JP2005231942A - Activated carbon and trihalomethane removal method - Google Patents

Activated carbon and trihalomethane removal method Download PDF

Info

Publication number
JP2005231942A
JP2005231942A JP2004043136A JP2004043136A JP2005231942A JP 2005231942 A JP2005231942 A JP 2005231942A JP 2004043136 A JP2004043136 A JP 2004043136A JP 2004043136 A JP2004043136 A JP 2004043136A JP 2005231942 A JP2005231942 A JP 2005231942A
Authority
JP
Japan
Prior art keywords
activated carbon
trihalomethane
integer
organometallic compound
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004043136A
Other languages
Japanese (ja)
Other versions
JP4507628B2 (en
Inventor
Koji Kakehi
浩司 掛樋
Masatsugu Miura
正嗣 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inax Corp
Original Assignee
Inax Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inax Corp filed Critical Inax Corp
Priority to JP2004043136A priority Critical patent/JP4507628B2/en
Publication of JP2005231942A publication Critical patent/JP2005231942A/en
Application granted granted Critical
Publication of JP4507628B2 publication Critical patent/JP4507628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide activated carbon the trihalomethane adsorption capacity of which is very high and lasts over a long period of time; and a trihalomethane removal method using the activated carbon. <P>SOLUTION: The surface of activated carbon is treated with an organometallic compound represented by the formula: CX<SB>m</SB>Y<SB>3-m</SB>-[CX<SB>n</SB>Y<SB>2-n</SB>]<SB>l</SB>-(CH<SB>2</SB>)<SB>p</SB>-M-R<SB>3</SB>(wherein X is F, Cl, or Br; Y is F, Cl, Br, or H; M is Si, Ti, or Al; R is an alkoxy group optionally having a halogen group or a 1-4C substituent; (m) is 1, 2, or 3; (n) is 1 or 2; (l) is an integer of 1-30; and (p) is an integer of 0-10). Since the part represented by CX<SB>m</SB>Y<SB>3-m</SB>-[CX<SB>n</SB>Y<SB>2-n</SB>]<SB>l</SB>- has a halogen (F, Cl, or Br)-containing structure similar to the structure of a trihalomethane, the surface of the activated carbon is improved in the affinity to the trihalomethane, exhibiting improved adsorption capacity. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、クロロホルムをはじめとするトリハロメタンで汚染された水から、トリハロメタンを吸着除去して浄化するための活性炭及びこの活性炭を用いたトリハロメタン除去方法に関する。   The present invention relates to an activated carbon for removing and purifying trihalomethane from water contaminated with trihalomethane such as chloroform and a method for removing the trihalomethane using the activated carbon.

水道水浄化等の殺菌過程で添加される塩素ガスによってクロロホルムをはじめとするトリハロメタンが副次的に生成することが知られている。このトリハロメタンは発ガン性等の毒性が指摘されており社会問題化している。   It is known that trihalomethane such as chloroform is produced as a secondary by chlorine gas added in the sterilization process such as tap water purification. This trihalomethane has been pointed out as a carcinogenic toxicity and has become a social problem.

しかし、トリハロメタンは疎水性物質であるために、活性炭のように水蒸気によって賦活され、水酸基やカルボキシル基等で覆われた親水性表面に対してはきわめて低い親和性しか持ち合わせず、活性炭はトリハロメタンについてはほとんど除去能を持たないといってよい。   However, since trihalomethane is a hydrophobic substance, it is activated by water vapor like activated carbon and has a very low affinity for hydrophilic surfaces covered with hydroxyl groups, carboxyl groups, etc. It can be said that there is almost no removal ability.

このため、活性炭を用いてトリハロメタンを効率よく吸着させるためには、活性炭の表面を疎水化させてトリハロメタンの性質に近づける必要がある。   For this reason, in order to efficiently adsorb trihalomethane using activated carbon, it is necessary to make the surface of activated carbon hydrophobic to approximate the properties of trihalomethane.

