JP2005233455A - Pipe vibration preventing structure - Google Patents

Pipe vibration preventing structure Download PDF

Info

Publication number
JP2005233455A
JP2005233455A JP2004040021A JP2004040021A JP2005233455A JP 2005233455 A JP2005233455 A JP 2005233455A JP 2004040021 A JP2004040021 A JP 2004040021A JP 2004040021 A JP2004040021 A JP 2004040021A JP 2005233455 A JP2005233455 A JP 2005233455A
Authority
JP
Japan
Prior art keywords
flow path
compressor
medium
pipe
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004040021A
Other languages
Japanese (ja)
Inventor
Kenichiro Minami
健一郎 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004040021A priority Critical patent/JP2005233455A/en
Publication of JP2005233455A publication Critical patent/JP2005233455A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vibration preventing structure for a pipe connected to a compressor. <P>SOLUTION: A branch flow passage 19 formed of the bundle of a plurality of flow passages 17 with different lengths is installed in a refrigerant pipe 11 on the downstream side of the compressor 9 in an air conditioner mounted on a vehicle. The pressure pulsation of a refrigerant discharged from the compressor 9 is reduced in energy in reverse proportion to the number of the flow passages 17 and becomes a high frequency in proportion to the number of the flow passages 17 (types of the lengths of the flow passages 17) since its phase is shifted at a merge point by properly changing the lengths of the flow passages 17. Thus, the vibration and noise of the medium pipe 11 can be reduced. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、配管振動防止構造、詳しくは圧縮機に接続される配管の振動防止構造に関する。   The present invention relates to a pipe vibration preventing structure, and more particularly to a pipe vibration preventing structure connected to a compressor.

例えば電車に使用される空調装置は、下記特許文献1に記載されているように、圧縮機や凝縮器を車体の床下部に配置し、蒸発器を床上部に配置しており、それらの間は、金属製の冷媒配管により接続する。   For example, as described in Patent Document 1 below, an air conditioner used for a train has a compressor and a condenser disposed at the lower floor of the vehicle body, and an evaporator disposed at the upper floor. Are connected by a metal refrigerant pipe.

このとき圧縮機は、吐出冷媒の脈動による車体への振動伝達(騒音)を防止するために、車体に防振ゴムを介して取付けるが、冷媒配管については前記した脈動により車体に対して振動し、亀裂が生ずる虞がある。   At this time, in order to prevent vibration transmission (noise) to the vehicle body due to the pulsation of the discharged refrigerant, the compressor is attached to the vehicle body via a vibration isolating rubber, but the refrigerant pipe vibrates with respect to the vehicle body due to the pulsation described above. There is a risk of cracking.

そこで、冷媒配管の振動を抑制するために、図8に示すように、圧縮機1の吐出側および吸入側に位置する冷媒配管3を、それぞれループ状(吐出側ループ状配管3aおよび吸入側ループ状配管3b)に形成している。
特開平8−85454号公報(段落0020,0025,0028,図1,図2)
Therefore, in order to suppress the vibration of the refrigerant pipe, as shown in FIG. 8, the refrigerant pipes 3 positioned on the discharge side and the suction side of the compressor 1 are respectively looped (the discharge side loop pipe 3 a and the suction side loop). Formed in a cylindrical pipe 3b).
JP-A-8-85454 (paragraphs 0020, 0025, 0028, FIGS. 1 and 2)

しかしながら、上記したループ状配管においては、通常フレキシブルなものを使用しており、配管内部に冷媒圧力がかかった場合、曲率外側へ拡がる方向に変形する。したがって、冷媒の圧力脈動があれば、圧縮機に繋がるループ゜状の冷媒配管は、図8中の矢印AおよびBに示すように、ループが拡がる方向と縮む方向に振動することになる。このため、配管途中に車体へのマウント部5,7があれば、そこから大きな振動が車体に伝わることになる。   However, the loop-shaped pipe described above is usually flexible, and when the refrigerant pressure is applied to the inside of the pipe, the loop-shaped pipe is deformed so as to expand outwardly of the curvature. Therefore, if there is refrigerant pressure pulsation, the loop-shaped refrigerant pipe connected to the compressor vibrates in the direction in which the loop expands and contracts, as indicated by arrows A and B in FIG. For this reason, if there are mount portions 5 and 7 for the vehicle body in the middle of the piping, a large vibration is transmitted to the vehicle body from there.

