JP2005240159A - BEARING MADE OF Cu BASED SINTERED ALLOY IN MOTOR TYPE FUEL PUMP AND MOTOR TYPE FUEL PUMP USING THE SAME - Google Patents

BEARING MADE OF Cu BASED SINTERED ALLOY IN MOTOR TYPE FUEL PUMP AND MOTOR TYPE FUEL PUMP USING THE SAME Download PDF

Info

Publication number
JP2005240159A
JP2005240159A JP2004055018A JP2004055018A JP2005240159A JP 2005240159 A JP2005240159 A JP 2005240159A JP 2004055018 A JP2004055018 A JP 2004055018A JP 2004055018 A JP2004055018 A JP 2004055018A JP 2005240159 A JP2005240159 A JP 2005240159A
Authority
JP
Japan
Prior art keywords
bearing
sintered alloy
fuel pump
resin layer
based sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004055018A
Other languages
Japanese (ja)
Inventor
Teruo Shimizu
輝夫 清水
Tsuneo Maruyama
恒夫 丸山
Takahiro Nosu
敬弘 野須
Yoichi Murakami
洋一 村上
Shigehiko Inayoshi
成彦 稲吉
Oaki Takei
大明 武井
Shinji Hazama
真司 間
Kazuhiko Mori
和彦 森
Shinnosuke Nakano
慎之助 中野
Atsunori Kodama
篤典 兒玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Nihon Parkerizing Co Ltd
Denso Corp
Original Assignee
Mitsubishi Materials Corp
Nihon Parkerizing Co Ltd
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Nihon Parkerizing Co Ltd, Denso Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004055018A priority Critical patent/JP2005240159A/en
Publication of JP2005240159A publication Critical patent/JP2005240159A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Powder Metallurgy (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bearing having an excellent service life not only to fuel mixed with sulfur or compounds thereof but also to fuel mixed with organic acid such as formic acid and acetic acid. <P>SOLUTION: The bearing 5 is composed of a Cu based sintered alloy 51 provided with extremely excellent corrosion resistance to fuel mixed with sulfur or compounds thereof. The outer face of the sintered alloy 51 is provided with tetrafluoroethylene resin layer 53. By covering the bearing made of a Cu based sintered alloy with the tetrafluoroethylene resin layer 53, the bearing 5 having high corrosion resistance can be obtained. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、モータ式燃料ポンプのCu基焼結合金製軸受及びそれを用いたモータ式燃料ポンプに関する。   The present invention relates to a bearing made of a Cu-based sintered alloy of a motor type fuel pump and a motor type fuel pump using the same.

従来、ガソリンエンジン用モータ式燃料ポンプが図4に断面図で例示される構造を持つことが知られている。すなわち、図示される通り上記燃料ポンプ1は、ケーシング2内において、モータ3の両端部に固設した回転軸4が軸受5に支持され、前記回転軸4の一方端部にはインペラ6が挿入され、かつ前記インペラ6、モータ3(アーマチュア)の外周面、および軸受5と回転軸4との間の図示しない隙間に沿って狭い間隙のガソリン流通路(図示せず)が形成された構造を有し、前記モータ3の回転でインペラ6が回転し、このインペラ6の回転でガソリンがケーシング2内に取り込まれ、取り込まれたガソリンはインペラ6、モータ3の外周面、および軸受と回転軸との間の図示しない隙間に沿って形成されたガソリン流通路を通って送り出され、別設のガソリンエンジンに送り込まれるように作動するものである。なお、図4では両軸受5,5の外周部を微量の燃料が通過し、インペラ6で昇圧されたガソリンはケーシング2内のガソリン通路を通してモータ3の外周面のところまで到達する。   Conventionally, it is known that a motor-type fuel pump for a gasoline engine has a structure illustrated in a sectional view in FIG. That is, as shown in the figure, in the fuel pump 1, in the casing 2, the rotating shaft 4 fixed to both ends of the motor 3 is supported by the bearing 5, and the impeller 6 is inserted into one end of the rotating shaft 4. And a narrow gap gasoline flow passage (not shown) is formed along the impeller 6, the outer peripheral surface of the motor 3 (armature), and the gap (not shown) between the bearing 5 and the rotary shaft 4. And the impeller 6 is rotated by the rotation of the motor 3, and the gasoline is taken into the casing 2 by the rotation of the impeller 6. The taken gasoline is the impeller 6, the outer peripheral surface of the motor 3, the bearing and the rotating shaft. It is sent out through a gasoline flow passage formed along a gap (not shown) between the two and operates so as to be sent into a separate gasoline engine. In FIG. 4, a small amount of fuel passes through the outer peripheral portions of the bearings 5 and 5, and the gasoline pressurized by the impeller 6 reaches the outer peripheral surface of the motor 3 through the gasoline passage in the casing 2.

上記の燃料ポンプ1の構造部材である軸受5には、銅系の焼結合金が用いられ、この焼結合金の製造においては、銅を含有する原料粉末を圧縮して圧粉体を形成し、この圧粉体を焼結して焼結合金本体を形成し、この焼結合金本体に再圧縮であるサイジングを行い、所定寸法に仕上げるようにしている。   A copper-based sintered alloy is used for the bearing 5 which is a structural member of the fuel pump 1 described above. In the production of this sintered alloy, a raw powder containing copper is compressed to form a green compact. The green compact is sintered to form a sintered alloy main body, and the sintered alloy main body is subjected to sizing that is recompression, and finished to a predetermined size.