特開2003−261314号公報には、活性炭表面の水酸基と結合可能なハロゲノ基、メトキシ基、エトキシ基等の官能基を有した疎水表面形成剤で活性炭の表面処理を行い、活性炭が疎水性表面を有するようにすることが記載されている。上記公報では、以下の一般式(A)で示されるシラン化合物を、活性炭表面の水酸基の水素と脱離反応し共有結合させて、活性炭の表面に以下の一般式(B)で示される有機シランを結合させている。
−Si(R(3−a) (A)
(但し、一般式(A)中、Xはハロゲノ基又は炭素数1〜4の置換基を有してもよいアルコキシ基、R,Rは炭素数2以上22以下の直鎖状または分岐した置換基を有してもよい炭化水素鎖、aは1〜3の整数。)
−Si(R(3−a)(−O−) (B)
(但し、一般式(B)中、R,Rは炭素数2以上22以下の直鎖状又は分岐した置換基を有してもよい炭化水素鎖、aは1〜3の整数。)
In JP 2003-261314 A, surface treatment of activated carbon is performed with a hydrophobic surface forming agent having a functional group such as a halogeno group, a methoxy group, or an ethoxy group capable of binding to a hydroxyl group on the activated carbon surface. It is described to have. In the above publication, an organic silane represented by the following general formula (B) is formed on the surface of the activated carbon by covalently bonding a silane compound represented by the following general formula (A) with a hydrogen atom of a hydroxyl group on the surface of the activated carbon. Are combined.
R 1 —Si (R 2 ) (3-a) X a (A)
(However, in general formula (A), X is a halogeno group or an alkoxy group which may have a substituent having 1 to 4 carbon atoms, and R 1 and R 2 are linear or branched having 2 to 22 carbon atoms. And a hydrocarbon chain which may have a substituent, a is an integer of 1 to 3.)
R 1 —Si (R 2 ) (3-a) (—O—) a (B)
(In the general formula (B), R 1 and R 2 are hydrocarbon chains that may have a linear or branched substituent having 2 to 22 carbon atoms, and a is an integer of 1 to 3)

上記特開2003−261314号公報の実施例によると、この活性炭によって、100ppbのクロロホルムを含む原水から、85%以上のクロロホルムが除去される。
特開2003−261314号公報
According to the example of the said Unexamined-Japanese-Patent No. 2003-261314, 85% or more of chloroform is removed from the raw | natural water containing 100 ppb chloroform by this activated carbon.
JP 2003-261314 A

トリハロメタンは発ガン性物質の可能性があるため、活性炭のトリハロメタン吸着能力を一層向上させることが望まれている。   Since trihalomethane may be a carcinogen, it is desired to further improve the trihalomethane adsorption capacity of activated carbon.

本発明は、トリハロメタンの吸着能力が著しく高く、且つ吸着能力の持続期間の長い活性炭と、この活性炭を用いたトリハロメタン除去方法を提供することを目的とする。   An object of the present invention is to provide an activated carbon having a remarkably high trihalomethane adsorption capacity and a long duration of the adsorption capacity, and a trihalomethane removal method using the activated carbon.

本発明(請求項1)の活性炭は、有機金属化合物による表面処理が施された活性炭であって、該有機金属化合物は下記一般式(I)で示されることを特徴とするものである。
CX3−m−[CX2−n−(CH−M−R…(I)
(但し、一般式(I)中、XはF(フッ素),Cl(塩素)又はBr(臭素)、YはF(フッ素),Cl(塩素),Br(臭素)又はH(水素)、MはSi,Ti又はAl、Rはハロゲノ基又は炭素数1〜4の置換基を有してもよいアルコキシ基、mは1〜3の整数、nは1〜2の整数、lは1〜30の整数、pは0〜10の整数。)
The activated carbon of the present invention (invention 1) is activated carbon that has been surface-treated with an organometallic compound, and the organometallic compound is represented by the following general formula (I).
CX m Y 3-m - [ CX n Y 2-n] l - (CH 2) p -M-R 3 ... (I)
(However, in the general formula (I), X is F (fluorine), Cl (chlorine) or Br (bromine), Y is F (fluorine), Cl (chlorine), Br (bromine) or H (hydrogen), M Is Si, Ti or Al, R is a halogeno group or an alkoxy group optionally having 1 to 4 carbon atoms, m is an integer of 1 to 3, n is an integer of 1 to 2, and l is 1 to 30 , P is an integer of 0-10.)