そこで、本発明は、圧縮機に接続される配管の振動を防止することを目的としている。   Then, this invention aims at preventing the vibration of piping connected to a compressor.

本発明は、圧縮機から吐出される媒体が流れる媒体流路の途中に、互いに長さが異なる複数の流路の束からなる分岐流路を設けたことを最も主要な特徴とする。   The main feature of the present invention is that a branch flow path including a bundle of a plurality of flow paths having different lengths is provided in the middle of the medium flow path through which the medium discharged from the compressor flows.

本発明によれば、媒体の脈動を発生させる圧縮機下流の媒体流路に、長さの異なる複数の流路の束からなる分岐流路を設けたため、圧力脈動は、エネルギが流路の数に反比例して減少するとともに、各流路の長さを適切に変えることで、合流地点で位相がずれた状態となって流路の数(流路の長さの種類)に比例して高い周波数となり、媒体が流れる配管の振動・騒音を低減することができる。   According to the present invention, since the branch flow path composed of a bundle of a plurality of flow paths having different lengths is provided in the medium flow path downstream of the compressor that generates the pulsation of the medium, the pressure pulsation has energy equal to the number of flow paths. In addition to decreasing in inverse proportion to each other, by appropriately changing the length of each flow path, the phase is shifted at the merge point, and is proportional to the number of flow paths (type of flow path length). The vibration and noise of the pipe through which the medium flows can be reduced.

なお圧縮機は、例えば空調装置では冷却負荷により回転数を変動させるのが一般的であるが、本発明の構造では、分岐流路を、長さの異なる流路を多数設ける構成とすることで、広い範囲の回転数、つまり、広い範囲の圧力脈動周期に対して、安定した振動・騒音低減効果を持つ。   In general, for example, in an air conditioner, the compressor varies the number of revolutions depending on the cooling load. However, in the structure of the present invention, the branch flow path is provided with a number of flow paths having different lengths. It has a stable vibration / noise reduction effect over a wide range of rotation speeds, that is, a wide range of pressure pulsation cycles.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

まず、本発明の原理について、図1,図2を用いて説明する。   First, the principle of the present invention will be described with reference to FIGS.

図1(a)は、本発明を適用しない基本的な配管構造を示しており、圧縮機9に接続される冷媒配管11が、車体13に配管支持金具15を介して支持されている。図1(b)は、図1(a)の配管構造における圧縮機9が吐出する冷媒の脈動の一例を示す波形図である。これによれば、比較的長い周期で大きな冷媒圧力が発生していることがわかる。この冷媒圧力により、配管支持金具15を介して車体13に振動が伝達されることとなる。   FIG. 1A shows a basic piping structure to which the present invention is not applied. A refrigerant pipe 11 connected to a compressor 9 is supported on a vehicle body 13 via a pipe support fitting 15. FIG.1 (b) is a wave form diagram which shows an example of the pulsation of the refrigerant | coolant which the compressor 9 in the piping structure of Fig.1 (a) discharges. According to this, it turns out that the big refrigerant | coolant pressure has generate | occur | produced with the comparatively long period. Due to this refrigerant pressure, vibration is transmitted to the vehicle body 13 via the pipe support fitting 15.

そこで、図2(a)に示すように、冷媒配管11の途中に、あらかじめ脈動特性により適切に設定した長さの異なる二つの経路(長い経路11aおよび短い経路11b)を設けることで、脈動周期に位相差を出し、冷媒圧力による脈動を抑えることができる。しかしながら、二つの経路11a,11bのみであると、圧縮機9の回転数変化に伴って脈動周期も変化するので、充分な脈動抑制効果を得ることができない。   Therefore, as shown in FIG. 2 (a), by providing two paths (long path 11a and short path 11b) having different lengths appropriately set in advance according to the pulsation characteristics in the middle of the refrigerant pipe 11, a pulsation cycle is obtained. A phase difference can be produced, and pulsation due to the refrigerant pressure can be suppressed. However, if there are only two paths 11a and 11b, the pulsation cycle also changes with the change in the rotational speed of the compressor 9, so that a sufficient pulsation suppressing effect cannot be obtained.

このため、図2(b)に示すように、図2(a)に対し、二つの経路11a,11bより長さが長い経路11cをさらに追加し、互いに長さの異なる三つの経路11a,11b,11cを分岐流路として設けることで、より脈動の変化に対応することができる。   Therefore, as shown in FIG. 2B, a route 11c having a length longer than the two routes 11a and 11b is further added to FIG. 2A, and three routes 11a and 11b having different lengths are added. , 11c as a branch flow path, it is possible to cope more with changes in pulsation.

