholdt Eric Airfoil
JPS51123905A (en) * 1975-04-23 1976-10-29 Nissan Motor Co Ltd Fan
JPS554931B2 (en) * 1975-10-31 1980-02-01
JPS5564497U (en) * 1978-10-30 1980-05-02
JPS5872496U (en) * 1981-11-10 1983-05-17 カルソニックカンセイ株式会社 cooling fan
JPS5872498U (en) * 1981-11-10 1983-05-17 カルソニックカンセイ株式会社 cooling fan
JPS61279800A (en) * 1985-06-06 1986-12-10 Nissan Motor Co Ltd Fan
JPH01203698A (en) * 1988-02-10 1989-08-16 Hitachi Ltd Blower and its manufacture
JPH07243397A (en) * 1994-03-02 1995-09-19 Matsushita Refrig Co Ltd Air blower
JPH0979187A (en) * 1995-09-13 1997-03-25 Matsushita Electric Ind Co Ltd Axial flow air blower impeller

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8133008B2 (en) 2006-04-07 2012-03-13 Ihi Corporation Axial flow fluid apparatus and blade
GB2481822A (en) * 2010-07-07 2012-01-11 Rolls Royce Plc Rotor blade with air flow passages
GB2481822B (en) * 2010-07-07 2013-09-18 Rolls Royce Plc Rotor blade
US8764380B2 (en) 2010-07-07 2014-07-01 Rolls-Royce Plc Rotor blade
CN102635572A (en) * 2012-04-27 2012-08-15 浙江理工大学 Blade perforated small axial fan
JP2014185551A (en) * 2013-03-22 2014-10-02 Mitsubishi Heavy Ind Ltd Propeller fan
CN104454641A (en) * 2014-11-13 2015-03-25 中国北车集团大连机车研究所有限公司 Low-noise axial flow fan impeller for high-speed electric multiple unit cooling system
US20210214071A1 (en) * 2016-06-07 2021-07-15 Attila NYIRI Propeller and propeller blade
US11912395B2 (en) * 2016-09-07 2024-02-27 Attila NYIRI Propeller and propeller blade
WO2018046976A1 (en) * 2016-09-07 2018-03-15 Nyiri Attila Aerodynamic regulation of airscrew-, fan- and wind turbine blades with bores and/or cutting and/or notching
CN106930977A (en) * 2017-03-17 2017-07-07 中国大唐集团科技工程有限公司 A kind of direct-cooled noise reduction axial flow blower
CN110869275A (en) * 2017-05-11 2020-03-06 奥斯卡推进有限责任公司 Propeller cavitation and noise reduction
WO2018206978A1 (en) * 2017-05-11 2018-11-15 Oscar Propulsion Ltd Propeller cavitation and noise reduction
CN107355425A (en) * 2017-07-26 2017-11-17 奥克斯空调股份有限公司 Strong noise elimination degree axial-flow leaf
EP3702620A1 (en) * 2019-02-28 2020-09-02 ebm-papst St. Georgen GmbH & Co. KG Axial fan with noise reducing fan impeller vanes having bores
EP3988797A1 (en) 2019-02-28 2022-04-27 Ebm-Papst St. Georgen Gmbh & Co. Kg Axial fan with noise reducing fan impeller vanes having bores
US11391282B2 (en) 2019-02-28 2022-07-19 Ebm-Papst St. Georgen Gmbh & Co. Kg Axial ventilator having noise reducing fan wheel blades
CN110228586A (en) * 2019-05-07 2019-09-13 刘羽双 A kind of unmanned plane rotor eddy current crack reduction method based on blade perforation
WO2021087640A1 (en) * 2019-11-04 2021-05-14 江苏大学 Blade tip structure for suppressing tip leakage vortex of axial-flow pump as well as cavitation thereof

Similar Documents

Publication Publication Date Title
JP2005240749A (en) Blower
JP5430754B2 (en) Axial blower
WO2010128618A1 (en) Centrifugal fan and air conditioner
JP5705945B1 (en) Centrifugal fan
JP5256184B2 (en) Counter-rotating axial fan
JP2010121615A (en) Serial axial flow fan
JP2012241684A (en) Axial fan
JPWO2010125645A1 (en) Propeller fan
JP6849366B2 (en) Reversible flow fan
JP2014231747A (en) Axial flow or mixed flow fan and air conditioner including the same
JP2006322378A (en) Blower impeller
JP2005105865A (en) Propeller fan
JP4910534B2 (en) Blower impeller
JP2005282567A (en) Blower
JP2010209797A (en) Cross-flow fan, and air conditioner including the same
JP2002054596A (en) Axial-flow fan
JP5114845B2 (en) Blower impeller
JP2000110783A (en) Centrifugal fan
JP2009008014A (en) Axial flow fan
JP2005307788A (en) Axial fan
JPWO2016181463A1 (en) Axial blower
JP4747784B2 (en) Axial blower impeller
JP2008303760A (en) Axial blower
JP2010275986A (en) Fan and axial flow blower
JP2009085046A (en) Fan device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061106

A977 Report on retrieval

Effective date: 20100119

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101116