請求項2の活性炭は、請求項1において、前記有機金属化合物はフルオロアルキルシランであることを特徴とするものである。   The activated carbon of claim 2 is characterized in that, in claim 1, the organometallic compound is fluoroalkylsilane.

請求項3の活性炭は、請求項2において、前記フルオロアルキルシランはCFCHCHSi(OCHであることを特徴とするものである。 The activated carbon of claim 3 is characterized in that, in claim 2, the fluoroalkylsilane is CF 3 CH 2 CH 2 Si (OCH 3 ) 3 .

請求項4の活性炭は、請求項1において、前記フルオロアルキルシランはCF14CHCHSi(OCHであることを特徴とするものである。 The activated carbon of claim 4 is characterized in that, in claim 1, the fluoroalkylsilane is CF 3 C 7 F 14 CH 2 CH 2 Si (OCH 3 ) 3 .

本発明(請求項5)のトリハロメタン除去方法は、請求項1ないし4のいずれか1項に記載の活性炭を、トリハロメタン含有水と接触させてトリハロメタンを吸着除去することを特徴とするものである。   The method for removing trihalomethane of the present invention (Claim 5) is characterized in that the activated carbon according to any one of Claims 1 to 4 is brought into contact with water containing trihalomethane to adsorb and remove trihalomethane.

本発明(請求項1)の活性炭では、有機金属化合物のうちRの部分が活性炭表面に存在する水酸基、カルボキシル基等と脱離反応することにより、有機金属化合物が活性炭表面に強く固定されるため、トリハロメタン吸着能力を長期間安定して発揮することができる。また、有機金属化合物のCX3−m−[CX2−n−の部分がハロゲン(F,Cl又はBr)を含む構造となっており、トリハロメタン(CHCl,CHBrCl,CHBrCl,CHBr)の構造と類似しているため、活性炭表面のトリハロメタンに対する親和性が向上し、活性炭のトリハロメタン吸着能力が向上する。 In the activated carbon of the present invention (Claim 1), since the R portion of the organometallic compound reacts with a hydroxyl group, a carboxyl group, etc. present on the activated carbon surface, the organometallic compound is strongly fixed on the activated carbon surface. In addition, the trihalomethane adsorption ability can be exhibited stably for a long period of time. Also, CX m Y 3-m organometallic compounds - [CX n Y 2-n ] l - portions has a structure containing a halogen (F, Cl or Br), trihalomethanes (CHCl 3, CHBrCl 2, Since it is similar to the structure of CHBr 2 Cl, CHBr 3 ), the affinity of the activated carbon surface for trihalomethane is improved and the trihalomethane adsorption capacity of the activated carbon is improved.

本発明の有機金属化合物はフルオロアルキルシランであることが好ましく(請求項2)、とりわけCFCHCHSi(OCH(請求項3)又はCF14CHCHSi(OCHであることが好ましい(請求項4)。この場合、活性炭のトリハロメタン吸着能力が著しく向上する。 The organometallic compound of the present invention is preferably a fluoroalkylsilane (Claim 2), especially CF 3 CH 2 CH 2 Si (OCH 3 ) 3 (Claim 3) or CF 3 C 7 F 14 CH 2 CH 2. Si (OCH 3 ) 3 is preferred (claim 4). In this case, the ability of activated carbon to adsorb trihalomethane is significantly improved.

本発明(請求項5)のトリハロメタン除去方法では、本発明の活性炭を用いているため、長期間にわたりトリハロメタンを高効率にて除去することができる。   In the trihalomethane removal method of the present invention (Claim 5), since the activated carbon of the present invention is used, trihalomethane can be removed with high efficiency over a long period of time.

