JP2005237165A - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP2005237165A
JP2005237165A JP2004046038A JP2004046038A JP2005237165A JP 2005237165 A JP2005237165 A JP 2005237165A JP 2004046038 A JP2004046038 A JP 2004046038A JP 2004046038 A JP2004046038 A JP 2004046038A JP 2005237165 A JP2005237165 A JP 2005237165A
Authority
JP
Japan
Prior art keywords
magnets
magnet
linear motor
pipe
stator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004046038A
Other languages
Japanese (ja)
Inventor
Takayuki Narita
孝之 成田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Medical and Graphic Inc
Original Assignee
Konica Minolta Medical and Graphic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Medical and Graphic Inc filed Critical Konica Minolta Medical and Graphic Inc
Priority to JP2004046038A priority Critical patent/JP2005237165A/en
Publication of JP2005237165A publication Critical patent/JP2005237165A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To hold magnetic properties by the stator of a linear motor and to reduce the number of arranged magnets, thereby attaining the reduction in cost and weight, and improving the speed ripple of the linear motor. <P>SOLUTION: In the linear motor comprising a pipe shaped member 11, a stator 10 wherein a plurality of magnets 12 are arranged in series and stored in the pipe shaped member 11, and a moving segment 20 arranged in opposite to the outer peripheral surface of the stator 10, the plurality of neighboring magnets 12 of the stator 10 are arranged in the pipe-shaped member 11 with space K. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、リニアモータに関し、特に、複数の磁石を直列配置した固定子と、該固定子の外周面に対向配置され移動可能な可動子とから成るリニアモータに関するものである。   The present invention relates to a linear motor, and more particularly, to a linear motor including a stator in which a plurality of magnets are arranged in series, and a movable element that is disposed opposite to the outer peripheral surface of the stator and is movable.

OA機器における印字ヘッドや露光走査ヘッド、医療機器における露光走査手段等における直線移動精度が要求される部位に、リニアモータを利用することが提案されている。   It has been proposed to use a linear motor for a part that requires linear movement accuracy in a print head, an exposure scanning head in an OA apparatus, an exposure scanning unit in a medical apparatus, or the like.

中でも、特開平10−313566号に代表されるシャフト型リニアモータは従来の平板状磁石を用いたリニアモータに比べ、速度性能及び省スペースといった面でOA機器等における精密搬送に適しているが、一般的には、特開平10−313566号にも記載のように、隣り合う磁石を密着するように組み込むので、使用する磁石の絶対数が多く、製造コスト、質量面で不利となっている。   Among them, the shaft type linear motor represented by Japanese Patent Laid-Open No. 10-313566 is suitable for precision conveyance in OA equipment and the like in terms of speed performance and space saving compared to a linear motor using a conventional flat magnet. Generally, as described in Japanese Patent Laid-Open No. 10-313566, since adjacent magnets are incorporated so as to be in close contact with each other, the absolute number of magnets used is large, which is disadvantageous in terms of manufacturing cost and mass.

図9(a)は、従来のリニアモータの要部断面図、図9(b)は、斜視図である。   FIG. 9A is a cross-sectional view of a main part of a conventional linear motor, and FIG. 9B is a perspective view.

リニアモータは、図示しない保持部材に固定された固定子10と、固定子10の外周面に沿って直線移動する可動子20とから構成されている。   The linear motor includes a stator 10 fixed to a holding member (not shown) and a mover 20 that moves linearly along the outer peripheral surface of the stator 10.

固定子10は、パイプ状部材11と、パイプ状部材11内に収容される複数の磁石12とから成る。パイプ状部材11内に直列状に配置された複数の磁石12は、隣り合う磁石が密着するように隙間なく配列されている。   The stator 10 includes a pipe-shaped member 11 and a plurality of magnets 12 accommodated in the pipe-shaped member 11. The plurality of magnets 12 arranged in series in the pipe-shaped member 11 are arranged without a gap so that adjacent magnets are in close contact with each other.

可動子20は、電磁コイル21と、電磁コイル21の内周面を巻回するボビン22とから成る。ボビン22と、パイプ状部材11の外周面とは微小な間隙に保持されている。
特開平10−313566号公報
The mover 20 includes an electromagnetic coil 21 and a bobbin 22 that winds the inner peripheral surface of the electromagnetic coil 21. The bobbin 22 and the outer peripheral surface of the pipe-shaped member 11 are held in a minute gap.
Japanese Patent Laid-Open No. 10-313566

従来のリニアモータにおいては、隣り合う磁石が密着するように隙間無く配列していた。リニアモータの固定子に用いる磁石は、磁気特性の良い高価な希土類磁石であり、この希土類磁石を隙間無く配列すると、使用する磁石の絶対数が多く、リニアモータの製造コストが高価になり、質量面でも不利となるという問題があった。また、その際の固定子の軸方向に対する磁石から発せられる磁束密度の変化量が大きいために結果として大きな速度リップルが発生していた。   In conventional linear motors, adjacent magnets are arranged without gaps so that adjacent magnets are in close contact with each other. The magnet used for the stator of the linear motor is an expensive rare earth magnet with good magnetic properties. If these rare earth magnets are arranged without gaps, the absolute number of magnets used is large, the manufacturing cost of the linear motor becomes expensive, and the mass There was a problem that it was also disadvantageous. Further, since the amount of change in the magnetic flux density generated from the magnet in the axial direction of the stator at that time is large, a large speed ripple is generated as a result.

本発明の課題は、リニアモータの固定子による磁気特性を保持し、磁石の配置数を減らして、コスト低減と軽量化を達成するとともに、リニアモータの速度リップルを改善することを目的とする。   An object of the present invention is to maintain the magnetic characteristics of a stator of a linear motor, reduce the number of magnets to achieve cost reduction and weight reduction, and improve speed ripple of the linear motor.

上記の目的は、本発明の下記のリニアモータによって達成される。   The above object is achieved by the following linear motor of the present invention.

(1) パイプ状部材と、前記パイプ状部材内に複数の磁石を直列状に配置して収納される固定子と、前記固定子の外周面に対向配置され移動可能な可動子とから成るリニアモータにおいて、前記固定子の複数の前記磁石を、互いに隣り合う磁石の同じ磁極を対向させ、且つ、間隔を設けて前記パイプ状部材内に配置したことを特徴とするリニアモータ。   (1) Linear comprising a pipe-shaped member, a stator in which a plurality of magnets are arranged in series in the pipe-shaped member, and a movable element which is disposed opposite to the outer peripheral surface of the stator and is movable. In the motor, the plurality of magnets of the stator are arranged in the pipe-shaped member with the same magnetic poles of magnets adjacent to each other facing each other and spaced apart from each other.