そして、前記軸受5は燃料に晒された環境で使用されるため、燃料に対する耐食性を考慮して、上記のように銅を含有する原料粉末を用いた銅系の焼結合金が用いられている。   And since the said bearing 5 is used in the environment exposed to the fuel, the copper-type sintered alloy using the raw material powder containing copper is used as mentioned above in consideration of the corrosion resistance with respect to the fuel. .

その一例として、モータ式燃料ポンプでは、燃料ポンプの軸受を、Zn:10〜25%、Ni:10〜25%、P :0.1〜0.9%、C :1〜8%、を含有し、残りがCuと不可避不純物からなる組成、並びに5〜25%の気孔率を有する黒鉛分散型Cu基焼結合金で構成すると、ガソリンの高圧高速流により軸受が受ける摩擦抵抗が軸受がもつ気孔によって緩和され、一方前記気孔を形成した分だけ耐摩耗性が低下するようになるが、この耐摩耗性の低下はCu−Ni−Zn合金の固溶体相からなる素地に分散分布した硬質のCu−P化合物と同じく素地に分散分布した潤滑性の高い黒鉛によって補われることから、この結果の黒鉛分散型Cu基焼結合金製軸受は、これの素地を形成するCu−Ni−Zn合金のもつすぐれた強度および耐食性と相俟って、ガソリンの高圧高速流に曝された環境下ですぐれた耐摩耗性を発揮するようになり、また、この黒鉛分散型Cu基焼結合金製軸受を使用したモータ式燃料ポンプは硫黄又はその化合物を不純物に含む燃料に対してもすぐれた寿命を有することができる、という研究結果(例えば特許文献1)が開示されている。
特開2001−192754号公報の段落0004段
As an example, in a motor type fuel pump, the bearing of the fuel pump contains Zn: 10-25%, Ni: 10-25%, P: 0.1-0.9%, C: 1-8% When the balance is composed of a graphite-dispersed Cu-based sintered alloy having a composition consisting of Cu and inevitable impurities and a porosity of 5 to 25%, the bearing has the friction resistance that the bearing receives due to the high-pressure and high-speed flow of gasoline. On the other hand, the wear resistance is reduced by the amount of the pores formed. This decrease in wear resistance is caused by hard Cu— dispersed and distributed in the substrate made of the solid solution phase of the Cu—Ni—Zn alloy. As with the P compound, it is supplemented by highly lubricated graphite that is dispersed and distributed in the base material, so the resulting graphite-dispersed Cu-based sintered alloy bearing is a tangle of the Cu-Ni-Zn alloy that forms the base material. Strength and Combined with corrosion resistance, it has demonstrated excellent wear resistance in an environment exposed to high-pressure and high-speed flow of gasoline, and motor-type fuel using this graphite-dispersed Cu-based sintered alloy bearing The research result (for example, patent document 1) that a pump can have the outstanding lifetime with respect to the fuel which contains sulfur or its compound as an impurity is indicated.
Paragraph 0004 of JP 2001-192754 A

そして、前記Cu基焼結合金製軸受にあっては、硫黄やその化合物が混ざった燃料に対して極めて優れた耐食性を備えるが、これに比べて蟻酸や酢酸等の有機酸が混ざった燃料に対する耐食性に劣る面があり、有機酸が混ざった燃料を使用すると腐食により寿命が低下する問題がある。   The Cu-based sintered alloy bearing has extremely excellent corrosion resistance with respect to a fuel mixed with sulfur or a compound thereof, but compared with this, it is suitable for a fuel mixed with an organic acid such as formic acid or acetic acid. There is a problem in that the corrosion resistance is inferior, and when a fuel mixed with an organic acid is used, there is a problem that the life is shortened due to corrosion.

本発明は、このような問題点を解決しようとするもので、硫黄やその化合物が混ざった燃料だけでなく、蟻酸や酢酸等の有機酸が混ざった燃料に対しても優れた寿命を有するモータ式燃料ポンプのCu基焼結合金製軸受及びそれを用いたモータ式燃料ポンプを提供することを目的とする。   The present invention is intended to solve such a problem, and a motor having an excellent lifetime not only for a fuel mixed with sulfur or a compound thereof but also for a fuel mixed with an organic acid such as formic acid or acetic acid. It is an object of the present invention to provide a Cu-based sintered alloy bearing for a fuel pump and a motor fuel pump using the same.

請求項1のCu基焼結合金製軸受は、前記目的を達成するために、質量%で、Zn:10〜25%、Ni:10〜25%、P:0.1〜0.9%、を含有し、さらに、C:0.5〜8%又は/及び二硫化モリブデン:0.5〜5%を含有し、残りがCuと不可避不純物からなる組成、並びに5〜25%の気孔率を有するCu基焼結合金で構成され、この焼結合金の外面に四フッ化エチレン樹脂層を設けたものである。   In order to achieve the above object, the Cu-based sintered alloy bearing according to claim 1 is, in mass%, Zn: 10 to 25%, Ni: 10 to 25%, P: 0.1 to 0.9%, In addition, C: 0.5 to 8% or / and molybdenum disulfide: 0.5 to 5%, the remainder composed of Cu and inevitable impurities, and porosity of 5 to 25% It comprises a Cu-based sintered alloy having a tetrafluoroethylene resin layer on the outer surface of the sintered alloy.

また、請求項2の発明は、請求項1のCu基焼結合金製軸受において、前記四フッ化エチレン樹脂層の厚さが1〜40μmである。   According to a second aspect of the present invention, in the Cu-based sintered alloy bearing of the first aspect, the thickness of the tetrafluoroethylene resin layer is 1 to 40 μm.