本発明の活性炭は、下記一般式(I)で表される有機金属化合物で表面処理した構成を有している。
CX3−m−[CX2−n−(CH−M−Rq−1…(I)
但し、一般式(I)中、XはF(フッ素),Cl(塩素)又はBr(臭素)、YはF(フッ素),Cl(塩素),Br(臭素)又はH(水素)、MはSi,Ti又はAl、Rはハロゲノ基又は炭素数1〜4の置換基を有してもよいアルコキシ基、mは1〜3の整数、nは1〜2の整数、lは1〜30の整数、pは0〜10の整数、qはMの酸化数である。
The activated carbon of the present invention has a structure that is surface-treated with an organometallic compound represented by the following general formula (I).
CX m Y 3-m - [ CX n Y 2-n] l - (CH 2) p -M-R q-1 ... (I)
However, in general formula (I), X is F (fluorine), Cl (chlorine) or Br (bromine), Y is F (fluorine), Cl (chlorine), Br (bromine) or H (hydrogen), and M is Si, Ti or Al, R is a halogeno group or an alkoxy group which may have a substituent having 1 to 4 carbon atoms, m is an integer of 1 to 3, n is an integer of 1 to 2, l is 1 to 30 An integer, p is an integer of 0 to 10, and q is an oxidation number of M.

上記の活性炭の原料としては、ヤシ殻、竹、石炭などの天然材料、またフェノールなどの樹脂等を原料として製造されたものである。その形状については特に制限はなく、粒状、粉末、繊維状等いずれも可能である。   As a raw material of said activated carbon, it manufactures using natural materials, such as a coconut shell, bamboo, and coal, resin, such as a phenol, etc. as a raw material. There is no restriction | limiting in particular about the shape, Any, granular, powder, fibrous form, etc. are possible.

上記一般式(I)で示される基本構造を有する有機金属化合物において、Rの部分は主に活性炭と反応する機能を有する。即ち、Rで示されるハロゲノ基又はアルコキシ基が活性炭表面に存在する水酸基やカルボキシル基等の活性水素と脱離反応し、ハロゲン化水素やアルコールを脱離し、その結果、有機金属化合物のMで示されるSi原子等が活性炭表面に共有結合により化学結合する。このようにして有機金属化合物が活性炭表面に強く固定されることにより、活性炭のトリハロメタン吸着能力を長期間安定して持続させることができる。   In the organometallic compound having the basic structure represented by the general formula (I), the R portion mainly has a function of reacting with activated carbon. That is, the halogeno group or alkoxy group represented by R reacts with an active hydrogen such as a hydroxyl group or a carboxyl group present on the activated carbon surface to desorb hydrogen halide or alcohol, and as a result, represented by M of the organometallic compound. Si atoms and the like are chemically bonded to the activated carbon surface by covalent bonds. In this way, the organometallic compound is firmly fixed on the activated carbon surface, whereby the trihalomethane adsorption ability of the activated carbon can be stably maintained for a long period of time.

ハロゲノ基又は炭素数1〜4の置換基を有してもよいアルコキシ基、即ちRとしては、具体的には、−OCH、−OC、−OC、−OC等が挙げられるが、反応性の点では−OCが好ましい。 As the halogeno group or the alkoxy group which may have a substituent having 1 to 4 carbon atoms, that is, R, specifically, —OCH 3 , —OC 2 H 5 , —OC 3 H 7 , —OC 4 H 9 and the like, but is preferably -OC 2 H 5 in terms of reactivity.

一般式(I)で示される有機金属化合物のうち、CX3−m−[CX2−n−(CH−の部分は、主にトリハロメタンを吸着する機能を有する。この部分は、X又はYにハロゲン(F,Cl又はBr)を含むため、トリハロメタン(CHCl,CHBrCl,CHBrCl,CHBr)と構造が類似している。このため、この部分とトリハロメタンとの間に大きな分子間力が働き、トリハロメタンを強力に吸着する。 Among the organometallic compounds represented by the general formula (I), CX m Y 3 -m - [CX n Y 2-n] l - (CH 2) p - portion of the functions to primarily adsorb trihalomethanes . Since this part contains halogen (F, Cl or Br) in X or Y, the structure is similar to that of trihalomethane (CHCl 3 , CHBrCl 2 , CHBr 2 Cl, CHBr 3 ). For this reason, a large intermolecular force acts between this portion and trihalomethane to strongly adsorb trihalomethane.

