JP2005230813A - Hollow fiber membrane module - Google Patents

Hollow fiber membrane module Download PDF

Info

Publication number
JP2005230813A
JP2005230813A JP2005007261A JP2005007261A JP2005230813A JP 2005230813 A JP2005230813 A JP 2005230813A JP 2005007261 A JP2005007261 A JP 2005007261A JP 2005007261 A JP2005007261 A JP 2005007261A JP 2005230813 A JP2005230813 A JP 2005230813A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
membrane module
cylindrical case
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005007261A
Other languages
Japanese (ja)
Inventor
Ichiro Kumo
雲  一郎
Katsumi Yokogawa
勝己 横川
Hiromitsu Kanamori
浩充 金森
Sukeyuki Tanaka
祐之 田中
Kenji Sakai
憲司 酒井
Naoki Oka
尚樹 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2005007261A priority Critical patent/JP2005230813A/en
Publication of JP2005230813A publication Critical patent/JP2005230813A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hollow fiber membrane module which prevents suspended substances from sticking by moderately swinging the hollow fiber of the hollow fiber membrane module at the time of filtration and air scrubbing, facilitates the removal of the peeled suspended substances, prevents the hollow fiber end from damaging the other hollow fiber, and facilitates a closing operation of a large number of hollow fiber ends. <P>SOLUTION: This is a hollow fiber membrane module, in which a large number of hollow fiber membranes are stored in a cylindrical case, and is so constituted that one end part of the hollow fiber membrane is fixed to the cylindrical case in a state of the end face opened, the other end part of the hollow fiber membrane is divided in a plurality of small bundles and the end faces are closed in bulk at the unit of bundles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、上水処理用途などに好適に用いられる中空糸膜モジュールに関し、詳しくは濾過性能低下を招き難く、かつ、生産効率向上に好適な形状を有する中空糸膜モジュールに関する。   The present invention relates to a hollow fiber membrane module suitably used for water treatment applications and the like, and particularly relates to a hollow fiber membrane module that is less likely to cause a decrease in filtration performance and has a shape suitable for improving production efficiency.

従来より上水用の中空糸膜モジュールは、上水用、産業水用などに広く利用されており、幾多の実施形態と多種多様の用途に関して公知である。   BACKGROUND ART Conventionally, hollow fiber membrane modules for clean water have been widely used for clean water, industrial water, and the like, and are known for many embodiments and various uses.

従来から用いられている中空糸膜モジュールは、例えば特許文献1〜4にも示され、また図7、8に示すように、筒状ケース3内に多数本の中空糸膜2を収納して構成されている。特許文献1に示すように、図7に示す中空糸膜モジュールにおいて、中空糸膜2の一方の端部(上端部)は、端面が開口された状態で筒状ケース3に合成高分子樹脂4で固定され、一方、中空糸膜2の他方の端部(下端部)は、端面が閉塞された状態で筒状ケース3に合成高分子樹脂4で固定されている。また、特許文献2〜4に示すように、図8に示す中空糸膜モジュールにおいて、中空糸膜2の一方の端部(上端部)は、端面が開口された状態で筒状ケース3に合成高分子樹脂4で固定され、中空糸膜2の他方の端部(下端部)は、筒状ケース3に固定されずに、各中空糸膜毎に端面が閉塞状態を保って自由運動可能となっている。   Conventionally used hollow fiber membrane modules are also disclosed in, for example, Patent Documents 1 to 4, and a plurality of hollow fiber membranes 2 are accommodated in a cylindrical case 3 as shown in FIGS. It is configured. As shown in Patent Document 1, in the hollow fiber membrane module shown in FIG. 7, one end portion (upper end portion) of the hollow fiber membrane 2 is attached to the cylindrical case 3 with the synthetic polymer resin 4 in an open state. On the other hand, the other end portion (lower end portion) of the hollow fiber membrane 2 is fixed to the cylindrical case 3 with the synthetic polymer resin 4 in a state where the end face is closed. Further, as shown in Patent Documents 2 to 4, in the hollow fiber membrane module shown in FIG. 8, one end portion (upper end portion) of the hollow fiber membrane 2 is synthesized with the cylindrical case 3 with the end face opened. The other end portion (lower end portion) of the hollow fiber membrane 2 is fixed to the polymer resin 4 and is not fixed to the cylindrical case 3, and the end surface of each hollow fiber membrane is kept closed so that it can freely move. It has become.

これらの中空糸膜モジュールを外圧方式で用いる場合、通常、垂直に配置し、筒状ケースの下方の流入口12から原水(被処理水)を投入し、中空糸膜を透過し中空部に到達した濾過水を、上部の上キャップ6から外部に取り出している。   When these hollow fiber membrane modules are used in an external pressure system, they are usually arranged vertically, and raw water (treated water) is introduced from the inlet 12 below the cylindrical case, passes through the hollow fiber membrane and reaches the hollow part. The filtered water is taken out from the upper cap 6 at the top.

このとき、濾過を進行させると、中空糸膜外表面に原水中の懸濁物質が付着し濾過抵抗が大きくなり膜透過流速(FLUX)が徐々に低下する。そこで、濾過抵抗を元の低い状態に回復させるため、原水の供給を停止し、濾過水を上キャップ6側から所定量供給するいわゆる逆洗を行うと共に、下部に設けられた流入口12から空気を吹き込んでエアースクラビングを行い、懸濁物質を落脱せしめ下キャップ7から筒状ケース内の水と共に外部へ排出する。   At this time, when the filtration proceeds, suspended substances in the raw water adhere to the outer surface of the hollow fiber membrane, the filtration resistance increases, and the membrane permeation flow rate (FLUX) gradually decreases. Therefore, in order to restore the filtration resistance to the original low state, the supply of raw water is stopped, so-called backwashing is performed in which a predetermined amount of filtered water is supplied from the upper cap 6 side, and air is supplied from the inlet 12 provided at the lower part. The air is scrubbed by blowing off the suspended matter, and the suspended substance is allowed to fall off and discharged from the lower cap 7 together with the water in the cylindrical case.

また、特許文献5に示すように負圧方式を用いる浸漬型中空糸膜モジュールにおいても図11に示すように通水可能な開口部を有する筒状ケース17内に多数本の中空糸膜2を収納して構成されており、筒状ケースの開口部から原水が通水され、中空糸膜外部から中空部に陰圧濾過した濾過水を、上部のキャップ6から外部に取り出しているが、この浸漬型中空糸膜モジュールにおいても加圧方式と同様に濾過を進行させると、中空糸膜外表面に原水中の懸濁物質が付着し、濾過抵抗が大きくなり膜透過流速(FLUX)が徐々に低下する。そこで濾過抵抗を元の低い状態に回復させるため、下部に設けられた流入口12から空気を吹き込んでエアースクラビングを行い、懸濁物質を落脱せしめ流入孔10または筒状ケースの開口部から外部へ排出する。   Further, in the immersion type hollow fiber membrane module using the negative pressure system as shown in Patent Document 5, as shown in FIG. 11, a large number of hollow fiber membranes 2 are provided in the cylindrical case 17 having a water-permeable opening. The raw water is passed through the opening of the cylindrical case, and the filtrate filtered negative pressure from the outside of the hollow fiber membrane to the hollow portion is taken out from the upper cap 6 to the outside. In the submerged hollow fiber membrane module, when the filtration proceeds as in the pressurization method, suspended substances in the raw water adhere to the outer surface of the hollow fiber membrane, the filtration resistance increases, and the membrane permeation flow rate (FLUX) gradually increases. descend. Therefore, in order to restore the filtration resistance to the original low state, air is scrubbed by blowing air from the inflow port 12 provided at the lower part, and suspended substances are dropped off from the inlet 10 or the opening of the cylindrical case to the outside. To discharge.