請求項3の発明は、請求項1の焼結合金からなる軸受を使用したモータ式燃料ポンプである。   The invention of claim 3 is a motor type fuel pump using the bearing made of the sintered alloy of claim 1.

請求項1の構成によれば、耐食性を有する四フッ化エチレン樹脂層によりCu基焼結合金製軸受を覆うことにより、高い耐食性を有する軸受を得ることができる。特に、硫黄やその化合物に対する耐食性に優れたCu基焼結合金製軸受に、さらに蟻酸や酢酸等の有機酸に対する耐食性を付与することができ、硫黄やその化合物に対する耐食性と蟻酸や酢酸等の有機酸に対する耐食性の両者を備えた軸受が得られる。   According to the configuration of the first aspect, the bearing having high corrosion resistance can be obtained by covering the bearing made of the Cu-based sintered alloy with the tetrafluoroethylene resin layer having corrosion resistance. In particular, it is possible to impart corrosion resistance against organic acids such as formic acid and acetic acid to bearings made of a Cu-based sintered alloy having excellent corrosion resistance against sulfur and its compounds, as well as organic resistance such as formic acid and acetic acid. A bearing having both corrosion resistance to acids can be obtained.

また、請求項2の構成によれば、硫黄やその化合物に対する耐食性と蟻酸や酢酸等の有機酸に対する耐食性の両者を備えた軸受が得られる。そして、四フッ化エチレン樹脂層の厚さが1μm未満になると有機酸に対する耐食性が低下し、一方、その厚さが40μmを超えると、寸法精度を保つことが難しくなるためである。   Moreover, according to the structure of Claim 2, the bearing provided with both the corrosion resistance with respect to sulfur and its compound and the corrosion resistance with respect to organic acids, such as formic acid and an acetic acid, is obtained. And, when the thickness of the tetrafluoroethylene resin layer is less than 1 μm, the corrosion resistance against the organic acid is lowered, and when the thickness exceeds 40 μm, it is difficult to maintain the dimensional accuracy.

請求項3の構成によれば、モータ式燃料ポンプの軸受は、硫黄やその化合物、あるいは蟻酸や酢酸等の有機酸を含む燃料に対しても優れた寿命を有するものとなる。   According to the configuration of the third aspect, the bearing of the motor type fuel pump has an excellent life with respect to a fuel containing sulfur, a compound thereof, or an organic acid such as formic acid or acetic acid.

以下、本発明の実施例を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図3は本発明の実施例を示す。尚、以下、焼結合金として前記軸受5を例に説明する。   1 to 3 show an embodiment of the present invention. Hereinafter, the bearing 5 will be described as an example of a sintered alloy.

図2及び図3に示すように、軸受5は、略円筒形の焼結合金本体51からなり、その中央には前記回転軸4が回転摺動する円筒状の摺動面52が形成され、さらに、その焼結合金本体51の露出した外面全てを覆う四フッ化エチレン樹脂層53を備える。尚、四フッ化エチレン樹脂として、例えばPTFE(テフロン(登録商標))を用いることができる。   As shown in FIGS. 2 and 3, the bearing 5 is formed of a substantially cylindrical sintered alloy main body 51, and a cylindrical sliding surface 52 on which the rotary shaft 4 rotates and slides is formed at the center thereof. Furthermore, a tetrafluoroethylene resin layer 53 is provided to cover all of the exposed outer surface of the sintered alloy body 51. As the tetrafluoroethylene resin, for example, PTFE (Teflon (registered trademark)) can be used.

前記軸受5の焼結合金本体51には、第一例として、質量%で、Ni:10〜25%、Zn:10〜25%、P :0.1〜0.9%、C :1〜8%、を含有し、残りがCuと不可避不純物からなる組成、並びに5〜25%の気孔率を有する黒鉛分散型Cu基焼結合金を用いることができ、また、それ以外の組成のCu基焼結合金を用いることもできる。   The sintered alloy body 51 of the bearing 5 has, as a first example, mass: Ni: 10 to 25%, Zn: 10 to 25%, P: 0.1 to 0.9%, C: 1 to 1. 8%, and the rest is composed of Cu and inevitable impurities, and a graphite-dispersed Cu-based sintered alloy having a porosity of 5 to 25% can be used. Sintered alloys can also be used.

