JP2005239988A - Water soluble reactive polymer, method for producing the same and biological sample modifier - Google Patents

Water soluble reactive polymer, method for producing the same and biological sample modifier Download PDF

Info

Publication number
JP2005239988A
JP2005239988A JP2004081422A JP2004081422A JP2005239988A JP 2005239988 A JP2005239988 A JP 2005239988A JP 2004081422 A JP2004081422 A JP 2004081422A JP 2004081422 A JP2004081422 A JP 2004081422A JP 2005239988 A JP2005239988 A JP 2005239988A
Authority
JP
Japan
Prior art keywords
polymer
group
bond
carbon atoms
polymerization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004081422A
Other languages
Japanese (ja)
Inventor
Kazuhiko Ishihara
一彦 石原
Shinichi Yusa
真一 遊佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004081422A priority Critical patent/JP2005239988A/en
Publication of JP2005239988A publication Critical patent/JP2005239988A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Polymerisation Methods In General (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a water soluble phospholipid polymer for simply modifying biological samples, having a small molecular distribution and reactive functional groups on polymer terminals. <P>SOLUTION: The polymer is prepared by polymerizing a monomer composition containing an acrylic acid derivative monomer having a phospholipid group in a reaction medium mainly comprising water by reverse chain transfer polymerization method. The polymer has functional groups simply reacting to the biological sample on one side or both sides of the polymer chain terminals, 4,000-500,000 number average molecular weight and 1.01-1.50 polydispersity (Mw/Mn). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、新規な末端官能性のリン脂質極性基を有するアクリル酸誘導体ポリマー、その製造方法および用途に関する。The present invention relates to a novel acrylic acid derivative polymer having a terminal functional phospholipid polar group, a method for producing the same, and use thereof.

分子骨格中にホスホリルコリン基を含有するポリマーは、ホスホリルコリン基に由来する特異な性質が注目されている。例えば、2−メタクリロイルオキシエチルホスホリルコリンをモノマーユニットとするポリマー(以下、MPCポリマーと略す。)は生体系に存在するリン脂質と同一の極性基構造を有し、そのため高い親水性、保水性、生体適合性などを有することが明らかとなっている。そこでバイオマテリアルや化粧品原料等の応用開発が盛んになされるようになってきた。従来検討されてきたこれらのポリマーはすべて付加重合性モノマーを通常のフリーラジカル重合することにより得るため、(1)得られたポリマーの分子量分布が広がってしまう、(2)特定の官能基をポリマー鎖の特定の位置に挿入するなどの構造制御が困難であった。Polymers containing a phosphorylcholine group in the molecular skeleton are attracting attention because of their unique properties derived from the phosphorylcholine group. For example, a polymer having 2-methacryloyloxyethyl phosphorylcholine as a monomer unit (hereinafter abbreviated as MPC polymer) has the same polar group structure as a phospholipid existing in a living system, and thus has high hydrophilicity, water retention, It is clear that it has compatibility. Therefore, application development of biomaterials and cosmetic raw materials has been actively made. All of these polymers that have been studied in the past are obtained by subjecting addition-polymerizable monomers to ordinary free radical polymerization, so that (1) the molecular weight distribution of the obtained polymer is widened, (2) specific functional groups are polymerized It was difficult to control the structure such as insertion at a specific position of the chain.

一般に、分子量分布の小さなポリマー、あるいは複数のモノマーユニットの配列を考慮したブロック型ポリマーを得る方法として、アニオン重合が知られている。このアニオン重合を選択する理由は、反応開始時に比べて成長時の反応速度が小さいため、生成する分子鎖が均一な長さになりやすいためとされている。また、アニオン重合では、活性末端がイオン性を有するため、分子鎖の成長時、イオンとイオンとの反発に基づいて重合の停止反応が抑制される。その結果、活性末端のリビング性が得られ、重合反応の進行にともなって、順次、別種の単量体を添加することにより、ブロック型ポリマーを容易に得ることができる。しかしながら、アニオン重合では反応系から水分を十分に除去する必要がある。また、極性の大きいモノマーの場合は、このモノマーの極性基と分子の成長末端との間で副反応を生ずるため、基本的に重合させること自体が困難であり、その工業化において大きな制約となっている。In general, anionic polymerization is known as a method for obtaining a polymer having a small molecular weight distribution or a block-type polymer considering the arrangement of a plurality of monomer units. The reason for selecting this anionic polymerization is that the reaction rate at the time of growth is smaller than that at the start of the reaction, and the generated molecular chain tends to have a uniform length. Moreover, in anionic polymerization, since the active terminal has ionicity, the termination reaction of polymerization is suppressed based on the repulsion between ions when ions grow. As a result, the living property of the active terminal can be obtained, and a block type polymer can be easily obtained by sequentially adding different types of monomers as the polymerization reaction proceeds. However, in anionic polymerization, it is necessary to sufficiently remove moisture from the reaction system. In addition, in the case of a monomer having a large polarity, a side reaction occurs between the polar group of the monomer and the growth terminal of the molecule, so that it is basically difficult to polymerize itself, which is a major limitation in its industrialization. Yes.

その他の分子量分布の制御法と官能基の導入法としては、メルカプト化合物のような連鎖移動定数の大きな化合物を利用し、ラジカルを補足後、これより重合を進める方法がある。しかしながら、重合機構が基本的にフリーラジカル重合であるために、重合率を上げていくと分子量分布で1.5以上、末端基導入率で70%以下のポリマーしか得られないため、工業的には大きな障害である。As other molecular weight distribution control methods and functional group introduction methods, there is a method of using a compound having a large chain transfer constant such as a mercapto compound, capturing radicals and then proceeding with polymerization. However, since the polymerization mechanism is basically free radical polymerization, if the polymerization rate is increased, only a polymer having a molecular weight distribution of 1.5 or more and a terminal group introduction rate of 70% or less can be obtained industrially. Is a major obstacle.

これらの状況に鑑み、近年、リビングラジカル重合の検討が盛んになされている。安定遊離ラジカル重合法では、例えば、2,2,6,6−テトラメチル−1−ピペリジニルオキシラジカル(TEMPO)に代表されるニトロキシル化合物がラジカルキャップ剤としてよく利用されるが、TEMPOを用いた重合反応では、スチレン系モノマーの場合は重合が制御され重合率も高いものの、アクリル酸エステル系モノマーの場合は重合が困難であることが知られている。In view of these situations, studies on living radical polymerization have been actively conducted in recent years. In the stable free radical polymerization method, for example, a nitroxyl compound typified by 2,2,6,6-tetramethyl-1-piperidinyloxy radical (TEMPO) is often used as a radical capping agent, but TEMPO is used. In the conventional polymerization reaction, it is known that in the case of a styrene monomer, the polymerization is controlled and the polymerization rate is high, but in the case of an acrylate ester monomer, the polymerization is difficult.

