JP2005237779A - X-ray ct apparatus - Google Patents

X-ray ct apparatus Download PDF

Info

Publication number
JP2005237779A
JP2005237779A JP2004053964A JP2004053964A JP2005237779A JP 2005237779 A JP2005237779 A JP 2005237779A JP 2004053964 A JP2004053964 A JP 2004053964A JP 2004053964 A JP2004053964 A JP 2004053964A JP 2005237779 A JP2005237779 A JP 2005237779A
Authority
JP
Japan
Prior art keywords
ray
distribution
ray tube
dose
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004053964A
Other languages
Japanese (ja)
Inventor
Yasuhiro Matsuoka
靖洋 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2004053964A priority Critical patent/JP2005237779A/en
Publication of JP2005237779A publication Critical patent/JP2005237779A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To irradiate an optimal dose of X-ray to each of a plurality of slices that are photographed at a time in a multislice X-ray CT apparatus. <P>SOLUTION: A rotating anode X-ray tube having a rotating anode (target) 15 comprises an emitter 11 composed of a carbon nanotube group 12 formed on a thin metallic wire and a lattice-shaped electron extraction electrode 13. By adjusting a voltage applied to the lattice-shaped electron extraction electrode 13 with an electrode control circuit 14, an electrical field distribution like an A is created, an electron flow with a concentration corresponding to the electrical field distribution is extracted from the carbon nanotube group 12, the electron flow crashes the target 15 to generate an X-ray having a dosage distribution B corresponding to the electron concentration, and a direction having this distribution is the one that the plurality of slices S1, S2, ..., and S16 line up. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、X線CT装置に関し、とくにマルチスライス型のX線CT装置に関する。   The present invention relates to an X-ray CT apparatus, and more particularly to a multi-slice X-ray CT apparatus.

マルチスライス型のX線CT装置では、被検体の体軸方向に複数列の検出器が配置され、各検出器列ごとの1スライスのデータ収集を行うので、同時に複数のスライスについてのデータを収集することができる。そのため、1回のスキャンで広い範囲の検査部位の撮像が可能である。   In a multi-slice X-ray CT apparatus, multiple rows of detectors are arranged in the body axis direction of the subject, and one slice of data is collected for each detector row, so data on multiple slices is collected simultaneously. can do. Therefore, it is possible to image a wide range of examination sites with a single scan.

ところが、従来のマルチスライス型X線CT装置では、スライスごとに照射X線量を調整することができず、全スライスにつき同程度のX線量を照射している。しかし、検査部位によりX線の吸収量が異なるため、検査部位ごとに最適なX線量を照射してCT撮影することが必要である。そのため、従来のマルチスライス型のX線CT装置では、一度に多数のスライスについての撮像を行うことができる反面、あるスライスについては線量不足、他のスライスについては線量過多になるという不都合がある。   However, in the conventional multi-slice X-ray CT apparatus, the irradiation X-ray dose cannot be adjusted for each slice, and the same X-ray dose is applied to all slices. However, since the amount of X-ray absorption varies depending on the examination site, it is necessary to perform CT imaging by irradiating an optimum X-ray dose for each examination site. Therefore, the conventional multi-slice X-ray CT apparatus can perform imaging for a large number of slices at the same time, but has a disadvantage that a dose is insufficient for some slices and an excessive dose is obtained for other slices.

一方、たとえば下記の非特許文献1に示すようにカーボンナノチューブを電子源としたX線管の実現に向けた研究がなされている。このX線管は、従来のフィラメントからの熱電子放出の代わりに、カーボンナノチューブ先端からの電界電子放出を利用して電子源を形成し、この電子源からの電子線をターゲットに照射してX線を取り出そうというものである。
奥山文雄「カーボンナノチューブを電子源とするX線管」日本放射線技術学会雑誌58巻3号309頁(2002年3月)。
On the other hand, for example, as shown in Non-Patent Document 1 below, studies have been conducted for realizing an X-ray tube using a carbon nanotube as an electron source. In this X-ray tube, instead of thermionic emission from the conventional filament, an electron source is formed by using field electron emission from the tip of the carbon nanotube, and the target is irradiated with an electron beam from the electron source. The line is going to be taken out.
Fumio Okuyama "X-ray tube using carbon nanotubes as an electron source" Journal of Japanese Society of Radiological Technology, Vol. 58, No. 3, 309 (March 2002).