その製造方法につき、図1を参照して説明すると、例えば、焼結合金本体51に用いる原料粉末として、いずれも水アトマイズ法により形成され、かつ45μmの平均粒径を有する5種類のCu−Ni−Zn合金粉末、すなわちCu−15.8%Ni−18.3%Zn合金粉末、Cu−16.9%Ni−18.0%Zn合金粉末、Cu−18.8%Ni−18.4%Zn合金粉末、Cu−17.4%Ni−16.4%Zn合金粉末、およびCu−17.3%Ni−19.9%Zn合金粉末(以上5種類)、45μmの平均粒径を有する水アトマイズCu−P合金(P:33%含有)粉末、さらに75μmの平均粒径を有する黒鉛粉末を用意し、これら原料粉末を所定の配合組成に配合し、V型ミキサーで40分間混合する混合(S1:ステップ1)処理を行った後、150〜300MPaの範囲内の所定の圧力でプレスにより所定形状の圧粉体に成形(S2)し、この圧粉体をアンモニア分解ガス雰囲気中、750〜900℃の範囲内の所定の温度に40分間保持の条件で焼結(S3)することにより、黒鉛分散型Cu基焼結合金で構成され軸受5を製造した。この結果得られた軸受5を光学顕微鏡(200倍)を用いて観察したところ、いずれもCu−Ni−Zn合金の固溶体相からなる素地にCu−P合金と黒鉛が微細に分散分布し、かつ気孔も存在する組織を示した。このようにして得られた黒鉛分散型Cu基焼結合金製の軸受5は、これの素地を形成するCu−Ni−Zn合金のもつ優れた強度および耐食性と相俟って、ガソリンの高圧高速流に曝された環境下ですぐれた耐摩耗性を発揮するようになり、また、この黒鉛分散型Cu基焼結合金製軸受を使用したモータ式燃料ポンプは硫黄又はその化合物を不純物に含む燃料に対してもすぐれた寿命を有するものとなる。そして、Cu基焼結合金製軸受は、通常の燃料ポンプの軸受としては勿論のこと、特に燃料ポンプの小型化および高駆動化に伴ってガソリンの高速流に曝され、かつ高面圧を受ける環境下で用いた場合でも、すぐれた耐摩耗性を発揮するものであるから、ガソリンエンジンの軽量化、並びに高性能化に十分満足に対応できるものである。   The manufacturing method will be described with reference to FIG. 1. For example, as the raw material powder used for the sintered alloy body 51, five types of Cu—Ni that are all formed by the water atomization method and have an average particle diameter of 45 μm. -Zn alloy powder, that is, Cu-15.8% Ni-18.3% Zn alloy powder, Cu-16.9% Ni-18.0% Zn alloy powder, Cu-18.8% Ni-18.4% Zn alloy powder, Cu-17.4% Ni-16.4% Zn alloy powder, and Cu-17.3% Ni-19.9% Zn alloy powder (more than 5 types), water having an average particle diameter of 45 μm Atomized Cu-P alloy (P: 33% content) powder and graphite powder having an average particle diameter of 75 μm are prepared, and these raw material powders are blended in a predetermined blending composition and mixed for 40 minutes with a V-type mixer ( S1: Step 1 After the treatment, the green compact is formed into a green compact of a predetermined shape by pressing at a predetermined pressure within a range of 150 to 300 MPa (S2), and the green compact is within a range of 750 to 900 ° C in an ammonia decomposition gas atmosphere. By sintering (S3) under the condition of holding for 40 minutes at a predetermined temperature, a bearing 5 made of a graphite-dispersed Cu-based sintered alloy was manufactured. When the resulting bearing 5 was observed using an optical microscope (200 ×), the Cu—P alloy and the graphite were finely dispersed and distributed on the substrate made of the solid solution phase of the Cu—Ni—Zn alloy, and Tissues with pores also present. The thus obtained bearing 5 made of a graphite-dispersed Cu-based sintered alloy, combined with the excellent strength and corrosion resistance of the Cu—Ni—Zn alloy that forms the base thereof, is combined with the high pressure and high speed of gasoline. The motor-type fuel pump using the graphite-dispersed Cu-based sintered alloy bearing is a fuel containing sulfur or a compound thereof as an impurity. It also has an excellent lifetime. The Cu-based sintered alloy bearing is not only a normal fuel pump bearing, but is exposed to a high-speed flow of gasoline and receives a high surface pressure, particularly as the fuel pump is downsized and driven. Even when used in an environment, it exhibits excellent wear resistance, so that it can satisfactorily meet the weight reduction and high performance of gasoline engines.

また、前記軸受5の焼結合金本体51には、第二例として、質量%で、Ni:10〜25%、Zn:10〜25%、P:0.1〜0.9%、C:0.5〜5%、二硫化モリブデン:0.5〜5%、を含有し、残りがCuと不可避不純物からなる組成、並びにCu−Ni−Zn系合金の固溶体相からなる素地に、硬質のCu−P化合物と、潤滑性の高い遊離黒鉛および二硫化モリブデンが分散分布した組織を有し、さらに5〜25%の気孔率を有するCu基焼結合金で構成したCu基焼結合金を用いることもできる。前記軸受5の焼結合金本体51には、さらに第三例として、質量%で、Ni:10〜25%、Zn:10〜25%、P:0.1〜0.9%、二硫化モリブデン:0.5〜5%を含有し、残りがCuと不可避不純物からなる組成、並びにCu−Ni−Zn系合金の固溶体相からなる素地に、硬質のCu−P化合物と、高潤滑性を有する二硫化モリブデンが分散分布した組織を有し、さらに5〜25%の気孔率を有するCu基焼結合金で構成したCu基焼結合金を用いることもできる。   Further, as a second example, the sintered alloy main body 51 of the bearing 5 is Ni: 10-25%, Zn: 10-25%, P: 0.1-0.9%, C: Containing 0.5 to 5%, molybdenum disulfide: 0.5 to 5%, and the rest comprising a composition composed of Cu and inevitable impurities, and a base composed of a solid solution phase of a Cu-Ni-Zn alloy, A Cu-based sintered alloy having a structure in which a Cu-P compound, highly lubricated free graphite and molybdenum disulfide are dispersed and distributed, and a Cu-based sintered alloy having a porosity of 5 to 25% is used. You can also. As a third example, the sintered alloy body 51 of the bearing 5 has a mass% of Ni: 10 to 25%, Zn: 10 to 25%, P: 0.1 to 0.9%, molybdenum disulfide. : Containing 0.5 to 5%, the composition consisting of Cu and unavoidable impurities as the remainder, and the base made of the solid solution phase of Cu-Ni-Zn alloy, and having a hard Cu-P compound and high lubricity A Cu-based sintered alloy composed of a Cu-based sintered alloy having a structure in which molybdenum disulfide is dispersed and having a porosity of 5 to 25% can also be used.