一方、可逆的付加開裂連鎖移動重合法でのアクリル酸エステル系モノマーの重合については、水系溶媒を使用することにより、狭い分子量分布を持つポリマーを高収率で得られることが最近報告されている(Macromolecules、Vol.34、2248頁、2001年)。すなわち、可逆的付加開裂連鎖移動重合法においては、モノマーが親水性、疎水性を問わず適用可能である点が優れているが、リン脂質極性基を有するアクリル酸誘導体モノマーを重合し、かつポリマー鎖の末端に特定の官能基を導入する例は報告されていない。On the other hand, regarding the polymerization of acrylate monomers by reversible addition-fragmentation chain transfer polymerization, it has recently been reported that polymers with narrow molecular weight distribution can be obtained in high yield by using aqueous solvents. (Macromolecules, Vol. 34, 2248, 2001). That is, the reversible addition-fragmentation chain transfer polymerization method is excellent in that the monomer can be applied regardless of whether it is hydrophilic or hydrophobic, but polymerizes an acrylic acid derivative monomer having a phospholipid polar group, and polymer No example of introducing a specific functional group at the chain end has been reported.

また、リン脂質極性基担持(メタ)アクリル酸エステルを含む単量体組成物のリビング重合については報告されている(Macromolecules、Vol.35、9306頁、2002年)。しかしながら原子移動重合によるため、重合開始剤系の臭素原子、触媒系のジピリジル及びその銅錯体が必要であり、これらを重合系あるいは合成されたポリマー鎖から除くことができないため、生体に対する毒性、障害性、生体関連分子の構造変化を誘起することが容易に予想できる。さらに含リン(メタ)アクリル酸エステルを含む単量体組成物の可逆的付加開裂連鎖移動重合法は公開特許公報2003−64132に記載があるが、有機溶媒を50%以上と多量に使用する合成系であるとともに、末端官能基の導入については全く考慮されておらず、構造明確なポリマーが不可欠な生体分子や細胞・生体組織への修飾剤としての用途を考えた場合、問題が多い。In addition, living polymerization of a monomer composition containing a phospholipid polar group-supported (meth) acrylic acid ester has been reported (Macromolecules, Vol. 35, 9306, 2002). However, since it is based on atom transfer polymerization, a bromine atom in the polymerization initiator system, a dipyridyl catalyst in the catalyst system and its copper complex are necessary, and these cannot be removed from the polymerization system or the synthesized polymer chain. Induces structural changes in sex and biological molecules. Furthermore, a reversible addition-fragmentation chain transfer polymerization method for a monomer composition containing a phosphorus-containing (meth) acrylic acid ester is described in Japanese Patent Application Laid-Open No. 2003-64132, but a synthesis using a large amount of an organic solvent at 50% or more. In addition to the system, introduction of terminal functional groups is not considered at all, and there are many problems when considering applications as modifiers for biomolecules and cells / biological tissues in which a well-defined polymer is indispensable.

有用なタンパク質やDNAを生体系から取り出す,あるいは微生物などを利用して新たに合成する技術は,近年,特に進み,これを利用した新しい医薬品製造,診断・検査試薬の開発などが注目されている。これらの生体分子に対して合成ポリマーを利用して分子修飾することによる高機能化、安定性の向上、安全性の獲得などが重要な技術となってきている。これまでは水溶性ポリマーであるポリエチレングリコール(PEGと略記する)が広く用いられてきたが、分子構造が単純であり、ポリマー自体に新規機能を付与することが困難であること、PEGが生体分子に長期間接触すると生体分子の構造変化を誘起することも報告されている。すなわち、新しい生体分子、細胞・生体組織修飾用のポリマーの必要性は高まる一方である。In recent years, technologies for extracting useful proteins and DNA from biological systems or newly synthesizing them using microorganisms have been particularly advanced, and attention has been focused on the production of new drugs and development of diagnostic and test reagents using them. . High-functionality, improvement of stability, acquisition of safety, etc. by molecular modification of these biomolecules using synthetic polymers have become important technologies. Until now, polyethylene glycol (abbreviated as PEG), which is a water-soluble polymer, has been widely used, but its molecular structure is simple and it is difficult to give a new function to the polymer itself. It has also been reported that structural changes of biomolecules are induced by long-term contact. That is, the need for new biomolecules and polymers for cell / biological tissue modification is increasing.

発明が解決しようとする課題Problems to be solved by the invention

本発明では、狭い分子量分布とポリマー鎖末端に反応性官能基を有するリン脂質極性基を有するアクリル酸誘導体ポリマーを提供することを第1の目的としている。また、本発明の第2の目的は、リン脂質極性基を有するアクリル酸誘導体ポリマーの製造方法において、水を主成分とする溶媒を使用し、リビングラジカル重合法により反応を行うことを特徴とするポリマーの製造方法を提供することにある。またさらに、本発明の第3の目的は、前記のポリマーを生体試料に対して簡便に修飾できる構造体とすることである。The first object of the present invention is to provide an acrylic acid derivative polymer having a narrow molecular weight distribution and a phospholipid polar group having a reactive functional group at the end of the polymer chain. The second object of the present invention is characterized in that, in the method for producing an acrylic acid derivative polymer having a phospholipid polar group, the reaction is carried out by a living radical polymerization method using a solvent mainly composed of water. It is to provide a method for producing a polymer. Furthermore, the third object of the present invention is to provide a structure capable of easily modifying the polymer with respect to a biological sample.

課題を解決するための手段Means for solving the problem

本発明者らは、前記の問題点に鑑み、鋭意検討した結果、リン脂質極性基を有するアクリル酸誘導体モノマー組成物を、水を主成分とする溶媒中で水溶性の重合開始剤系を選択し、可逆的付加開裂連鎖移動重合法を適用することにより、分子量分布の狭九、かつポリマー鎖末端に反応性官能基を有したポリマーが得られること、さらに、前記ポリマーが生体試料に対して優れた反応性を有し、これらの機能を飛躍的に高めることができることの知見を得て、本発明を完成するに至った。すなわち、本発明は以下に示す(1)〜(3)である。
(1)下記式[1]で示されるリン脂質極性基を有するアクリル酸誘導体モノマーを含むモノマー組成物を重合してなるポリマーであって、ポリマー鎖末端の片側あるいは両側に反応性官能基を有し、ゲルパーミエーションクロマトグラフにより標準ポリエチレングリコールを用いて換算した数平均分子量が、4,000〜500,000であり、多分散度(Mw/Mn)が、1.01〜1.50であるポリマー。
(2)末端官能性のリン脂質極性基を有するアクリル酸誘導体ポリマーの製造方法において、水を主たる成分とする反応媒体中で可逆的付加開裂連鎖移動重合法により重合して得られるポリマーの製造方法。
(3)前記のポリマーを有効成分とするタンパク質、核酸、多糖、細胞あるいは生体組織など生体試料の修飾剤。
As a result of intensive studies in view of the above problems, the present inventors selected an acrylic acid derivative monomer composition having a phospholipid polar group as a water-soluble polymerization initiator system in a solvent containing water as a main component. By applying the reversible addition-fragmentation chain transfer polymerization method, a polymer having a narrow molecular weight distribution and having a reactive functional group at the end of the polymer chain can be obtained. Obtaining the knowledge that it has excellent reactivity and can dramatically improve these functions, the present invention has been completed. That is, this invention is (1)-(3) shown below.
(1) A polymer obtained by polymerizing a monomer composition containing an acrylic acid derivative monomer having a phospholipid polar group represented by the following formula [1], which has a reactive functional group on one side or both sides of a polymer chain end. The number average molecular weight converted using standard polyethylene glycol by gel permeation chromatography is 4,000 to 500,000, and the polydispersity (Mw / Mn) is 1.01 to 1.50. polymer.
(2) A process for producing an acrylic acid derivative polymer having a terminal functional phospholipid polar group, and a process for producing a polymer obtained by polymerization by a reversible addition-fragmentation chain transfer polymerization method in a reaction medium containing water as a main component .
(3) A modifying agent for a biological sample such as a protein, nucleic acid, polysaccharide, cell, or biological tissue containing the polymer as an active ingredient.