この発明は、カーボンナノチューブを電子源としたX線管についての研究成果を取り入れ、これをX線CT装置へ応用することを構想した上で、カーボンナノチューブ電子源の特質に着目して、上記のマルチスライス型X線CT装置の各スライスでの不適正線量の問題を解決することを目指したX線CT装置を提供することを目的とする。   The present invention incorporates research results on an X-ray tube using carbon nanotubes as an electron source, conceived of applying this to an X-ray CT apparatus, and paying attention to the characteristics of the carbon nanotube electron source, An object of the present invention is to provide an X-ray CT apparatus aimed at solving the problem of inappropriate dose in each slice of a multi-slice X-ray CT apparatus.

上記の目的を達成するため、この発明によるX線CT装置においては、一方向に並べたカーボンナノチューブ群と、その方向に任意の電界分布を形成する電子引き出し電極と、カーボンナノチューブ群より引き出された電子が衝突して上記の電界分布に対応した線量分布を有するX線を発生するターゲットとを備え、上記電子引出し電極に加える電圧が電極制御回路によって調整されることにより任意の電界分布が形成されてそれに対応した線量分布を得ることができるX線管と、該線量分布が形成される方向において検出器配列が多層に積層されたX線検出器と、これらX線管とX線検出器とを、X線管とX線検出器との間に位置する上記積層方向と平行な方向の回転中心軸の周りに一体に回転させる回転機構とが備えられることが特徴となっている。   In order to achieve the above object, in the X-ray CT apparatus according to the present invention, a group of carbon nanotubes arranged in one direction, an electron extraction electrode that forms an arbitrary electric field distribution in that direction, and a group of carbon nanotubes extracted from the carbon nanotube group A target that generates X-rays having a dose distribution corresponding to the electric field distribution by collision of electrons, and an arbitrary electric field distribution is formed by adjusting a voltage applied to the electron extraction electrode by an electrode control circuit. An X-ray tube capable of obtaining a dose distribution corresponding to the X-ray tube, an X-ray detector in which detector arrays are laminated in the direction in which the dose distribution is formed, and the X-ray tube and the X-ray detector, And a rotation mechanism that integrally rotates the X-ray tube and the X-ray detector around a rotation center axis in a direction parallel to the stacking direction. You have me.

電極制御回路によって電子引き出し電極に加える電圧を調整し、カーボンナノチューブ群に対して与える電界分布を、一方向において任意のものとする。すると、この方向において、カーボンナノチューブ群から引き出される電子の密度が対応する分布となる。引き出された電子はターゲットに衝突してX線を発生させるので、X線の線量分布を、その電子密度分布つまり電界分布に対応したものとすることができる。このようなX線管を多層のX線検出器と対向配置する。多層のX線検出器つまり検出エレメントを並べた検出器配列を多層に積層したX線検出器は、その積層方向が上記の線量分布が形成される方向となるように配置される。X線管とX線検出器との間の位置する、上記の積層方向と同方向の回転中心軸の周りに、X線管とX線検出器とを一体に回転させると、各層のX線検出器に対応するスライスごとにデータを収集することができ、そのスライスごとにCT像を再構成することができる。スライスが並ぶ方向つまりX線検出器の積層方向においてX線の線量分布を任意に形成することができるため、各スライスにおいて最適な線量とすることができる。   The voltage applied to the electron extraction electrode is adjusted by the electrode control circuit so that the electric field distribution given to the carbon nanotube group is arbitrary in one direction. Then, in this direction, the density of electrons drawn from the carbon nanotube group has a corresponding distribution. Since the extracted electrons collide with the target to generate X-rays, the dose distribution of X-rays can correspond to the electron density distribution, that is, the electric field distribution. Such an X-ray tube is arranged opposite to a multilayer X-ray detector. A multi-layer X-ray detector, that is, an X-ray detector in which detector arrays in which detection elements are arranged are stacked in multiple layers is arranged so that the stacking direction is the direction in which the dose distribution is formed. When the X-ray tube and the X-ray detector are integrally rotated around the rotation center axis located between the X-ray tube and the X-ray detector and in the same direction as the stacking direction, the X-rays of the respective layers Data can be collected for each slice corresponding to the detector, and a CT image can be reconstructed for each slice. Since an X-ray dose distribution can be arbitrarily formed in the direction in which the slices are arranged, that is, in the stacking direction of the X-ray detector, an optimum dose can be obtained in each slice.

つぎに、この発明を実施したX線CT装置について図面を参照して説明する。   Next, an X-ray CT apparatus embodying the present invention will be described with reference to the drawings.