上記CX3−m−[CX2−n−(CH−において、lは1〜30特に1〜7の整数であることが好ましい。lが0であると、有機金属化合物中にトリハロメタンと対応する構造を有する部分がないため、トリハロメタンを十分に吸着することができない。一方、lが30以上であると、分子が大きくなるため、細孔内部を処理することが困難である。また、トリハロメタンとの分子間力が小さくなるため、吸着能力が低下する。 The CX m Y 3-m - [ CX n Y 2-n] l - (CH 2) p - in, l is preferably an integer of 1 to 30, especially 1 to 7. When l is 0, there is no portion having a structure corresponding to trihalomethane in the organometallic compound, and thus trihalomethane cannot be sufficiently adsorbed. On the other hand, if l is 30 or more, the molecules become large, and it is difficult to treat the inside of the pores. Moreover, since the intermolecular force with trihalomethane is reduced, the adsorption capacity is reduced.

また、上記CX3−m−[CX2−n−(CH−において、pは0〜10の整数であることが好ましい。pが10以上であると、活性炭表面が著しく疎水性となり、トリハロメタンを含む水が活性炭の微細孔内に浸入できなくなり、活性炭のトリハロメタン吸着能力が低下する。好ましいpの範囲は1〜3である。 Further, the CX m Y 3-m - [ CX n Y 2-n] l - (CH 2) p - in, p is preferably an integer of 0 to 10. When p is 10 or more, the activated carbon surface becomes extremely hydrophobic, and water containing trihalomethane cannot enter the fine pores of the activated carbon, and the trihalomethane adsorption capacity of the activated carbon decreases. A preferable range of p is 1 to 3.

本発明の活性炭における有機金属化合物(S)と活性炭組成物(C)との重量比(S/C)は、適用する活性炭や有機金属化合物の種類や形状等にもよるが、例えば1/1000〜1/10の範囲とすることが好ましい。有機金属化合物や活性炭組成物の種類等にもよるが、重量比(S/C)が1/1000より少ないと、トリハロメタンに対する吸着能力が不足し、逆に1/10を超えると有機金属化合物を大量に必要として経済性に欠ける上に、過剰の有機金属化合物が未反応のまま残留し、使用時に溶出するため、種々の弊害を生じることもあるので好ましくない。   The weight ratio (S / C) between the organometallic compound (S) and the activated carbon composition (C) in the activated carbon of the present invention depends on the type and shape of the applied activated carbon and organometallic compound, for example, 1/1000. It is preferable to be in the range of ˜1 / 10. Depending on the type of organometallic compound and activated carbon composition, if the weight ratio (S / C) is less than 1/1000, the adsorption capacity for trihalomethane will be insufficient. It is not preferable because a large amount is necessary and is not economical, and an excessive organometallic compound remains unreacted and is eluted at the time of use, which may cause various adverse effects.

以下、実施例及び比較例を用いて本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail using examples and comparative examples.

[実施例1]
活性炭として、細孔径分布のピークが1〜2nmにあり、比表面積約1300m/g、表面酸素官能基量3.8mmol/gのヤシ殻活性炭を用いた。
[Example 1]
As the activated carbon, coconut shell activated carbon having a peak pore size distribution of 1 to 2 nm, a specific surface area of about 1300 m 2 / g and a surface oxygen functional group amount of 3.8 mmol / g was used.

処理溶液として、トルエンにトリフルオロプロピルトリメトキシシラン(CFCHCHSi(OCHを5vol%添加したものを用いた。 As the treatment solution, a solution obtained by adding 5 vol% of trifluoropropyltrimethoxysilane (CF 3 CH 2 CH 2 Si (OCH 3 ) 3 to toluene was used.

この処理溶液中に上記活性炭を30分間浸漬した後、自然乾燥し、活性炭の表面にトリフルオロプロピルシランの単分子層を形成した。   The activated carbon was immersed in this treatment solution for 30 minutes and then naturally dried to form a trifluoropropylsilane monomolecular layer on the surface of the activated carbon.

上記表面処理を施した活性炭0.001gを、濃度100ppbのクロロホルム水溶液100ml中に浸漬し、2時間浸漬後の液中クロロホルム濃度をGC−MSのヘッドスペース法にて測定することにより、クロロホルムの吸着能力の評価を行った。   Adsorption of chloroform by immersing 0.001 g of the activated carbon with the above surface treatment in 100 ml of chloroform aqueous solution with a concentration of 100 ppb and measuring the concentration of chloroform in the solution after immersion for 2 hours by GC-MS headspace method The ability was evaluated.