(2) パイプ状部材と、前記パイプ状部材内に複数の磁石を直列状に配置して収納される固定子と、前記固定子の外周面に対向配置され移動可能な可動子とから成るリニアモータにおいて、前記固定子を、互いに反対の磁極を対向させた一対の磁石を間隔を設けて配置し、該間隔に透磁率の高い部材或いは磁性体を介挿させて1組の磁石体を形成し、該磁石体を互いに隣り合う前記磁石体の同じ磁極を対向させて直列状に複数配置し、且つ、隣り合う前記磁石体が密着するように前記パイプ状部材内に配置した構成をなすことを特徴とするリニアモータ。   (2) Linear comprising a pipe-shaped member, a stator in which a plurality of magnets are arranged in series in the pipe-shaped member, and a movable element that is disposed opposite to the outer peripheral surface of the stator and is movable. In the motor, a pair of magnets with opposite magnetic poles facing each other are arranged at intervals in the motor, and a set of magnet bodies is formed by interposing a member or magnetic body with high permeability in the interval. A plurality of magnet bodies are arranged in series with the same magnetic poles of the magnet bodies adjacent to each other facing each other, and the magnet bodies are arranged in the pipe-shaped member so that the adjacent magnet bodies are in close contact with each other. A linear motor characterized by

(3) パイプ状部材と、前記パイプ状部材内に複数の磁石を直列状に配置して収納される固定子と、前記固定子の外周面に対向配置され移動可能な可動子とから成るリニアモータにおいて、前記固定子を、互いに反対の磁極を対向させた一対の磁石の間隔を設けて配置し、該間隔に透磁率の高い部材或いは磁性体を介挿させて1組の磁性体を形成し、該磁性体を互いに隣り合う前記磁石体の同じ磁極を対向させて直列状に複数配置し、且つ、隣り合う前記磁石体に間隔を設けて前記パイプ状部材内に配置した構成をなすことを特徴とするリニアモータ。   (3) A linear member comprising a pipe-shaped member, a stator in which a plurality of magnets are arranged in series in the pipe-shaped member, and a movable mover that is disposed opposite to the outer peripheral surface of the stator. In the motor, the stator is disposed with a gap between a pair of magnets with opposite magnetic poles facing each other, and a member with high permeability or a magnetic body is inserted in the gap to form a set of magnetic bodies. A plurality of the magnetic bodies are arranged in series with the same magnetic poles of the adjacent magnet bodies facing each other, and the adjacent magnet bodies are arranged in the pipe-like member with a space therebetween. A linear motor characterized by

(4) パイプ状部材と、前記パイプ状部材内に複数の磁石を直列状に配置して収納される固定子と、前記固定子の外周面に対向配置され移動可能な可動子とから成るリニアモータにおいて、前記固定子の複数の前記磁石は、前記パイプ状部材の長手方向に直交する方向にN極、S極を有し、複数の前記磁石の互いに隣り合う磁石を互いに反対の磁極を対向させ、間隔を設けて前記パイプ状部材内に配置し、前記可動子は、前記パイプ状部材の長手方向に斜交する方向に、隣り合う前記磁石の同一磁極を巻回することを特徴とするリニアモータ。   (4) Linear comprising a pipe-shaped member, a stator in which a plurality of magnets are arranged in series in the pipe-shaped member, and a movable element that is disposed opposite to the outer peripheral surface of the stator and is movable. In the motor, the plurality of magnets of the stator have N poles and S poles in a direction perpendicular to the longitudinal direction of the pipe-shaped member, and the magnets adjacent to each other are opposed to opposite magnetic poles. The movable element is wound around the same magnetic pole of the adjacent magnets in a direction oblique to the longitudinal direction of the pipe-shaped member. Linear motor.

(5) 隣り合う前記磁石或いは前記磁石体に間隔を設ける機構を有することを特徴とする前記(1),(3),(4)の何れか1項に記載のリニアモータ。   (5) The linear motor according to any one of (1), (3), and (4), wherein the linear motor has a mechanism for providing an interval between adjacent magnets or magnet bodies.

(6) 前記磁石の磁極端面に傾斜面を形成したことを特徴とする前記(1)乃至(4)の何れか1項に記載のリニアモータ。   (6) The linear motor according to any one of (1) to (4), wherein an inclined surface is formed on a magnetic pole end surface of the magnet.

(7) 前記磁石の磁極端面に曲面を形成したことを特徴とする前記(1)乃至(4)の何れか1項に記載のリニアモータ。   (7) The linear motor according to any one of (1) to (4), wherein a curved surface is formed on a magnetic pole end surface of the magnet.

(8) 前記磁石が希土類磁石であることを特徴とする前記(1)乃至(7)の何れか1項に記載のリニアモータ。   (8) The linear motor according to any one of (1) to (7), wherein the magnet is a rare earth magnet.

(9) 前記希土類磁石がネオジム系磁石であることを特徴とする前記(8)に記載のリニアモータ。   (9) The linear motor according to (8), wherein the rare earth magnet is a neodymium magnet.

(10) 前記磁石が円筒形又は円柱形であることを特徴とする前記(1)乃至(9)の何れか1項に記載のリニアモータ。   (10) The linear motor according to any one of (1) to (9), wherein the magnet is cylindrical or columnar.

本発明によれば、リニアモータの固定子を構成する複数の磁石の個数を減らして組み込む事により、以下の効果が得られる。   According to the present invention, the following effects can be obtained by incorporating the plurality of magnets constituting the stator of the linear motor in a reduced number.

(1) 請求項1によれば、固定子の複数の磁石の互いに隣り合う磁石を間隔を設けてパイプ状部材内に配置することにより、磁石の絶対数を減らす事ができるから、リニアモータの製造コストの低減と軽量化が可能になる。また、リニアモータの速度リップルを改善する事ができる。   (1) According to the first aspect of the present invention, since the magnets adjacent to each other of the plurality of magnets of the stator are arranged in the pipe-like member with a space therebetween, the absolute number of magnets can be reduced. The manufacturing cost can be reduced and the weight can be reduced. In addition, the speed ripple of the linear motor can be improved.

(2) 請求項2によれば、固定子の互いに反対の磁極を対向させた一対の磁石を間隔を設けて配置し、この間隔に透磁率の高い部材或いは磁性体を介挿させて1組の磁石体を形成し、この磁石体を直列状に複数配置しパイプ状部材内に配置したことにより、磁石の絶対数を減らす事ができるから、リニアモータの製造コストの低減が可能になる。また、リニアモータの速度リップルを改善する事ができる。   (2) According to claim 2, a pair of magnets having opposite magnetic poles of the stator opposed to each other are arranged with an interval, and a member having a high magnetic permeability or a magnetic material is interposed in this interval to form one set Since a plurality of magnet bodies are arranged in series and arranged in a pipe-like member, the absolute number of magnets can be reduced, so that the manufacturing cost of the linear motor can be reduced. In addition, the speed ripple of the linear motor can be improved.

(3) 請求項3によれば、固定子を、互いに反対の磁極を対向させた一対の磁石の間隔を設けて配置し、該間隔に透磁率の高い部材或いは磁性体を介挿させて1組の磁性体を形成し、該磁性体を直列状に複数配置し、且つ、隣り合う前記磁石体に間隔を設けてパイプ状部材内に配置した構成をなすことにより、磁石の絶対数を減らす事ができるから、リニアモータの製造コストの低減が可能になる。また、リニアモータの速度リップルを改善する事ができる。   (3) According to claim 3, the stator is disposed with a gap between a pair of magnets with opposite magnetic poles facing each other, and a member having high permeability or a magnetic body is inserted in the gap. The absolute number of magnets is reduced by forming a pair of magnetic bodies, arranging a plurality of the magnetic bodies in series, and arranging them in the pipe-like member with a space between the adjacent magnet bodies. Therefore, the manufacturing cost of the linear motor can be reduced. In addition, the speed ripple of the linear motor can be improved.

(4) 請求項4によれば、互いに隣り合う磁石に間隔を設け、可動子は、隣り合う磁石の同一磁極を巻回するようにパイプ状部材の長手方向に斜交させる構成となっているため、磁石の絶対数を減らす事ができ、リニアモータの製造コストの低減と軽量化が可能になる。   (4) According to the fourth aspect, the magnets adjacent to each other are spaced apart, and the mover is configured to be obliquely crossed in the longitudinal direction of the pipe-shaped member so as to wind the same magnetic pole of the adjacent magnets. Therefore, the absolute number of magnets can be reduced, and the manufacturing cost and weight of the linear motor can be reduced.