しかしながら、図7や図11に示すような中空糸膜モジュールの場合、中空糸膜を物理洗浄する際に流入口12から導入せしめた空気は、下部の合成高分子樹脂4に設けた複数個の空気散気孔10から濾過領域内に流入することとなるが、中空糸膜の両端が樹脂で把持されているために中空糸膜は揺れにくく、合成高分子樹脂4近傍の中空糸膜を充分に洗浄することは難しい。さらに、中空糸膜外表面から剥がれた懸濁物質は本来空気散気孔10や浸漬型モジュールの場合は散気孔10および筒状ケースの開口部から水と共に排出されるが、空気散気孔10間に落ちた懸濁物質は、その部分で滞留が生じやすいので、完全に除去することが難しい。   However, in the case of the hollow fiber membrane module as shown in FIG. 7 or FIG. 11, the air introduced from the inlet 12 when the hollow fiber membrane is physically washed is a plurality of air provided in the lower synthetic polymer resin 4. Although it will flow into the filtration region from the air diffuser 10, the hollow fiber membrane is not easily shaken because both ends of the hollow fiber membrane are gripped by the resin, and the hollow fiber membrane in the vicinity of the synthetic polymer resin 4 is sufficiently removed. It is difficult to clean. Furthermore, the suspended substance peeled off from the outer surface of the hollow fiber membrane is originally discharged together with water from the air diffuser 10 or the opening of the cylindrical case in the case of an immersion module. The suspended suspended matter is likely to stay in that part, and is difficult to remove completely.

一方、図8に示すような中空糸膜モジュールは、濾過工程における原水流入やエアースクラビングによって下方の中空糸端が個々に自由に揺れるので懸濁物質の付着防止には有効であるが、多数本ある中空糸膜の端面を1本1本を閉塞する作業は、煩雑で時間を要するうえに、筒状ケース内での原水流速が偏り易いので、特定部分の中空糸を必要以上に激しく揺らして他の中空糸膜に衝突させてしまい、中空糸膜を損傷する虞がある。また、エアースクラビング時にもエアの流れに偏りが生じやすく、懸濁物質の洗浄偏りが起こったり、個々自由に揺れる中空糸膜同士が絡み合うという別の問題も生じる。
特許第3290815号公報 特開平7−60074号公報 特開昭59−4403号公報 実開昭60−115502号公報および明細書 特開2002−346344号公報
On the other hand, the hollow fiber membrane module as shown in FIG. 8 is effective for preventing the attachment of suspended solids because the lower hollow fiber ends freely sway individually due to the inflow of raw water or air scrubbing in the filtration process. The operation of closing one end of each hollow fiber membrane one by one is cumbersome and time consuming, and the flow rate of the raw water in the cylindrical case tends to be biased. There is a risk of colliding with other hollow fiber membranes and damaging the hollow fiber membranes. In addition, the air flow tends to be biased even during air scrubbing, and there is another problem that the suspension material is biased to be washed, and the hollow fiber membranes that swing freely are entangled with each other.
Japanese Patent No. 3290815 Japanese Patent Laid-Open No. 7-60074 JP 59-4403 Japanese Utility Model Publication No. 60-115502 and specification JP 2002-346344 A

本発明は、濾過工程時やエアースクラビング時に中空糸膜が損傷することなく適度に揺れ、エアースクラビング時には中空糸膜外表面より剥がされた懸濁物質を排出し易い、中空糸膜端面の閉塞作業が容易な中空糸膜モジュールを提供することを目的とする。   The present invention is suitable for swaying the hollow fiber membrane during the filtration process or air scrubbing without damaging the air, and during air scrubbing, the suspended material peeled off from the outer surface of the hollow fiber membrane can be easily discharged. An object of the present invention is to provide a hollow fiber membrane module that is easy to handle.

本発明は、前記目的を達成するために、次のような構成をとる。   In order to achieve the above object, the present invention has the following configuration.

(1)多数本の中空糸膜が筒状ケースに収納された中空糸膜モジュールであって、中空糸膜の一方の端部は、端面が開口された状態で筒状ケースに固定され、中空糸膜の他方の端部は、複数の小束に分割され、端面が該小束単位でまとめて閉塞されていることを特徴とする中空糸膜モジュール。   (1) A hollow fiber membrane module in which a large number of hollow fiber membranes are housed in a cylindrical case, and one end of the hollow fiber membrane is fixed to the cylindrical case with the end face open, A hollow fiber membrane module, wherein the other end of the yarn membrane is divided into a plurality of small bundles, and the end surfaces are closed together in units of the small bundles.

(2)前記中空糸膜の他方の端部は、樹脂、または、樹脂および金属の複合体からなる閉塞部材で端面が閉塞されている、上記(1)に記載の中空糸膜モジュール。   (2) The hollow fiber membrane module according to (1), wherein an end surface of the other end of the hollow fiber membrane is closed with a closing member made of resin or a composite of resin and metal.

(3)前記閉塞部材は、柱状、球状もしくは流線状の形状をなしている、上記(1)または(2)に記載の中空糸膜モジュール。   (3) The hollow fiber membrane module according to (1) or (2), wherein the closing member has a columnar shape, a spherical shape, or a streamline shape.

(4)前記閉塞部材は、表面に乱流発生部を有している、上記(1)〜(3)のいずれかに記載の中空糸膜モジュール。   (4) The hollow fiber membrane module according to any one of (1) to (3), wherein the blocking member has a turbulent flow generation portion on a surface thereof.

(5)筒状ケース内の前記中空糸膜の他方の端部に対応する位置に、前記小束単位で間仕切りをする仕切り部材を設けた、上記(1)〜(4)のいずれかに記載の中空糸膜モジュール。   (5) In any one of the above (1) to (4), a partition member that partitions the small bundle unit is provided at a position corresponding to the other end of the hollow fiber membrane in the cylindrical case. Hollow fiber membrane module.

(6)筒状ケースが通水可能な開放系であることを特徴とする上記(1)〜(5)のいずれかに記載の中空糸膜モジュール。   (6) The hollow fiber membrane module according to any one of (1) to (5) above, wherein the cylindrical case is an open system through which water can flow.