図3は、本発明による圧縮機9が吐出する冷媒の脈動を示す波形図である。これによれば、冷媒の脈動は、前記図1(b)に比較して極めて短い周期でかつ小さな圧力となっていることがわかる。   FIG. 3 is a waveform diagram showing the pulsation of the refrigerant discharged from the compressor 9 according to the present invention. According to this, it turns out that the pulsation of a refrigerant | coolant is a short pressure and a small pressure compared with the said FIG.1 (b).

図4は、上述の原理を用いた本発明に係わる第1の実施形態を示す配管構造図である。   FIG. 4 is a piping structure diagram showing a first embodiment according to the present invention using the principle described above.

ここでの配管構造は、自動車などの車両に搭載した空調装置に適用している。圧縮機9下流の媒体である冷媒が流れる媒体流路としての冷媒配管11は、図1と同様にして車体13に配管支持金具15を介して取り付ける。そして、圧縮機9と配管支持金具15との間の冷媒配管11、すなわち圧縮機9から吐出される媒体が流れる媒体流路の途中には、互いに長さが異なる複数の流路17の束からなる分岐流路19を設ける。   The piping structure here is applied to an air conditioner mounted on a vehicle such as an automobile. A refrigerant pipe 11 as a medium flow path through which a refrigerant that is a medium downstream of the compressor 9 flows is attached to the vehicle body 13 via a pipe support fitting 15 in the same manner as in FIG. A refrigerant pipe 11 between the compressor 9 and the pipe support fitting 15, that is, a medium flow path through which a medium discharged from the compressor 9 flows, is bundled with a plurality of flow paths 17 having different lengths. A branch flow path 19 is provided.

図5は、上記した分岐流路19の拡大した断面図、図6(a)は図5のA−A断面図、図6(b)は図5のB−B断面図である。冷媒配管11の流路断面形状は図6(b)に示すように円形であり、一方分岐流路19は、冷媒配管11より小さい流路断面積を有する多数の流路17を、図6(a)に示すように、全体でほぼ断面六角形状となるよう束にしている。なお、この断面形状は六角形状に限ることはない。   5 is an enlarged cross-sectional view of the above-described branch flow path 19, FIG. 6A is a cross-sectional view taken along the line AA in FIG. 5, and FIG. 6B is a cross-sectional view taken along the line BB in FIG. The flow path cross-sectional shape of the refrigerant pipe 11 is circular as shown in FIG. 6B, while the branch flow path 19 has a number of flow paths 17 having a flow path cross-sectional area smaller than that of the refrigerant pipe 11 as shown in FIG. As shown to a), it is bundled so that it may become substantially hexagonal cross-section as a whole. The cross-sectional shape is not limited to the hexagonal shape.

そして、分岐流路19は、複数の流路17の束全体を屈曲形成し、屈曲部の内側19aと外側19bとの間で流路17の長さが順次変化するように、複数の流路17の長さを互いに異ならせている。なお、複数の流路7は、長さをすべて異ならせる必要はなく、同じ長さものが存在してもよい。   The branch channel 19 is formed by bending the entire bundle of the plurality of channels 17, and the length of the channel 17 is sequentially changed between the inner side 19a and the outer side 19b of the bent portion. The 17 lengths are different from each other. The plurality of flow paths 7 need not have different lengths, and may have the same length.

上記した多数の流路17の束からなる分岐流路19と、その上流側の冷媒配管11との間には、冷媒配管11から分岐流路19に向けて徐々に広がる拡開流路21を設け、分岐流路19と、その下流側の冷媒配管11との間には、分岐流路19から冷媒配管11に向けて徐々に狭まる縮小流路23を設ける。   Between the branch flow path 19 formed of a bundle of a large number of flow paths 17 and the refrigerant pipe 11 on the upstream side, an expanded flow path 21 that gradually spreads from the refrigerant pipe 11 toward the branch flow path 19 is provided. A reduced flow path 23 that gradually narrows from the branch flow path 19 toward the refrigerant pipe 11 is provided between the branch flow path 19 and the refrigerant pipe 11 on the downstream side.