(5) 請求項5によれば、隣り合う磁石或いは磁石体に間隔を設ける機構を有することにより、正確に間隔を保持することが出来る。   (5) According to the fifth aspect of the present invention, it is possible to accurately maintain the interval by having a mechanism for providing an interval between adjacent magnets or magnet bodies.

(6) 請求項6,7によれば、磁石の磁極端面に傾斜面又は曲面を形成することにより、リニアモータの速度リップルを改善する事ができる。   (6) According to claims 6 and 7, the speed ripple of the linear motor can be improved by forming an inclined surface or a curved surface on the magnetic pole end surface of the magnet.

(7) 請求項8,9によれば、他の磁石に比べて高い推力が得られる。   (7) According to the eighth and ninth aspects, a high thrust can be obtained as compared with other magnets.

(8) 請求項10によれば、円筒形又は円柱形の磁石から成るリニアモータは、非磁性の角棒状の支持部材の両側に複数の磁石を直列配置した従来の角形形状の固定子から成るリニアモータに比して、磁石から発せられる磁束がコイルへ効率よく伝わるため、リニアモータの小型化が可能となる。   (8) According to claim 10, the linear motor composed of a cylindrical or columnar magnet is composed of a conventional rectangular stator in which a plurality of magnets are arranged in series on both sides of a non-magnetic square bar-shaped support member. Since the magnetic flux generated from the magnet is efficiently transmitted to the coil as compared with the linear motor, the linear motor can be miniaturized.

以下に、本発明の好ましい実施の形態について説明する。   The preferred embodiments of the present invention will be described below.

[実施の形態1]
図1(a)は本発明の請求項1に示すリニアモータの要部断面図、図1(b)は斜視図である。なお、図面に使用されている符号について、図9と同じ機能を有する部分には、同符号を伏している。
[Embodiment 1]
FIG. 1A is a cross-sectional view of an essential part of a linear motor shown in claim 1 of the present invention, and FIG. 1B is a perspective view. In addition, about the code | symbol used in drawing, the part which has the same function as FIG.

リニアモータは、図示しない保持部材に固定された固定子10と、固定子10の軸方向に非接触状態で直線移動する可動子20とから構成されている。   The linear motor includes a stator 10 fixed to a holding member (not shown) and a mover 20 that linearly moves in a non-contact state in the axial direction of the stator 10.

固定子10は、非磁性材料による円筒状のパイプ状部材11と、パイプ状部材11内に収納される複数の円柱状の磁石12とから成る。可動子20は電磁コイル21から成る。電磁コイル21の内周面とパイプ状部材11の外周面とは微小な間隙に保持されている。   The stator 10 includes a cylindrical pipe-shaped member 11 made of a nonmagnetic material and a plurality of columnar magnets 12 housed in the pipe-shaped member 11. The mover 20 includes an electromagnetic coil 21. The inner peripheral surface of the electromagnetic coil 21 and the outer peripheral surface of the pipe-shaped member 11 are held in a minute gap.

複数の円柱状の磁石12は、互いに反対の磁極が対向するように直列に組み合わされ、複数の磁石12の互いに隣り合う磁石12を間隔Kを設けて中空円形断面形状のパイプ状部材11内に配置した。   The plurality of columnar magnets 12 are combined in series so that opposite magnetic poles face each other, and the adjacent magnets 12 of the plurality of magnets 12 are provided in the pipe-shaped member 11 having a hollow circular cross-sectional shape with an interval K therebetween. Arranged.

磁石12の材料としては、磁束密度の大きい希土類磁石が好ましい。特に、希土類磁石はネオジム系磁石、例えば、ネオジム−鉄−ボロン磁石(Nd−Fe−B磁石)が好ましい。   As a material of the magnet 12, a rare earth magnet having a high magnetic flux density is preferable. In particular, the rare earth magnet is preferably a neodymium magnet, such as a neodymium-iron-boron magnet (Nd-Fe-B magnet).

パイプ状部材11の材料としては、アルミニウム合金、銅合金、非磁性ステンレス鋼等の非磁性材料で形成される。また、パイプ状部材11は、その外側に配置される可動子20に作用する磁界を減少させないように、できるだけ薄いほうが好ましい。一例として、パイプ状部材11は、厚さ約1mmのステンレス鋼で形成される。   The material of the pipe-shaped member 11 is formed of a nonmagnetic material such as an aluminum alloy, a copper alloy, or nonmagnetic stainless steel. Moreover, it is preferable that the pipe-shaped member 11 is as thin as possible so as not to reduce the magnetic field acting on the mover 20 disposed on the outside thereof. As an example, the pipe-shaped member 11 is formed of stainless steel having a thickness of about 1 mm.

図2(a)〜(d)は、磁石12の間隔Kを各種変更した場合の磁束密度分布を示す特性図である。何れの場合も、磁石12の軸方向の長さは同一である。これらの図において、図示の実線で示す磁束密度特性曲線A1,A2,A3,A4はパイプ状部材11表面の磁束密度分布を示し、破線で示す特性曲線B1,B2,B3,B4は、磁石12の電磁コイル21表面位置での磁束密度を示す。特性図の横軸は固定子10の軸方向位置を示し、縦軸は磁束密度T(テスラ)を示す。   2A to 2D are characteristic diagrams showing magnetic flux density distributions when the distance K between the magnets 12 is variously changed. In any case, the length of the magnet 12 in the axial direction is the same. In these drawings, magnetic flux density characteristic curves A1, A2, A3, and A4 shown by solid lines in the drawing show the magnetic flux density distribution on the surface of the pipe-shaped member 11, and characteristic curves B1, B2, B3, and B4 shown by broken lines are magnets 12 respectively. The magnetic flux density in the electromagnetic coil 21 surface position is shown. The horizontal axis of the characteristic diagram indicates the axial position of the stator 10, and the vertical axis indicates the magnetic flux density T (Tesla).

図2(a)は隣り合う磁石12の間隔をK0(隣り合う磁石を密着させた状態)、図2(b)は隣り合う磁石12の間隔をK1、図2(c)は、隣り合う磁石12の間隔をK2、図2(d)は、隣り合う磁石12の間隔KをK3に設定した場合の磁束密度分布を示す。また、この場合の間隔Kは、K0<K1<K2<K3の関係である。 2A shows the interval between adjacent magnets 12 as K 0 (in a state where adjacent magnets are closely attached), FIG. 2B shows the interval between adjacent magnets 12 as K 1 , and FIG. FIG. 2D shows the magnetic flux density distribution when the interval between adjacent magnets 12 is set to K 2 and the interval K between adjacent magnets 12 is set to K 3 . In this case, the interval K has a relationship of K 0 <K 1 <K 2 <K 3 .

図2(b)に示す間隔をK1に設定した場合の磁石12の電磁コイル21表面位置における磁束密度特性曲線B2は、間隔をK0とした場合の磁束密度特性曲線B1に比べ、最大磁束密度が若干低下するが、実用可能な範囲であり、磁束密度特性曲線B2がB1よりsin波に近づくため、リニアモータの速度リップルが改善される。 Flux density characteristic curve B2 in the electromagnetic coil 21 surface position of the magnet 12 when the distance shown in FIG. 2 (b) is set to K 1 is compared with the magnetic flux density characteristic curve B1 in the case where the distance between K 0, the maximum magnetic flux Although the density is slightly reduced, it is in a practical range, and the magnetic flux density characteristic curve B2 is closer to the sine wave than B1, so the speed ripple of the linear motor is improved.