請求項1に記載の発明によれば、中空糸膜が、使用時に下側に位置することとなる端部において、複数の小束に分割され、その端面が小束単位ごとにまとめて閉塞されているので、濾過工程時やエアースクラビング時に、小束単位で適度に自由運動する(揺れる)ことができ、懸濁物質の付着を防止したり懸濁物質を効率的に脱落させることができる。そして、その逆洗排水についても、流路を比較的大きくとることができるため、排水が短時間で済む。また、小束単位での端面閉塞部材が重錘となるので、原水やエアーを流入させても各小束の位置が概ね維持される。その結果、中空糸膜が必要以上に揺れて損傷したり絡み合ったりすることがない。さらに、使用時に下側に位置することとなる中空糸膜端部を筒状ケースに対して固定しないので、エアースクラビング時には中空糸膜外表面より剥がされた懸濁物質が排出し易いうえに、端面を小束単位ごとにまとめて閉塞すればよいので、中空糸膜端面の閉塞作業が容易で生産性を高められる。   According to the first aspect of the present invention, the hollow fiber membrane is divided into a plurality of small bundles at the end portion that will be positioned on the lower side during use, and the end surfaces thereof are closed together for each small bundle unit. Therefore, during the filtration process or air scrubbing, it can move freely (shake) in small bundle units, and can prevent the suspended material from adhering or efficiently remove the suspended material. And also about the backwash drainage, since a flow path can be taken comparatively large, drainage can be completed for a short time. Moreover, since the end surface blocking member in the small bundle unit becomes a weight, the position of each small bundle is generally maintained even if raw water or air is introduced. As a result, the hollow fiber membrane will not be damaged and entangled more than necessary. Furthermore, since the hollow fiber membrane end portion that will be positioned on the lower side during use is not fixed to the cylindrical case, the suspended substance peeled off from the outer surface of the hollow fiber membrane is easily discharged during air scrubbing, Since the end face may be closed together for each small bundle unit, the work of closing the end face of the hollow fiber membrane is easy and productivity can be improved.

請求項2に記載の発明によれば、小束端面の閉塞を樹脂により行えるので効率的な閉塞作業となる。また、そのときに樹脂を金属容器に流し込んで固化させる場合には、さらに効率的な閉塞作業が可能となり、かつ金属により重錘効果が増すモジュールとすることができる。   According to the second aspect of the invention, since the end face of the small bundle can be closed with the resin, it is an efficient closing operation. Further, when the resin is poured into a metal container and solidified at that time, a more efficient closing operation can be performed, and a module in which the weight effect is increased by the metal can be obtained.

請求項3に記載の発明によれば、原水やエアーの流れがスムーズかつ均一になり易く、小束を偏ることが無く効果的に揺らすことができる。   According to the third aspect of the present invention, the flow of raw water or air tends to be smooth and uniform, and the small bundle can be effectively shaken without being biased.

請求項4に記載の発明によれば、閉塞部材の表面に設けられた乱流発生部に原水やエアーが衝突することで、中空糸小束に微細な振動や揺れを付与することができる。   According to the fourth aspect of the present invention, minute vibrations and vibrations can be imparted to the small bundle of hollow fibers by collision of raw water or air with a turbulent flow generating portion provided on the surface of the closing member.

請求項5に記載の発明によれば、濾過工程時やエアースクラビング時における各小束の位置をより規制できるので、さらに原水やエアの流れの偏りを防ぐことができる。   According to the fifth aspect of the present invention, since the position of each small bundle during the filtration step or air scrubbing can be more restricted, it is possible to further prevent the raw water or air flow from being biased.

請求項6に記載の発明によれば負圧方式で使用する、筒状ケースが通水可能な開放系である浸漬型の中空糸膜モジュールにおいても同様の効果を得ることができる。   According to the sixth aspect of the present invention, the same effect can be obtained even in an immersion type hollow fiber membrane module that is used in a negative pressure system and is an open system through which a cylindrical case can pass water.

本発明に係る中空糸膜モジュールを、以下、上水濾過に用いられる中空糸膜モジュールを例にとって説明する。なお、本発明は、上水用の中空糸膜モジュールに限定されるものでなく、産業用水、下水用など中空糸膜モジュールにも適用することができる。   The hollow fiber membrane module according to the present invention will be described below by taking a hollow fiber membrane module used for water filtration as an example. In addition, this invention is not limited to the hollow fiber membrane module for clean water, It can apply also to hollow fiber membrane modules, such as for industrial water and a sewage.

先ず、本発明の中空糸膜モジュールの構成について、図を参照しながら説明する。図1は中空糸膜モジュールの概略縦断面図、図2は中空糸膜を複数の小束に分割し、閉塞部材で閉塞した小束単位の端面を示す部分拡大図、図12は浸漬型中空糸膜モジュールの概略縦断面図である。   First, the structure of the hollow fiber membrane module of this invention is demonstrated, referring a figure. FIG. 1 is a schematic longitudinal sectional view of a hollow fiber membrane module, FIG. 2 is a partially enlarged view showing an end surface of a small bundle unit obtained by dividing the hollow fiber membrane into a plurality of small bundles and closed with a closing member, and FIG. It is a schematic longitudinal cross-sectional view of a thread membrane module.

中空糸膜モジュール1は、図1に示すように、両端が開口した筒状ケース3内に多数本の中空糸膜2を収納し、中空糸膜2の上方の端部は、端面を開口状態としつつ筒状ケース3の上端に合成高分子樹脂4で液密に固定している。一方、中空糸膜2の下方の端部は、10束から800束程度の小束2aに分割し、小束単位で端面を閉塞部材5でまとめて閉塞している。なお、下方の端部において、中空糸膜2は小束2a単位で自由に動ける状態となっており、小束単位で自由に動ける状態であれば、U字状に折り曲げた糸束の湾曲部を閉塞部材5でまとめるようにしてもよい。   As shown in FIG. 1, the hollow fiber membrane module 1 houses a large number of hollow fiber membranes 2 in a cylindrical case 3 having both ends opened, and the upper end of the hollow fiber membrane 2 is in an open state at the end surface. However, the upper end of the cylindrical case 3 is liquid-tightly fixed with the synthetic polymer resin 4. On the other hand, the lower end of the hollow fiber membrane 2 is divided into 10 to 800 bundles of small bundles 2a, and the end surfaces are collectively closed by the closing member 5 in small bundle units. At the lower end, the hollow fiber membrane 2 is in a state of being freely movable in units of small bundles 2a, and if it is in a state of being freely movable in units of small bundles, the curved portion of the yarn bundle that is bent into a U shape. May be put together by the closing member 5.

筒状ケース3の上部には濾過液出口13を有する上キャップ6を、筒状ケース3の下部には散気板9を挟み込み、原液およびエアの流入口12を有する下キャップ7を液密に接続している。なお、液密にする手段として特に限定しないが、パッキンを挟み込みサニタリクランプなどで取り付ければよい。   An upper cap 6 having a filtrate outlet 13 is sandwiched between the upper part of the cylindrical case 3 and a diffuser plate 9 is sandwiched between the lower part of the cylindrical case 3 and a lower cap 7 having an inlet 12 for stock solution and air is liquid-tight. Connected. In addition, although it does not specifically limit as a means to make liquid-tight, what is necessary is just to attach with a sanitary clamp etc. pinching packing.