上記した第1の実施形態の配管構造では、圧縮機9から吐出される冷媒は、冷媒配管11を流れ、拡開流路21に一旦流出した後、分岐流路19にて互いに長さの異なる複数の流路17に分散して流れ、さらに縮小流路23で合流して下流の冷媒配管11に流出する。   In the above-described piping structure of the first embodiment, the refrigerant discharged from the compressor 9 flows through the refrigerant piping 11 and once flows out into the expansion channel 21, and then has different lengths in the branch channel 19. It flows dispersedly in the plurality of flow paths 17, further merges in the reduced flow path 23, and flows out to the downstream refrigerant pipe 11.

この場合、圧縮機9の下流に、長さの異なる複数の流路17の束からなる分岐流路19を設けたため、冷媒の圧力脈動は、エネルギが流路17の数に反比例して減少するとともに、各流路17の長さを適切に変えることで、合流地点となる縮小流路23で位相がずれた状態となって流路17の数(流路17の長さの種類)に比例して高い周波数となる。この結果、冷媒配管11の振動・騒音が低減し、例え冷媒配管11に曲がり部などがあっても、配管支持金具15を介して車体13への振動伝達を極力抑えることができる。   In this case, since the branch flow path 19 composed of a bundle of a plurality of flow paths 17 having different lengths is provided downstream of the compressor 9, the pressure pulsation of the refrigerant decreases in inverse proportion to the number of the flow paths 17. At the same time, by appropriately changing the length of each flow path 17, the phase is shifted in the reduced flow path 23 serving as a merge point, and is proportional to the number of flow paths 17 (the type of length of the flow path 17). As a result, the frequency becomes high. As a result, the vibration and noise of the refrigerant pipe 11 are reduced, and even if the refrigerant pipe 11 has a bent portion or the like, vibration transmission to the vehicle body 13 via the pipe support fitting 15 can be suppressed as much as possible.

なお、複数の流路17の配管径は、互いに同径の方が好ましく、同径にした場合は、前記図3に示す脈動が一定周期に起こることとなる。   The pipe diameters of the plurality of flow paths 17 are preferably the same, and when the diameters are the same, the pulsation shown in FIG. 3 occurs at a constant period.

また、圧縮機9下流であって車体13への支持部(配管支持金具15)上流の冷媒配管11に屈曲部を有する場合、加振力が発生しやすい前記箇所(屈曲部)に、上記した第1の実施形態で用いた形状(屈曲部を有する形状)の分岐流路19を備えることにより、さらに冷媒配管11の振動を防止でき、同時に冷媒配管11自身の屈曲部を減らし圧力損失も低減できる。   Further, when the refrigerant pipe 11 downstream of the compressor 9 and upstream of the support part (pipe support fitting 15) to the vehicle body 13 has a bent part, the above-described portion (bent part) where the excitation force is likely to occur is described above. By providing the branch flow path 19 having the shape used in the first embodiment (the shape having a bent portion), the vibration of the refrigerant pipe 11 can be further prevented, and at the same time, the bent portion of the refrigerant pipe 11 itself is reduced to reduce the pressure loss. it can.

図7は、本発明の第2の実施形態に係わる配管構造図である。   FIG. 7 is a piping structure diagram according to the second embodiment of the present invention.

この実施形態は、圧縮機9下流の冷媒配管11に設けた熱交換器25に本発明を適用している。すなわち、この熱交換器25は、上流側に位置する第1のタンク部としての上流ヘッダタンク27と、下流側に位置する第2のタンク部としての下流ヘッダタンク29と、これら各ヘッダタンク27,29相互を接続する分岐流路を備えるコア部31とを、それぞれ有する。   In this embodiment, the present invention is applied to the heat exchanger 25 provided in the refrigerant pipe 11 downstream of the compressor 9. That is, the heat exchanger 25 includes an upstream header tank 27 as a first tank portion located on the upstream side, a downstream header tank 29 as a second tank portion located on the downstream side, and each of these header tanks 27. , 29 each having a core part 31 having a branch flow path connecting the two.