図2(c)に示す間隔をK2とした場合の磁束密度特性曲線B2、図2(d)に示す間隔をK3とした場合の磁束密度特性曲線B4は、図2(b)に示す間隔をK1に設定した場合の磁束密度特性曲線B2に比べ、更に最大磁束密度が低下し、リニアモータの速度性能が低下するため、実用化は難しい。 Figure 2 flux density characteristic curve B2 when the distance shown in (c) was K 2, the magnetic flux density characteristic curve B4 when the distance shown in FIG. 2 (d) was K 3 are shown in FIG. 2 (b) compared to the magnetic flux density characteristic curve B2 in the case of setting the interval K 1, further reduces the maximum magnetic flux density, since the speed performance of the linear motor is reduced, practical application is difficult.

例えば、磁石間隔Kを決めるために、パイプ状部材11の外径をDとし、磁石12の軸方向の長さLを外径Dの1〜2倍とすると、「速度、推力性能的に隣り合う磁石同士を密着させた場合と遜色ない」となる間隔Kは、概ね、磁石12の軸方向の長さLの10%以下としたものが好適であり、「速度性能的には隣り合う磁石同士を密着させたものよりやや劣るが、リニアモータの推力性能的に大きな問題はない」となるのが、間隔Kを、概ね、磁石12の軸方向の長さLの30%以下としたものが好適であとの測定結果を得ることができる。   For example, if the outer diameter of the pipe-like member 11 is D and the axial length L of the magnet 12 is 1 to 2 times the outer diameter D in order to determine the magnet spacing K, “adjacent in terms of speed and thrust performance” It is generally preferable that the interval K, which is not inferior to the case where matching magnets are brought into close contact with each other, is 10% or less of the axial length L of the magnet 12. It is slightly inferior to those in close contact with each other, but there is no major problem with the thrust performance of the linear motor. "The distance K is generally 30% or less of the axial length L of the magnet 12. Can be obtained as a measurement result.

このように、実際に隣り合う磁石間に間隔Kを設ける際には、実験等を行い、その都度、確認を行う必要はあるが、隣り合う磁石に間隔Kを設け、磁石12の個数を減らしても所望の性能を満たす事が可能であり、製造コストの低減、軽量化、速度リップルの改善が達成される。   As described above, when the gap K is actually provided between the adjacent magnets, it is necessary to perform an experiment or the like and check each time. However, the gap K is provided between the adjacent magnets to reduce the number of magnets 12. However, the desired performance can be satisfied, and the manufacturing cost can be reduced, the weight can be reduced, and the speed ripple can be improved.

[実施の形態2]
図3(a)は本発明の請求項2に示すリニアモータの要部断面図、図3(b)は1組の磁石体120の断面図、図3(c)は1組の磁石体121の断面図である。
[Embodiment 2]
3A is a cross-sectional view of the main part of the linear motor according to claim 2 of the present invention, FIG. 3B is a cross-sectional view of one set of magnet bodies 120, and FIG. 3C is a set of magnet bodies 121. FIG.

互いに反対の磁極S,Nを対向させた一対の磁石12A,12Bに間隔を設けて配置し、該間隔に透磁率の高い材質の部材(例えば、鉄)、或いは磁石12A,12Bよりも安価な磁性体(例えば、フェライト磁石)から成る中間媒体13を介挿させて5個で1組の磁石体120を形成し、この磁石体120を直列状に複数配列しパイプ状部材11内に配置した構成にする。   A pair of magnets 12A and 12B having opposite magnetic poles S and N facing each other are arranged with an interval, and a member having a high magnetic permeability (for example, iron) or magnets 12A and 12B is less expensive than the pair of magnets 12A and 12B. A set of five magnets 120 is formed by interposing an intermediate medium 13 made of a magnetic material (for example, a ferrite magnet), and a plurality of magnets 120 are arranged in series and arranged in the pipe-shaped member 11. Make the configuration.

磁石12A,12Bの寸法は、全て同じものであり、磁石体120の両端を形成する磁石12A,12Bはそれぞれ1個以上で、且つ、同数である。また、中間媒体13の外径寸法は、磁石12A,12Bの外径寸法と同等以下であり、中間媒体13の軸方向の長さLは、磁石体120の両端を形成する磁石12Aと磁石12Bの軸方向の長さと同等以下である。   The dimensions of the magnets 12A and 12B are all the same, and the number of the magnets 12A and 12B that form both ends of the magnet body 120 is one or more and the same number. Further, the outer diameter of the intermediate medium 13 is equal to or less than the outer diameter of the magnets 12A and 12B, and the axial length L of the intermediate medium 13 is the magnet 12A and the magnet 12B that form both ends of the magnet body 120. Is equal to or less than the length in the axial direction.

磁石体120は、磁石12A,12Bの磁極をSN,SN,SN,SN配列したものである。磁石体120に隣り合う磁石体121は、磁石12A,12Bの磁極をNS,NS,NS,NS配列したものである。磁石体120,121は同一形状に作製され、向きを変えてパイプ状部材11内に直列配置される。   The magnet body 120 is obtained by arranging the magnetic poles of the magnets 12A and 12B with SN, SN, SN, and SN. The magnet body 121 adjacent to the magnet body 120 is obtained by NS, NS, NS, NS arrangement of the magnetic poles of the magnets 12A, 12B. The magnet bodies 120 and 121 are produced in the same shape, and are arranged in series in the pipe-shaped member 11 by changing the direction.

図4は、5個で1組の磁石体120の磁束密度分布を示す特性図である。   FIG. 4 is a characteristic diagram showing the magnetic flux density distribution of a set of five magnet bodies 120.

図示の実線で示す磁束密度特性曲線A5は、パイプ状部材11表面の磁束密度分布を示し、破線で示す磁束密度特性曲線B5は磁石体120の電磁コイル21表面位置での磁束密度を示す。特性図の横軸は固定子10の軸方向位置を示し、縦軸は磁束密度T(テスラ)を示す。   A magnetic flux density characteristic curve A5 indicated by a solid line in the figure indicates the magnetic flux density distribution on the surface of the pipe-shaped member 11, and a magnetic flux density characteristic curve B5 indicated by a broken line indicates the magnetic flux density at the surface of the electromagnetic coil 21 of the magnet body 120. The horizontal axis of the characteristic diagram indicates the axial position of the stator 10, and the vertical axis indicates the magnetic flux density T (Tesla).

磁石12A,12Bの中間に、安価で透磁率の高い材質の部材、或いは磁石12A,12Bより安価な磁性体から成る中間媒体13を介挿させる事により、図2(a)に示す磁石体120の電磁コイル21表面位置における磁束密度特性曲線B1に比べ、磁束密度特性曲線B5の最大磁束密度は若干低下するが、実用可能な範囲である。   A magnet body 120 shown in FIG. 2 (a) is inserted between the magnets 12A and 12B by inserting an inexpensive and high-permeability member or an intermediate medium 13 made of a magnetic material cheaper than the magnets 12A and 12B. The maximum magnetic flux density of the magnetic flux density characteristic curve B5 is slightly lower than the magnetic flux density characteristic curve B1 at the surface position of the electromagnetic coil 21, but is in a practical range.