下キャップ7の流入口12には、原水導入路に接続した原水導入ポンプ(図示せず)とエアー源に接続したエアー導入バルブ(図示せず)と排水路に接続した第1排水バルブ(図示せず)を接続している。また上キャップ6の濾過液出口13には、濾過液導出路に接続した濾過液バルブ(図示せず)が接続している。さらに、筒状ケース3の上方には、エアースクラビング時のエアーの流出口14を設け、排水路に接続した第2排水バルブが接続してある。   The inlet 12 of the lower cap 7 has a raw water introduction pump (not shown) connected to the raw water introduction path, an air introduction valve (not shown) connected to an air source, and a first drain valve (not shown) connected to the drainage path. (Not shown) is connected. A filtrate valve (not shown) connected to the filtrate outlet path is connected to the filtrate outlet 13 of the upper cap 6. Further, an air outlet 14 for air scrubbing is provided above the cylindrical case 3 and a second drain valve connected to the drainage channel is connected thereto.

浸漬型中空糸膜モジュールの場合は、図12のように原水が通水可能な開放系である筒状ケースの上部に濾過液出口13を有する上キャップ6を、筒状ケース17の下部には散気板9を挟み込み、エアの流入口12を有する下キャップ7を液密に接続している。下キャップ7の流入口12には、エアー源に接続したエアー導入バルブ(図示せず)と排水路に接続した第1排水バルブ(図示せず)を接続している。また上キャップ6の濾過液出口13には、濾過液導出路に接続した吸引ポンプ(図示せず)と濾過液バルブ(図示せず)を接続している。   In the case of the submerged hollow fiber membrane module, an upper cap 6 having a filtrate outlet 13 is provided at the upper part of the cylindrical case which is an open system through which raw water can pass as shown in FIG. A diffuser plate 9 is sandwiched between the lower cap 7 having an air inlet 12 and connected in a liquid-tight manner. An air introduction valve (not shown) connected to an air source and a first drain valve (not shown) connected to a drainage channel are connected to the inlet 12 of the lower cap 7. A suction pump (not shown) and a filtrate valve (not shown) connected to the filtrate outlet path are connected to the filtrate outlet 13 of the upper cap 6.

筒状ケース3、17の材質としては、例えばポリエチレン、ポリプロピレン、ポリブテン等のポリオレフィンやポリテトラフルオロエチレン(PTFE)、4フッ化エチレンパーフルオロアルコキシエチレン共重合体(PFA)、4フッ化エチレン6フッ化プロピレン共重合体(FEP)、4フッ化エチレンエチレン共重合体(ETFE)、3フッ化エチレン樹脂(PCTFE)、エチレンクロロトリフロロエチレン(ECTFE)、ポリフッ化ビニリデン(PVDF)等のフッ素系樹脂、そしてポリ塩化ビニル、ポリ塩化ビニリデン等の塩素樹脂、さらにポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリアリルスルホン樹脂、ポリフェニルエーテル樹脂、アクリロニトリル-ブタジエン-スチレン共重合体樹脂(ABS)、アクリロニトリル-スチレン共重合体樹脂、ポリフェニレンサルファイド樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂などが単独もしくは混合で用いられる。また、樹脂以外ではアルミニウム、ステンレス鋼などが好ましく、さらに、樹脂と金属の複合体や、ガラス繊維強化樹脂、炭素繊維強化樹脂などの複合材料を使用してもかまわない。また図12の浸漬型中空糸膜モジュールの場合は筒状ケース17の形状はネット状、格子状など中空糸膜が実質的に露出している構造であればよい。   Examples of the material of the cylindrical cases 3 and 17 include polyolefins such as polyethylene, polypropylene, and polybutene, polytetrafluoroethylene (PTFE), tetrafluoroethylene perfluoroalkoxyethylene copolymer (PFA), and tetrafluoroethylene 6 fluorine. Fluorine Resins such as Propylene Propylene Copolymer (FEP), Tetrafluoroethylene Ethylene Copolymer (ETFE), Trifluoroethylene Resin (PCTFE), Ethylene Chlorotrifluoroethylene (ECTFE), Polyvinylidene Fluoride (PVDF) Chlorinated resins such as polyvinyl chloride and polyvinylidene chloride, polysulfone resin, polyether sulfone resin, polyallyl sulfone resin, polyphenyl ether resin, acrylonitrile-butadiene-styrene copolymer resin (ABS), acrylonite Le - styrene copolymer resin, polyphenylene sulfide resin, polyamide resin, polycarbonate resin, polyether ketone resin, polyether ether ketone resin is used alone or in a mixture. Other than the resin, aluminum, stainless steel, and the like are preferable, and a composite material such as a resin-metal composite, a glass fiber reinforced resin, and a carbon fiber reinforced resin may be used. In the case of the immersion type hollow fiber membrane module shown in FIG. 12, the cylindrical case 17 may have a net-like or lattice-like structure in which the hollow fiber membrane is substantially exposed.

中空糸膜2の素材は特に限定されず、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリイミド、ポリエーテルイミド、ポリアミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエチレン、ポリプロピレン、エチレン−ビニルアルコール共重合体、セルロース、酢酸セルロース、ポリフッ化ビニリデン、エチレン−テトラフルオロエチレン共重合体、ポリテトラフルオロエチレンなどが挙げられ、また、これらの複合でもかまわない。   The material of the hollow fiber membrane 2 is not particularly limited, and polysulfone, polyethersulfone, polyacrylonitrile, polyimide, polyetherimide, polyamide, polyetherketone, polyetheretherketone, polyethylene, polypropylene, ethylene-vinyl alcohol copolymer, Examples thereof include cellulose, cellulose acetate, polyvinylidene fluoride, ethylene-tetrafluoroethylene copolymer, polytetrafluoroethylene, and the like, and these may be combined.

小束2aは、筒状ケース3、17の径や長さ、また、原水やエアーの流入口の構造などに応じて、意図する効果が得られるよう複数本の中空糸膜から構成すればよいが、モジュール直径が50〜400mm、モジュール長が500〜3000mm程度のモジュールであれば、一つの小束2aを50〜800本、さらには100〜500本程度の中空糸膜で構成するのがよい。   The small bundle 2a may be composed of a plurality of hollow fiber membranes so as to obtain the intended effect according to the diameter and length of the cylindrical cases 3 and 17 and the structure of the inlet of raw water or air. However, if the module has a module diameter of 50 to 400 mm and a module length of about 500 to 3000 mm, one small bundle 2a may be composed of 50 to 800 hollow fiber membranes, more preferably about 100 to 500 hollow fibers. .

中空糸束2を筒状ケース3、17に固定する合成高分子樹脂4としては、エポキシ樹脂やポリウレタン樹脂を例示できる。また本発明の中空糸膜モジュールでは、中空糸膜の両端を筒状ケースに固定するモジュールよりも糸の揺れが大きくなるので、糸切れ防止のため、2種の合成高分子樹脂4を用いて2層構造とすることが好ましい。すなわち、中空糸膜2の濾過領域側界面をシリコーン樹脂やウレタン樹脂などの弾性体とするのも好ましい。   Examples of the synthetic polymer resin 4 that fixes the hollow fiber bundle 2 to the cylindrical cases 3 and 17 include an epoxy resin and a polyurethane resin. Further, in the hollow fiber membrane module of the present invention, since the yarn swings more than the module that fixes both ends of the hollow fiber membrane to the cylindrical case, two types of synthetic polymer resins 4 are used to prevent yarn breakage. A two-layer structure is preferable. That is, it is also preferable that the filtration region side interface of the hollow fiber membrane 2 be an elastic body such as a silicone resin or a urethane resin.

一方、閉塞部材5に使用される樹脂としては、エポキシ樹脂、ウレタン樹脂、シリコーン樹脂、ポリエステル樹脂などの熱硬化性樹脂や、ポリエチレン、ポリプロピレン、中空糸膜を構成している材質等の種々の熱可塑性樹脂の溶融樹脂を使用しても良い。好ましくは、これら閉塞部材と中空糸膜との界面での糸の損傷を防止するために、JIS−K6253(2004)のタイプAデュロメータ硬度が5〜95程度の樹脂を使用するのがよい。また、硬度が高い樹脂の上に上記の硬度の樹脂を積層することも好ましく用いられる。なお、JIS−K6253(2004)のタイプAデュロメータ硬度は、JIS−K6253(2004)に記載の測定器を使用し、触針を樹脂の表面に押し付けることで測定される。実物で押し付けが不可の場合は、別途サンプルを成形して測定する
閉塞部材5は、筒状ケース3、17内への中空糸膜2の充填密度、各糸束間の間隙の大きさ、などに応じて種々の形状とすることができる。例えば、図1、図2に示すように柱状体としたり、図3に示すように球状体としたり、図4に示すように流線状体とすることができる。また、図示しないが、円錐状体、角錐状体、板状体などでもよい。また、柱状体の場合、成形が容易でかつ破損しにくい断面形状が円形のものが好ましいが、断面が三角形や四角形、五角形、六角形などの多角形や楕円型、星形のものなどでもよい。さらに懸濁物質が多い原水を濾過する中空糸膜モジュールの場合には、図10に示すように、閉塞部材5の表面に、翼、螺旋溝などで構成される乱流発生部16を設けることが好ましい。こうすることにより原水やエアーが乱流発生部16に衝突して中空糸小束に微細な振動や揺れを付与することができる。
On the other hand, as the resin used for the closing member 5, various heat such as a thermosetting resin such as an epoxy resin, a urethane resin, a silicone resin, and a polyester resin, polyethylene, polypropylene, a material constituting the hollow fiber membrane, and the like. A molten resin of a plastic resin may be used. Preferably, a resin having a JIS-K6253 (2004) type A durometer hardness of about 5 to 95 is used in order to prevent yarn damage at the interface between the blocking member and the hollow fiber membrane. It is also preferable to laminate a resin having the above hardness on a resin having high hardness. The type A durometer hardness of JIS-K6253 (2004) is measured by using a measuring instrument described in JIS-K6253 (2004) and pressing the stylus against the surface of the resin. When the actual product cannot be pressed, a sample is separately molded and measured. The closing member 5 is a filling density of the hollow fiber membrane 2 into the cylindrical cases 3 and 17, the size of the gap between the yarn bundles, etc. It can be made into various shapes according to. For example, it can be a columnar body as shown in FIGS. 1 and 2, a spherical body as shown in FIG. 3, or a streamlined body as shown in FIG. Further, although not shown, a cone, a pyramid, a plate, or the like may be used. Also, in the case of a columnar body, a circular shape that is easy to mold and difficult to break is preferable, but the cross section may be a polygon such as a triangle, a quadrangle, a pentagon, a hexagon, an ellipse, or a star. . Further, in the case of a hollow fiber membrane module that filters raw water containing a large amount of suspended matter, as shown in FIG. 10, a turbulent flow generator 16 composed of blades, spiral grooves, etc. is provided on the surface of the closing member 5. Is preferred. By doing so, raw water or air can collide with the turbulent flow generation section 16 to impart minute vibrations and vibrations to the hollow fiber bundle.

また、閉塞部材として樹脂を用いる場合、図9に示すように、金属容器15に中空糸膜2の端部を配置して、樹脂を注入、固化し、中空糸膜端面を閉塞すれば、より効率的な閉塞作業が可能となるうえに、そのままモジュールとして使用できるので金属による重錘効果が得られる。このとき、金属容器15としては、ステンレス鋼(SUS)が好ましい。   Further, when resin is used as the closing member, as shown in FIG. 9, if the end portion of the hollow fiber membrane 2 is arranged in the metal container 15, the resin is injected and solidified, and the end surface of the hollow fiber membrane is closed, In addition to being able to perform an efficient closing operation, it can be used as a module as it is, so that a weight effect by metal can be obtained. At this time, the metal container 15 is preferably stainless steel (SUS).

なお、閉塞部材5による中空糸膜の筒状ケースへの充填率低下を防止するためには、隣り合った閉塞部材5の位置を中空糸膜モジュールの軸方向(上下方向)でずらすことも好ましい。   In order to prevent a decrease in the filling rate of the hollow fiber membrane into the cylindrical case by the closing member 5, it is also preferable to shift the positions of the adjacent closing members 5 in the axial direction (vertical direction) of the hollow fiber membrane module. .

さらに、中空糸膜2の端面を小束単位で閉塞する各閉塞部材5は、その一部が隣り合った閉塞部材5と接続されていてもよい。例えば、棒状体、ヒモ状体で各閉塞部材を接続する構造である。このような構造により、各閉塞部材同士が手をつないだ様になるので、特定の場所の閉塞部材のみが揺れることが無く、振動や揺動の力を他の閉塞部材に伝播することが出来る。同時に、各小束の位置を緩やかに規制することができ、原水やエアーの分散性が向上することで汚れ斑の発生を防止する効果や各小束同士の絡み合いを防止する効果をさらに向上できる。   Furthermore, each closing member 5 that closes the end surface of the hollow fiber membrane 2 in units of small bundles may be connected to a part of the closing member 5 adjacent to the closing member 5. For example, it is a structure which connects each obstruction | occlusion member with a rod-shaped body and a string-shaped body. With such a structure, the respective blocking members are connected with each other, so that only the blocking member at a specific location is not shaken, and vibration and swinging force can be transmitted to other blocking members. . At the same time, the position of each small bundle can be gently regulated, and the effect of preventing the occurrence of dirt spots and the effect of preventing the entanglement of each small bundle can be further improved by improving the dispersibility of raw water and air. .

また、図5、図6に示すように筒状ケース2内の閉塞部材5に対応する位置に、各小束2a間を仕切る仕切部材8を設置することでも、各小束の位置を緩やかに規制することができ、原水やエアーの分散性が向上し、汚れ斑の発生を防止する効果や各小束同士の絡み合いを防止する効果をさらに向上できる。なお、仕切部材8の材質は特に限定しないが、仕切部材8の接合や将来の廃棄を考慮すると筒状ケース3、17と同一の材質が好ましい。   Also, as shown in FIG. 5 and FIG. 6, by installing a partition member 8 for partitioning the small bundles 2a at positions corresponding to the closing members 5 in the cylindrical case 2, the positions of the small bundles can be loosened. The dispersibility of raw water and air can be improved, and the effect of preventing the occurrence of dirt spots and the effect of preventing the entanglement of each small bundle can be further improved. The material of the partition member 8 is not particularly limited, but the same material as that of the cylindrical cases 3 and 17 is preferable in consideration of joining of the partition member 8 and future disposal.

次に、図1に示す中空糸膜モジュールの使用手順について説明する。   Next, the procedure for using the hollow fiber membrane module shown in FIG. 1 will be described.

まず、原水を濾過する工程においては、エアー導入バルブと第1排水バルブ、第2排水バルブを閉じ、濾過液バルブを開けた状態で原水導入ポンプを駆動し原水を流入口12から流し込み、濾過液を濾過液出口13から濾過液導出路に導出する。   First, in the process of filtering the raw water, the air introduction valve, the first drainage valve, and the second drainage valve are closed, and the raw water introduction pump is driven with the filtrate valve opened to feed the raw water from the inlet 12, and the filtrate From the filtrate outlet 13 to the filtrate outlet path.

このとき、濾過を進行させるに従い中空糸膜外表面に原水中の懸濁物質が付着し濾過抵抗が大きくなり膜透過流速が低下する。そこで、逆洗とエアースクラビングを行う。   At this time, as the filtration proceeds, suspended substances in the raw water adhere to the outer surface of the hollow fiber membrane, the filtration resistance increases, and the membrane permeation flow rate decreases. Therefore, backwashing and air scrubbing are performed.

逆洗は、原水導入ポンプを停止し、第1排水バルブと濾過液バルブを閉じ、第2排水バルブを開けた状態で、濾過液バルブを所定時間開け、中空糸内部から逆に水を透過せしめる。   In backwashing, the raw water introduction pump is stopped, the first drain valve and the filtrate valve are closed, the second drain valve is opened, and the filtrate valve is opened for a predetermined time to allow water to permeate through the hollow fiber. .

また、エアースクラビングは、原水導入ポンプを停止し、第1排水バルブと濾過液バルブを閉じ、、第2排水バルブを開けた状態で、エアー導入バルブを所定時間開け、中空糸膜モジュール1内にエアーを導入する。   In the air scrubbing, the raw water introduction pump is stopped, the first drainage valve and the filtrate valve are closed, the second drainage valve is opened, the air introduction valve is opened for a predetermined time, and the hollow fiber membrane module 1 is opened. Introduce air.

このように、逆洗とエアスクラビングを行った後排水を行うが、排水時には、原水導入ポンプを停止し、第2排水バルブを開けた状態で、第1排水バルブを開け、中空糸膜モジュール1内の水を全て排出する。   In this way, drainage is performed after backwashing and air scrubbing. At the time of drainage, the raw water introduction pump is stopped, the first drainage valve is opened with the second drainage valve opened, and the hollow fiber membrane module 1 Drain all the water inside.

次に、図12に示す浸漬型中空糸膜モジュールの使用手順について説明する。   Next, a procedure for using the immersion type hollow fiber membrane module shown in FIG. 12 will be described.

まず、原水を濾過する工程においては、エアー導入バルブと第1排水バルブを閉じ、濾過液バルブを開けた状態で吸引ポンプを駆動し原水を筒状ケース17から流し込み、濾過液を濾過液出口13から濾過液導出路に導出する。   First, in the process of filtering raw water, the air introduction valve and the first drain valve are closed, the suction pump is driven with the filtrate valve opened, and the raw water is poured from the cylindrical case 17, and the filtrate is fed to the filtrate outlet 13. To the filtrate outlet.

このとき、図1に示す中空糸膜モジュールと同様に濾過を進行させるに従い中空糸膜外表面に原水中の懸濁物質が付着し濾過抵抗が大きくなり膜透過流速が低下する。そこで、逆洗とエアースクラビングを行う。   At this time, as the filtration proceeds as in the hollow fiber membrane module shown in FIG. 1, suspended substances in the raw water adhere to the outer surface of the hollow fiber membrane, the filtration resistance increases, and the membrane permeation flow rate decreases. Therefore, backwashing and air scrubbing are performed.

逆洗は、吸引ポンプを停止し、第1排水バルブを閉じ、濾過液バルブを所定時間開け、中空糸内部から逆に水を透過せしめる。   In backwashing, the suction pump is stopped, the first drain valve is closed, the filtrate valve is opened for a predetermined time, and water is allowed to permeate from the inside of the hollow fiber.

また、エアースクラビングは、吸引ポンプを停止し、第1排水バルブと濾過液バルブを閉じ、エアー導入バルブを所定時間開け、中空糸膜モジュール2内にエアーを導入する。   In the air scrubbing, the suction pump is stopped, the first drain valve and the filtrate valve are closed, the air introduction valve is opened for a predetermined time, and air is introduced into the hollow fiber membrane module 2.

このように、逆洗とエアスクラビングを行った後排水を行うが、排水時には、吸引ポンプを停止し、第1排水バルブおよび、浸漬タンクに設けられた処理水出口から浸漬タンクの外部に排出する。   In this way, drainage is performed after backwashing and air scrubbing, but at the time of drainage, the suction pump is stopped and discharged from the first drainage valve and the treated water outlet provided in the immersion tank to the outside of the immersion tank. .

<実施例1>
図1に示す中空糸膜モジュールを用いて琵琶湖の湖水を濾過し、その後、逆洗、エアースクラビング、排水を行った。
<Example 1>
The lake water of Lake Biwa was filtered using the hollow fiber membrane module shown in FIG. 1, and then backwashing, air scrubbing, and drainage were performed.

なお、湖水はポンプにより83L/m・hrで供給して濾過を30分行い、その後、濾過水100Lで逆洗し、エアーを200L/分で1分間流入口12からモジュール内へ吹き込み、その後排水した。この濾過、逆洗およびエアースクラビング、排水のサイクルを繰り返した。 The lake water is supplied by a pump at 83 L / m 2 · hr and filtered for 30 minutes, then backwashed with 100 L of filtered water, and air is blown into the module from the inlet 12 at 200 L / min for 1 minute, and then Drained. This filtration, backwashing, air scrubbing and drainage cycle was repeated.

また、中空糸膜2としては、外径1.5mm、内径0.9mmm、長さ1870mmのポリフッ化ビニリデン製多孔質中空糸膜を9000本を用いた。筒状ケースは、塩化ビニール樹脂製で、内径193mm、長さ2000mmであった。   Moreover, as the hollow fiber membrane 2, 9000 porous hollow fiber membranes made of polyvinylidene fluoride having an outer diameter of 1.5 mm, an inner diameter of 0.9 mm, and a length of 1870 mm were used. The cylindrical case was made of vinyl chloride resin and had an inner diameter of 193 mm and a length of 2000 mm.

合成高分子樹脂4および閉塞部材5にはエポキシ樹脂を用いた。また、閉塞部材5は円柱状とし、中空糸膜420本から430本の範囲の小束2aの端面をまとめて封止した。   Epoxy resin was used for the synthetic polymer resin 4 and the closing member 5. Further, the closing member 5 was formed in a cylindrical shape, and the end surfaces of the small bundles 2a in the range of 420 to 430 hollow fiber membranes were collectively sealed.

この結果、22日経過しても筒状ケース3内圧力と上キャップ6内の圧力との差が150kPaになることはなかった。   As a result, even after 22 days, the difference between the pressure in the cylindrical case 3 and the pressure in the upper cap 6 did not become 150 kPa.

<比較例1>
中空糸膜2の両端部を合成高分子樹脂4で筒状ケース3に固定した以外は実施例1と同様にして濾過、逆洗およびエアースクラビング、排水のサイクルを繰り返した。
<Comparative Example 1>
The filtration, backwashing, air scrubbing, and drainage cycles were repeated in the same manner as in Example 1 except that both ends of the hollow fiber membrane 2 were fixed to the cylindrical case 3 with the synthetic polymer resin 4.

この結果、7日で筒状ケース3内圧力と上キャップ6内の圧力との差が150kPaになった。   As a result, in 7 days, the difference between the pressure in the cylindrical case 3 and the pressure in the upper cap 6 became 150 kPa.

<実施例2、比較例1>
次の点を変更した以外は実施例1、比較例1と同様に濾過、逆洗、エアースクラビング、排水を行い、透明ケースから中空糸膜の汚れの落ち具合を観察した。
(1)中空糸膜2の本数を1800本とした。
(2)筒状ケース3を内径100mm、長さ1000mmのアクリル製の透明筒とした。
(3)原水として、RO透過水60Lに水酸化第2鉄を1000ppmとなるように混入させたものを用い、83L/m・hrで供給し1時間循環ろ過し、外観上全膜面に水酸化第2鉄を付着させた。なお、水酸化第2鉄の付着量の多少は、中空糸膜面の色の濃淡で判断した。
(4)エアースクラビングは、エアー供給量20L/分で30秒間として、逆洗は行わなかった。
<Example 2, Comparative Example 1>
Except for the following changes, filtration, backwashing, air scrubbing, and drainage were performed in the same manner as in Example 1 and Comparative Example 1, and the degree of soiling of the hollow fiber membrane was observed from the transparent case.
(1) The number of hollow fiber membranes 2 was 1800.
(2) The cylindrical case 3 was an acrylic transparent cylinder having an inner diameter of 100 mm and a length of 1000 mm.
(3) As raw water, 60L of RO permeated water mixed with ferric hydroxide at 1000ppm is supplied at 83L / m 2 · hr and circulated and filtered for 1 hour. Ferric hydroxide was deposited. The amount of ferric hydroxide attached was determined by the color density of the hollow fiber membrane surface.
(4) Air scrubbing was performed at an air supply rate of 20 L / min for 30 seconds, and no backwashing was performed.

この結果、比較例2よりも実施例2の形態の中空糸膜モジュールのほうが、中空糸膜表面の色が全体に渡って薄くなり、膜面に付着した水酸化第2鉄の除去性に優れることが分かった。   As a result, the hollow fiber membrane module in the form of Example 2 has a lighter color on the entire surface of the hollow fiber membrane than in Comparative Example 2, and is excellent in removing ferric hydroxide adhering to the membrane surface. I understood that.

本発明に係る中空糸膜モジュールの一実施形態を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows one Embodiment of the hollow fiber membrane module which concerns on this invention. 中空糸膜の下端を閉塞部材で小束単位ごとにまとめて閉塞した状態を示す、図1の中空糸膜モジュールの部分拡大図である。It is the elements on larger scale of the hollow fiber membrane module of FIG. 1 which shows the state which closed the lower end of the hollow fiber membrane for every small bundle unit with the closure member. 本発明に係る中空糸膜モジュールの他の実施形態(閉塞部材が球状)を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows other embodiment (occlusion member is spherical shape) of the hollow fiber membrane module which concerns on this invention. 本発明に係る中空糸膜モジュールの他の実施形態(閉塞部材が流線型状)を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows other embodiment (the obstruction | occlusion member is streamline shape) of the hollow fiber membrane module which concerns on this invention. 本発明に係る中空糸膜モジュールの他の実施形態(仕切部材を設けた形態)を示す概略縦断面図である。It is a schematic longitudinal cross-sectional view which shows other embodiment (form which provided the partition member) of the hollow fiber membrane module which concerns on this invention. 図5の中空糸膜モジュールの仕切部材を設けた部分の横断面図である。It is a cross-sectional view of the portion provided with the partition member of the hollow fiber membrane module of FIG. 従来の中空糸膜モジュールの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the conventional hollow fiber membrane module. 従来の中空糸膜モジュールの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the conventional hollow fiber membrane module. 樹脂と金属との複合体からなる閉塞部材の概略斜視図である。It is a schematic perspective view of the closure member which consists of a composite of resin and a metal. 表面に翼を設けた閉塞部材の概略斜視図である。It is a schematic perspective view of the closure member which provided the wing | blade on the surface. 従来の浸漬型中空糸膜モジュールの概略縦断面図である。It is a schematic longitudinal cross-sectional view of the conventional immersion type hollow fiber membrane module. 本発明に係る浸漬型中空糸膜モジュールの一実施形態を示す概略断面図である。It is a schematic sectional drawing which shows one Embodiment of the immersion type hollow fiber membrane module which concerns on this invention.

符号の説明Explanation of symbols

1 :中空糸膜モジュール
2 :中空糸膜
2a:小束
3 :筒状ケース
4 :合成高分子樹脂
5、5a,5b:閉塞部材
6 :上キャップ
7 :下キャップ
8 :仕切部材
9 :散気板
10 :空気散気孔
11 :閉塞部
12 :流入口
13 :濾過液出口
14 :流出口
15 :金属容器
16 :翼
17 :筒状ケース(浸漬型用)
1: hollow fiber membrane module 2: hollow fiber membrane 2a: small bundle 3: cylindrical case 4: synthetic polymer resin 5, 5a, 5b: closing member 6: upper cap 7: lower cap 8: partition member 9: air diffuser Plate 10: Air diffuser 11: Blocking portion 12: Inlet 13: Filtrate outlet 14: Outlet 15: Metal container 16: Wing 17: Cylindrical case (for immersion type)

Claims (6)

多数本の中空糸膜が筒状ケースに収納された中空糸膜モジュールであって、中空糸膜の一方の端部は、端面が開口された状態で筒状ケースに固定され、中空糸膜の他方の端部は、複数の小束に分割され、端面が該小束単位でまとめて閉塞されていることを特徴とする中空糸膜モジュール。 A hollow fiber membrane module in which a large number of hollow fiber membranes are housed in a cylindrical case, wherein one end of the hollow fiber membrane is fixed to the cylindrical case with the end face open, The other end is divided into a plurality of small bundles, and the end face is closed together in units of the small bundles. 前記中空糸膜の他方の端部は、樹脂、または、樹脂および金属の複合体からなる閉塞部材で端面が閉塞されている、請求項1に記載の中空糸膜モジュール。 2. The hollow fiber membrane module according to claim 1, wherein an end surface of the other end of the hollow fiber membrane is closed with a closing member made of a resin or a composite of resin and metal. 前記閉塞部材は、柱状、球状もしくは流線状の形状をなしている、請求項1または2に記載の中空糸膜モジュール。 The hollow fiber membrane module according to claim 1 or 2, wherein the closing member has a columnar shape, a spherical shape, or a streamline shape. 前記閉塞部材は、表面に乱流発生部を有している、請求項1〜3のいずれかに記載の中空糸膜モジュール。 The said obstruction | occlusion member is a hollow fiber membrane module in any one of Claims 1-3 which has a turbulent flow generation part on the surface. 筒状ケース内の前記中空糸膜の他方の端部に対応する位置に、前記小束単位で間仕切りをする仕切り部材を設けた、請求項1〜4のいずれかに記載の中空糸膜モジュール。 The hollow fiber membrane module in any one of Claims 1-4 which provided the partition member which partitions off in the said small bundle unit in the position corresponding to the other edge part of the said hollow fiber membrane in a cylindrical case. 筒状ケースが通水可能な開放系であることを特徴とする請求項1〜5のいずれかに記載の中空糸膜モジュール。 The hollow fiber membrane module according to any one of claims 1 to 5, wherein the cylindrical case is an open system through which water can flow.
JP2005007261A 2004-01-20 2005-01-14 Hollow fiber membrane module Pending JP2005230813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005007261A JP2005230813A (en) 2004-01-20 2005-01-14 Hollow fiber membrane module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004011730 2004-01-20
JP2005007261A JP2005230813A (en) 2004-01-20 2005-01-14 Hollow fiber membrane module

Publications (1)

Publication Number Publication Date
JP2005230813A true JP2005230813A (en) 2005-09-02

Family

ID=35014301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005007261A Pending JP2005230813A (en) 2004-01-20 2005-01-14 Hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JP2005230813A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083460A1 (en) * 2006-01-19 2007-07-26 Toray Industries, Inc. Hollow-fiber membrane module
WO2008141080A1 (en) * 2007-05-11 2008-11-20 Zenon Technology Partnership Membrane module with multiple bottom headers and filtration process
WO2010001680A1 (en) 2008-07-01 2010-01-07 東レ株式会社 Submerged hollow fiber membrane module
JP2010119959A (en) * 2008-11-20 2010-06-03 Kuraray Co Ltd Hollow fiber membrane module
WO2011058983A1 (en) 2009-11-10 2011-05-19 東レ株式会社 Hollow fiber membrane module for use in production of chemical substance, and process for production of chemical substance
WO2015046430A1 (en) 2013-09-30 2015-04-02 東レ株式会社 Cartridge-type hollow fiber membrane module and method for manufacturing cartridge-type hollow fiber membrane module
CN106422467A (en) * 2016-11-28 2017-02-22 湖州环清环保科技有限公司 Filter
CN106582086A (en) * 2016-11-28 2017-04-26 湖州环清环保科技有限公司 Sewage treatment filter cartridge

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161342U (en) * 1978-05-02 1979-11-12
JPS621705U (en) * 1985-06-18 1987-01-08
JPH02251229A (en) * 1989-03-22 1990-10-09 Kurita Water Ind Ltd Membrane separation apparatus
JPH04171030A (en) * 1990-11-05 1992-06-18 Material Eng Tech Lab Inc Filtration apparatus
JPH04134425U (en) * 1991-05-31 1992-12-15 株式会社クラレ External pressure filtration type hollow fiber membrane module
JPH06178917A (en) * 1992-12-12 1994-06-28 Nitto Denko Corp Hollow fiber membrane module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54161342U (en) * 1978-05-02 1979-11-12
JPS621705U (en) * 1985-06-18 1987-01-08
JPH02251229A (en) * 1989-03-22 1990-10-09 Kurita Water Ind Ltd Membrane separation apparatus
JPH04171030A (en) * 1990-11-05 1992-06-18 Material Eng Tech Lab Inc Filtration apparatus
JPH04134425U (en) * 1991-05-31 1992-12-15 株式会社クラレ External pressure filtration type hollow fiber membrane module
JPH06178917A (en) * 1992-12-12 1994-06-28 Nitto Denko Corp Hollow fiber membrane module

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007083460A1 (en) * 2006-01-19 2007-07-26 Toray Industries, Inc. Hollow-fiber membrane module
WO2008141080A1 (en) * 2007-05-11 2008-11-20 Zenon Technology Partnership Membrane module with multiple bottom headers and filtration process
WO2010001680A1 (en) 2008-07-01 2010-01-07 東レ株式会社 Submerged hollow fiber membrane module
JP2010119959A (en) * 2008-11-20 2010-06-03 Kuraray Co Ltd Hollow fiber membrane module
WO2011058983A1 (en) 2009-11-10 2011-05-19 東レ株式会社 Hollow fiber membrane module for use in production of chemical substance, and process for production of chemical substance
CN102596375A (en) * 2009-11-10 2012-07-18 东丽株式会社 Hollow fiber membrane module for use in production of chemical substance, and process for production of chemical substance
EP2500083A1 (en) * 2009-11-10 2012-09-19 Toray Industries, Inc. Hollow fiber membrane module for use in production of chemical substance, and process for production of chemical substance
EP2500083A4 (en) * 2009-11-10 2014-08-13 Toray Industries Hollow fiber membrane module for use in production of chemical substance, and process for production of chemical substance
WO2015046430A1 (en) 2013-09-30 2015-04-02 東レ株式会社 Cartridge-type hollow fiber membrane module and method for manufacturing cartridge-type hollow fiber membrane module
CN106422467A (en) * 2016-11-28 2017-02-22 湖州环清环保科技有限公司 Filter
CN106582086A (en) * 2016-11-28 2017-04-26 湖州环清环保科技有限公司 Sewage treatment filter cartridge

Similar Documents

Publication Publication Date Title
US20070163942A1 (en) Hollow fiber membrane module
JP4951860B2 (en) Method for producing permselective membrane module and permselective membrane module
JP6757739B2 (en) Hollow fiber membrane module and its cleaning method
JP2005230813A (en) Hollow fiber membrane module
JP4932492B2 (en) Hollow fiber membrane cartridge
JP2000157846A (en) Hollow fiber membrane cartridge
JP5359872B2 (en) Immersion type hollow fiber membrane module
JP2018023965A (en) Cleaning method for external pressure type filtration module and filtration device
WO2004112944A1 (en) Membrane cartridge, membrane separating device, and membrane separating method
JP2010227837A (en) Hollow fiber membrane module
JP6618708B2 (en) Method for operating hollow fiber membrane module and filtration device
JPH09220446A (en) External pressure type hollow yarn membrane module
JP5949834B2 (en) Hollow fiber membrane module and cleaning method thereof
JP4437527B2 (en) Membrane filtration module
WO2012133068A1 (en) Hollow fiber membrane module
JP2008080262A (en) Manufacturing method of hollow fiber membrane module
JP5874866B1 (en) Operation method of turbidity removal membrane module
JP4433276B2 (en) Hollow fiber membrane filtration module and cleaning method thereof
JP2006239642A (en) Hollow fiber membrane module, and operating method of dipped type filtering device using the same
JP2010188250A (en) Water treatment method
JP2010012372A (en) Dipping type hollow fiber membrane module
JP2007090339A (en) Hollow fiber membrane module
JP2018051429A (en) Hollow fiber membrane module, and filtration method using the same
JP2007044666A (en) Hollow fiber membrane module
JP2006281198A (en) Immersion type filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100720

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110104