コア部31は、互いに長さの異なる複数の流路としてのフィン付きチューブ33を、図中で上下方向にかつ紙面に平行な平板状となるよう並列配置している。そして、この各フィン付きチューブ33は、図中で上部から下部に向けて長さが徐々に長くなるよう配置し、かつ上流側の各端部を互いに揃えて上流ヘッダタンク27に接続する。このため、各フィン付きチューブ33下流側の端部は、図中で下部のものほど下流側(図中で右側)に向けて突出し、全体として図中で右下方向に向かうよう傾斜している。この傾斜に合わせるように、下流ヘッダタンク29も上流ヘッダタンク27に対して傾斜した状態で各フィン付きチューブ33に接続する。   The core part 31 has a plurality of finned tubes 33 as flow paths having different lengths arranged in parallel so as to form a flat plate shape in the vertical direction and parallel to the paper surface. The finned tubes 33 are arranged so that the length gradually increases from the upper part to the lower part in the drawing, and the upstream ends are aligned with each other and connected to the upstream header tank 27. For this reason, the downstream end of each finned tube 33 protrudes toward the downstream side (right side in the figure) toward the lower side in the figure, and as a whole is inclined to the lower right direction in the figure. . The downstream header tank 29 is also connected to each finned tube 33 in a state of being inclined with respect to the upstream header tank 27 so as to match this inclination.

また、熱交換器25の上流側の冷媒配管11は、長さが最も短い図中で上部側のフィン付きチューブ33にほぼ対応する部位のヘッダタンク27に接続し、熱交換器25の下流側の冷媒配管11は、長さが最も長い図中で下部側のフィン付きチューブ33にほぼ対応する部位のヘッダタンク29に接続する。   In addition, the refrigerant pipe 11 on the upstream side of the heat exchanger 25 is connected to the header tank 27 in a portion substantially corresponding to the finned tube 33 on the upper side in the drawing having the shortest length, and the downstream side of the heat exchanger 25. The refrigerant pipe 11 is connected to the header tank 29 in a portion substantially corresponding to the finned tube 33 on the lower side in the drawing having the longest length.

上記した第2の実施形態の配管構造では、圧縮機9から吐出される冷媒は、冷媒配管11を流れ、上流ヘッダタンク27に一旦流出した後、コア部31にて互いに長さの異なる複数のフィン付きチューブ33に分散して流れ、さらに下流ヘッダタンク29で合流して下流の冷媒配管11に流出する。   In the piping structure of the second embodiment described above, the refrigerant discharged from the compressor 9 flows through the refrigerant piping 11 and once flows out to the upstream header tank 27, and then a plurality of different lengths at the core portion 31. It flows dispersedly in the finned tube 33, further merges in the downstream header tank 29, and flows out to the downstream refrigerant pipe 11.

この実施形態においても、圧縮機9の下流に、長さの異なる複数のフィン付きチューブ33の束からなる分岐流路となるコア部31を設けたため、冷媒の圧力脈動は、エネルギがフィン付きチューブ33の数に反比例して減少するとともに、各フィン付きチューブ33の長さを適切に変えることで、合流地点となる下流ヘッダタンク29で位相がずれた状態となってフィン付きチューブ33の数(フィン付きチューブ33の長さの種類)に比例して高い周波数となる。この結果、冷媒配管11の振動・騒音が低減し、前記した第1の実施形態と同様の効果を得ることができる。   Also in this embodiment, since the core portion 31 serving as a branch flow path composed of a bundle of a plurality of finned tubes 33 having different lengths is provided downstream of the compressor 9, the pressure pulsation of the refrigerant has a finned tube. The number of fins 33 is reduced in inverse proportion to the number of fins 33, and the length of each finned tube 33 is changed appropriately so that the phase is shifted in the downstream header tank 29 serving as a merging point. The frequency increases in proportion to the length of the finned tube 33). As a result, the vibration and noise of the refrigerant pipe 11 are reduced, and the same effect as in the first embodiment described above can be obtained.

また、上記した第2の実施形態によれば、空調装置に必要な熱交換器25を利用して本発明の配管構造を適用しているので、専用の配管振動防止構造部分を別途設ける必要がなく、省スペース化を実現できる。   Further, according to the second embodiment described above, since the piping structure of the present invention is applied using the heat exchanger 25 necessary for the air conditioner, it is necessary to separately provide a dedicated piping vibration preventing structure portion. In addition, space saving can be realized.

さらに、上記した熱交換器25は、コア部31における複数のフィン付きチューブ33を、長さの順に並列配置することで、全体の形状が図7では台形化するなど簡素化し、コンパクト化を図ることができる。   Furthermore, the above-described heat exchanger 25 simplifies and compacts by arranging a plurality of finned tubes 33 in the core portion 31 in parallel in the order of length so that the overall shape is trapezoidal in FIG. be able to.