また、磁束密度特性曲線A5の波形に小さなピークが現れ、乱れた形状になるが、実際にリニアモータを動作させた際に影響のある磁石体120の電磁コイル21表面位置では、磁束密度の減衰と共に、磁束密度特性曲線A5に現れていたピークも減衰し、磁束密度特性曲線B5の波形がsin波に近づくため、速度リップルが改善される。   In addition, a small peak appears in the waveform of the magnetic flux density characteristic curve A5, resulting in a distorted shape, but at the surface position of the electromagnetic coil 21 of the magnet body 120 that is affected when the linear motor is actually operated, the magnetic flux density is attenuated. At the same time, the peak appearing in the magnetic flux density characteristic curve A5 is also attenuated, and the waveform of the magnetic flux density characteristic curve B5 approaches the sine wave, so that the speed ripple is improved.

また、請求項3に示すように、隣り合う磁石体120に間隔Kを設ける事により、磁石体120の電磁コイル21表面位置における磁束密度特性曲線(図示せず)が、更にsin波に近づくため、リニアモータの速度リップルを改善する事ができる。   Further, as shown in claim 3, by providing a gap K between the adjacent magnet bodies 120, the magnetic flux density characteristic curve (not shown) at the surface position of the electromagnetic coil 21 of the magnet body 120 is closer to a sine wave. The speed ripple of the linear motor can be improved.

[実施の形態3]
図5(a)は本発明の請求項4に示すリニアモータの要部断面図、図5(b)はパイプ状部材11に収容される磁石14A,14Bの分解斜視図、図5(c)は磁石14A,14Bと可動子20の寸法関係を説明するための模式図である。
[Embodiment 3]
5A is a cross-sectional view of the main part of the linear motor according to claim 4 of the present invention, FIG. 5B is an exploded perspective view of the magnets 14A and 14B accommodated in the pipe-like member 11, and FIG. These are the schematic diagrams for demonstrating the dimensional relationship of magnet 14A, 14B and the needle | mover 20. FIG.

固定子10の複数の磁石14A,14Bは、パイプ状部材11の長手方向に直交する方向にN極、S極を有し、隣り合う磁石14A,14Bを互いに反対の磁極を対向させ、間隔Kを設けてパイプ状部材11内に配置する。   The plurality of magnets 14A and 14B of the stator 10 have N poles and S poles in a direction orthogonal to the longitudinal direction of the pipe-shaped member 11, and the adjacent magnets 14A and 14B are opposed to each other with opposite magnetic poles, with a spacing K. And disposed in the pipe-shaped member 11.

磁石14A,14Bの軸方向の長さをL、磁石14A,14Bの間隔をK、電磁コイル21の軸方向の長さをWとすると、その関係は、L+K=3Wで表され、0<L≦3W、0≦K<3Wである。また、その際の各寸法の関係が、K=2L=Wとなっているのが好ましい。   When the length of the magnets 14A and 14B in the axial direction is L, the interval between the magnets 14A and 14B is K, and the length of the electromagnetic coil 21 in the axial direction is W, the relationship is expressed as L + K = 3W, and 0 <L ≦ 3W, 0 ≦ K <3W. Moreover, it is preferable that the relationship of each dimension in that case is set to K = 2L = W.

このように、磁石12と電磁コイル21を構成する事により、リニアモータの製造コストの低減と軽量化を図る事ができる。   In this way, by configuring the magnet 12 and the electromagnetic coil 21, it is possible to reduce the manufacturing cost and weight of the linear motor.

[実施の形態4]
図6、図7は請求項6、請求項7に示す端面形状を変更した各種の磁石12の斜視図、断面図、及び複数個の磁石12を直列状に配置した際の磁束密度分布の特性図である。
[Embodiment 4]
6 and 7 are perspective views, cross-sectional views, and characteristics of magnetic flux density distribution when a plurality of magnets 12 are arranged in series. FIG.

図6(a)〜(d)及び図7(a)〜(d)の各特性図中の実線は、パイプ状部材11の表面における磁束密度分布の特性曲線Aを示し、破線は磁石12の電磁コイル21表面位置における磁束密度密度分布の特性曲線Bをそれぞれ示している。   The solid lines in the characteristic diagrams of FIGS. 6A to 6D and FIGS. 7A to 7D indicate the characteristic curve A of the magnetic flux density distribution on the surface of the pipe-shaped member 11, and the broken line indicates the magnet 12. The characteristic curves B of the magnetic flux density density distribution at the surface position of the electromagnetic coil 21 are respectively shown.

図6(a)は端面形状を変更しない磁石12である。図6(b)は端面のコーナー部に面取りaを施した磁石12である。図6(c)は端面のコーナー部に傾斜面bを形成した磁石12である。図6(d)は端面のコーナー部に図6(a)よりも大きな面取りcを形成した磁石12である。   FIG. 6A shows a magnet 12 whose end face shape is not changed. FIG. 6B shows a magnet 12 with chamfered a at the corner portion of the end face. FIG. 6C shows a magnet 12 in which an inclined surface b is formed at the corner portion of the end surface. FIG. 6D shows a magnet 12 in which a chamfer c larger than that in FIG.

図7(a)は端面のコーナ部に円錐面dを形成した磁石12である。図7(b)は端面のコーナー部に円錐面eを形成した磁石12である。図7(c)は端面に半径Rの半球状の曲面fを形成した磁石12である。図7(d)は端面のコーナー部に段差部gを形成した磁石12である。   FIG. 7A shows a magnet 12 having a conical surface d formed at the corner portion of the end surface. FIG. 7B shows a magnet 12 having a conical surface e formed at the corner portion of the end surface. FIG. 7C shows a magnet 12 in which a hemispherical curved surface f having a radius R is formed on the end surface. FIG. 7D shows a magnet 12 in which a stepped portion g is formed at the corner portion of the end face.

これらの磁石12の磁束密度分布の特性図を比較すると、図7(b)、図7(c)に示す特性曲線Bは、図6(a)の特性曲線Bと比べると、最大磁束密度が低下するが、実用可能な範囲であり、sin波に近い波形となるため、速度性能的に図6(a)より改善される。   When comparing the characteristic diagrams of the magnetic flux density distribution of these magnets 12, the characteristic curve B shown in FIGS. 7B and 7C has a maximum magnetic flux density compared to the characteristic curve B of FIG. 6A. Although it falls, it is in a practical range and becomes a waveform close to a sine wave, so that the speed performance is improved from FIG. 6A.

また、図6(b)に示す特性曲線Bは、速度性能的に図7(b),(c)より劣るが、図6(a)に対する最大磁束密度の低下が少ないため、推力面では図7(b),(c)よりも有利である。   Further, the characteristic curve B shown in FIG. 6B is inferior to that in FIGS. 7B and 7C in terms of speed performance, but the reduction in the maximum magnetic flux density with respect to FIG. 7 (b), more advantageous than (c).

このように、図6(b)、図7(b),(c)のように、磁石12の端面の形状を変更する事により、図6(a)に示す磁石12の端面の形状を変更しないものより、速度リップルを改善する事ができる。   Thus, the shape of the end surface of the magnet 12 shown in FIG. 6A is changed by changing the shape of the end surface of the magnet 12 as shown in FIGS. 6B, 7B, and 7C. Speed ripple can be improved over those that do not.

[実施の形態5]
図8は請求項5に示す磁石12、或いは磁石体120に間隔Kを設ける機構の断面図及び斜視図である。
[Embodiment 5]
FIG. 8 is a sectional view and a perspective view of a mechanism for providing a gap K in the magnet 12 or the magnet body 120 shown in claim 5.

図8(a)は間隔Kを設ける手段として、隣り合う磁石12或いは隣り合う磁石体120の間に非磁性部材30を配置した固定子10の断面図である。   FIG. 8A is a cross-sectional view of the stator 10 in which the non-magnetic member 30 is disposed between the adjacent magnets 12 or the adjacent magnet bodies 120 as means for providing the interval K. FIG.