本発明は、リン脂質極性基を有するアクリル酸誘導体モノマーを含むモノマー組成物を重合してなるポリマーであって、ポリマー鎖末端の片側あるいは両側に反応性官能基を有し、ゲルパーミエーションクロマトグラフにより標準ポリエチレングリコールを用いて換算した数平均分子量が、4,000〜500,000であり、多分散度(Mw/Mn)が、1.01〜1.50であるポリマーである。本発明に用いるリン脂質極性基を有するアクリル酸誘導体モノマーは分子構造内に、ホスホリルコリン基、ホスホリルエタノールアミン基などの天然の存在するリン脂質分子の極性基と、重合性のアクリロイル基あるいはメタクリロイル基を含むものが考えられる。The present invention relates to a polymer obtained by polymerizing a monomer composition containing an acrylic acid derivative monomer having a phospholipid polar group, having a reactive functional group on one side or both sides of a polymer chain end, and a gel permeation chromatograph The number average molecular weight converted using standard polyethylene glycol is 4,000 to 500,000, and the polydispersity (Mw / Mn) is 1.01 to 1.50. The acrylic acid derivative monomer having a phospholipid polar group used in the present invention contains a polar group of a naturally occurring phospholipid molecule such as a phosphorylcholine group and a phosphorylethanolamine group, a polymerizable acryloyl group or a methacryloyl group in the molecular structure. Things to include are conceivable.

本発明で用いるリン脂質極性基を有するアクリル酸誘導体モノマーは、具体的には、2−メタクリロイルオキシエチルホスホリルコリン(以下、MPCと略す。)、2−アクリロイルオキシエチルホスホリルコリン、3−ア(メタ)クリロイルオキシプロピルホスホリルコリン、4−ア(メタ)クリロイルオキシブチルホスホリルコリン、6−ア(メタ)クリロイルオキシヘキシルホスホリルコリン、10−ア(メタ)クリロイルオキシデシルホスホリルコリン、ω−ア(メタ)クリロイルポリオキシエチレンホスホリルコリン、2−アクリルアミドエチルホスホリルコリン、3−アクリルアミドプロピルホスホリルコリン、4−アクリルアミドブチルホスホリルコリン、6−アクリルアミドヘキシルホスホリルコリン、10−アクリルアミドデシルホスホリルコリン、ω−ア(メタ)クリルアミドポリオキシエチレンホスホリルコリン、2−メタクリロイルオキシエチルホスホリルエタノールアミン、2−アクリロイルオキシエチルホスホリルエタノールアミン、3−ア(メタ)クリロイルオキシプロピルホスホリルエタノールアミン、4−ア(メタ)クリロイルオキシブチルホスホリルエタノールアミン、6−ア(メタ)クリロイルオキシヘキシルホスホリルエタノールアミン、10−ア(メタ)クリロイルオキシデシルホスホリルエタノールアミン、ω−ア(メタ)クリロイルポリオキシエチレンホスホリルエタノールアミン等が挙げられる。The acrylic acid derivative monomer having a phospholipid polar group used in the present invention specifically includes 2-methacryloyloxyethyl phosphorylcholine (hereinafter abbreviated as MPC), 2-acryloyloxyethyl phosphorylcholine, 3-a (meth) acrylic acid. Royloxypropyl phosphorylcholine, 4-a (meth) acryloyloxybutyl phosphorylcholine, 6-a (meth) acryloyloxyhexyl phosphorylcholine, 10-a (meth) acryloyloxydecyl phosphorylcholine, ω-a (meth) acryloylpoly Oxyethylene phosphorylcholine, 2-acrylamidoethyl phosphorylcholine, 3-acrylamidopropyl phosphorylcholine, 4-acrylamidobutyl phosphorylcholine, 6-acrylamidohexyl phosphorylcholine, 10-acrylamido Decyl phosphorylcholine, ω-a (meth) acrylamido polyoxyethylene phosphorylcholine, 2-methacryloyloxyethyl phosphorylethanolamine, 2-acryloyloxyethyl phosphorylethanolamine, 3-a (meth) acryloyloxypropyl phosphorylethanolamine, 4- A (meth) acryloyloxybutyl phosphorylethanolamine, 6-a (meth) acryloyloxyhexyl phosphorylethanolamine, 10-a (meth) acryloyloxydecyl phosphorylethanolamine, ω-a (meth) acryloyl polyoxy Examples include ethylene phosphorylethanolamine.

本発明に用いるリビングラジカル重合としては、可逆的付加開裂連鎖移動重合法が挙げられる。可逆的付加開裂連鎖移動重合法を用いる場合、通常、ラジカル発生剤、およびリビングラジカル連鎖移動剤としてジチオ化合物を使用する。ラジカル発生剤としては水溶性であれば特に限定されないが、4,4‘−アゾビス(4−シアノペンタン酸)が好ましい。リビングラジカル連鎖移動剤として使用されるジチオ化合物は、アクリル酸誘導体モノマーを重合することができる化合物であれば特に限定されないが、ポリマー鎖の末端に反応性官能基を導入するという点及び水系での反応の観点から酢酸ジチオベンゾエートあるいは4−シアノペンタン酸ジチオベンゾエートが好ましい。The living radical polymerization used in the present invention includes a reversible addition-fragmentation chain transfer polymerization method. When the reversible addition-cleavage chain transfer polymerization method is used, a dithio compound is usually used as a radical generator and a living radical chain transfer agent. The radical generator is not particularly limited as long as it is water-soluble, but 4,4′-azobis (4-cyanopentanoic acid) is preferable. The dithio compound used as the living radical chain transfer agent is not particularly limited as long as it is a compound capable of polymerizing an acrylic acid derivative monomer. However, the reactive functional group is introduced at the end of the polymer chain and in an aqueous system. From the viewpoint of reaction, acetic acid dithiobenzoate or 4-cyanopentanoic acid dithiobenzoate is preferable.

ブロック共重合体については、異なる種類のモノマーを、逐次、リビングラジカル重合系に対して添加することにより得ることができる。The block copolymer can be obtained by sequentially adding different types of monomers to the living radical polymerization system.

本発明のポリマーの製造方法は、本発明の効果を損なわない範囲であれば任意の溶媒を選択することができるが、生体試料に対して修飾剤としての用途を考えると、水を主たる溶媒とし、49%を超えない範囲でアルコールなどの水溶性有機溶媒を添加した混合溶媒の一成分として使用することが好ましい。In the method for producing the polymer of the present invention, any solvent can be selected as long as the effects of the present invention are not impaired. However, considering the use as a modifier for biological samples, water is the main solvent. In addition, it is preferably used as one component of a mixed solvent to which a water-soluble organic solvent such as alcohol is added within a range not exceeding 49%.

重合反応については、本発明の効果を損なわない範囲において、任意の温度において行なってよい。具体的には、例えば熱分解によりラジカルを発生させる場合は、10℃〜90℃、より好ましくは、20℃〜70℃の条件が挙げられる。About a polymerization reaction, you may carry out at arbitrary temperature in the range which does not impair the effect of this invention. Specifically, for example, in the case where radicals are generated by thermal decomposition, conditions of 10 ° C. to 90 ° C., more preferably 20 ° C. to 70 ° C. are mentioned.

反応容器については、重合反応を阻害しないかぎりにおいて特に制限がなく、ガラス製、ステンレス製など、適宜選択して使用することができる。反応系を加圧する場合は、耐圧容器を使用することが好ましい。The reaction vessel is not particularly limited as long as it does not inhibit the polymerization reaction, and can be appropriately selected from glass or stainless steel. When pressurizing the reaction system, it is preferable to use a pressure vessel.

このようにして得られたポリマーは、標準ポリエチレングリコールを用いて換算したGPCの多分散度が1.01〜1.50、好ましくは1.10〜1.40である。ポリマー鎖末端の官能基の導入率が90%以上、このポリマーの収率は、60%以上、好ましくは70%以上、さらに好ましくは80%以上で得ることができる。The polymer thus obtained has a GPC polydispersity of 1.01-1.50, preferably 1.10-1.40, converted using standard polyethylene glycol. The introduction rate of the functional group at the end of the polymer chain is 90% or more, and the yield of this polymer is 60% or more, preferably 70% or more, more preferably 80% or more.

本発明のポリマーを生体試料修飾剤として用いる場合、ポリマーは水あるいは緩衝液あるいは生体試料に影響を与えない程度の少量の有機溶媒を混合した系に溶解することが必要である。When the polymer of the present invention is used as a biological sample modifier, it is necessary to dissolve the polymer in a system in which water or a buffer solution or a small amount of an organic solvent that does not affect the biological sample is mixed.

発明の効果The invention's effect

本発明によれば、末端官能性で水溶性のリン脂質極性基を有するアクリル酸誘導体ポリマーを、水を主たる溶媒中で精度良く合成でき、分子量分布が小さく、ポリマー鎖末端の官能基の導入率が高いポリマーを80%以上の高収率で得ることができる。また、同様に分子量分布が狭いブロック型ポリマーも高い収率で得ることができる。またさらに、上記のポリマーはタンパク質、核酸、多糖、細胞あるいは生体組織の修飾剤として使用すると、安定性、耐熱性、活性、生物学的特異性を高めあるいは長期間維持できる点で、優れた性能を示すので、産業上、とくにバイオテクノロジー、医療、製薬、食品などの分野に有用である。According to the present invention, an acrylic acid derivative polymer having a terminal-functional and water-soluble phospholipid polar group can be accurately synthesized in water as a main solvent, the molecular weight distribution is small, and the introduction rate of the functional group at the end of the polymer chain. Can be obtained in a high yield of 80% or more. Similarly, a block polymer having a narrow molecular weight distribution can be obtained in a high yield. Furthermore, the above polymers can be used as a modifier for proteins, nucleic acids, polysaccharides, cells, or biological tissues to improve stability, heat resistance, activity, biological specificity, or to maintain long-term performance. Therefore, it is useful in industry, especially in fields such as biotechnology, medical care, pharmaceuticals, and foods.

以下に、本発明を具体例に基づいて詳細に説明する。次に、分析方法および条件等について記載する。
1.数平均分子量(Mn)、重量平均分子量(Mw)につぃて;ポリエチレングリコールを標準サンプルとしてゲルパーミエーションクロマトグラフ(GPC)により測定する。すなわち得られたポリマーを0.5重量%になるよう溶出溶媒を用いて希釈し、この溶液を孔径0.45μmのメンブランフィルタで濾過し、試験溶液とする。
Hereinafter, the present invention will be described in detail based on specific examples. Next, analysis methods and conditions will be described.
1. Number average molecular weight (Mn) and weight average molecular weight (Mw): Measured by gel permeation chromatograph (GPC) using polyethylene glycol as a standard sample. That is, the obtained polymer is diluted with an elution solvent to 0.5% by weight, and this solution is filtered through a membrane filter having a pore size of 0.45 μm to obtain a test solution.

水溶性のポリマーのGPC分析条件について以下に記載する。カラム;G3000PWXL×2本(東ソー社製)、溶出溶媒;20mMリン酸緩衝液、標準物質;ポリエチレングリコール(ポリマー・ラボラトリー社製)、検出;視差屈折計、重量平均分子量(Mw)、数平均分子量測定(Mn)、分子量分布(Mw/Mn)の計算:東ソー社製インテグレータ内蔵分子量計算プログラム(SC−8020用GPCプログラム)、流速;0.5mL/分、試料溶液使用量;100μL、カラム温度は40℃に設定した。The GPC analysis conditions for the water-soluble polymer are described below. Column: G3000PWXL × 2 (manufactured by Tosoh Corporation), elution solvent: 20 mM phosphate buffer, standard substance: polyethylene glycol (manufactured by Polymer Laboratory), detection: parallax refractometer, weight average molecular weight (Mw), number average molecular weight Measurement (Mn), calculation of molecular weight distribution (Mw / Mn): Tosoh Corporation built-in integrator built-in molecular weight calculation program (GPC program for SC-8020), flow rate: 0.5 mL / min, sample solution usage: 100 μL, column temperature is Set to 40 ° C.

構造確認は以下の方法によった。H−NMRはポリマー20mgを重エタノール(d−6)1.5mLに溶解させた試料溶液を用いて、日本電子(株)製、α−500(500MHz)により30℃にて測定する。The structure was confirmed by the following method. 1 H-NMR is measured at 30 ° C. by α-500 (500 MHz) manufactured by JEOL Ltd. using a sample solution obtained by dissolving 20 mg of a polymer in 1.5 mL of heavy ethanol (d-6).

実施例1(MPCホモポリマー、Mn=22,000、Mw/Mn=1.22、収率=85%)
フラスコに4−シアノ吉草酸ジチオベンゾエート(CPADTBと略す。)14.0mg(0.05mmol)、水50mLを仕込み、かき混ぜながら容器内をアルゴンで置換した。次いで4,4’−アゾビス(4−シアノ吉草酸)(ACPと略す。)14.0mg(0.05mmol)を添加しかき混ぜ、その後、MPC15g(50mmol)を添加し、60℃に加温し、6時間かき混ぜた。得られた溶液を取り出し、ジエチルエーテル/アセトン(6/4)混合溶液1リットル中に滴下して固形のポリマーを得た。これを減圧乾燥し、ポリマーを得た。前記の水溶性のポリマーのGPC分析条件に従ってこのポリマーを分析した。結果は、Mnが22,000、Mw/Mnが1.32、収率が85%であった。分析の結果、ポリマー鎖末端にカルボキシル基を含んでいることが確認できた。カルボン酸の定量の結果、末端官能基の導入率は98%以上であった。
Example 1 (MPC homopolymer, Mn = 22,000, Mw / Mn = 1.22, yield = 85%)
To the flask, 14.0 mg (0.05 mmol) of 4-cyanovaleric acid dithiobenzoate (abbreviated as CPADTB) and 50 mL of water were charged, and the inside of the container was replaced with argon while stirring. Then, 14.0 mg (0.05 mmol) of 4,4′-azobis (4-cyanovaleric acid) (abbreviated as ACP) was added and mixed, and then 15 g (50 mmol) of MPC was added and heated to 60 ° C., Stir for 6 hours. The obtained solution was taken out and dropped into 1 liter of a diethyl ether / acetone (6/4) mixed solution to obtain a solid polymer. This was dried under reduced pressure to obtain a polymer. The polymer was analyzed according to the GPC analysis conditions for the water-soluble polymer. As a result, Mn was 22,000, Mw / Mn was 1.32 and the yield was 85%. As a result of analysis, it was confirmed that a carboxyl group was included at the end of the polymer chain. As a result of quantitative determination of the carboxylic acid, the introduction rate of the terminal functional group was 98% or more.