また、熱交換器25の上流側の冷媒配管11を、長さが最も短いフィン付きチューブ33側に対応する部分の上流ヘッダタンク27に接続する一方、熱交換器25の下流側の冷媒配管11を、長さが最も長いフィン付きチューブ33側に対応する部分の下流ヘッダタンク29に接続することで、熱交換器25内での冷媒の流れがスムーズになされる。   Further, the refrigerant pipe 11 on the upstream side of the heat exchanger 25 is connected to the upstream header tank 27 corresponding to the finned tube 33 side having the shortest length, while the refrigerant pipe 11 on the downstream side of the heat exchanger 25 is connected. Is connected to the downstream header tank 29 in the portion corresponding to the finned tube 33 having the longest length, the refrigerant flows smoothly in the heat exchanger 25.

本発明によれば、前記分岐流路の上流端に、その上流側の前記媒体流路から流入する媒体を、前記複数の流路に分散させる第1のタンク部を設け、前記分岐流路の下流端に、その下流側の前記媒体流路に流出する媒体を、前記複数の流路から集合させる第2のタンク部を設け、前記複数の流路は、前記第1のタンク部と前記第2のタンク部との間で、平板状となるよう並列配置したので、この配管構造を、空調装置の下流に熱交換器を備える場合に、熱交換器自体に適用することで、専用の配管振動防止構造部分を別途設けることなく、省スペース化を実現しつつ、媒体が流れる配管の振動・騒音を低減することができる。   According to the present invention, the first tank portion that disperses the medium flowing in from the medium flow path on the upstream side of the branch flow path into the plurality of flow paths is provided at the upstream end of the branch flow path. The downstream end is provided with a second tank part that collects the medium flowing out into the medium flow path on the downstream side from the plurality of flow paths, and the plurality of flow paths include the first tank part and the first tank. Since it is arranged in parallel so as to form a flat plate between the two tank parts, when this heat exchanger is provided downstream of the air conditioner, it is applied to the heat exchanger itself, thereby providing a dedicated pipe. Without providing a vibration prevention structure part, it is possible to reduce the vibration and noise of the pipe through which the medium flows while realizing space saving.

また、前記分岐流路における複数の流路を長さの順に並列配置することで、分岐流路全体の形状が簡素化しコンパクト化を図ることができる。   In addition, by arranging the plurality of channels in the branch channel in parallel in the order of length, the shape of the entire branch channel can be simplified and downsized.

さらに、前記分岐流路の上流側の前記媒体流路を、前記複数の流路のうち長さが最も短い側に対応する部分の前記第1のタンク部に接続する一方、前記分岐流路の下流側の前記媒体流路を、前記複数の流路のうち長さが最も長い側に対応する部分の前記第2のタンク部に接続することで、第1のタンク部から分岐流路を経て第2のタンク部に向かう媒体の流れがスムーズとなる。   Further, the medium channel on the upstream side of the branch channel is connected to the first tank portion corresponding to the shortest side of the plurality of channels, while the branch channel By connecting the downstream medium flow path to the second tank section corresponding to the longest side of the plurality of flow paths, the first tank section passes through the branch flow path. The medium flow toward the second tank portion becomes smooth.

前記分岐流路を、熱交換器に適用することで、専用の配管振動防止構造部分を別途設けることなく、省スペース化を実現しつつ、媒体が流れる配管の振動・騒音を低減することができる。   By applying the branch flow path to the heat exchanger, it is possible to reduce the vibration and noise of the pipe through which the medium flows while realizing space saving without separately providing a dedicated pipe vibration prevention structure portion. .