評価に際し、以下の文献を参考にした。   In the evaluation, the following documents were referred to.

中野重和 平嶋恒亮 科学と工業 vol.60 356−364(1986)
評価結果を表1に示す。
Shigekazu Nakano Tsuneaki Hirashima Science and Industry vol. 60 356-364 (1986)
The evaluation results are shown in Table 1.

[実施例2]
処理溶液としてトルエンにCF14CHCHSi(OCHを5vol%添加したものを用い、活性炭の表面にフルオロアルキルシランの単分子層を形成したこと以外は実施例1と同様にして試料を作成し、実施例1と同様にしてクロロホルムの吸着能力の評価を行った。評価結果を表1に示す。
[Example 2]
Example 1 except that 5 vol% of CF 3 C 7 F 14 CH 2 CH 2 Si (OCH 3 ) 3 was added to toluene as the treatment solution, and a monolayer of fluoroalkylsilane was formed on the surface of the activated carbon. Samples were prepared in the same manner as in Example 1, and the chloroform adsorption capacity was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

[比較例1]
処理溶液としてトルエンにメチルトリメトキシシラン(CHSi(OCH)を5vol%添加したものを用い、活性炭の表面にメチルトリメトキシシランの単分子層を形成したこと以外は実施例1と同様にして試料を作成し、実施例1と同様にしてクロロホルムの吸着能力の評価を行った。評価結果を表1に示す。
[Comparative Example 1]
Example 1 was used except that 5 vol% of methyltrimethoxysilane (CH 3 Si (OCH 3 ) 3 ) was added to toluene as a treatment solution, and a monolayer of methyltrimethoxysilane was formed on the surface of activated carbon. Samples were prepared in the same manner, and chloroform adsorption capacity was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

[比較例2]
実施例1と同様の活性炭を、表面処理することなく実施例1と同様にしてクロロホルムの吸着能力の評価を行った。評価結果を表1に示す。
[Comparative Example 2]
Chloroform adsorption ability was evaluated in the same manner as in Example 1 without subjecting the same activated carbon as in Example 1 to surface treatment. The evaluation results are shown in Table 1.

[比較例3]
実施例1と同様の活性炭を、窒素雰囲気の下、800℃で4時間加熱処理することにより、活性炭を疎水化した。
[Comparative Example 3]
The activated carbon similar to Example 1 was hydrophobized by heat-treating at 800 ° C. for 4 hours under a nitrogen atmosphere.

この賦活により撥水化した疎水活性炭について、実施例1と同様にしてクロロホルムの吸着能力の評価を行った。評価結果を表1に示す。   With respect to the hydrophobic activated carbon rendered water repellent by this activation, the adsorption ability of chloroform was evaluated in the same manner as in Example 1. The evaluation results are shown in Table 1.

Figure 2005231942
Figure 2005231942

表1から明らかな通り、実施例1,2の処理活性炭は、水中のクロロホルムを初期濃度100ppbから3ppb及び5ppbに低減(活性炭で吸着)することができた。本発明の活性炭は、従来活性炭よりもトリハロメタン吸着能力が向上していることが分かった。   As is apparent from Table 1, the treated activated carbons of Examples 1 and 2 were able to reduce (adsorb with activated carbon) chloroform in water from an initial concentration of 100 ppb to 3 ppb and 5 ppb. It turned out that the activated carbon of this invention has improved the trihalomethane adsorption | suction ability rather than the conventional activated carbon.