焼結(S3)後、焼結合金本体51を再圧縮であるサイジング(S4)して所定寸法に仕上げる。さらに、本発明では、蟻酸や酢酸等の有機酸が混ざった燃料に対する耐食性向上を図るため、焼結(S3)後、焼結合金本体51に四フッ化エチレン樹脂層53を形成する表面被覆(S4)処理を行う。この表面被覆(S4)処理には、スプレーコーティングやタンブリングコーティングおよびディップコーティングなどの方法を用いることができる。   After sintering (S3), the sintered alloy body 51 is finished to a predetermined size by sizing (S4) which is recompression. Furthermore, in the present invention, in order to improve the corrosion resistance against the fuel mixed with organic acids such as formic acid and acetic acid, the surface coating (formation of tetrafluoroethylene resin layer 53 on the sintered alloy body 51 after the sintering (S3) ( S4) Processing is performed. For the surface coating (S4) treatment, methods such as spray coating, tumbling coating, and dip coating can be used.

このようにして表面被覆(S4)を施した軸受5を複数形成し、これら軸受5は表1に示す異なる厚さの樹脂層53を有し、それぞれ試験を行った。尚、樹脂層53はPTFE(テフロン(登録商標))とした。また、比較のため樹脂層を設けない「樹脂層なし」の軸受5についても試験を行った。   In this way, a plurality of bearings 5 having a surface coating (S4) were formed, and these bearings 5 had resin layers 53 having different thicknesses shown in Table 1 and were tested. The resin layer 53 was PTFE (Teflon (registered trademark)). For comparison, a test was also performed for the bearing 5 without a resin layer without a resin layer.

耐食性を比較するため、「硫黄」と「有機酸」に対して、Cu溶出量の試験を行った。「硫黄」では、硫黄500ppm、温度60℃の試験溶液に、軸受5を300時間含浸してそのCu溶出量を測定した。「有機酸」では、蟻酸0.5vl%、酢酸0.5vl%の混合試験溶液に、軸受5を300時間含浸してそのCu溶出量を測定した。これらの結果を下記の表1に示す。   In order to compare the corrosion resistance, the amount of Cu elution was tested for “sulfur” and “organic acid”. In “sulfur”, the bearing 5 was impregnated for 300 hours in a test solution having sulfur of 500 ppm and a temperature of 60 ° C., and the Cu elution amount was measured. For the “organic acid”, the bearing 5 was impregnated in a mixed test solution of formic acid 0.5 vl% and acetic acid 0.5 vl% for 300 hours, and the amount of elution of Cu was measured. These results are shown in Table 1 below.

また、表1の各軸受5を、図4の燃料ポンプに組み込み、この燃料ポンプを有機酸を含むガソリンタンク内に設置し、インペラの回転数:4000(最小回転数)〜10000(最大回転数)r.p.m.、ガソリンの流量:0.05m3/時(最小流量)〜0.15m3/時(最大流量)、軸受5がガソリンの流通により受ける圧力:最大300KPa、試験時間:200時間、の条件、すなわちガソリンが狭い間隙を高速で流通し、これによって軸受5が高圧を受け、かつ速い流速のガソリンに曝される条件で実機試験を行い、試験後の軸受面における最大摩耗深さを測定した。この測定結果を同じく表1に示した。 Further, each bearing 5 in Table 1 is incorporated in the fuel pump of FIG. 4 and this fuel pump is installed in a gasoline tank containing an organic acid, and the impeller rotational speed: 4000 (minimum rotational speed) to 10,000 (maximum rotational speed). ) R. p. m. The flow rate of gasoline: 0.05 m 3 / hour (minimum flow rate) to 0.15 m 3 / hour (maximum flow rate), the pressure received by the bearing 5 by the flow of gasoline: maximum 300 KPa, the test time: 200 hours, An actual machine test was performed under conditions where gasoline was circulated at a high speed through a narrow gap, whereby the bearing 5 was subjected to high pressure and exposed to a high flow rate of gasoline, and the maximum wear depth on the bearing surface after the test was measured. The measurement results are also shown in Table 1.

Figure 2005240159
Figure 2005240159

表1に示される結果から、Cu基焼結合金の外面に四フッ化エチレン樹脂層53を設けた本発明の軸受5は、有機酸に対して高い耐摩耗性が得られ、四フッ化エチレン樹脂層53の厚さが15μmでは、軸受5の最大摩耗深さが1〜2μmで、実質ほとんど摩耗が生じず、有機酸に対する高い耐摩耗性が得らることがわかる。また、四フッ化エチレン樹脂層53の厚さが1μmでは、「樹脂層なし」に比べて、最大摩耗深さが大幅に削減され、樹脂層53による対有機酸に対する耐摩耗性の向上が認められた。一方、四フッ化エチレン樹脂層53が0.5μmでは、対有機酸に対する耐摩耗性の向上が十分には認められず、下限として必要な四フッ化エチレン樹脂層53の厚さは1μm以上であることがわかった。また、表1には示さなかったが、四フッ化エチレン樹脂層53が15μmを超えても、最大摩耗深さは2μm以下であり、製品としての軸受5の寸法精度を考慮すると、四フッ化エチレン樹脂層53の厚さは40μm以下とすることが好ましい。特に、この種の軸受5において、数μmの寸法精度を要求されるものもあり、このことからも厚さの好ましい上限を40μmとした。さらに、表1の試験結果を考慮すると、四フッ化エチレン樹脂層53の厚さは1〜15μmとすることが一層好ましい。   From the results shown in Table 1, the bearing 5 of the present invention in which the tetrafluoroethylene resin layer 53 is provided on the outer surface of the Cu-based sintered alloy has high wear resistance against organic acids. It can be seen that when the thickness of the resin layer 53 is 15 μm, the maximum wear depth of the bearing 5 is 1 to 2 μm, and virtually no wear occurs and high wear resistance against organic acids is obtained. In addition, when the thickness of the tetrafluoroethylene resin layer 53 is 1 μm, the maximum wear depth is greatly reduced compared to “without resin layer”, and the resin layer 53 has improved wear resistance against organic acids. It was. On the other hand, when the tetrafluoroethylene resin layer 53 is 0.5 μm, sufficient improvement in wear resistance against organic acids is not observed, and the thickness of the tetrafluoroethylene resin layer 53 required as the lower limit is 1 μm or more. I found out. Although not shown in Table 1, even if the tetrafluoroethylene resin layer 53 exceeds 15 μm, the maximum wear depth is 2 μm or less, and considering the dimensional accuracy of the bearing 5 as a product, The thickness of the ethylene resin layer 53 is preferably 40 μm or less. In particular, some bearings 5 of this type are required to have a dimensional accuracy of several μm. Therefore, the preferable upper limit of the thickness is set to 40 μm. Furthermore, considering the test results in Table 1, the thickness of the tetrafluoroethylene resin layer 53 is more preferably 1 to 15 μm.

また、表1に示される結果から、Cu基焼結合金の外面に四フッ化エチレン樹脂層53を設けた本発明の軸受5は、有機酸に対して高い耐食性が得られ、四フッ化エチレン樹脂層53の厚さが15μmでは、Cuの溶出量が2ppmで、実質ほとんど有機酸によりCuが溶出せず、有機酸に対する高い耐食性が得らることがわかる。また、四フッ化エチレン樹脂層53の厚さが1μmでは、「樹脂層なし」に比べて、Cuの溶出量が大幅に削減され、樹脂層53による対有機酸に対する耐食性の向上が認められた。一方、四フッ化エチレン樹脂層53が0.5μmでは、対有機酸に対する耐食性の向上が十分には認められず、下限として必要な四フッ化エチレン樹脂層53の厚さは1μm以上であることがわかった。また、表1には示さなかったが、四フッ化エチレン樹脂層53が15μmを超えても、Cuの溶出量は2ppm以下であり、製品としての軸受5の寸法精度を考慮すると、四フッ化エチレン樹脂層53の厚さは40μm以下とすることが好ましい。特に、この種の軸受5において、数μmの寸法精度を要求されるものもあり、このことからも厚さの好ましい上限を40μmとした。さらに、表1の試験結果を考慮すると、四フッ化エチレン樹脂層53の厚さは1〜15μmとすることが一層好ましい。   Further, from the results shown in Table 1, the bearing 5 of the present invention in which the tetrafluoroethylene resin layer 53 is provided on the outer surface of the Cu-based sintered alloy has high corrosion resistance against organic acids. It can be seen that when the thickness of the resin layer 53 is 15 μm, the elution amount of Cu is 2 ppm, Cu is not substantially eluted by the organic acid, and high corrosion resistance to the organic acid is obtained. Further, when the thickness of the tetrafluoroethylene resin layer 53 was 1 μm, the amount of Cu elution was greatly reduced compared to “without the resin layer”, and the corrosion resistance against the organic acid by the resin layer 53 was recognized. . On the other hand, when the tetrafluoroethylene resin layer 53 is 0.5 μm, the corrosion resistance against organic acids is not sufficiently improved, and the required thickness of the tetrafluoroethylene resin layer 53 is 1 μm or more. I understood. Although not shown in Table 1, even if the tetrafluoroethylene resin layer 53 exceeds 15 μm, the elution amount of Cu is 2 ppm or less, and considering the dimensional accuracy of the bearing 5 as a product, The thickness of the ethylene resin layer 53 is preferably 40 μm or less. In particular, some bearings 5 of this type are required to have a dimensional accuracy of several μm. Therefore, the preferable upper limit of the thickness is set to 40 μm. Furthermore, considering the test results in Table 1, the thickness of the tetrafluoroethylene resin layer 53 is more preferably 1 to 15 μm.

このように本実施例では、請求項1に対応して、質量%で、Zn:10〜25%、Ni:10〜25%、P:0.1〜0.9%、を含有し、さらに、C:0.5〜8%又は/及び二硫化モリブデン:0.5〜5%を含有し、残りがCuと不可避不純物からなる組成、並びに5〜25%の気孔率を有するCu基焼結合金51で構成され、この焼結合金51の外面に四フッ化エチレン樹脂層53を設けたから、耐食性を有する四フッ化エチレン樹脂層53によりCu基焼結合金製軸受を覆うことにより、高い耐食性を有する軸受5を得ることができる。特に、硫黄やその化合物に対する耐食性に優れたCu基焼結合金製軸受に、さらに蟻酸や酢酸等の有機酸に対する耐食性を付与することができ、硫黄やその化合物に対する耐食性と蟻酸や酢酸等の有機酸に対する耐食性の両者を備えた軸受5を得ることができる。   As described above, in this example, corresponding to claim 1, Zn: 10 to 25%, Ni: 10 to 25%, P: 0.1 to 0.9%, in mass%, Cu: 0.5 to 8% or / and molybdenum disulfide: 0.5 to 5%, the remainder comprising Cu and inevitable impurities, and Cu-based sintered bond having a porosity of 5 to 25% Since it is made of gold 51 and the tetrafluoroethylene resin layer 53 is provided on the outer surface of the sintered alloy 51, it is possible to achieve high corrosion resistance by covering the bearing made of the Cu-based sintered alloy with the tetrafluoroethylene resin layer 53 having corrosion resistance. A bearing 5 having the following can be obtained. In particular, it is possible to impart corrosion resistance against organic acids such as formic acid and acetic acid to bearings made of a Cu-based sintered alloy having excellent corrosion resistance against sulfur and its compounds, as well as organic resistance such as formic acid and acetic acid. A bearing 5 having both corrosion resistance against acids can be obtained.

また、このように本実施例では、請求項2に対応して、四フッ化エチレン樹脂層53の厚さが1〜40μmであるから、硫黄やその化合物に対する耐食性と蟻酸や酢酸等の有機酸に対する耐食性の両者を備えた軸受5が得られる。そして、四フッ化エチレン樹脂層53の厚さが1μm未満になると有機酸に対する耐食性が低下し、一方、その厚さが40μmを超えると、製品の寸法精度を保つことが難しくなるため、上記の範囲とすることが好ましい。   Thus, in this embodiment, in correspondence with claim 2, the thickness of the tetrafluoroethylene resin layer 53 is 1 to 40 μm, so that the corrosion resistance against sulfur and its compounds and organic acids such as formic acid and acetic acid. Thus, the bearing 5 having both of the corrosion resistance against is obtained. And, when the thickness of the tetrafluoroethylene resin layer 53 is less than 1 μm, the corrosion resistance to organic acids is lowered. On the other hand, when the thickness exceeds 40 μm, it becomes difficult to maintain the dimensional accuracy of the product. It is preferable to be in the range.

また、このように本実施例では、請求項3に対応して、請求項1の焼結合金からなる軸受5を使用したモータ式燃料ポンプであるから、このモータ式燃料ポンプの軸受5は、硫黄やその化合物、あるいは蟻酸や酢酸等の有機酸を含む燃料に対しても優れた寿命を有するものとなる。   Further, in this embodiment, in correspondence with the third aspect, the motor type fuel pump using the bearing 5 made of the sintered alloy according to the first aspect is used. It also has an excellent life against fuels containing sulfur, its compounds, or organic acids such as formic acid and acetic acid.

なお、本発明は、前記実施形態に限定されるものではなく、種々の変形実施が可能である。例えば、軸受は、実施形態のものに限らず種々の形状のもの適用可能である。   In addition, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible. For example, the bearing is not limited to that of the embodiment, and various shapes can be applied.

本発明の実施例を示す製造方法を説明するフローチャート図である。It is a flowchart figure explaining the manufacturing method which shows the Example of this invention. 同上、焼結合金本体の斜視図である。It is a perspective view of a sintered alloy main body same as the above. 同上、一部を拡大した焼結合金の断面図である。It is sectional drawing of the sintered alloy which expanded a part same as the above. ガソリンエンジン用モータ式燃料ポンプの概略断面図である。It is a schematic sectional drawing of the motor type fuel pump for gasoline engines.

符号の説明Explanation of symbols

1 軸受(焼結合金)
51 焼結合金本体
53 四フッ化エチレン樹脂層
1 Bearing (sintered alloy)
51 Sintered alloy body
53 Tetrafluoroethylene resin layer

Claims (3)

質量%で、Zn:10〜25%、Ni:10〜25%、P:0.1〜0.9%、を含有し、さらに、C:0.5〜8%又は/及び二硫化モリブデン:0.5〜5%を含有し、残りがCuと不可避不純物からなる組成、並びに5〜25%の気孔率を有するCu基焼結合金で構成され、この焼結合金の外面に四フッ化エチレン樹脂層を設けたことを特徴とするモータ式燃料ポンプのCu基焼結合金製軸受。 In mass%, Zn: 10-25%, Ni: 10-25%, P: 0.1-0.9%, C: 0.5-8% or / and molybdenum disulfide: It is composed of a Cu-based sintered alloy containing 0.5 to 5%, the remainder consisting of Cu and inevitable impurities, and a porosity of 5 to 25%, and the outer surface of this sintered alloy is ethylene tetrafluoride. A Cu-based sintered alloy bearing for a motor type fuel pump, wherein a resin layer is provided. 前記四フッ化エチレン樹脂層の厚さが1〜40μmであることを特徴とする請求項1記載のモータ式燃料ポンプのCu基焼結合金製軸受。 2. A Cu-based sintered alloy bearing for a motor type fuel pump according to claim 1, wherein the tetrafluoroethylene resin layer has a thickness of 1 to 40 [mu] m. 請求項1の焼結合金からなる軸受を使用したことを特徴とするモータ式燃料ポンプ。

A motor type fuel pump using the bearing made of the sintered alloy according to claim 1.