(a)は本発明を適用しない基本的な配管構造図、(b)は(a)の配管構造における圧縮機が吐出する冷媒の脈動の一例を示す波形図である。(A) is a basic piping structure diagram to which the present invention is not applied, and (b) is a waveform diagram showing an example of pulsation of refrigerant discharged from a compressor in the piping structure of (a). (a)は図1(a)における冷媒配管の途中に長さの異なる二つの経路を設定した配管構造図、(b)は(a)に対しさらに経路を増やして長さの異なる三つの経路を設定した配管構造図である。(A) is a piping structure diagram in which two paths having different lengths are set in the middle of the refrigerant pipe in FIG. 1 (a), and (b) is a further three paths having different lengths with respect to (a). It is the piping structure figure which set. 本発明の配管構造による圧縮機が吐出する冷媒の脈動を示す波形図である。It is a wave form diagram which shows the pulsation of the refrigerant | coolant which the compressor by the piping structure of this invention discharges. 本発明の第1の実施形態に係わる配管構造図である。It is a piping structure figure concerning the 1st embodiment of the present invention. 図4の分岐流路の拡大した断面図である。It is sectional drawing to which the branch flow path of FIG. 4 was expanded. (a)は図5のA−A断面図、(b)は図5のB−B断面図である。(A) is AA sectional drawing of FIG. 5, (b) is BB sectional drawing of FIG. 本発明の第2の実施形態に係わる配管構造図である。It is a piping structure figure concerning the 2nd Embodiment of this invention. 従来例を示す配管構造図である。It is a piping structure figure showing a conventional example.

符号の説明Explanation of symbols

9 圧縮機
11 冷媒配管(媒体流路)
17 複数の流路
19 分岐流路
25 熱交換器
27 上流ヘッダタンク(第1のタンク部)
29 下流ヘッダタンク(第2のタンク部)
31 コア部(分岐流路を含む)
33 フィン付きチューブ(複数の流路)
9 Compressor 11 Refrigerant piping (medium flow path)
17 Multiple channels 19 Branch channel 25 Heat exchanger 27 Upstream header tank (first tank)
29 Downstream header tank (second tank section)
31 Core (including branch flow path)
33 Finned tube (multiple channels)

Claims (5)

圧縮機から吐出される媒体が流れる媒体流路の途中に、互いに長さが異なる複数の流路の束からなる分岐流路を設けたことを特徴とする配管振動防止構造。   A piping vibration preventing structure characterized in that a branch flow path comprising a bundle of a plurality of flow paths having different lengths is provided in the middle of a medium flow path through which a medium discharged from a compressor flows. 前記分岐流路の上流端に、その上流側の前記媒体流路から流入する媒体を、前記複数の流路に分散させる第1のタンク部を設け、前記分岐流路の下流端に、その下流側の前記媒体流路に流出する媒体を、前記複数の流路から集合させる第2のタンク部を設け、前記複数の流路は、前記第1のタンク部と前記第2のタンク部との間で、平板状となるよう並列配置したことを特徴とする請求項1記載の配管振動防止構造。   A first tank portion is provided at the upstream end of the branch flow path to disperse the medium flowing from the medium flow path on the upstream side into the plurality of flow paths, and at the downstream end of the branch flow path, the downstream thereof. A second tank part for collecting the medium flowing out into the medium flow path on the side from the plurality of flow paths is provided, and the plurality of flow paths are formed between the first tank part and the second tank part. The piping vibration preventing structure according to claim 1, wherein the pipe vibration preventing structure is arranged in parallel so as to be flat. 前記分岐流路における複数の流路は、長さの順に並列配置することを特徴とする請求項2記載の配管振動防止構造。   The piping vibration preventing structure according to claim 2, wherein the plurality of channels in the branch channel are arranged in parallel in the order of length. 前記分岐流路の上流側の前記媒体流路を、前記複数の流路のうち長さが最も短い側に対応する部分の前記第1のタンク部に接続する一方、前記分岐流路の下流側の前記媒体流路を、前記複数の流路のうち長さが最も長い側に対応する部分の前記第2のタンク部に接続することを特徴とする請求項3記載の配管振動防止構造。   The medium channel on the upstream side of the branch channel is connected to the first tank portion corresponding to the shortest side of the plurality of channels, while the downstream side of the branch channel The pipe vibration preventing structure according to claim 3, wherein the medium flow path is connected to the second tank portion corresponding to the longest side of the plurality of flow paths. 前記分岐流路を、熱交換器に適用することを特徴とする請求項2ないし4のいずれかに記載の配管振動防止構造。   The piping vibration preventing structure according to any one of claims 2 to 4, wherein the branch channel is applied to a heat exchanger.
JP2004040021A 2004-02-17 2004-02-17 Pipe vibration preventing structure Pending JP2005233455A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004040021A JP2005233455A (en) 2004-02-17 2004-02-17 Pipe vibration preventing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004040021A JP2005233455A (en) 2004-02-17 2004-02-17 Pipe vibration preventing structure

Publications (1)

Publication Number Publication Date
JP2005233455A true JP2005233455A (en) 2005-09-02

Family

ID=35016603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004040021A Pending JP2005233455A (en) 2004-02-17 2004-02-17 Pipe vibration preventing structure

Country Status (1)

Country Link
JP (1) JP2005233455A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146662A (en) * 2005-11-24 2007-06-14 Hitachi Plant Technologies Ltd Air compressor
WO2008030060A1 (en) * 2006-09-07 2008-03-13 Ls Cable Ltd. A refrigerator with noise reduction structure using inverse phase sound wave
WO2008045084A1 (en) 2006-10-11 2008-04-17 Carrier Corporation Screw compressor economizer pulsation reduction
JP2012145028A (en) * 2011-01-12 2012-08-02 Toyota Industries Corp Air compressor
JP2013178007A (en) * 2012-02-28 2013-09-09 Sharp Corp Parallel flow heat exchanger and device including the same
JP2014076791A (en) * 2012-10-05 2014-05-01 Hyundai Motor Company Co Ltd Heat exchanger for vehicle
CN113029536A (en) * 2021-02-27 2021-06-25 重庆长安汽车股份有限公司 Air conditioner pipeline vibration isolation performance testing method for controlling sound quality in vehicle

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146662A (en) * 2005-11-24 2007-06-14 Hitachi Plant Technologies Ltd Air compressor
WO2008030060A1 (en) * 2006-09-07 2008-03-13 Ls Cable Ltd. A refrigerator with noise reduction structure using inverse phase sound wave
KR100887872B1 (en) * 2006-09-07 2009-03-06 엘에스엠트론 주식회사 A Refrigerator with Noise Reduction Structure using Inverse Phase Sound Wave
US8122732B2 (en) 2006-09-07 2012-02-28 Lg Electronics Inc. Refrigerator with noise reduction structure using inverse phase sound wave
WO2008045084A1 (en) 2006-10-11 2008-04-17 Carrier Corporation Screw compressor economizer pulsation reduction
EP2074362A1 (en) * 2006-10-11 2009-07-01 Carrier Corporation Screw compressor economizer pulsation reduction
EP2074362A4 (en) * 2006-10-11 2013-09-04 Carrier Corp Screw compressor economizer pulsation reduction
JP2012145028A (en) * 2011-01-12 2012-08-02 Toyota Industries Corp Air compressor
US9377023B2 (en) 2011-01-12 2016-06-28 Kabushiki Kaisha Toyota Jidoshokki Air compressor
JP2013178007A (en) * 2012-02-28 2013-09-09 Sharp Corp Parallel flow heat exchanger and device including the same
JP2014076791A (en) * 2012-10-05 2014-05-01 Hyundai Motor Company Co Ltd Heat exchanger for vehicle
CN113029536A (en) * 2021-02-27 2021-06-25 重庆长安汽车股份有限公司 Air conditioner pipeline vibration isolation performance testing method for controlling sound quality in vehicle

Similar Documents

Publication Publication Date Title
EP2392886B1 (en) Orientation insensitive refrigerant distributor tube
WO2007013623A1 (en) Heat exchanger, and air conditioner and air property converter that use the same
EP2610571A1 (en) Heat exchanger assembly having a distributor tube retainer tab
JP2006170598A (en) Heat exchanger
US7219717B2 (en) Evaporator and Refrigeration cycle
JP6188926B2 (en) Laminated header, heat exchanger, and air conditioner
JP2005233455A (en) Pipe vibration preventing structure
JP4915285B2 (en) Heat exchanger
JP2013178007A (en) Parallel flow heat exchanger and device including the same
JP2008298391A (en) Heat exchanger core, heat exchanger and evaporator for refrigeration cycle device
JP6569814B2 (en) Air conditioning unit
JP5194279B2 (en) Evaporator
JP2010139196A (en) Heat exchanger
JP7014584B2 (en) A sound absorbing element for the refrigeration cycle system, a decompression unit with it, and a refrigeration cycle system.
KR101210570B1 (en) Heat exchanger
JP2005321151A (en) Heat exchanger
JP6002426B2 (en) Evaporator
JP2006144557A (en) Pipe and its manufacturing method
JP5531901B2 (en) Combined heat exchanger
JP2008089238A (en) Air conditioner for vehicle
JP5238408B2 (en) Heat exchanger
JP2007187381A (en) Heat exchanger
JP2008256234A (en) Evaporator
JP2020153641A (en) Heat exchanger, and method for producing flat tube
JP2011202918A (en) Condenser