図1は、カーボンナノチューブを電子源(エミッター)とした回転陽極X線管の内部構造を模式的に示すもので、この回転陽極X線管は図2のようにマルチスライス型X線CT装置に用いられる。   FIG. 1 schematically shows the internal structure of a rotating anode X-ray tube using carbon nanotubes as an electron source (emitter). This rotating anode X-ray tube is used in a multi-slice X-ray CT apparatus as shown in FIG. Used.

図1において、エミッター11は、たとえば金属細線上にグラファイトファイバを高密度に成長させて形成したカーボンナノチューブ群12よりなり、真空とされたX線管のなかで1kVほどの電界を加えることにより電界電子放出( field emission: FE )を起こす。このような電界を形成するために、エミッター11に対して高電位にされる格子状の電子引き出し電極13が設けられている。放出された電子は、エミッター11に対して80kVほどの高電圧とされた回転陽極(ターゲット)15に向かい、これに衝突してX線を放出する。電子引き出し電極13の各部の電圧を電極制御回路14で制御し、同図Aに示すような電界分布を形成すると、その分布に応じた電子流の密度分布が得られ、ターゲット15より放出されるX線の線量分布はこれに対応して同図Bに示すようなものとなる。   In FIG. 1, an emitter 11 is composed of a group of carbon nanotubes 12 formed by growing graphite fibers at a high density on a fine metal wire, for example, and an electric field of about 1 kV is applied by applying an electric field of about 1 kV in an evacuated X-ray tube. Causes field emission (FE). In order to form such an electric field, a lattice-shaped electron extraction electrode 13 that is set to a high potential with respect to the emitter 11 is provided. The emitted electrons are directed to the rotating anode (target) 15 having a high voltage of about 80 kV with respect to the emitter 11 and collide with this to emit X-rays. When the voltage of each part of the electron extraction electrode 13 is controlled by the electrode control circuit 14 and an electric field distribution as shown in FIG. 5A is formed, the electron current density distribution corresponding to the distribution is obtained and emitted from the target 15. Correspondingly, the X-ray dose distribution is as shown in FIG.

つまり、回転陽極15の回転軸が紙面に平行で横方向になっており、エミッター11のカーボンナノチューブ群12が紙面に平行で縦方向(上記の回転軸に対して直角な方向)に並び、同縦方向に電界分布Aが形成されるとき、紙面に平行で横方向(上記の回転軸に平行な方向)に線量分布Bを持つようなX線の照射が可能となる。この横方向をZ方向とすると、このZ方向にスライスS1、S2、…、S16のように多数のスライスが並ぶようにすれば、各スライスにつき最適な線量のX線を照射することができる。   That is, the rotation axis of the rotary anode 15 is parallel to the paper surface and in the horizontal direction, and the carbon nanotube groups 12 of the emitter 11 are aligned in the vertical direction (perpendicular to the rotation axis) and parallel to the paper surface. When the electric field distribution A is formed in the vertical direction, X-ray irradiation can be performed such that the dose distribution B is parallel to the paper surface and in the horizontal direction (direction parallel to the rotation axis). Assuming that the lateral direction is the Z direction, if a large number of slices are arranged in this Z direction, such as slices S1, S2,.

図2では、X線管21から照射されたX線がコリメータ22を経て絞られた上、X線検出器23に向かうよう構成されている。X線検出器23は、多数の検出エレメントを円弧状に並べた検出器配列を多層に積層したものである。これらX線管21、コリメータ22およびX線検出器23が、X線管21およびコリメータ22とX線検出器23とに挟まれた空間に配置された被検体(患者、図示しない)の体軸Zを中心軸として、図示しない回転機構により、一体に回転させられる。   In FIG. 2, the X-ray emitted from the X-ray tube 21 is narrowed down through the collimator 22 and then travels toward the X-ray detector 23. The X-ray detector 23 is a multi-layered detector array in which a large number of detection elements are arranged in an arc. The body axis of a subject (patient, not shown) in which the X-ray tube 21, the collimator 22 and the X-ray detector 23 are arranged in a space between the X-ray tube 21, the collimator 22 and the X-ray detector 23. With Z as the central axis, it is rotated together by a rotation mechanism (not shown).