Claims (5)

有機金属化合物による表面処理が施された活性炭であって、該有機金属化合物は下記一般式(I)で示されることを特徴とする活性炭。
CX3−m−[CX2−n−(CH−M−Rq−1…(I)
(但し、一般式(I)中、XはF(フッ素),Cl(塩素)又はBr(臭素)、YはF(フッ素),Cl(塩素),Br(臭素)又はH(水素)、MはSi,Ti又はAl、Rはハロゲノ基又は炭素数1〜4の置換基を有してもよいアルコキシ基、mは1〜3の整数、nは1〜2の整数、lは1〜30の整数、pは0〜10の整数、qはMの酸化数。)
An activated carbon that has been surface-treated with an organometallic compound, wherein the organometallic compound is represented by the following general formula (I):
CX m Y 3-m - [ CX n Y 2-n] l - (CH 2) p -M-R q-1 ... (I)
(However, in the general formula (I), X is F (fluorine), Cl (chlorine) or Br (bromine), Y is F (fluorine), Cl (chlorine), Br (bromine) or H (hydrogen), M Is Si, Ti or Al, R is a halogeno group or an alkoxy group optionally having 1 to 4 carbon atoms, m is an integer of 1 to 3, n is an integer of 1 to 2, and l is 1 to 30 , P is an integer of 0 to 10, q is the oxidation number of M.)
請求項1において、前記有機金属化合物はフルオロアルキルシランであることを特徴とする活性炭。   2. The activated carbon according to claim 1, wherein the organometallic compound is fluoroalkylsilane. 請求項2において、前記フルオロアルキルシランはCFCHCHSi(OCHであることを特徴とする活性炭。 The activated carbon according to claim 2, wherein the fluoroalkylsilane is CF 3 CH 2 CH 2 Si (OCH 3 ) 3 . 請求項2において、前記フルオロアルキルシランはCF14CHCHSi(OCHであることを特徴とする活性炭。 According to claim 2, wherein the fluoroalkyl silane activated carbon, characterized in that CF 3 C 7 F 14 CH 2 CH 2 Si (OCH 3) 3. 請求項1ないし4のいずれか1項に記載の活性炭を、トリハロメタン含有水と接触させてトリハロメタンを吸着除去することを特徴とするトリハロメタン除去方法。   A method for removing trihalomethane, wherein the activated carbon according to any one of claims 1 to 4 is brought into contact with water containing trihalomethane to adsorb and remove trihalomethane.
JP2004043136A 2004-02-19 2004-02-19 Trihalomethane removal method Expired - Fee Related JP4507628B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004043136A JP4507628B2 (en) 2004-02-19 2004-02-19 Trihalomethane removal method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004043136A JP4507628B2 (en) 2004-02-19 2004-02-19 Trihalomethane removal method

Publications (2)

Publication Number Publication Date
JP2005231942A true JP2005231942A (en) 2005-09-02
JP4507628B2 JP4507628B2 (en) 2010-07-21

Family

ID=35015287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004043136A Expired - Fee Related JP4507628B2 (en) 2004-02-19 2004-02-19 Trihalomethane removal method

Country Status (1)

Country Link
JP (1) JP4507628B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277370A (en) * 2006-04-05 2007-10-25 Dainippon Ink & Chem Inc Aqueous epoxy resin composition
CN101830552A (en) * 2010-04-01 2010-09-15 袁科文 Composite for removing chloroform in tap water
JP2012529989A (en) * 2009-06-15 2012-11-29 サウジ アラビアン オイル カンパニー Suspension medium membrane biological reactor system and process including suspension system
JP2012532747A (en) * 2009-07-08 2012-12-20 サウジ アラビアン オイル カンパニー Low concentration wastewater treatment system and process
US9290399B2 (en) 2009-07-08 2016-03-22 Saudi Arabian Oil Company Wastewater treatment process including irradiation of primary solids
CN107758790A (en) * 2017-11-30 2018-03-06 重庆大学 A kind of processing method and processing device of disinfection by-product of drinking water