非磁性部材30は円柱或いは円筒形であり、外径寸法は磁石12或いは磁石体120の外径寸法と同じかそれ以下であり、パイプ状部材11の内径に嵌合する。   The nonmagnetic member 30 has a columnar shape or a cylindrical shape, and the outer diameter dimension is the same as or smaller than the outer diameter dimension of the magnet 12 or the magnet body 120, and is fitted to the inner diameter of the pipe-shaped member 11.

磁石12或いは磁石体120が円筒形にて形成されている場合、非磁性部材30の外径寸法は、磁石12或いは磁石体120の外径寸法と同じかそれ以下であり、且つ、磁石12或いは磁石体120の内径寸法以上である必要があり、磁石12或いは磁石体120と同じ寸法であることが望ましい。   When the magnet 12 or the magnet body 120 is formed in a cylindrical shape, the outer diameter dimension of the nonmagnetic member 30 is equal to or less than the outer diameter dimension of the magnet 12 or the magnet body 120, and the magnet 12 or The inner diameter dimension of the magnet body 120 needs to be equal to or larger than the inner diameter dimension of the magnet body 120 and is preferably the same dimension as the magnet 12 or the magnet body 120.

図8(b)は磁石12或いは磁石体120が円筒形にて形成されている場合の、間隔Kを設ける機構の断面図である。   FIG. 8B is a cross-sectional view of a mechanism for providing the interval K when the magnet 12 or the magnet body 120 is formed in a cylindrical shape.

磁石12或いは磁石体120の孔部12aを貫通する軸部材31は、アルミニウム合金、銅合金、非磁性ステンレス鋼等の非磁性材料で形成される。軸部材31は、磁石12或いは磁石体120の軸方向の長さLと同等の幅で、溝部32a,32bが形成されている。溝部32a,32bは軸部材31に間隔Kを保持して等間隔に配置されている。   The shaft member 31 that penetrates the hole 12a of the magnet 12 or the magnet body 120 is formed of a nonmagnetic material such as an aluminum alloy, a copper alloy, or nonmagnetic stainless steel. The shaft member 31 has a width equal to the length L in the axial direction of the magnet 12 or the magnet body 120, and has groove portions 32a and 32b. The groove portions 32a and 32b are arranged at equal intervals while holding the interval K in the shaft member 31.

溝部32a,32bへは、例えばEリングのような板状部材である仕切板33が嵌め込まれ、磁石12或いは磁石体120を間隔Kを正確に保持して配置する事ができる。   For example, a partition plate 33 which is a plate-like member such as an E-ring is fitted into the groove portions 32a and 32b, and the magnet 12 or the magnet body 120 can be arranged with the interval K accurately maintained.

仕切板33は非磁性材料で形成されている事が望ましい。仕切板33は、例えばアルミニウム合金、銅合金、非磁性ステンレス鋼等の非磁性材料で形成される。なお、磁石12或いは磁石体120の孔部12a及び軸部材31の断面形状は、円形に限定されるものではない。   The partition plate 33 is preferably made of a nonmagnetic material. The partition plate 33 is formed of a nonmagnetic material such as an aluminum alloy, a copper alloy, or nonmagnetic stainless steel. In addition, the cross-sectional shape of the hole 12a of the magnet 12 or the magnet body 120 and the shaft member 31 is not limited to a circle.

上述の間隔K保持機構により、隣り合う磁石12或いは磁石体120に正確に間隔Kを保持する事が出来る。   With the above-described gap K holding mechanism, the gap K can be accurately held in the adjacent magnet 12 or magnet body 120.

図8(c)は請求項4に記載のリニアモータにおいて、隣り合う磁石14A,14Bに間隔Kを設ける機構の斜視図である。   FIG. 8C is a perspective view of a mechanism for providing a gap K between adjacent magnets 14A and 14B in the linear motor according to claim 4.

磁石14A,14Bには角形又は長円形の孔部14aが穿設されていて、孔部14aに角形又は長円形の断面を有する軸部材41が貫通して嵌合する。軸部材41は、例えばアルミニウム合金、銅合金、非磁性ステンレス鋼等の非磁性材料で形成される。なお、角形の孔部14a、及び角形断面を有する軸部材41の四隅はR形状としてもよい。   The magnets 14A and 14B are provided with a square or oval hole portion 14a, and a shaft member 41 having a square or oval cross section is inserted through the hole portion 14a. The shaft member 41 is made of a nonmagnetic material such as an aluminum alloy, a copper alloy, or nonmagnetic stainless steel. Note that the four corners of the square hole portion 14a and the shaft member 41 having a square cross section may be R-shaped.

磁石14A,14Bの孔部14aに嵌合する軸部材41には、磁石14A,14B
の軸方向の長さLと同等の幅で、溝部41a,41bが形成されている。溝部41a,41bは軸部材41に間隔Kを保持して等間隔に配置されている。溝部41a,41bへは板状部材42が嵌め込まれる。
The shaft member 41 that fits into the holes 14a of the magnets 14A and 14B includes magnets 14A and 14B.
Grooves 41a and 41b are formed with a width equal to the length L in the axial direction. The groove portions 41a and 41b are arranged at equal intervals while maintaining the interval K on the shaft member 41. A plate-like member 42 is fitted into the groove portions 41a and 41b.

このような構成にする事により、隣り合う磁石14A,14Bの間隔Kを正確に配置する事ができ、磁石14A,14Bの軸部材41に対する回転を抑制する事ができるので、磁極配置が正確になる。   By adopting such a configuration, the interval K between the adjacent magnets 14A and 14B can be accurately arranged, and the rotation of the magnets 14A and 14B with respect to the shaft member 41 can be suppressed. Become.

仕切板42は非磁性材料で形成されている事が望ましい。仕切板42は例えばアルミニウム合金、銅合金、非磁性ステンレス鋼等の非磁性材料で形成される。なお、仕切板42の外径寸法は、磁石14A,14Bの外径寸法より小さく、パイプ状部材11への挿入に支障のない形状に形成される。   The partition plate 42 is preferably made of a nonmagnetic material. The partition plate 42 is made of a nonmagnetic material such as an aluminum alloy, a copper alloy, or nonmagnetic stainless steel. The outer diameter of the partition plate 42 is smaller than the outer diameter of the magnets 14 </ b> A and 14 </ b> B, and is formed in a shape that does not hinder insertion into the pipe-shaped member 11.

図8(d)は請求項4に記載のリニアモータにおいて、隣り合う磁石14に間隔Kを設ける機構の斜視図である。   FIG. 8D is a perspective view of a mechanism for providing a gap K between adjacent magnets 14 in the linear motor according to claim 4.

磁石14A,14Bには角形又は長円形の孔部14bが穿設されている。なお、角形の孔部14bの四隅はR形状としてもよい。   The magnets 14A and 14B are provided with square or oval holes 14b. The four corners of the square hole portion 14b may be R-shaped.

磁石14A,14Bの間隔Kを設ける手段として、隣り合う磁石14A,14Bの間に非磁性部材50を配置した。   As means for providing the gap K between the magnets 14A and 14B, the nonmagnetic member 50 is disposed between the adjacent magnets 14A and 14B.

非磁性部材50の両端面には、磁石14A,14Bに穿設された孔部14bと同形状の断面を有する凸部50a,50bが突出して設けられている。磁石14A,14Bの孔部14bと、非磁性部材50の凸部50a,50bとは微小な隙間で嵌合する。なお、非磁性部材50の外形は、磁石14A,14Bの外形より小さいものであり、その外径形状は図示の円柱形状に限定されるものではない。   On both end surfaces of the nonmagnetic member 50, convex portions 50a and 50b having a cross section of the same shape as the hole portion 14b formed in the magnets 14A and 14B are provided so as to protrude. The holes 14b of the magnets 14A and 14B and the projections 50a and 50b of the nonmagnetic member 50 are fitted in a minute gap. The outer shape of the nonmagnetic member 50 is smaller than the outer shape of the magnets 14A and 14B, and the outer diameter shape is not limited to the illustrated cylindrical shape.

このような構成にする事により、隣り合う磁石14A,14Bの間隔Kを正確に配置する事ができ、且つ、磁極配置が正確になる。   With such a configuration, the interval K between the adjacent magnets 14A and 14B can be accurately arranged, and the magnetic pole arrangement becomes accurate.

本発明によるリニアモータは、OA機器の画像読取部や書込部、医療機器の読取部に限らず、測定器や工作機械において直線移動が要求される部位にも適用可能である。   The linear motor according to the present invention is not limited to the image reading unit and the writing unit of the OA device and the reading unit of the medical device, but can be applied to a part that requires linear movement in a measuring instrument or a machine tool.

本発明の請求項1に示すリニアモータの要部断面図、及び斜視図。The principal part sectional drawing of the linear motor shown in Claim 1 of this invention, and a perspective view. 磁石の間隔を各種変更した場合の磁束密度分布を示す特性図。The characteristic view which shows magnetic flux density distribution at the time of changing various intervals of a magnet. 本発明の請求項2に示すリニアモータの要部断面図、及び磁石体の断面図。The principal part sectional drawing of the linear motor shown in Claim 2 of this invention, and sectional drawing of a magnet body. 5個で1組の磁石体の磁束密度分布を示す特性図。The characteristic view which shows the magnetic flux density distribution of a set of five magnet bodies. 本発明の請求項4に示すリニアモータの要部断面図、パイプ状部材に収容される磁石の分解斜視図、及び磁石と可動子の寸法関係を説明するための模式図。Sectional drawing of the principal part of the linear motor shown in Claim 4 of this invention, the exploded perspective view of the magnet accommodated in a pipe-shaped member, and the schematic diagram for demonstrating the dimensional relationship of a magnet and a needle | mover. 端面形状を変更した各種の磁石の斜視図、断面図、及び複数個の磁石を直列状に配置した際の磁束密度の特性図。The perspective view of various magnets which changed the end face shape, sectional drawing, and the magnetic flux density characteristic figure at the time of arranging a plurality of magnets in series. 端面形状を変更した各種の磁石の斜視図、断面図、及び複数個の磁石を直列状に配置した際の磁束密度の特性図。The perspective view of various magnets which changed the end face shape, sectional drawing, and the magnetic flux density characteristic figure at the time of arranging a plurality of magnets in series. 請求項5に示す磁石或いは磁石体に間隔を設ける機構の断面図及び斜視図。Sectional drawing and a perspective view of the mechanism which provides a space | interval in the magnet or magnet body shown in FIG. 従来のリニアモータの要部断面図及び斜視図。The principal part sectional drawing and perspective view of the conventional linear motor.

符号の説明Explanation of symbols

10 固定子
11 パイプ状部材
12,12A,12B,14A,14B 磁石
120 磁石体
13 中間媒体
20 可動子
21 電磁コイル
30 非磁性部材
31 軸部材
33 仕切板
41 軸部材
42 板状部材
50 非磁性部材
A,A1〜A5,B,B1〜B5 磁束密度特性曲線
D 外径
K,K0,K1,K2,K3 間隔
L 磁石の軸方向の長さ
R 半径
T 磁束密度
W 電磁コイルの軸方向の長さ
DESCRIPTION OF SYMBOLS 10 Stator 11 Pipe-shaped member 12,12A, 12B, 14A, 14B Magnet 120 Magnet body 13 Intermediate medium 20 Movable element 21 Electromagnetic coil 30 Nonmagnetic member 31 Shaft member 33 Partition plate 41 Shaft member 42 Plate member 50 Nonmagnetic member A, A1 to A5, B, B1 to B5 Magnetic flux density characteristic curve D Outer diameter K, K 0 , K 1 , K 2 , K 3 interval L Length in the axial direction of the magnet R Radius T Magnetic flux density W Electromagnetic coil axis Direction length

Claims (10)

パイプ状部材と、前記パイプ状部材内に複数の磁石を直列状に配置して収納される固定子と、前記固定子の外周面に対向配置され移動可能な可動子とから成るリニアモータにおいて、
前記固定子の複数の前記磁石を、互いに隣り合う磁石の同じ磁極を対向させ、且つ、間隔を設けて前記パイプ状部材内に配置したことを特徴とするリニアモータ。
In a linear motor consisting of a pipe-shaped member, a stator that is housed by arranging a plurality of magnets in series in the pipe-shaped member, and a movable element that is disposed opposite to the outer peripheral surface of the stator and is movable,
A linear motor characterized in that the plurality of magnets of the stator are arranged in the pipe-shaped member with the same magnetic poles of magnets adjacent to each other facing each other and spaced apart from each other.
パイプ状部材と、前記パイプ状部材内に複数の磁石を直列状に配置して収納される固定子と、前記固定子の外周面に対向配置され移動可能な可動子とから成るリニアモータにおいて、
前記固定子を、互いに反対の磁極を対向させた一対の磁石を間隔を設けて配置し、該間隔に透磁率の高い部材或いは磁性体を介挿させて1組の磁石体を形成し、該磁石体を互いに隣り合う前記磁石体の同じ磁極を対向させて直列状に複数配置し、且つ、隣り合う前記磁石体が密着するように前記パイプ状部材内に配置した構成をなすことを特徴とするリニアモータ。
In a linear motor consisting of a pipe-shaped member, a stator that is housed by arranging a plurality of magnets in series in the pipe-shaped member, and a movable element that is disposed opposite to the outer peripheral surface of the stator and is movable,
The stator has a pair of magnets with opposed magnetic poles arranged at intervals, and a set of magnet bodies is formed by interposing a member with high permeability or a magnetic body in the interval, A plurality of magnet bodies are arranged in series with the same magnetic poles of the magnet bodies adjacent to each other facing each other, and the magnet bodies are arranged in the pipe-shaped member so that the adjacent magnet bodies are in close contact with each other. Linear motor.
パイプ状部材と、前記パイプ状部材内に複数の磁石を直列状に配置して収納される固定子と、前記固定子の外周面に対向配置され移動可能な可動子とから成るリニアモータにおいて、
前記固定子を、互いに反対の磁極を対向させた一対の磁石の間隔を設けて配置し、該間隔に透磁率の高い部材或いは磁性体を介挿させて1組の磁性体を形成し、該磁性体を互いに隣り合う前記磁石体の同じ磁極を対向させて直列状に複数配置し、且つ、隣り合う前記磁石体に間隔を設けて前記パイプ状部材内に配置した構成をなすことを特徴とするリニアモータ。
In a linear motor consisting of a pipe-shaped member, a stator that is housed by arranging a plurality of magnets in series in the pipe-shaped member, and a movable element that is disposed opposite to the outer peripheral surface of the stator and is movable,
The stator is arranged with a gap between a pair of magnets with opposite magnetic poles facing each other, and a member having a high magnetic permeability or a magnetic body is interposed in the gap to form a set of magnetic bodies, A plurality of magnetic bodies are arranged in series so that the same magnetic poles of the magnet bodies adjacent to each other are opposed to each other, and the magnet bodies adjacent to each other are arranged in the pipe-like member with a space therebetween. Linear motor.
パイプ状部材と、前記パイプ状部材内に複数の磁石を直列状に配置して収納される固定子と、前記固定子の外周面に対向配置され移動可能な可動子とから成るリニアモータにおいて、
前記固定子の複数の前記磁石は、前記パイプ状部材の長手方向に直交する方向にN極、S極を有し、
複数の前記磁石の互いに隣り合う磁石を互いに反対の磁極を対向させ、間隔を設けて前記パイプ状部材内に配置し、
前記可動子は、前記パイプ状部材の長手方向に斜交する方向に、隣り合う前記磁石の同一磁極を巻回することを特徴とするリニアモータ。
In a linear motor consisting of a pipe-shaped member, a stator that is housed by arranging a plurality of magnets in series in the pipe-shaped member, and a movable element that is disposed opposite to the outer peripheral surface of the stator and is movable,
The plurality of magnets of the stator have N poles and S poles in a direction perpendicular to the longitudinal direction of the pipe-shaped member,
The magnets adjacent to each other of the plurality of magnets are opposed to each other with opposite magnetic poles, and are arranged in the pipe-shaped member with an interval between them,
The linear motor is characterized in that the movable element winds the same magnetic pole of the adjacent magnets in a direction oblique to the longitudinal direction of the pipe-shaped member.
隣り合う前記磁石或いは前記磁石体に間隔を設ける機構を有することを特徴とする請求項1,3,4の何れか1項に記載のリニアモータ。 5. The linear motor according to claim 1, further comprising a mechanism for providing an interval between the adjacent magnets or the magnet bodies. 6. 前記磁石の磁極端面に傾斜面を形成したことを特徴とする請求項1乃至4の何れか1項に記載のリニアモータ。 The linear motor according to claim 1, wherein an inclined surface is formed on a magnetic pole end surface of the magnet. 前記磁石の磁極端面に曲面を形成したことを特徴とする請求項1乃至4の何れか1項に記載のリニアモータ。 The linear motor according to claim 1, wherein a curved surface is formed on a magnetic pole end surface of the magnet. 前記磁石が希土類磁石であることを特徴とする請求項1乃至7の何れか1項に記載のリニアモータ。 The linear motor according to claim 1, wherein the magnet is a rare earth magnet. 前記希土類磁石がネオジム系磁石であることを特徴とする請求項8に記載のリニアモータ。 The linear motor according to claim 8, wherein the rare earth magnet is a neodymium magnet. 前記磁石が円筒形又は円柱形であることを特徴とする請求項1乃至9の何れか1項に記載のリニアモータ。 The linear motor according to claim 1, wherein the magnet is cylindrical or columnar.
JP2004046038A 2004-02-23 2004-02-23 Linear motor Pending JP2005237165A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004046038A JP2005237165A (en) 2004-02-23 2004-02-23 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004046038A JP2005237165A (en) 2004-02-23 2004-02-23 Linear motor

Publications (1)

Publication Number Publication Date
JP2005237165A true JP2005237165A (en) 2005-09-02

Family

ID=35019558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004046038A Pending JP2005237165A (en) 2004-02-23 2004-02-23 Linear motor

Country Status (1)

Country Link
JP (1) JP2005237165A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007116506A1 (en) * 2006-03-31 2007-10-18 Hitachi, Ltd. Linear motor
WO2007116505A1 (en) * 2006-03-31 2007-10-18 Hitachi, Ltd. Linear motor
JP2007282349A (en) * 2006-04-05 2007-10-25 Sanyo Denki Co Ltd Linear motor
JP2008193760A (en) * 2007-01-31 2008-08-21 Tsubakimoto Chain Co Linear motor
JP2008289344A (en) * 2007-04-05 2008-11-27 Wako Giken:Kk Linear motor
JP2009528488A (en) * 2006-03-02 2009-08-06 ツェットエフ フリードリヒスハーフェン アクチエンゲゼルシャフト Electromagnetic gear changer with linear motor
JP2010104090A (en) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd Linear actuator
US7786631B2 (en) 2007-04-05 2010-08-31 Wako Giken Co., Ltd Linear motor
EP2346149A1 (en) * 2008-11-05 2011-07-20 Mitsubishi Heavy Industries, Ltd. Linear actuator
JP2011217499A (en) * 2010-03-31 2011-10-27 Ishii Kosaku Kenkyusho:Kk Linear motor
JP2020159492A (en) * 2019-03-27 2020-10-01 日立オートモティブシステムズ株式会社 Electromagnetic suspension

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528488A (en) * 2006-03-02 2009-08-06 ツェットエフ フリードリヒスハーフェン アクチエンゲゼルシャフト Electromagnetic gear changer with linear motor
WO2007116505A1 (en) * 2006-03-31 2007-10-18 Hitachi, Ltd. Linear motor
WO2007116506A1 (en) * 2006-03-31 2007-10-18 Hitachi, Ltd. Linear motor
JP2007282349A (en) * 2006-04-05 2007-10-25 Sanyo Denki Co Ltd Linear motor
JP2008193760A (en) * 2007-01-31 2008-08-21 Tsubakimoto Chain Co Linear motor
US7786631B2 (en) 2007-04-05 2010-08-31 Wako Giken Co., Ltd Linear motor
JP2008289344A (en) * 2007-04-05 2008-11-27 Wako Giken:Kk Linear motor
JP2010104090A (en) * 2008-10-21 2010-05-06 Kayaba Ind Co Ltd Linear actuator
EP2346149A1 (en) * 2008-11-05 2011-07-20 Mitsubishi Heavy Industries, Ltd. Linear actuator
EP2346149A4 (en) * 2008-11-05 2017-08-09 Mitsubishi Heavy Industries, Ltd. Linear actuator
JP2011217499A (en) * 2010-03-31 2011-10-27 Ishii Kosaku Kenkyusho:Kk Linear motor
JP2020159492A (en) * 2019-03-27 2020-10-01 日立オートモティブシステムズ株式会社 Electromagnetic suspension
JP7068221B2 (en) 2019-03-27 2022-05-16 日立Astemo株式会社 Electromagnetic suspension

Similar Documents

Publication Publication Date Title
JP4193685B2 (en) Axial gap motor structure
US7786631B2 (en) Linear motor
JP2005237165A (en) Linear motor
US20230006528A1 (en) Double helix actuator with magnetic sections having alternating polarities
JP5785886B2 (en) Magnetic spring device
JPH10289800A (en) Inserted light source and magnetizing method for magnet therefor
JP2007181370A (en) Linear motor and process for manufacturing stator included therein
JPH07201557A (en) Magnetic field generating device for mri
JP5512814B2 (en) Guide mechanism and linear motor
JPWO2015072328A1 (en) Magnetic field generator and linear motor
JP2008108763A (en) Magnetization apparatus and magnetization method
JP2003333823A (en) Voice coil type linear motor
JPH071733B2 (en) Electromagnetic drive
WO2021181516A1 (en) Mover and linear servomotor
JP2006174616A (en) Linear actuator
US11340515B2 (en) Linear motor, and lens barrel and imaging device equipped with same
JP4556439B2 (en) Mold for forming polar anisotropic cylindrical magnet for motor
JPH0247845B2 (en) GENZOYOJISHAKUROORUNOSEIZOHOHO
JP2014187798A (en) Energy conversion device
JP2008159668A (en) Magnetizing method
JPH11325808A (en) Displacement sensor
JP2000116105A (en) Linear motor
JPH0644385U (en) Movable magnet type actuator
JP2011119546A (en) Magnetization device
JP4756438B2 (en) Linear motor