X線管21は図1のように構成されたもので、図1のZ方向と図2のZ方向とが一致するような位置関係で配置される。X線検出器23は、Z軸に直角なX−Y平面上で検出エレメントを多数並べた検出器配列を、Z方向に多層(たとえば16層)に重ねたものである。この各層がスライスS1、S2、…、S16となる。X線管21から放射されるX線はZ方向で図1のBのような線量分布を持つことになる。このZ方向での線量分布は、電子引き出し電極13の各々に加える電圧を電極制御回路14で調整することにより、任意のものとすることができ、被検体のスライスS1、S2、…、S16の各々につき最適な線量のX線を照射することができる。   The X-ray tube 21 is configured as shown in FIG. 1, and is arranged in a positional relationship such that the Z direction in FIG. 1 and the Z direction in FIG. 2 coincide. The X-ray detector 23 is a detector array in which a large number of detector elements are arranged on an XY plane perpendicular to the Z axis, and is stacked in multiple layers (for example, 16 layers) in the Z direction. These layers become slices S1, S2,..., S16. The X-rays radiated from the X-ray tube 21 have a dose distribution as shown in FIG. The dose distribution in the Z direction can be made arbitrary by adjusting the voltage applied to each of the electron extraction electrodes 13 by the electrode control circuit 14, and the slices S 1, S 2,. It is possible to irradiate an optimum dose of X-rays for each.

この発明によれば、一度に撮像する多数のスライスの各々につき最適な線量のX線を照射してデータ収集することができるマルチスライス型X線CT装置を、比較的簡単な構成で安価に製造することができる。   According to the present invention, a multi-slice X-ray CT apparatus capable of collecting data by irradiating an optimum dose of X-rays to each of a large number of slices to be imaged at a time is manufactured at a low cost with a relatively simple configuration. can do.

この発明の一実施例にかかるX線管の内部構成を模式的に示す模式図。The schematic diagram which shows typically the internal structure of the X-ray tube concerning one Example of this invention. X線CT装置の全体の構成を概略的に示す模式図。The schematic diagram which shows schematically the whole structure of a X-ray CT apparatus.

符号の説明Explanation of symbols

11 エミッター
12 カーボンナノチューブ群
13 電子引き出し電極
14 電極制御回路
15 回転陽極(ターゲット)
21 X線管
22 コリメータ
23 X線検出器
A 電界分布
B 線量分布
S1,S2,…、S16 スライス
11 Emitter 12 Carbon nanotube group 13 Electron extraction electrode 14 Electrode control circuit 15 Rotating anode (target)
21 X-ray tube 22 Collimator 23 X-ray detector A Electric field distribution B Dose distribution S1, S2, ..., S16 Slice

Claims (1)

一方向に並べたカーボンナノチューブ群と、その方向に任意の電界分布を形成する電子引き出し電極と、カーボンナノチューブ群より引き出された電子が衝突して上記の電界分布に対応した線量分布を有するX線を発生するターゲットとを備え、上記電子引出し電極に加える電圧が電極制御回路によって調整されることにより任意の電界分布が形成されてそれに対応した線量分布を得ることができるX線管と、該線量分布が形成される方向において検出器配列が多層に積層されたX線検出器と、これらX線管とX線検出器とを、X線管とX線検出器との間に位置する上記積層方向と平行な方向の回転中心軸の周りに一体に回転させる回転機構とを有するX線CT装置。   A group of carbon nanotubes arranged in one direction, an electron extraction electrode that forms an arbitrary electric field distribution in that direction, and an X-ray having a dose distribution corresponding to the electric field distribution when electrons extracted from the carbon nanotube group collide with each other An X-ray tube capable of forming an arbitrary electric field distribution by adjusting a voltage applied to the electron extraction electrode by an electrode control circuit and obtaining a dose distribution corresponding thereto, and the dose An X-ray detector in which detector arrays are stacked in multiple layers in the direction in which the distribution is formed, and the above-mentioned stack in which the X-ray tube and the X-ray detector are positioned between the X-ray tube and the X-ray detector. An X-ray CT apparatus having a rotation mechanism that rotates integrally around a rotation center axis in a direction parallel to the direction.
JP2004053964A 2004-02-27 2004-02-27 X-ray ct apparatus Pending JP2005237779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053964A JP2005237779A (en) 2004-02-27 2004-02-27 X-ray ct apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053964A JP2005237779A (en) 2004-02-27 2004-02-27 X-ray ct apparatus

Publications (1)

Publication Number Publication Date
JP2005237779A true JP2005237779A (en) 2005-09-08

Family

ID=35020122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053964A Pending JP2005237779A (en) 2004-02-27 2004-02-27 X-ray ct apparatus

Country Status (1)

Country Link
JP (1) JP2005237779A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711186B1 (en) * 2005-10-07 2007-04-24 한국전기연구원 X-ray tube capable of disassembly and assembly using carbon nano tube as an electric field emission source
JP2007202714A (en) * 2006-01-31 2007-08-16 Toshiba Corp Radiographic apparatus
WO2007135813A1 (en) * 2006-05-18 2007-11-29 Hamamatsu Photonics K.K. X-ray tube
WO2007135812A1 (en) * 2006-05-18 2007-11-29 Hamamatsu Photonics K.K. X-ray tube
KR100898903B1 (en) * 2007-07-25 2009-05-26 한국전기연구원 Carbon nano tube based brachytherapy apparatus
WO2009101882A1 (en) 2008-02-13 2009-08-20 Canon Kabushiki Kaisha X-ray generator, x-ray photographing device, and method of controlling the generator and the device
JP2009534669A (en) * 2006-04-21 2009-09-24 アメリカン サイエンス アンド エンジニアリング,インコーポレイテッド Baggage and human X-ray imaging using an array of discrete sources and multiple parallel beams
JP2009238750A (en) * 2008-03-26 2009-10-15 General Electric Co <Ge> Field emitter based electron source with minimized beam emitance growth
WO2021006166A1 (en) * 2019-07-09 2021-01-14 雫石 誠 Computer tomography device and examination vehicle

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100711186B1 (en) * 2005-10-07 2007-04-24 한국전기연구원 X-ray tube capable of disassembly and assembly using carbon nano tube as an electric field emission source
JP2007202714A (en) * 2006-01-31 2007-08-16 Toshiba Corp Radiographic apparatus
JP2009534669A (en) * 2006-04-21 2009-09-24 アメリカン サイエンス アンド エンジニアリング,インコーポレイテッド Baggage and human X-ray imaging using an array of discrete sources and multiple parallel beams
WO2007135812A1 (en) * 2006-05-18 2007-11-29 Hamamatsu Photonics K.K. X-ray tube
WO2007135813A1 (en) * 2006-05-18 2007-11-29 Hamamatsu Photonics K.K. X-ray tube
KR100898903B1 (en) * 2007-07-25 2009-05-26 한국전기연구원 Carbon nano tube based brachytherapy apparatus
WO2009101882A1 (en) 2008-02-13 2009-08-20 Canon Kabushiki Kaisha X-ray generator, x-ray photographing device, and method of controlling the generator and the device
US8488742B2 (en) 2008-02-13 2013-07-16 Canon Kabushiki Kaisha X-ray generator, X-ray imaging apparatus, and control methods therefor
US8879687B2 (en) 2008-02-13 2014-11-04 Canon Kabushiki Kaisha X-ray generator, X-ray imaging apparatus, and control methods therefor
JP2009238750A (en) * 2008-03-26 2009-10-15 General Electric Co <Ge> Field emitter based electron source with minimized beam emitance growth
JP4590479B2 (en) * 2008-03-26 2010-12-01 ゼネラル・エレクトリック・カンパニイ Field emitter electron source with minimal increase in beam emittance
WO2021006166A1 (en) * 2019-07-09 2021-01-14 雫石 誠 Computer tomography device and examination vehicle
JP6858317B1 (en) * 2019-07-09 2021-04-14 雫石 誠 Computed tomography equipment and examination vehicle

Similar Documents

Publication Publication Date Title
US20120027173A1 (en) Structured electron emitter for coded source imaging with an x-ray tube
US10068740B2 (en) Distributed, field emission-based X-ray source for phase contrast imaging
US7203269B2 (en) System for forming x-rays and method for using same
RU2538771C2 (en) X-ray source with variety of electron emitters
JP6523301B2 (en) Electron source, X-ray source, apparatus using the X-ray source
JP4599073B2 (en) X-ray tomography equipment
RU2399907C1 (en) Device for generating several x-ray beams and x-ray imaging device
US7082182B2 (en) Computed tomography system for imaging of human and small animal
JP5719162B2 (en) X-ray tube cathode assembly system and X-ray tube system
US7801277B2 (en) Field emitter based electron source with minimized beam emittance growth
JP6295254B2 (en) X-ray emission device
KR101341672B1 (en) A digital x-ray source
US20040213378A1 (en) Computed tomography system for imaging of human and small animal
JP2007504636A (en) Apparatus and method for generating multiple x-ray beams from multiple locations
US8488737B2 (en) Medical X-ray imaging system
JP2003288853A (en) X-ray device
CN109417008B (en) Cathode assembly for generating X-rays
KR20140106291A (en) X-ray imaging system having flat panel type X-ray generator, and X-ray generator, and electron emission device
JP2005237779A (en) X-ray ct apparatus
JP4601994B2 (en) X-ray source and its anode
US10032595B2 (en) Robust electrode with septum rod for biased X-ray tube cathode
JP2000040478A (en) X-ray tube device