実施例2(末端基の変換)
実施例1で得られたMPCホモポリマーを1Nの水素化ホウ素ナトリウム水溶液に溶解し、40℃で30分間保持した。反応後、混合液を乾燥アセトン中に投じ、白色沈殿を得た。水溶性のポリマーのGPC分析条件に従ってこのポリマーを分析した。結果は、Mnが21,000、Mw/Mnが1.31、収率が97%であった。分析の結果、ポリマー鎖末端にメルカプト基を含んでいることが確認できた。メルカプト基定量の結果、末端メルカプト基の導入率は97%以上であった。
Example 2 (Conversion of end groups)
The MPC homopolymer obtained in Example 1 was dissolved in 1N aqueous sodium borohydride solution and kept at 40 ° C. for 30 minutes. After the reaction, the mixed solution was poured into dry acetone to obtain a white precipitate. The polymer was analyzed according to the GPC analysis conditions of the water soluble polymer. As a result, Mn was 21,000, Mw / Mn was 1.31, and the yield was 97%. As a result of analysis, it was confirmed that a mercapto group was contained at the end of the polymer chain. As a result of quantification of mercapto groups, the introduction rate of terminal mercapto groups was 97% or more.

実施例3(2−アクリロイルオキシジエチレンオキシドエチルホソホリルコリン(AOEOPCと略す)ホモポリマー、Mn=34,000、Mw/Mn=1.31、収率=77%)
ガラス製試験管にCPADTB3.0mg(0.012mmol)、水30mLを仕込み、かき混ぜながら容器内をアルゴンで置換した。次いでACP3.0mg(0.012mmol)を添加しかき混ぜ、その後、AOEOPC15g(40mmol)を添加し、ガラス製試験管の上部を溶融して封管した。シリコーンオイルバスで50℃に加温し、8時間静置した。反応後、ガラス製試験管を開管し、反応混合液を取り出し、ジエチルエーテル/アセトン(6/4)混合溶液500ml中に滴下して固形のポリマーを得た。これを減圧乾燥し、ポリマーを得た。GPC分析条件に従ってこのポリマーを分析した。結果は、Mnが112,000、Mw/Mnが1.41、収率が77%であった。分析の結果、ポリマー鎖末端にカルボキシル基を含んでいることが確認できた。カルボン酸の定量の結果、末端官能基の導入率は95%以上であった。
Example 3 (2-acryloyloxydiethylene oxide ethylfophorylcholine (abbreviated as AOEOPC) homopolymer, Mn = 34,000, Mw / Mn = 1.31, yield = 77%)
A glass test tube was charged with 3.0 mg (0.012 mmol) of CPADTB and 30 mL of water, and the inside of the container was replaced with argon while stirring. Next, 3.0 mg (0.012 mmol) of ACP was added and mixed, and then 15 g (40 mmol) of AOEOPC was added, and the upper part of the glass test tube was melted and sealed. The mixture was heated to 50 ° C. with a silicone oil bath and allowed to stand for 8 hours. After the reaction, the glass test tube was opened, the reaction mixture was taken out, and dropped into 500 ml of a diethyl ether / acetone (6/4) mixed solution to obtain a solid polymer. This was dried under reduced pressure to obtain a polymer. The polymer was analyzed according to GPC analysis conditions. As a result, Mn was 112,000, Mw / Mn was 1.41, and the yield was 77%. As a result of analysis, it was confirmed that a carboxyl group was included at the end of the polymer chain. As a result of quantification of the carboxylic acid, the introduction rate of the terminal functional group was 95% or more.

実施例4(MPC/n−ブチルメタクリレート(BMAと略記する)ランダム共重合体、Mn=41,000、Mw/Mn=1.40、収率=73%)ガラス製試験管にCPADTB0.3mg(0.005mmol)、水30mL及びエタノール10mLを仕込み、容器内をアルゴンで置換した。次いでACP3.0mg(0.012mmol)を添加しかき混ぜ、その後、MPC9g(30mmol)及びBMA3.2g(20mmol)を添加しガラス製試験管を溶封した。これを60℃に加温し、12時間ふり混ぜた。得られた溶液を取り出し、ジエチルエーテル/アセトン/クロロホルム(6/2/2)混合溶液800ml中に滴下して固形のポリマーを得た。これを減圧乾燥し、ポリマーを得た。GPC分析条件に従ってこのポリマーを分析した。結果は、Mnが41,000、Mw/Mn=1.40、収率=73%であった。分析の結果、ポリマー中にホスホリルコリン基の存在を確認した。またポリマー中のMPCユニット組成は65mol%であった。ポリマー鎖末端にカルボキシル基を含んでいることが確認できた。カルボン酸の定量の結果、末端官能基の導入率は95%以上であった。Example 4 (MPC / n-butyl methacrylate (abbreviated as BMA) random copolymer, Mn = 41,000, Mw / Mn = 1.40, yield = 73%) CPADTB 0.3 mg in a glass test tube ( 0.005 mmol), 30 mL of water and 10 mL of ethanol were charged, and the inside of the container was replaced with argon. Next, 3.0 mg (0.012 mmol) of ACP was added and mixed, and then 9 g (30 mmol) of MPC and 3.2 g (20 mmol) of BMA were added to seal the glass test tube. This was warmed to 60 ° C. and mixed for 12 hours. The obtained solution was taken out and dropped into 800 ml of a mixed solution of diethyl ether / acetone / chloroform (6/2/2) to obtain a solid polymer. This was dried under reduced pressure to obtain a polymer. The polymer was analyzed according to GPC analysis conditions. As a result, Mn was 41,000, Mw / Mn = 1.40, and yield = 73%. As a result of the analysis, the presence of phosphorylcholine groups in the polymer was confirmed. The MPC unit composition in the polymer was 65 mol%. It was confirmed that a carboxyl group was included at the end of the polymer chain. As a result of quantification of the carboxylic acid, the introduction rate of the terminal functional group was 95% or more.

図1に実施例1、実施例3及び実施例4で得られたポリマーのGPCチャートを示す。分子量分布が極めて狭いことが明確にわかる。FIG. 1 shows a GPC chart of the polymers obtained in Example 1, Example 3 and Example 4. It can be clearly seen that the molecular weight distribution is very narrow.

比較例1(通常のラジカル重合、MPCホモポリマー、Mn=20,000、Mw/Mn=4.12、収率=70%)
フラスコに、MPC15g(50mmol)、水50mLを仕込み、かき混ぜながら容器内をアルゴンガスで置換した。次いで水溶性ラジカル開始剤であるV−50 13.6mg(0.05mmol)を添加し、3時間かき混ぜた。得られた溶液を取り出し、乾燥アセトン1リットル中に滴下して固形のポリマーを得た。前記の水溶性のポリマーのGPC分析条件に従ってこのポリマーを分析した。結果は、Mn=20,000、Mw/Mn=4.12、収率=70%であった。また構造の分析を行い、ポリマー中のホスホリルコリン基の存在を確認した。
Comparative Example 1 (ordinary radical polymerization, MPC homopolymer, Mn = 20,000, Mw / Mn = 4.12, yield = 70%)
A flask was charged with 15 g (50 mmol) of MPC and 50 mL of water, and the inside of the container was replaced with argon gas while stirring. Next, 13.6 mg (0.05 mmol) of V-50 which is a water-soluble radical initiator was added and stirred for 3 hours. The obtained solution was taken out and dropped into 1 liter of dry acetone to obtain a solid polymer. The polymer was analyzed according to the GPC analysis conditions for the water-soluble polymer. As a result, Mn = 20,000, Mw / Mn = 4.12, yield = 70%. The structure was analyzed to confirm the presence of phosphorylcholine groups in the polymer.

図2に比較例1で得られたポリマーのGPCチャートを実施例1で得られたポリマーと比較して示す。明確な分子量分布の差異が認められる。FIG. 2 shows a GPC chart of the polymer obtained in Comparative Example 1 in comparison with the polymer obtained in Example 1. Clear differences in molecular weight distribution are observed.

比較例2(通常のラジカル重合、MPC/BMA共重合体、Mn=21,000、Mw/Mn=4.52、収率=99%)
フラスコに、MPC12g(40mmol)、BMA1.4g(10mmol)、水30mL、メタノール20mLを仕込み、かき混ぜながら容器内をアルゴンガスで置換した。次いでV−50 13.6mg(0.05mmol)を添加し、60℃まで昇温し6時間かき混ぜた。得られた溶液を取り出し、ジエチルエーテル1リットル中に滴下して固形のポリマーを得た。これを減圧乾燥し、ポリマーを得た。前記の水溶性のポリマーのGPC分析条件に従ってこのポリマーを分析した。結果は、Mnが21,000、Mw/Mnが4.52、収率が99%であった。組成および結果を表2に示す。また、実施例1−1と同様の分析を行い、ポリマー中のホスホリルコリン基の存在を確認した。
Comparative Example 2 (ordinary radical polymerization, MPC / BMA copolymer, Mn = 21,000, Mw / Mn = 4.52, yield = 99%)
A flask was charged with 12 g (40 mmol) of MPC, 1.4 g (10 mmol) of BMA, 30 mL of water, and 20 mL of methanol, and the inside of the container was replaced with argon gas while stirring. Next, 13.6 mg (0.05 mmol) of V-50 was added, the temperature was raised to 60 ° C., and the mixture was stirred for 6 hours. The obtained solution was taken out and dropped into 1 liter of diethyl ether to obtain a solid polymer. This was dried under reduced pressure to obtain a polymer. The polymer was analyzed according to the GPC analysis conditions for the water-soluble polymer. As a result, Mn was 21,000, Mw / Mn was 4.52, and the yield was 99%. The composition and results are shown in Table 2. Moreover, the same analysis as Example 1-1 was conducted and presence of the phosphorylcholine group in a polymer was confirmed.

実施例5(酵素の修飾)
実施例1で得られたポリマー100mgを水/メタノール混合液(6/4)に150ml溶解した。これにN−ヒドロキシスクシンイミド42,5mmolを加え、溶解し、4℃に冷却した。これにジシクロヘキシルカルボジイミドを41.8mmol加えて、4℃で1時間、次いで室温で23時間攪拌を続けた。反応後、溶液を−10℃に冷却し、副生成物をろ別した。ろ液をアセトン中に投じ、末端基活性化ポリマーを沈殿させた。パパイン(120mg)をリン酸緩衝液(pH7.0)120mlに溶解し、これに前述の末端基活性化ポリマーを添加して、室温にて2時間攪拌した。反応終了後、リン酸緩衝液に対して透析を行い、ポリマー鎖で修飾した酵素(パパイン)を得た。
Example 5 (Modification of enzyme)
100 ml of the polymer obtained in Example 1 was dissolved in 150 ml of a water / methanol mixture (6/4). To this, 42.5 mmol of N-hydroxysuccinimide was added, dissolved and cooled to 4 ° C. 41.8 mmol of dicyclohexylcarbodiimide was added thereto, and stirring was continued at 4 ° C. for 1 hour and then at room temperature for 23 hours. After the reaction, the solution was cooled to −10 ° C., and a by-product was filtered off. The filtrate was poured into acetone to precipitate the end group activated polymer. Papain (120 mg) was dissolved in 120 ml of a phosphate buffer (pH 7.0), and the above-mentioned end group activated polymer was added thereto, followed by stirring at room temperature for 2 hours. After completion of the reaction, dialysis was performed against the phosphate buffer to obtain an enzyme (papain) modified with a polymer chain.

比較例3(酵素の活性測定)
実施例5と同様の方法で、実施例1で得られたポリマーの代わりにカルボキシル基を末端に有するPEG誘導体(Mn=5,000)を利用して、パパインの修飾をおこなった。
Comparative Example 3 (Measurement of enzyme activity)
In the same manner as in Example 5, papain was modified using a PEG derivative (Mn = 5,000) having a carboxyl group at the terminal instead of the polymer obtained in Example 1.

実施例6(酵素の活性測定)
実施例5、比較例3で得られたポリマー鎖で修飾した酵素(パパイン)及び未修飾のパパインの酵素活性をベンゾイル−L−アルギニン−エチルエステル(BAEEと略記)を基質として、リン酸緩衝液(pH6.1)中で40℃にて測定した。酵素反応により基質が分解され、258nmの紫外吸収が増加するため、この経時的変化を追跡して、反応速度を求めた。
Example 6 (Measurement of enzyme activity)
The enzyme activity of the enzyme modified with the polymer chain (papain) obtained in Example 5 and Comparative Example 3 and the unmodified papain was converted to phosphate buffer using benzoyl-L-arginine-ethyl ester (abbreviated as BAEE) as a substrate. It was measured at 40 ° C. in (pH 6.1). Since the substrate was decomposed by the enzyme reaction and the ultraviolet absorption at 258 nm increased, the change with time was followed to determine the reaction rate.

酵素の安定性
実施例6による結果を図3に示す。未処理のパパインの活性は7日目に全く見られなくなり、パパインの安定性が悪いことがわかる。また、比較例3のPEG鎖修飾パパインでもやはり初期の7日目までに活性が50%に低下する。これらに対して、実施例5のポリマー修飾パパインでは28日目においても100%の活性を維持することがわかった。これらより実施例1で得られたポリマーのタンパク質修飾剤としての有効性が確認できた。
Enzyme Stability Results from Example 6 are shown in FIG. The activity of untreated papain is not seen at all on day 7, indicating that papain is not stable. In addition, the activity of the PEG chain-modified papain of Comparative Example 3 is also reduced to 50% by the first 7 days. In contrast, the polymer-modified papain of Example 5 was found to maintain 100% activity even on the 28th day. From these, the effectiveness of the polymer obtained in Example 1 as a protein modifier could be confirmed.

実施例7(細胞の修飾)
実施例3で得られたポリマーを用いて、赤血球の表面を修飾した。ウサギから新鮮血を採取し、これをただちに遠心分離して赤血球を分離した。ハンクス緩衝液を用いて、血球密度が500,000個/mLとなるように調節した。この血球懸濁液1mLに実施例3で得られたポリマー40mLをハンクス緩衝液0.5mLに溶解した液を加えた。4℃にて3時間反応させて、遠心分離して血球を精製した。
Example 7 (Modification of cells)
The surface of red blood cells was modified using the polymer obtained in Example 3. Fresh blood was collected from the rabbit and immediately centrifuged to separate red blood cells. Using Hanks buffer, the blood cell density was adjusted to 500,000 cells / mL. A solution obtained by dissolving 40 mL of the polymer obtained in Example 3 in 0.5 mL of Hanks buffer was added to 1 mL of this blood cell suspension. The reaction was carried out at 4 ° C. for 3 hours, and the blood cells were purified by centrifugation.

比較例4(細胞の修飾)
実施例7と同様の方法で、実施例3で得られたポリマーの代わりにカルボキシル基を末端に有するPEG誘導体を利用して、赤血球の修飾をおこなった。
Comparative Example 4 (cell modification)
In the same manner as in Example 7, red blood cells were modified using a PEG derivative having a carboxyl group at the terminal instead of the polymer obtained in Example 3.

比較例5(細胞の修飾)
実施例7と同様の方法で、実施例3で得られたポリマーの代わりに比較例2で得られたポリマーを利用した。
Comparative Example 5 (cell modification)
In the same manner as in Example 7, the polymer obtained in Comparative Example 2 was used in place of the polymer obtained in Example 3.

実施例8(溶血性の評価)
実施例7、比較例4及び比較例5のポリマー修飾赤血球及び未処理の赤血球を用いて、40℃にて3時間、30回/分で震蕩した際の溶血性を、懸濁液を遠心分離した後の上澄み液の413nmにおける吸光度から評価した。
Example 8 (Evaluation of hemolysis)
Using the polymer-modified red blood cells of Example 7, Comparative Example 4 and Comparative Example 5 and untreated red blood cells, the suspension was centrifuged for 30 hours / minute at 40 ° C. for 3 hours, and the suspension was centrifuged. Then, the absorbance at 413 nm of the supernatant was evaluated.

細胞の安定性
図4に溶血性試験の結果を示す。未処理の赤血球はほぼ100%溶血している。ポリマーで修飾した場合においても、構造により大きく差が出る。比較例5では、ポリマー末端の官能基濃度が低いために細胞と結合できない、あるいは分子量分布が大きく、界面活性作用がでるために細胞の破壊が阻止できない。また、比較例4ではポリマー構造の違いにより、細胞に与える効果が大きく、溶血を進めている。これらに対して、実施例7では効果的に溶血をほぼ完全に抑制している。
Cell Stability FIG. 4 shows the results of the hemolytic test. Untreated red blood cells are almost 100% hemolyzed. Even when the polymer is modified, there is a large difference depending on the structure. In Comparative Example 5, since the functional group concentration at the polymer terminal is low, it cannot bind to the cells, or the molecular weight distribution is large and the surface activity occurs, so that the destruction of the cells cannot be prevented. In Comparative Example 4, the effect on cells is great due to the difference in polymer structure, and hemolysis is promoted. On the other hand, in Example 7, hemolysis is effectively suppressed almost completely.

ポリマーのGPC測定の結果Result of GPC measurement of polymer 実施例1および比較例1のGPC測定の結果Results of GPC measurement in Example 1 and Comparative Example 1 酵素の残存活性の経時変化の結果Results of changes in enzyme residual activity over time 赤血球溶血性試験の結果Results of erythrocyte hemolysis test

Claims (7)

下記式[1]で示されるリン脂質極性基を有するアクリル酸誘導体モノマーを含むモノマー組成物を重合してなるポリマーであって、ポリマー鎖末端の片側あるいは両側に反応性官能基を有し、ゲルパーミエーションクロマトグラフにより標準ポリエチレングリコールを用いて換算した数平均分子量が、4,000〜500,000であり、多分散度(Mw/Mn)が、1,01〜1.50であるポリマー。
Figure 2005239988
(式中、R1は水素原子またはメチル基を示し、R2は炭素数1〜10の2価の炭化水素基及びオキシエチレン基を示し、R3は炭素数1〜4の2価の炭化水素基を示し、R4、R5およびR6は同一でも異なってもよく水素あるいは炭素数1〜4の炭化水素基を示し、Aはエステル結合、アミド結合、ウレタン結合、エーテル結合から選ばれる2価の結合を示す。)
A polymer obtained by polymerizing a monomer composition containing an acrylic acid derivative monomer having a phospholipid polar group represented by the following formula [1], having a reactive functional group on one side or both sides of a polymer chain end, and a gel A polymer having a number average molecular weight of 4,000 to 500,000 and a polydispersity (Mw / Mn) of 1,01 to 1.50, which are converted using standard polyethylene glycol by permeation chromatography.
Figure 2005239988
(Wherein R1 represents a hydrogen atom or a methyl group, R2 represents a divalent hydrocarbon group having 1 to 10 carbon atoms and an oxyethylene group, and R3 represents a divalent hydrocarbon group having 1 to 4 carbon atoms. R4, R5 and R6 may be the same or different and each represents hydrogen or a hydrocarbon group having 1 to 4 carbon atoms, and A represents a divalent bond selected from an ester bond, an amide bond, a urethane bond and an ether bond. .)
下記式[2]で示される末端官能性のリン脂質極性基を有するアクリル酸誘導体ポリマーの製造方法において、水を主たる成分とする反応媒体中で可逆的付加開裂連鎖移動重合法により重合して得られるポリマーの製造方法。
Figure 2005239988
(式中、R1は水素原子またはメチル基を示し、R2は炭素数1〜10の2価の炭化水素基及びオキシエチレン基を示し、R3は炭素数1〜4の2価の炭化水素基を示し、R4、R5およびR6は同一でも異なってもよく水素あるいは炭素数1〜4の炭化水素基を示し、Aはエステル結合、アミド結合、ウレタン結合、エーテル結合から選ばれる2価の結合を示す。Xは炭素ー炭素不飽和結合を有するモノマーから重合により得られるモノマーユニット、Y及びZは同一でも異なってもよく有機反応が可能な有機官能基を示す。)
In the method for producing an acrylic acid derivative polymer having a terminal-functional phospholipid polar group represented by the following formula [2], polymerization is performed by a reversible addition-fragmentation chain transfer polymerization method in a reaction medium containing water as a main component. A method for producing a polymer.
Figure 2005239988
(Wherein R1 represents a hydrogen atom or a methyl group, R2 represents a divalent hydrocarbon group having 1 to 10 carbon atoms and an oxyethylene group, and R3 represents a divalent hydrocarbon group having 1 to 4 carbon atoms. R4, R5 and R6 may be the same or different and each represents hydrogen or a hydrocarbon group having 1 to 4 carbon atoms, and A represents a divalent bond selected from an ester bond, an amide bond, a urethane bond and an ether bond. X represents a monomer unit obtained by polymerization from a monomer having a carbon-carbon unsaturated bond, and Y and Z may be the same or different and represent an organic functional group capable of organic reaction.)
請求項1に記載のポリマーを有効成分とするタンパク質修飾剤。A protein modifying agent comprising the polymer according to claim 1 as an active ingredient. 請求項1に記載のポリマーを有効成分とする核酸修飾剤。A nucleic acid modifying agent comprising the polymer according to claim 1 as an active ingredient. 請求項1に記載のポリマーを有効成分とする多糖修飾剤。The polysaccharide modifier which uses the polymer of Claim 1 as an active ingredient. 請求項1に記載のポリマーを有効成分とする細胞修飾剤。A cell modifying agent comprising the polymer according to claim 1 as an active ingredient. 請求項1に記載のポリマーを有効成分とする生体組織修飾剤。A biological tissue modifying agent comprising the polymer according to claim 1 as an active ingredient.
JP2004081422A 2004-02-24 2004-02-24 Water soluble reactive polymer, method for producing the same and biological sample modifier Pending JP2005239988A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004081422A JP2005239988A (en) 2004-02-24 2004-02-24 Water soluble reactive polymer, method for producing the same and biological sample modifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004081422A JP2005239988A (en) 2004-02-24 2004-02-24 Water soluble reactive polymer, method for producing the same and biological sample modifier

Publications (1)

Publication Number Publication Date
JP2005239988A true JP2005239988A (en) 2005-09-08

Family

ID=35022045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004081422A Pending JP2005239988A (en) 2004-02-24 2004-02-24 Water soluble reactive polymer, method for producing the same and biological sample modifier

Country Status (1)

Country Link
JP (1) JP2005239988A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008011812A1 (en) * 2006-07-18 2008-01-31 Shanghai Cancer Institute Biomimetic cell membrane of phospholipid polymer, preparation method and use thereof
JP2013227505A (en) * 2012-03-02 2013-11-07 Suntech Co Ltd Copolymers containing phosphorylcholine groups and methods of preparing and using the same
WO2021020275A1 (en) * 2019-07-26 2021-02-04 国立大学法人東京大学 Surface modifying material for lipid membrane structure
WO2022255204A1 (en) * 2021-06-01 2022-12-08 デンカ株式会社 Copolymer having phosphate group or phosphate ester group, production method therefor, and resin composition
WO2022255203A1 (en) * 2021-06-01 2022-12-08 デンカ株式会社 Polymer having phosphate group or phosphate ester group, production method therefor, and resin composition
CN116640257A (en) * 2023-02-16 2023-08-25 浙江佳润新材料有限公司 Water-based acrylic ester emulsion and preparation method and application thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008011812A1 (en) * 2006-07-18 2008-01-31 Shanghai Cancer Institute Biomimetic cell membrane of phospholipid polymer, preparation method and use thereof
JP2013227505A (en) * 2012-03-02 2013-11-07 Suntech Co Ltd Copolymers containing phosphorylcholine groups and methods of preparing and using the same
US9546229B2 (en) 2012-03-02 2017-01-17 Suntech Co. Copolymers containing phosphorylcholine groups and methods of preparing and using the same
US20170088655A1 (en) * 2012-03-02 2017-03-30 Suntech Co. Copolymers containing phosphorylcholine groups and methods of preparing and using the same
WO2021020275A1 (en) * 2019-07-26 2021-02-04 国立大学法人東京大学 Surface modifying material for lipid membrane structure
JP2021020866A (en) * 2019-07-26 2021-02-18 国立大学法人 東京大学 Surface modifier for lipid membrane structure
JP7475024B2 (en) 2019-07-26 2024-04-26 国立大学法人 東京大学 Surface modification material for lipid membrane structures
WO2022255204A1 (en) * 2021-06-01 2022-12-08 デンカ株式会社 Copolymer having phosphate group or phosphate ester group, production method therefor, and resin composition
WO2022255203A1 (en) * 2021-06-01 2022-12-08 デンカ株式会社 Polymer having phosphate group or phosphate ester group, production method therefor, and resin composition
CN116640257A (en) * 2023-02-16 2023-08-25 浙江佳润新材料有限公司 Water-based acrylic ester emulsion and preparation method and application thereof
CN116640257B (en) * 2023-02-16 2023-11-21 浙江佳润新材料有限公司 Water-based acrylic ester emulsion and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Don et al. Preparation and characterization of chitosan-g-poly (vinyl alcohol)/poly (vinyl alcohol) blends used for the evaluation of blood-contacting compatibility
Kakwere et al. Design of complex polymeric architectures and nanostructured materials/hybrids by living radical polymerization of hydroxylated monomers
Divandari et al. Controlling enzymatic polymerization from surfaces with switchable bioaffinity
KR20060051917A (en) Ionic hydrophilic high molecular weight redox polymers for use in enzymatic electrochemical-based sensors
EP1312627B1 (en) Polymers
JP2011518907A (en) Modified halogenated polymer surface
EP2471899A1 (en) Temperature-responsive cell culture substrate on which a straight-chain temperature-responsive polymer is immobilized, and manufacturing method therefor
KR100487016B1 (en) Modified polymers containing poly (2-hydroxyethyl(meth) acrylate) segment in the molecule
CN110669168B (en) Modifying agent, preparation method and use method thereof and medical material
JP2005239988A (en) Water soluble reactive polymer, method for producing the same and biological sample modifier
CN113265032B (en) Preparation method and application of polyallylamine-modified temperature-sensitive copolymer
JP2007049918A (en) Cell culture support, cell culture method, recovery of cell, and cell
JP5656241B2 (en) Method for modifying surface biocompatibility
JP2018154752A (en) Copolymer and manufacturing method therefor
CN111748053A (en) Preparation method and application of anticoagulant copolymer
CN114805822B (en) Polymer molecular brush with multiblock side chains and preparation method and application thereof
JPH10139832A (en) Copolymer and glucose sensor
US6590043B1 (en) Methacrylic polymer having a terminal functional group and composition thereof
JP4824151B2 (en) Glass substrate and film forming agent having polymer film containing terminal functional phosphorylcholine-like group
Nie et al. Synthesis of copolymers using dendronized polyethylene glycol and assay of their blood compatibility and antibacterial adhesion activity
Carter et al. Aqueous compatible polymers in bionanotechnology
JPH09154573A (en) Nucleic acid adsorbent
JPH115817A (en) Polymerizable polymer and its polymer
JP3655327B2 (en) Styrene derivative having oligosaccharide chain and method for producing the same
JP4694922B2 (en) Borate group-containing hydrogel and method for producing the same

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090818

A02 Decision of refusal

Effective date: 20091222

Free format text: JAPANESE INTERMEDIATE CODE: A02