JP2004055018A 2004-02-27 2004-02-27 BEARING MADE OF Cu BASED SINTERED ALLOY IN MOTOR TYPE FUEL PUMP AND MOTOR TYPE FUEL PUMP USING THE SAME Pending JP2005240159A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004055018A JP2005240159A (en) 2004-02-27 2004-02-27 BEARING MADE OF Cu BASED SINTERED ALLOY IN MOTOR TYPE FUEL PUMP AND MOTOR TYPE FUEL PUMP USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004055018A JP2005240159A (en) 2004-02-27 2004-02-27 BEARING MADE OF Cu BASED SINTERED ALLOY IN MOTOR TYPE FUEL PUMP AND MOTOR TYPE FUEL PUMP USING THE SAME

Publications (1)

Publication Number Publication Date
JP2005240159A true JP2005240159A (en) 2005-09-08

Family

ID=35022195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004055018A Pending JP2005240159A (en) 2004-02-27 2004-02-27 BEARING MADE OF Cu BASED SINTERED ALLOY IN MOTOR TYPE FUEL PUMP AND MOTOR TYPE FUEL PUMP USING THE SAME

Country Status (1)

Country Link
JP (1) JP2005240159A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017456A1 (en) * 2012-07-26 2014-01-30 Ntn株式会社 Sintered bearing
JP2017161072A (en) * 2017-03-17 2017-09-14 Ntn株式会社 Sintered bearing
JP2018053367A (en) * 2013-08-27 2018-04-05 Ntn株式会社 Sintered bearing for fuel pump and method of manufacturing the same
KR20180078324A (en) * 2015-12-15 2018-07-09 가부시키가이샤 덴소 Fuel pump

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014017456A1 (en) * 2012-07-26 2014-01-30 Ntn株式会社 Sintered bearing
JP2014025527A (en) * 2012-07-26 2014-02-06 Ntn Corp Sintered bearing
CN104487721A (en) * 2012-07-26 2015-04-01 Ntn株式会社 Sintered bearing
CN107252888A (en) * 2012-07-26 2017-10-17 Ntn株式会社 Sintered bearing
US10125819B2 (en) 2012-07-26 2018-11-13 Ntn Corporation Sintered bearing
CN107252888B (en) * 2012-07-26 2019-05-14 Ntn株式会社 Sintered bearing
JP2018053367A (en) * 2013-08-27 2018-04-05 Ntn株式会社 Sintered bearing for fuel pump and method of manufacturing the same
KR20180078324A (en) * 2015-12-15 2018-07-09 가부시키가이샤 덴소 Fuel pump
KR102087760B1 (en) 2015-12-15 2020-03-11 가부시키가이샤 덴소 Fuel pump
JP2017161072A (en) * 2017-03-17 2017-09-14 Ntn株式会社 Sintered bearing

Similar Documents

Publication Publication Date Title
JP4521871B2 (en) Motor type fuel pump bearing with corrosion resistance, wear resistance and high strength
JP5755599B2 (en) Sintered bearing for motor-type fuel pump with excellent corrosion resistance, wear resistance and conformability
JP4410612B2 (en) Pb-free bearing for fuel injection pump
JP6052336B2 (en) Manufacturing method of sintered bearing for motor type fuel pump excellent in corrosion resistance, wear resistance and conformability
JP2008202123A (en) Oil-impregnated sintered bearing and method for manufacturing the same
JP5492308B2 (en) Sintered bearing for motor fuel injection pump
EP3040141B1 (en) Sintered bearing for fuel pump and method for manufacturing same
JP6440297B2 (en) Cu-based sintered bearing
JP6523682B2 (en) Sintered bearing
US20030143096A1 (en) Sintered alloy article, its production method and a motorized fuel pump comprising a bearing comprised of sintered alloy article
EP3424624B1 (en) Sintered sliding body exhibiting excellent corrosion resistance, heat resistance, and wear resistance, and production method therefor
JP4743565B2 (en) Graphite-dispersed Cu-based sintered alloy bearing for motor-type fuel pump that exhibits excellent wear resistance under high-pressure and high-speed circulation of gasoline, and motor-type fuel pump using the same
JP2005240159A (en) BEARING MADE OF Cu BASED SINTERED ALLOY IN MOTOR TYPE FUEL PUMP AND MOTOR TYPE FUEL PUMP USING THE SAME
JP3945979B2 (en) Graphite-dispersed Cu-based sintered alloy bearing for motor fuel pump
WO2016039423A1 (en) Sintered sliding member having exceptional corrosion resistance, heat resistance, and wear resistance; and method for producing said member
JP6620391B2 (en) Cu-based sintered sliding material and manufacturing method thereof
JP2015078432A (en) Sintered bearing for egr valve and method of manufacturing the same
JP2012509993A (en) Bearing material
JP4743569B2 (en) Cu-based sintered alloy bearing for motor-type fuel pump and motor-type fuel pump incorporating the bearing
JP3945981B2 (en) Cu-based sintered alloy bearing for motor fuel pump
JP3945980B2 (en) Cu-based sintered alloy bearing for motor fuel pump
JP6720362B2 (en) Sintered bearing for EGR valve
JP2004100851A (en) Sintered bearing, and method for manufacturing the same
WO2019004384A1 (en) Sintered bearing for motor-type fuel pump and production method therefor
JP2002285266A (en) Bearing made of copper based sintered alloy of motor type fuel pump and motor type fuel pump incorporated with the bearing

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20060120

Free format text: JAPANESE INTERMEDIATE CODE: A712

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060217

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070226

A711 Notification of change in applicant

Effective date: 20070508

Free format text: JAPANESE INTERMEDIATE CODE: A711

A521 Written amendment

Effective date: 20070508

Free format text: JAPANESE INTERMEDIATE CODE: A821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090413