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225299A (en) * 1996-02-28 1997-09-02 Toyota Motor Corp Activated carbon
JP2002535430A (en) * 1999-01-20 2002-10-22 キャボット コーポレイション Aggregates with attached polymer groups and polymer foam
JP2003261314A (en) * 2002-03-05 2003-09-16 Panasonic Communications Co Ltd Activated carbon, method for producing the same, and water-purifying device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225299A (en) * 1996-02-28 1997-09-02 Toyota Motor Corp Activated carbon
JP2002535430A (en) * 1999-01-20 2002-10-22 キャボット コーポレイション Aggregates with attached polymer groups and polymer foam
JP2003261314A (en) * 2002-03-05 2003-09-16 Panasonic Communications Co Ltd Activated carbon, method for producing the same, and water-purifying device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007277370A (en) * 2006-04-05 2007-10-25 Dainippon Ink & Chem Inc Aqueous epoxy resin composition
JP2012529989A (en) * 2009-06-15 2012-11-29 サウジ アラビアン オイル カンパニー Suspension medium membrane biological reactor system and process including suspension system
JP2012529990A (en) * 2009-06-15 2012-11-29 サウジ アラビアン オイル カンパニー Suspension medium membrane biological reactor system and process including multiple biological reactor zones
JP2012532747A (en) * 2009-07-08 2012-12-20 サウジ アラビアン オイル カンパニー Low concentration wastewater treatment system and process
US9073764B2 (en) 2009-07-08 2015-07-07 Saudi Arabian Oil Company Low concentration wastewater treatment system and process
US9290399B2 (en) 2009-07-08 2016-03-22 Saudi Arabian Oil Company Wastewater treatment process including irradiation of primary solids
US9340441B2 (en) 2009-07-08 2016-05-17 Saudi Arabian Oil Company Wastewater treatment system including irradiation of primary solids
CN101830552A (en) * 2010-04-01 2010-09-15 袁科文 Composite for removing chloroform in tap water
CN107758790A (en) * 2017-11-30 2018-03-06 重庆大学 A kind of processing method and processing device of disinfection by-product of drinking water
CN107758790B (en) * 2017-11-30 2024-01-09 重庆大学 Treatment method and device for disinfection byproducts of drinking water

Also Published As

Publication number Publication date
JP4507628B2 (en) 2010-07-21

Similar Documents

Publication Publication Date Title
US20210060522A1 (en) Graphene-based materials for the efficient removal of pollutants from water
Tanada et al. Removal of formaldehyde by activated carbons containing amino groups
JP2810979B2 (en) Surface-hydrophobic activated carbon and its production method
JP4469975B2 (en) Photocatalyst composite and organic substance conversion method using the same
JP4507628B2 (en) Trihalomethane removal method
Ravi et al. Incessant formation of chain-like mesoporous silica with a superior binding capacity for mercury
Nouri et al. Adsorption of p-nitrophenol in untreated and treated activated carbon
CA2166609A1 (en) Functional group containing activated carbons
Anjum et al. Removal of As3+ using chitosan–montmorillonite composite: sorptive equilibrium and kinetics
JP2006281206A (en) Solid odor absorber consisting of anodic oxide layer with active substance stored therein
Junejo et al. Synthesis of piperdinomethylcalix [4] arene attached silica resin for the removal of metal ions from water: equilibrium, thermodynamic and kinetic modelling studies
CN113233536B (en) Method for directionally reducing nitrite in water body by using ethylenediamine resin-based zero-valent palladium nano composite material
KR102239054B1 (en) Removal of chloramine and mercury from aqueous solutions
JP2023538867A (en) Copper, iron and nitrogen treated adsorbents and their manufacturing methods
CN110075806B (en) Amino modified nano porous silicon adsorbent and preparation method and application thereof
KR101382771B1 (en) Mesoporous titanosilicate-reduced graphene oxide composite photocatalysts, preparation method thereof and absorbents comprising the same
JP2003261314A (en) Activated carbon, method for producing the same, and water-purifying device
Park et al. Adsorption of acetaldehyde from air by activated carbon and carbon fibers
Li et al. Abiotic humification of phenolic pollutant to form a hybrid adsorbent for toxic metals by LDH based composite
KR102239059B1 (en) Removal of organic compounds and chloramine from aqueous solutions
KR20070118487A (en) Silica compounds for adsorbing heavy metals and method for synthesizing the compounds
CN115382505A (en) Preparation method and application of sulfydryl functionalized magnetic oxidized carbon nitride nanocomposite
KR101845609B1 (en) Nano-zeolite modified alkylenediamine, and preparation method thereof
Anbia et al. The examination of surface chemistry and porosity of carbon nanostructured adsorbents for 1-naphthol removal from petrochemical wastewater streams
KR102168615B1 (en) Nano-porous mineral activated carbon and its using method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091023

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100413

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4507628

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130514

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140514

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees