JP2005232560A - Method for producing grain-oriented silicon steel sheet - Google Patents

Method for producing grain-oriented silicon steel sheet Download PDF

Info

Publication number
JP2005232560A
JP2005232560A JP2004045863A JP2004045863A JP2005232560A JP 2005232560 A JP2005232560 A JP 2005232560A JP 2004045863 A JP2004045863 A JP 2004045863A JP 2004045863 A JP2004045863 A JP 2004045863A JP 2005232560 A JP2005232560 A JP 2005232560A
Authority
JP
Japan
Prior art keywords
grain
annealing
steel sheet
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004045863A
Other languages
Japanese (ja)
Other versions
JP4238743B2 (en
Inventor
Takashi Terajima
寺島  敬
Minoru Takashima
高島  稔
Takeshi Imamura
今村  猛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004045863A priority Critical patent/JP4238743B2/en
Publication of JP2005232560A publication Critical patent/JP2005232560A/en
Application granted granted Critical
Publication of JP4238743B2 publication Critical patent/JP4238743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a grain-oriented silicon steel sheet by which the deviation ΔB<SB>8</SB>value in the steel sheet is decreased while solving a problem caused by high temperature heating and a problem related to forsterite film formation at the last annealing time by using starting raw material having components containing substantially no Al, S, Se as precipitation type inhibitor components. <P>SOLUTION: The grain-oriented silicon steel sheet is produced by using a steel slab having the composition composed of: ≤0.08% C, 2.0-8.0% Si, 0.005-3.0% Mn; Al, S and Se limited to <100 ppm, ≤50 ppm and ≤50 ppm, respectively; and the balance Fe except inevitable impurities, wherein the steel slab is heated to ≤1,250°C before hot-rolling and held at the temperature range not lower than a secondary recrystallization starting temperature by 5°C and not higher by 20°C for 10-30 hr before starting the secondary recrystallization in the last finish-annealing process. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は方向性電磁鋼板の製造方法、特に出発素材成分に析出型インヒビター成分であるAl、S、Seを実質的に含有せず、鋼板内磁気特性偏差が小さい方向性電磁鋼板の製造方法に関する。   TECHNICAL FIELD The present invention relates to a method for producing a grain-oriented electrical steel sheet, and more particularly to a method for producing a grain-oriented electrical steel sheet that does not substantially contain Al, S, Se, which are precipitation inhibitor components, and has a small deviation in magnetic properties in the steel sheet. .

方向性電磁鋼板はインヒビターと呼ばれる析出物を利用して最終仕上焼鈍中にゴス方位粒、すなわち{110}<001>方位を有する二次再結晶粒を優先的に成長させることによって製造するのが一般的であり、例えば特許文献1に開示されているAlN、MnSを利用する方法や特許文献2に開示されているMnS、MnSeを利用する方法が開示されている。   A grain-oriented electrical steel sheet is manufactured by preferentially growing goth-oriented grains, that is, secondary recrystallized grains having {110} <001> orientation, during the final finish annealing using precipitates called inhibitors. For example, a method using AlN and MnS disclosed in Patent Document 1 and a method using MnS and MnSe disclosed in Patent Document 2 are disclosed.

これらの方法は、現段階において広く工業的に実施されている実用化されている方法であるが、安定して二次再結晶粒を発達させるためには、これらインヒビターを微細に分散析出させなければならないので、熱延前のスラブ加熱温度を1300℃以上の高温で行うことが必要とされる。しかしながら、スラブの高温加熱は、そのための設備コストが嵩む他、熱間圧延時に生成するスケールの量も多大になるために歩留まりを低下させ、また設備のメンテナンスを煩雑にする原因になる等の問題を含んでいる。また、これらインヒビター形成元素は最終仕上焼鈍の際に鋼板表面に形成されるガラス質被膜(フォルステライト質被膜)の安定形成を阻害することがあり、焼鈍分離剤の選択等に多くの制約を伴う等の問題がある。   These methods are practically practiced widely at the present stage, but in order to develop secondary recrystallized grains stably, these inhibitors must be finely dispersed and precipitated. Therefore, it is necessary to perform the slab heating temperature before hot rolling at a high temperature of 1300 ° C or higher. However, high-temperature heating of the slab has problems such as an increase in equipment cost for that purpose and a large amount of scale generated during hot rolling, which reduces yield and makes maintenance of the equipment complicated. Is included. In addition, these inhibitor-forming elements may inhibit the stable formation of a glassy film (forsterite film) formed on the steel sheet surface during final finish annealing, and there are many restrictions on the selection of an annealing separator. There are problems such as.

これらの問題を解決するため、これらのインヒビター形成成分を含有させることなく方向性電磁鋼板を製造する手段がたとえば、特許文献3に提案されている。この手段によれば、インヒビターによってもたらされる表面エネルギーを用いることなく二次再結晶粒をゴス方位に揃えることが可能である。また、特許文献4には、出発素材(スラブ)におけるMnおよびSeに含有量を[Mn(mass%)]/([S(mass%)]+[Se(mass%)])なる関係の下に規制し、スラブ加熱温度を1250℃以下に、そして再結晶焼鈍における600℃までの平均昇温速度を25℃/s以上とする手段が開示されている。   In order to solve these problems, for example, Patent Document 3 proposes a means for producing a grain-oriented electrical steel sheet without containing these inhibitor-forming components. By this means, it is possible to align the secondary recrystallized grains in the Goth orientation without using the surface energy provided by the inhibitor. Patent Document 4 describes that the content of Mn and Se in the starting material (slab) is [Mn (mass%)] / ([S (mass%)] + [Se (mass%)]). The slab heating temperature is set to 1250 ° C. or lower, and the average heating rate up to 600 ° C. in recrystallization annealing is 25 ° C./s or higher.

特公昭40−15644号公報Japanese Patent Publication No. 40-15644 特公昭51−13469号公報Japanese Patent Publication No.51-13469 特開2000−129356号公報JP 2000-129356 JP 特開2003−213339号公報JP2003-213339

しかしながら、これら特許文献3および特許文献4に記載の手段について、本発明者が追跡調査した結果によれば、これら手段によるときはなお磁気特性の鋼板(コイル)内偏差が大きいという問題がある。すなわち、特許文献4記載の手段にしたがって製造されたコイルのエッジ部から長手方向を圧延方向にとってエプスタイン試験片を順に30枚切り出し、SST測定器、すなわち単板磁気試験器による磁気特性を行ったところ、磁化力800A/m時の磁束密度(B値、単位T)の最大値と最小値の差△Bが0.06Tに達することが判明したのである。このようにコイル内での磁気特性偏差が大きいと、たとえJIS C2550に規定する磁気特性が優れていても、局部的にはこれより特性が大きく劣る部分が存在しているために、トランス等の鉄心に加工された場合、その特性を大きくばらつかせる原因になる。ΔB値が0.02T以上になると、B値の平均値が1%以上変動する。このため上記磁気特性の鋼板内偏差△Bは0.02T未満であることが好ましい。 However, according to the results of the follow-up investigation of the means described in Patent Document 3 and Patent Document 4 by the present inventor, there is still a problem that the deviation in the steel sheet (coil) of the magnetic properties is large when using these means. That is, 30 Epstein test pieces were cut out in order from the edge portion of the coil manufactured according to the means described in Patent Document 4 with the longitudinal direction being the rolling direction, and the magnetic properties were measured by an SST measuring instrument, that is, a single plate magnetic tester. The difference ΔB 8 between the maximum value and the minimum value of the magnetic flux density (B 8 value, unit T) when the magnetizing force is 800 A / m has been found to reach 0.06 T. If the magnetic characteristic deviation in the coil is large in this way, even if the magnetic characteristic specified in JIS C2550 is excellent, there is a part where the characteristic is greatly inferior than this locally. When processed into an iron core, it can cause a large variation in its properties. When the ΔB 8 value becomes 0.02T or more, the average value of the B 8 value varies by 1% or more. For this reason, it is preferable that the deviation ΔB 8 in the steel sheet of the magnetic properties is less than 0.02T.

本発明は、出発素材成分に析出型インヒビター成分であるAl、S、Seを実質的に含有せず、それによってスラブの高温加熱によって生ずる問題や最終焼鈍時のフォルステライト被膜形成上の問題を解決しながら、上記鋼板内偏差△Bを小さくし得る方向性電磁鋼板の製造方法を提案するものである。 The present invention does not substantially contain Al, S, Se, which are precipitation inhibitor components, in the starting material component, thereby solving problems caused by high-temperature heating of the slab and forsterite film formation during final annealing. while, it proposes a method for producing a grain-oriented electrical steel sheet capable of reducing the steel plate in the deviation △ B 8.

本発明は、質量比で、C:0.08%以下、Si:2.0〜8.O%およびMn:0.005〜3.O%を含みかつ、Al:100ppm未満、S:50ppm以下、Se:50ppm以下に制限され、残部不可避的不純物を除きFeからなる組成を有する鋼スラブに対し熱間圧延、熱延板焼鈍、1回または中間焼鈍を挟む2回以上の冷間圧延、脱炭焼鈍、焼鈍分離剤の塗布及び二次再結晶および純化を目的とする最終仕上焼鈍を行う工程を含む方向性電磁鋼板の製造方法において、前記熱間圧延に先立ち鋼スラブを1250℃以下で加熱し、かつ前記最終仕上焼鈍の過程において二次再結晶が開始するに先立ち二次再結晶開始温度よりも5〜20℃低い温度に10時間以上30時間以下保持するものである。上記発明において、熱間圧延後、直ちに冷間圧延を行うことができる。   The present invention includes, by mass ratio, C: 0.08% or less, Si: 2.0 to 8.O%, and Mn: 0.005 to 3.O%, and Al: less than 100 ppm, S: 50 ppm or less, and Se: 50 ppm or less. Restricted and steel slab having a composition composed of Fe excluding inevitable impurities in the remainder, hot rolling, hot rolled sheet annealing, one time or two or more cold rolling sandwiching intermediate annealing, decarburization annealing, annealing separator In the method for producing a grain-oriented electrical steel sheet including a step of performing final finishing annealing for the purpose of coating and secondary recrystallization and purification, heating the steel slab at 1250 ° C. or less prior to the hot rolling, and the final finishing Prior to the start of secondary recrystallization in the annealing process, the temperature is maintained at a temperature 5 to 20 ° C. lower than the secondary recrystallization start temperature for 10 to 30 hours. In the said invention, cold rolling can be performed immediately after hot rolling.

さらに、上記各発明において、鋼スラブには、Ni:0.005〜1.50%、Sn:0.01〜0.50%、Sb:0.005〜0.50%、Cu:0.01〜1.50%、P:0.0050〜0.50%およびCr:0.01〜1.50%から選んだ元素を少なくとも1種含有させることができる。   Further, in each of the above inventions, the steel slab contains Ni: 0.005 to 1.50%, Sn: 0.01 to 0.50%, Sb: 0.005 to 0.50%, Cu: 0.01 to 1.50%, P: 0.0050 to 0.50%, and Cr: 0.01 At least one element selected from ˜1.50% can be contained.

本発明は上記によって特定されるものであるが、その基礎となる知見について整理し、併せて本発明の基礎となっている事項について説明すると以下のとおりである。
(1)方向性電磁鋼板の二次再結晶直前の状態である一次再結晶組織を解析し、様々な結晶方位を持つ各々の結晶粒周囲の粒界について、粒界方位差角が20〜45°である粒界の割合(%)を調査した結果、図1に示すように、ゴス方位が最も高い頻度を占める。ここに図1は、結晶方位空間をオイラー角(Φ1、Φ、Φ2)のΦ2=45°断面を用いて表示したものであり、ゴス方位など主な方位を模式的に表示してある。
(2)方位差角20〜45°の粒界は、高エネルギー粒界である(C.G.Dunn AIME Transaction 188巻(1949)368ページ参照)。このような粒界は、粒界内の自由空間が大きく乱雑な構造をしており、粒界拡散は粒界を通じて原子が移動する過程であるので、高エネルギー粒界では粒界拡散が速やかに進行する。
(3)二次再結晶は、インヒビターと呼ばれる析出物の拡散律速による成長・粗大化に伴って発現することが知られている。高エネルギー粒界上の析出物は、仕上焼鈍中に優先的に粗大化が進行するので、ゴス方位となる粒の粒界では析出物によるピン止めが優先的にはずれて粒界移動が開始し、そのためゴス方位を有する粒が優先的に成長すると考えられる。
(4)本発明者らの見解によれば、二次再結晶におけるゴス方位粒の優先的成長の本質的要因は、一次再結晶組織中の高エネルギー粒界の分布状態にあり、インヒビターの役割は、高エネルギー粒界であるゴス方位粒と他の粒界との移動速度差を生じさせることにある。
(5)したがって、粒界に移動速度差を生じさせることができれば、インヒビターを用いなくとも、ゴス方位を有する二次再結晶させることが可能でなる。しかしながら、鋼中に存在する不純物元素は、粒界、特に高エネルギー粒界に偏析しやすいため、不純物元素を多く含む場合には、高エネルギー粒界と他の粒界との移動速度に差がなくなる。そのためインヒビターを用いることなく二次再結晶させるためには、素材を高純度化し、高エネルギー粒界の構造に依存する本来的な移動速度差を顕在化することが必要になる。これにより、テクスチャーインヒビション(Texture Inhibition)によるゴス方位粒の選択的粒成長を起すことができる。
(6)しかしながら、一次再結晶組織の粒径分布が一様でない場合には、隣接する結晶粒同士の粒径差を駆動力とする正常粒成長が起こるため、すなわち上述の粒界の移動速度差による選択的粒成長が阻害され、ゴス方位粒の選択的粒成長が起こらなくなる。したがって、粒界移動速度差を利用して安定して二次再結晶粒を成長させるためには、一次再結晶組織の結晶粒度分布をできる限り均一に保つことが肝要である。
(7)また、熱延時の加熱温度が高いと、たとえインヒビター成分の含有量を抑制しても、加熱時に固溶したインヒビター形成成分が熱延中に不均一に微細析出することになる。その結果、不均一に分布した微細析出物により、粒界移動が局所的に抑制されて粒径分布が極めて不均一になり、ゴス方位への二次再結晶粒の発達が阻害されることになる。したがって、インヒビターを用いずにゴス方位を有する二次再結晶させるためには熱延時の加熱温度を圧延可能な範囲で低めに抑えることが必要である。
(8)このようにして、テクスチャーインヒビションの作用により、出発素材成分に析出型インヒビター成分であるAl、S、Seを実質的に含有せず、それによってスラブの高温加熱によって生ずる問題や最終焼鈍時のフォルステライト被膜形成上の問題を解決しながら二次再結晶粒を発達させることができる。しかしながら、上記手段のみでは、鋼板内磁気特性偏差は解消できない。本発明者等の研究によると、その原因は鋼板内で二次再結晶開始温度が僅かながらばらつくためである。
(9)二次再結晶挙動を決定する因子は一次再結晶粒の駆動力と抑制効果のバランスである。発明者等の検討によると、上記ばらつきの原因となっているのは、なお残留している不可避的不純物による抑制力であり、したがって二次再結晶開始前の段階でこの残留抑制力を無害化する手段をとる必要がある。
(10)かかる手段としては、二次再結晶開始前の段階で二次再結晶開始温度よりも低い温度で保持して析出物を粗大化させ、鋼板内での二次再結晶挙動を均一化させることが有効である。これにより、鋼板内の磁気特性偏差が小さい方向性電磁鋼板を得ることができる。
The present invention is specified as described above, and the basic knowledge of the present invention will be summarized and the matters that are the basis of the present invention will be described as follows.
(1) Analyzing the primary recrystallization structure immediately before the secondary recrystallization of grain oriented electrical steel sheet, the grain boundary misorientation angle is 20-45 for each grain boundary around each crystal grain with various crystal orientations. As a result of investigating the ratio (%) of grain boundaries that are °, as shown in FIG. 1, the Goss orientation occupies the highest frequency. FIG. 1 shows the crystal orientation space using Euler angles (Φ1, Φ, Φ2) with a section of Φ2 = 45 °, and schematically shows main orientations such as Goss orientation.
(2) Grain boundaries with misorientation angles of 20 to 45 ° are high energy grain boundaries (see CG Dunn AIME Transaction 188 (1949) p. 368). Such a grain boundary has a rough structure with a large free space within the grain boundary, and grain boundary diffusion is a process in which atoms move through the grain boundary. proceed.
(3) It is known that secondary recrystallization occurs with the growth and coarsening of precipitates called inhibitors, which are controlled by diffusion. Precipitation on the high-energy grain boundaries preferentially progresses during finish annealing, so pinning by the precipitates is preferentially released at the grain boundaries of the goth-oriented grains, and grain boundary migration starts. Therefore, it is considered that grains having Goth orientation grow preferentially.
(4) According to the opinion of the present inventors, the essential factor of the preferential growth of Goss-oriented grains in secondary recrystallization is the distribution of high energy grain boundaries in the primary recrystallization structure, and the role of inhibitors This is to cause a difference in moving speed between Goss-oriented grains, which are high energy grain boundaries, and other grain boundaries.
(5) Therefore, if a moving speed difference can be generated at the grain boundary, secondary recrystallization having Goth orientation can be performed without using an inhibitor. However, since impurity elements present in steel are likely to segregate at grain boundaries, particularly high energy grain boundaries, when there are many impurity elements, there is a difference in the moving speed between high energy grain boundaries and other grain boundaries. Disappear. Therefore, in order to perform secondary recrystallization without using an inhibitor, it is necessary to make the material highly purified and to reveal the inherent difference in the moving speed depending on the structure of the high energy grain boundary. Thereby, the selective grain growth of the Goss orientation grain by texture inhibition (Texture Inhibition) can be caused.
(6) However, when the grain size distribution of the primary recrystallized structure is not uniform, normal grain growth using the grain size difference between adjacent crystal grains as a driving force occurs, that is, the above-mentioned grain boundary moving speed. Selective grain growth due to the difference is hindered, and selective grain growth of goth-oriented grains does not occur. Therefore, in order to stably grow secondary recrystallized grains using the grain boundary moving speed difference, it is important to keep the crystal grain size distribution of the primary recrystallized structure as uniform as possible.
(7) If the heating temperature at the time of hot rolling is high, even if the content of the inhibitor component is suppressed, the inhibitor-forming component dissolved at the time of heating is finely and non-uniformly precipitated during hot rolling. As a result, non-uniformly distributed fine precipitates locally suppress grain boundary movement, making the particle size distribution extremely non-uniform and inhibiting the development of secondary recrystallized grains in the Goss orientation. Become. Therefore, in order to perform secondary recrystallization having a Goth orientation without using an inhibitor, it is necessary to keep the heating temperature at the time of hot rolling as low as possible within a rollable range.
(8) In this way, due to the effect of texture inhibition, the starting material component does not substantially contain Al, S, Se as precipitation type inhibitor components, thereby causing problems and final problems caused by high temperature heating of the slab. Secondary recrystallized grains can be developed while solving the problem of forsterite film formation during annealing. However, the above-mentioned means alone cannot eliminate the magnetic characteristic deviation in the steel plate. According to the studies by the present inventors, the cause is that the secondary recrystallization start temperature varies slightly in the steel sheet.
(9) The factor that determines the secondary recrystallization behavior is the balance between the driving force and the suppression effect of the primary recrystallized grains. According to the study by the inventors, the cause of the above-mentioned variation is the suppression force due to the remaining inevitable impurities, and thus the residual suppression force is rendered harmless at the stage before the start of secondary recrystallization. Need to take measures.
(10) As such means, the precipitate is coarsened by maintaining it at a temperature lower than the secondary recrystallization start temperature in the stage before the start of secondary recrystallization, and the secondary recrystallization behavior in the steel sheet is made uniform. It is effective to make it. Thereby, the grain-oriented electrical steel sheet with a small magnetic characteristic deviation in a steel plate can be obtained.

本発明の方向性電磁鋼板の製造方法によれば、スラブの高温加熱によって生ずる問題や最終焼鈍時のフォルステライト被膜形成上の問題を解決しながら、上記鋼板内偏差△Bを小さくし得る。 According to the method for producing a grain-oriented electrical steel sheet of the present invention, the above-described in-steel deviation ΔB 8 can be reduced while solving the problems caused by high-temperature heating of the slab and the forsterite film formation at the time of final annealing.

本発明に係る出発素材は、基本的に質量比で、C:0.08%以下、Si:2.0〜8.O%およびMn:0.005〜3.O%を含みかつ、Al:100ppm未満、S:50ppm以下、Se:50ppm以下に制限され、残部不可避的不純物を除きFe以下の成分を含有するものである。   The starting material according to the present invention basically includes, by mass ratio, C: 0.08% or less, Si: 2.0 to 8.O% and Mn: 0.005 to 3.O%, Al: less than 100 ppm, S: 50 ppm Hereinafter, it is limited to Se: 50 ppm or less, and contains Fe or less components except for the remaining inevitable impurities.

Cは熱延組織における結晶粒の均一化を得るために必要であるが、0.08%を超えると、脱炭焼鈍過程において磁気時効の起こらない50ppm以下に低減することが困難になるので0.08%以下に限定される。Mnは熱間加工性を良好にするために必要な元素であるが、0.005%未満であると効果がなく、3.O%を超えると磁束密度が低下するので、0.005〜3.O%とする。Siは、電気抵抗を高めて鉄損の向上に有効に寄与する元素として2.O%以上必要であるが、8.O%を超えると加工性が劣化するため、Si量は2.0〜8.O%とする。   C is necessary to obtain uniform crystal grains in the hot-rolled structure, but if it exceeds 0.08%, it will be difficult to reduce it to 50ppm or less where magnetic aging does not occur in the decarburization annealing process, so 0.08% or less. It is limited to. Mn is an element necessary for improving the hot workability, but if it is less than 0.005%, there is no effect, and if it exceeds 3.O%, the magnetic flux density decreases, so 0.005 to 3.O% To do. Si needs to be 2.O% or more as an element that contributes to the improvement of iron loss by increasing electric resistance, but if it exceeds 8.O%, the workability deteriorates, so the Si amount is 2.0 to 8. O%.

析出型のインヒビター成分であるAl、SおよびSeは本発明では低く抑制される。Alは100ppm未満とし、SおよびSeは50ppm以下とする。これらの量を超えると、テクスチャーインヒビションの作用による二次再結晶組織を得ることが困難になる。なお、Nについては純化焼鈍後のSi窒化物の生成を防止するために50ppm以下にすることが望ましい。また、窒化物形成元素であるTi、Nb、B、Ta、Vもそれぞれ50ppm以下に低減することが望ましい。本発明によるテクスチャーインヒビションの作用を妨害しないようにして鉄損の劣化を防ぎ、良好な加工性を確保するためである。   In the present invention, the precipitation type inhibitor components Al, S and Se are suppressed to a low level. Al is less than 100 ppm, and S and Se are 50 ppm or less. When these amounts are exceeded, it becomes difficult to obtain a secondary recrystallized structure by the action of texture inhibition. N is preferably 50 ppm or less in order to prevent the formation of Si nitride after purification annealing. It is also desirable to reduce the nitride forming elements Ti, Nb, B, Ta, and V to 50 ppm or less, respectively. This is because the deterioration of the iron loss is prevented and the good workability is ensured by not disturbing the action of the texture inhibition according to the present invention.

本発明は、出発素材成分を上記以外に以下に述べる元素を適宜含有させることができる。すなわち、熱延板組織を改善して磁気特性を向上させる目的で、Niを添加することができる。しかしながら添加量が0.005%未満であると磁気特性の向上量が小さく、1.50%を超えると二次再結晶が不安定になり磁気特性が劣化するので添加量は、0.005〜1.50%とすることが好ましい。さらに、鉄損を向上させる目的で、SnをO.01〜0.50%、SbをO.005〜0.50%、CuをO.01〜1.50%、PをO.005〜0.50%、CrをO.01〜1.5%等を単独または複合して添加できる。しかしながら、それぞれ添加量が下限量に満たないと鉄損向上効果が小さく、一方、上限量を超えると二次再結晶粒の発達が抑制されるため、これらの元素は上記範囲で添加することが好ましい。   In the present invention, the starting material component can appropriately contain the elements described below in addition to the above. That is, Ni can be added for the purpose of improving the hot rolled sheet structure and improving the magnetic properties. However, if the addition amount is less than 0.005%, the improvement in magnetic properties is small, and if it exceeds 1.50%, secondary recrystallization becomes unstable and the magnetic properties deteriorate, so the addition amount may be 0.005 to 1.50%. preferable. Furthermore, for the purpose of improving iron loss, Sn is O.01 to 0.50%, Sb is O.005 to 0.50%, Cu is O.01 to 1.50%, P is O.005 to 0.50%, and Cr is O.O. 01 to 1.5% or the like can be added alone or in combination. However, if the addition amount is less than the lower limit amount, the effect of improving iron loss is small. On the other hand, if the upper limit amount is exceeded, the development of secondary recrystallized grains is suppressed, so these elements may be added in the above range. preferable.

出発素材は上記組成成分を有する限り、特にその調整方法、あるいは形態を問わない。たとえば転炉、電気炉などの公知の方法で調整し、必要に応じて真空処理などを施し、通常の造塊法や連続鋳造法でスラブに製造すればよい。あるいは、直接鋳造法を用いて100mm以下の厚さの薄鋳片を出発素材としてもよい。   The starting material is not particularly limited as long as it has the above composition components. For example, it may be adjusted by a known method such as a converter or an electric furnace, subjected to vacuum treatment if necessary, and manufactured into a slab by a normal ingot-making method or a continuous casting method. Alternatively, a thin cast piece having a thickness of 100 mm or less may be used as a starting material by a direct casting method.

この際、熱間圧延に先立ってスラブ加熱を行い、加熱温度を1250℃以下に抑えることが必要である。すでに述べたように、加熱温度が高すぎると、上述のようにインヒビター成分の含有量が抑制されていても、加熱時に固溶したインヒビター形成成分が熱延中に不均一に微細析出し、それにより、粒界移動が局所的に抑制されて粒径分布が極めて不均一になり、ゴス方位への二次再結晶粒の発達が阻害されることになるからである。また、スラブの高温加熱にもたらされるスケールの生成量を押さえ、歩留まりを向上させる効果もある。   At this time, it is necessary to carry out slab heating prior to hot rolling to suppress the heating temperature to 1250 ° C. or lower. As described above, if the heating temperature is too high, even if the content of the inhibitor component is suppressed as described above, the inhibitor-forming component that is solid-dissolved during heating precipitates unevenly and finely during hot rolling. This is because the grain boundary movement is locally suppressed, the particle size distribution becomes extremely nonuniform, and the development of secondary recrystallized grains in the Goss orientation is inhibited. In addition, the yield of the slab can be suppressed by suppressing the amount of scale produced due to the high temperature heating of the slab.

このようにして調整された熱延板(直接鋳造法によって得られた薄鋳片を含む)には必要に応じて熱延板焼鈍が施される。この熱延板焼鈍は、熱間圧延において生じたバンド組織を消滅させ、冷間圧延後の脱炭焼鈍を兼ねる一次再結晶焼鈍において整粒一次再結晶組織を実現するために行われるものである。焼鈍温度が800℃未満では熱間圧延でのバンド組織が残留し、整粒の一次再結晶組織を実現することが困難になり、一方、焼鈍温度が1100℃を超えると不可避的に混入しているインヒビター成分が固溶し、冷却時に不均一に再析出して整粒一次再結晶組織の実現を困難とする。また、熱延板焼鈍後の粒径が粗大化しすぎて整粒一次再結晶組織が得られ難くなる。したがって、熱延板焼鈍は800〜1100℃の範囲で行うのが好ましい。   The hot-rolled sheet thus adjusted (including thin cast pieces obtained by the direct casting method) is subjected to hot-rolled sheet annealing as necessary. This hot-rolled sheet annealing is performed in order to eliminate the band structure generated in the hot rolling and realize a sized primary recrystallization structure in the primary recrystallization annealing also serving as decarburization annealing after the cold rolling. . If the annealing temperature is less than 800 ° C, the band structure in hot rolling remains, making it difficult to achieve the primary recrystallized structure of sized particles. On the other hand, if the annealing temperature exceeds 1100 ° C, it is inevitably mixed. Inhibitor components that are in solution form and re-precipitate non-uniformly upon cooling, making it difficult to achieve a primary resized grain structure. Moreover, the grain size after hot-rolled sheet annealing becomes too coarse, and it becomes difficult to obtain a primary sized primary recrystallized structure. Therefore, it is preferable to perform the hot-rolled sheet annealing in the range of 800 to 1100 ° C.

上記熱延板焼鈍後、冷間圧延を施す。この冷間圧延は公知の手段を利用して行えばよく、中間焼鈍を行なわない、いわゆる一回法を採用することもできれば、中間焼鈍を挟んで多数回の圧延を行うこともできる。また、冷間圧延に際しては圧延温度を100℃〜300℃に上昇させて行う温間圧延を採用すること、あるいは冷間圧延途中で100〜300℃の範囲での時効処理を1回または複数回行うこともできる。これらはゴス組織を発達させる点で有効である。   After the hot-rolled sheet annealing, cold rolling is performed. This cold rolling may be performed using known means, and a so-called one-time method in which intermediate annealing is not performed can be adopted, or rolling can be performed many times with intermediate annealing interposed therebetween. In cold rolling, it is possible to adopt warm rolling performed by raising the rolling temperature to 100 ° C to 300 ° C, or one or more times of aging treatment in the range of 100 to 300 ° C during the cold rolling. It can also be done. These are effective in developing Gothic tissue.

上記冷間圧延により最終板厚とされた冷延板は、次いで脱炭焼鈍に付される。この最終冷延後の脱炭焼鈍は、Cを磁気時効の起こらない50ppm以下、好ましくは30ppm以下に低減することを目的とし、湿潤雰囲気を使用して700〜1000℃の範囲で行うことが好適である。なお、脱炭焼鈍後に浸珪法によってSi量を増加させる手段を行うことも可能である。   The cold-rolled sheet having the final sheet thickness by the cold rolling is then subjected to decarburization annealing. The decarburization annealing after the final cold rolling is performed in a range of 700 to 1000 ° C. using a humid atmosphere for the purpose of reducing C to 50 ppm or less, preferably 30 ppm or less without causing magnetic aging. It is. It is also possible to perform means for increasing the amount of Si by decarburization after decarburization annealing.

このようにして、得られた脱炭済みの冷延鋼板は公知の手段によって、MgOを主成分とする焼鈍分離剤が塗布され、コイルに巻回されて最終焼鈍に付される。本発明では、この最終仕上焼鈍の過程において二次再結晶が開始するに先立ち二次再結晶開始温度よりも5〜20℃低い範囲の温度に10時間以上30時間以下保持する抑制力無害化処理を行う。   Thus, the obtained decarburized cold-rolled steel sheet is coated with an annealing separator mainly composed of MgO by a known means, wound around a coil, and subjected to final annealing. In the present invention, in the process of final finish annealing, before the start of secondary recrystallization, the restraining power detoxification treatment is maintained at a temperature in the range of 5 to 20 ° C. lower than the secondary recrystallization start temperature for 10 to 30 hours. I do.

これは、前記説明(9)〜(10)にしたがい、なお残留している不可避的不純物による残留抑制力を無害化するために本発明で特に採用される手段であり、析出物を粗大化させ、鋼板内での二次再結晶挙動を均一化させるためのものである。この保持温度は二次再結晶開始温度よりも5〜20℃低い温度範囲になければならない。二次再結晶開始温度よりも20℃を超えて低温側で保持しても抑制力無害化の効果が著しく少なく、一方、二次再結晶開始温度よりも低いが、それより5℃未満の高い温度で保持しても二次再結晶温度との区別がつき難いため、上記効果が発現しないまま一次粒の成長、さらには二次再結晶が起こってしまうからである。結局これらの場合は、本発明の目的とする鋼板内偏差△Bを十分小さくすることができない。 This is a means that is particularly employed in the present invention in order to render the residual inhibiting power due to the inevitable impurities still remaining in accordance with the explanations (9) to (10) described above, and coarsens the precipitates. In order to make the secondary recrystallization behavior uniform in the steel plate. This holding temperature must be in the temperature range 5 to 20 ° C. lower than the secondary recrystallization start temperature. Even if it is kept at a lower temperature than 20 ° C above the secondary recrystallization start temperature, the effect of detoxification is remarkably small, while it is lower than the secondary recrystallization start temperature but higher than 5 ° C This is because even if the temperature is maintained, it is difficult to distinguish the secondary recrystallization temperature from the secondary recrystallization temperature, so that the growth of primary grains and further secondary recrystallization occur without exhibiting the above effects. Eventually, in these cases, the in-steel deviation ΔB 8 targeted by the present invention cannot be made sufficiently small.

上記不可避的不純物による残留抑制力無害化処理のための保持時間は10時間以上30時間以下である。その時間が10時間よりも短い場合、抑制力無害化処理効果が十分進展せず、一方、30時間より長い場合は、保持時間中に鋼板の酸化が過度に進み、生成されるフォルステライト質被膜に欠陥が生じるためである。なお、上記保持にあっては、必ずしも鋼板を一定温度に保持する必要はなく、上記温度範囲、保持時間内であれば、鋼板温度が変動し、あるいは上昇し続けてもよい。   The holding time for the detoxification treatment of the residual suppressive force due to the inevitable impurities is 10 hours or more and 30 hours or less. When the time is shorter than 10 hours, the effect of detoxifying treatment is not sufficiently advanced. On the other hand, when the time is longer than 30 hours, the oxidation of the steel sheet proceeds excessively during the holding time, and the forsterite film is generated. This is because a defect occurs. In the above holding, it is not always necessary to hold the steel plate at a constant temperature, and the steel plate temperature may fluctuate or continue to rise within the above temperature range and holding time.

なお、上記「二次再結晶開始温度」とは板厚を貫通した粒が存在し始めた時点の温度をいう。この温度はエプスタイン試験片のサイズにせん断した試料を、温度傾斜をつけた状態で30時間均熱焼鈍した後試料を観察し、板厚を貫通した粒が存在した最低の温度を計測することによって測定する。   The “secondary recrystallization start temperature” refers to the temperature at which grains that have penetrated the plate thickness started to exist. This temperature is determined by measuring the lowest temperature at which grains penetrating the plate thickness were observed after the sample sheared to the size of the Epstein specimen was annealed for 30 hours with a temperature gradient and the sample was observed. taking measurement.

上記の抑制力無害化処理に続いて、鋼板(コイル)はさらに二次再結晶開始温度まで昇温され、二次再結晶、フォルステライト被膜形成と不純物純化のための高温焼鈍が行わる。そのための雰囲気、温度、時間は公知の手段によって選定される。このようにして二次再結晶が完了し、フォルステライト被膜が生成された鋼板は、未反応のMgOを除去し、平坦化焼鈍によって形状矯正し、必要に応じて張力付与絶縁被膜を被成して製品とする。なお、鉄損値低下のために広く採用される磁区細分化処理を採用することも可能である。   Subsequent to the above-described detoxifying treatment, the steel sheet (coil) is further heated to the secondary recrystallization start temperature, and subjected to high temperature annealing for secondary recrystallization, forsterite film formation and impurity purification. The atmosphere, temperature, and time for that purpose are selected by known means. The steel plate on which the secondary recrystallization has been completed and the forsterite film has been formed in this manner removes unreacted MgO, corrects the shape by flattening annealing, and forms a tension-imparting insulating film as necessary. Product. In addition, it is also possible to employ | adopt the magnetic domain fragmentation process employ | adopted widely for a core loss value fall.

質量比で、C:0.045%、Si:3.25%、Mn:0.070%、Al:80ppm、Sb:0.005%、N:40ppm、S:20ppm、残部Fe及び不可避的不純物よりなる電磁鋼板用スラブを1200℃に加熱後、熱間圧延し、2.2mm厚の熱延板とした。得られた熱延板に1000℃の温度で30秒間の熱延板焼鈍を施し、鋼板表面のスケールを除去後、タンデム圧延機により冷間圧延し、最終冷延板厚0.28mmの冷延板とした。得られた冷延板に対し、脱脂処理後、均熱温度840℃で120秒間保持する脱炭焼鈍を行い、これにMgOを主成分とする焼鈍分離剤を塗布し、コイルに巻回して最終仕上焼鈍を施した。その際、あらかじめ脱炭焼鈍板について二次再結晶開始温度を温度傾斜炉により測定して850℃を得、この温度に基づき抑制力無害化処理条件を表1のとおり決定し、該抑制力無害化に続いて、10℃/hで850℃まで昇温後、850℃で40時間保定、その後25℃/hの昇温速度で1200℃まで昇温して被膜形成と純化を行った。   1200 slabs for electrical steel sheets consisting of C: 0.045%, Si: 3.25%, Mn: 0.070%, Al: 80ppm, Sb: 0.005%, N: 40ppm, S: 20ppm, balance Fe and inevitable impurities After heating to ° C., hot rolling was performed to obtain a hot-rolled sheet having a thickness of 2.2 mm. The obtained hot-rolled sheet was subjected to hot-rolled sheet annealing at a temperature of 1000 ° C. for 30 seconds, the scale on the steel sheet surface was removed, and then cold-rolled with a tandem rolling mill, and the cold-rolled sheet having a final cold-rolled sheet thickness of 0.28 mm It was. After degreasing treatment, the resulting cold-rolled sheet is subjected to decarburization annealing that is held at a soaking temperature of 840 ° C. for 120 seconds, and this is coated with an annealing separator mainly composed of MgO and wound around a coil. Finish annealing was performed. At that time, the secondary recrystallization start temperature of the decarburized annealed plate was measured in advance with a temperature gradient furnace to obtain 850 ° C., and the suppression power detoxification treatment conditions were determined as shown in Table 1 based on this temperature. Subsequent to heating, the temperature was raised to 850 ° C. at 10 ° C./h, held at 850 ° C. for 40 hours, and then heated to 1200 ° C. at a temperature raising rate of 25 ° C./h to form a film and purify.

このようにして得られた鋼板のエッジ部から長手方向を圧延方向にとってエプスタイン試験片を順に切り出し、SST測定にて磁化力800A/m時の磁束密度(B)の平均値および最大値と最小値の差△B=Max(B)−Min(B)を測定した。結果は表1に併せて示す。 The Epstein test pieces are cut out in order from the edge portion of the steel sheet thus obtained with the longitudinal direction being the rolling direction, and the average value, maximum value, and minimum value of the magnetic flux density (B 8 ) at a magnetic force of 800 A / m are measured by SST measurement. The difference ΔB 8 = Max (B 8 ) −Min (B 8 ) was measured. The results are also shown in Table 1.

表2に示す成分を含有し、残部不可避的不純物を除きFeからなる組成を有する電磁鋼板用スラブを1200℃の温度に加熱後、熱間圧延し、2.2mm厚の熱延板コイルとした。この熱延板に1000℃で30秒間の熱延板焼鈍を施し、鋼板表面のスケールを除去した後、タンデム圧延機により冷間圧延し、最終冷延板厚0.28mmの冷延板とした。これに脱脂処理後、均熱温度840℃で120秒間保持する脱炭焼鈍を施した後、MgOを主成分とする焼鈍分離剤を塗布して最終仕上焼鈍を施した。この際、あらかじめ脱炭焼鈍板の二次再結晶開始温度を温度傾斜炉で測定して850℃を得、この温度より10℃低い840℃で表2に記載の時間に亘り抑制力無害化処理を行い、次いで10℃/hで850℃まで昇温し、その後850℃で40時間保定、その後25℃/hの昇温速度で1200℃までして被膜形成と純化を行った。   A slab for an electrical steel sheet containing the components shown in Table 2 and having the composition consisting of Fe except for the remaining inevitable impurities was heated to a temperature of 1200 ° C. and then hot-rolled to obtain a 2.2 mm thick hot rolled sheet coil. The hot-rolled sheet was subjected to hot-rolled sheet annealing at 1000 ° C. for 30 seconds to remove the scale on the steel sheet surface, and then cold-rolled by a tandem rolling mill to obtain a cold-rolled sheet having a final cold-rolled sheet thickness of 0.28 mm. After degreasing treatment, this was subjected to decarburization annealing that was maintained at a soaking temperature of 840 ° C. for 120 seconds, and then an annealing separator containing MgO as a main component was applied to perform final finish annealing. At this time, the secondary recrystallization start temperature of the decarburized annealed plate is measured beforehand with a temperature gradient furnace to obtain 850 ° C, and the detoxification treatment is performed at 840 ° C which is 10 ° C lower than this temperature for the time shown in Table 2. Then, the temperature was raised to 850 ° C. at 10 ° C./h, then maintained at 850 ° C. for 40 hours, and then heated to 1200 ° C. at a temperature raising rate of 25 ° C./h to form a film and purify.

得られた鋼板のエッジ部から長手方向を圧延方向にとってエプスタイン試験片を順に切り出し、SST測定にて磁化力800A/m時の磁束密度(B)の平均値および最大値と最小値の差△B(Max(B)−Min(B))を測定した。結果は表2に併せて示す。 The Epstein test pieces are cut out in order from the edge of the obtained steel sheet with the longitudinal direction being the rolling direction, and the difference between the average value and the maximum and minimum values of the magnetic flux density (B 8 ) at a magnetic force of 800 A / m by SST measurement Δ It was measured B 8 (Max (B 8) -Min (B 8)). The results are also shown in Table 2.

方向性電磁鋼板の二次再結晶直前の状態である一次再結晶組織を解析し、様々な結晶方位を持つ各々の結晶粒周囲の粒界について、粒界方位差角が20〜45°である粒界の割合(%)を、結晶方位空間をオイラー角(Φ1、Φ、Φ2)のΦ2=45°断面を用いて表示したものである。The primary recrystallization structure, which is the state immediately before the secondary recrystallization of the grain-oriented electrical steel sheet, is analyzed, and the grain boundary misorientation angle is 20 to 45 ° for each grain boundary around each crystal grain having various crystal orientations. The ratio (%) of the grain boundary is displayed using the Φ2 = 45 ° cross section of the Euler angles (Φ1, Φ, Φ2) in the crystal orientation space.

Claims (3)

質量比で、C:0.08%以下、Si:2.0〜8.O%およびMn:0.005〜3.O%を含みかつ、Al:100ppm未満、S:50ppm以下、Se:50ppm以下に制限され、残部不可避的不純物を除きFeからなる組成を有する鋼スラブに対し熱間圧延、熱延板焼鈍、1回または中間焼鈍を挟む2回以上の冷間圧延、脱炭焼鈍、焼鈍分離剤の塗布及び二次再結晶および純化を目的とする最終仕上焼鈍を行う工程を含む方向性電磁鋼板の製造方法において、
前記熱間圧延に先立ち鋼スラブを1250℃以下に加熱し、かつ最終仕上焼鈍の過程において二次再結晶が開始するに先立ち二次再結晶開始温度よりも5〜20℃低い温度に10時間以上30時間以下保持することを特徴とする方向性電磁鋼板の製造方法。
In mass ratio, C: 0.08% or less, Si: 2.0-8.O% and Mn: 0.005-3.O%, Al: less than 100ppm, S: 50ppm or less, Se: 50ppm or less, the balance Hot rolling, hot rolled sheet annealing, one time or two or more cold rolling sandwiching intermediate annealing, decarburization annealing, application of annealing separator, and two for steel slab having a composition composed of Fe excluding inevitable impurities In the method for producing grain-oriented electrical steel sheets including a step of performing final finish annealing for the purpose of subsequent recrystallization and purification,
Prior to the hot rolling, the steel slab is heated to 1250 ° C. or lower, and prior to the start of secondary recrystallization in the final finish annealing process, the temperature is 5 to 20 ° C. lower than the secondary recrystallization start temperature for 10 hours or longer. A method for producing a grain-oriented electrical steel sheet characterized by holding for 30 hours or less.
熱間圧延後、直ちに冷間圧延を行うことを特徴とする請求項1記載の方向性電磁鋼板の製造方法。 2. The method for producing a grain-oriented electrical steel sheet according to claim 1, wherein cold rolling is performed immediately after hot rolling. 鋼スラブが質量比でさらに、Ni:0.005〜1.50%、Sn:0.01〜0.50%、Sb:0.005〜0.50%、Cu:0.01〜1.50%、P:0.0050〜0.50%およびCr:0.01〜1.50%から選んだ少なくとも1種を含有する成分組成を有することを特徴とする請求項1又は2に記載の方向性電磁鋼板の製造方法。
Steel slabs by weight ratio are further from Ni: 0.005 to 1.50%, Sn: 0.01 to 0.50%, Sb: 0.005 to 0.50%, Cu: 0.01 to 1.50%, P: 0.0050 to 0.50% and Cr: 0.01 to 1.50% The method for producing a grain-oriented electrical steel sheet according to claim 1 or 2, wherein the grain composition has a component composition containing at least one selected.
JP2004045863A 2004-02-23 2004-02-23 Method for producing grain-oriented electrical steel sheet Expired - Lifetime JP4238743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004045863A JP4238743B2 (en) 2004-02-23 2004-02-23 Method for producing grain-oriented electrical steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004045863A JP4238743B2 (en) 2004-02-23 2004-02-23 Method for producing grain-oriented electrical steel sheet

Publications (2)

Publication Number Publication Date
JP2005232560A true JP2005232560A (en) 2005-09-02
JP4238743B2 JP4238743B2 (en) 2009-03-18

Family

ID=35015814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004045863A Expired - Lifetime JP4238743B2 (en) 2004-02-23 2004-02-23 Method for producing grain-oriented electrical steel sheet

Country Status (1)

Country Link
JP (1) JP4238743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291268A (en) * 2015-12-04 2018-07-17 杰富意钢铁株式会社 The manufacturing method of grain-oriented magnetic steel sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108291268A (en) * 2015-12-04 2018-07-17 杰富意钢铁株式会社 The manufacturing method of grain-oriented magnetic steel sheet

Also Published As

Publication number Publication date
JP4238743B2 (en) 2009-03-18

Similar Documents

Publication Publication Date Title
JP5780378B1 (en) Method for producing grain-oriented electrical steel sheet
KR100655678B1 (en) Method for producing grain oriented magnetic steel sheet and grain oriented magnetic steel sheet
CN110114478B (en) Method for manufacturing oriented electrical steel sheet
JP6350398B2 (en) Oriented electrical steel sheet and manufacturing method thereof
RU2686424C1 (en) Method for production of sheets of non-oriented electrical steel having excellent magnetic properties
JP6436316B2 (en) Method for producing grain-oriented electrical steel sheet
JP2007217744A (en) Non-oriented silicon steel sheet and its production method
JP6160649B2 (en) Method for producing grain-oriented electrical steel sheet
JP2006274405A (en) Method for manufacturing grain-oriented electromagnetic steel sheet causing high magnetic-flux density
JP2003253341A (en) Process for manufacturing grain-oriented magnetic steel sheet showing excellent magnetic property
JP4258185B2 (en) Oriented electrical steel sheet and manufacturing method thereof
JP2003193142A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property
JP4238743B2 (en) Method for producing grain-oriented electrical steel sheet
JP4239456B2 (en) Method for producing grain-oriented electrical steel sheet
JP4196565B2 (en) Method for producing grain-oriented electrical steel sheet
JP3896937B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003193134A (en) Method of producing grain oriented silicon steel sheet having excellent magnetic property and coating property
WO2019132357A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP4211447B2 (en) Method for producing grain-oriented electrical steel sheet
JP7193041B1 (en) Manufacturing method of grain-oriented electrical steel sheet
JP7338511B2 (en) Manufacturing method of grain-oriented electrical steel sheet
JP6702259B2 (en) Method for producing grain-oriented electrical steel sheet
JP2003247051A (en) Grain-oriented electrical steel sheet with excellent bendability, and its manufacturing method
EP4079886A1 (en) Grain-oriented electrical steel sheet and manufacturing method therefor
JP2000129353A (en) Production of grain oriented silicon steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081008

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081208

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120109

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4238743

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130109

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140109

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term