JP2005225063A - Metal multilayered material and its manufacturing method - Google Patents

Metal multilayered material and its manufacturing method Download PDF

Info

Publication number
JP2005225063A
JP2005225063A JP2004035789A JP2004035789A JP2005225063A JP 2005225063 A JP2005225063 A JP 2005225063A JP 2004035789 A JP2004035789 A JP 2004035789A JP 2004035789 A JP2004035789 A JP 2004035789A JP 2005225063 A JP2005225063 A JP 2005225063A
Authority
JP
Japan
Prior art keywords
iron
copper
alloy layer
multilayer material
alloy layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004035789A
Other languages
Japanese (ja)
Inventor
Kuniteru Mihara
邦照 三原
Michio Miyauchi
理夫 宮内
Tatsuhiko Eguchi
立彦 江口
Keisuke Kitazato
敬輔 北里
Toshiki Omori
俊樹 大森
Masahiro Sasaki
雅啓 佐々木
Yasuhiro Habara
康裕 羽原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Nippon Metal Industry Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Nippon Metal Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd, Nippon Metal Industry Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP2004035789A priority Critical patent/JP2005225063A/en
Publication of JP2005225063A publication Critical patent/JP2005225063A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metal multilayered material characterized in that strength is 1,000 MPa or above, conductivity is 20% IACS or above and Young's modulus is 140 GPa or above and suitable for an electric/electronic device, an on-vehicle terminal, a connector, a relay switch or the like. <P>SOLUTION: The metal multilayered material is constituted by alternately superposing copper alloy layers with a thickness of 10 μm or below and an iron alloy layers with a thickness of 10 μm or below one upon another so as to form 100 or above layers and characterized in that a copper precipitate with a diameter of 1-100 nm is present in each of the iron alloy layers, an iron precipitate with a diameter of 1-100 nm is present in each of the copper alloy layers and the aspect ratio of the iron alloy layers is 10 or above. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は電子電気機器用のコネクタ、端子材あるいは自動車車載用などのコネクタや端子材などに適用される好適な合金材料ないしは金属多層材料に関する。   The present invention relates to a suitable alloy material or metal multilayer material applied to a connector or terminal material for electronic and electrical equipment, a connector or terminal material for automobile use, and the like.

従来、一般的に電気電子機器用材料としては、ステンレス系鋼のほか、電気伝導性および熱伝導性に優れるリン青銅、丹銅、黄銅等の銅系材料も広く用いられている。
近年、電気電子機器の小型化、軽量化、さらにこれに伴う高密度実装化に対する要求が高まり、これらに適用される銅系材料にも小型化が求められている。小型が進めればコンタクト部分の接点面積が減少となり、従来と同等な信頼性を保つためにはより高強度な材料が必要となっている。また、電子機器は小型化・高集積化が進むに従って、コネクタに使われる材料には、より小さな変形で大きな接圧が得られる特性が求められている。これは、コネクタは一般的に材料が「たわむ」=変形することにより、所定の接圧を発生させて互いに嵌合(接合)する機構により通電や情報信号のやり取りを行っている。電子機器の小型化がすすみ、そのためこの変形量を従来よりも大きく取れない設計とせざるをえず、その材料に対して小さな変形量で大きな接圧が得られる高い縦弾性係数を有する特性が求められている。
Conventionally, as materials for electrical and electronic equipment, copper-based materials such as phosphor bronze, red brass, brass, etc. that are excellent in electrical conductivity and thermal conductivity have been widely used in addition to stainless steel.
In recent years, there has been an increasing demand for miniaturization and weight reduction of electric and electronic equipment, and further high density mounting, and there is a demand for miniaturization of copper-based materials applied thereto. As the miniaturization progresses, the contact area of the contact portion decreases, and a higher-strength material is required to maintain the same reliability as the conventional one. In addition, as electronic devices become smaller and more highly integrated, materials used for connectors are required to have a characteristic that allows a large contact pressure to be obtained with smaller deformation. This is because the connector is generally “bends” = deforms, so that a predetermined contact pressure is generated to couple (join) each other and power is supplied and information signals are exchanged. As electronic devices continue to be miniaturized, it is necessary to design the amount of deformation so that it cannot be larger than before, and a characteristic that has a high longitudinal elastic modulus that can obtain a large contact pressure with a small amount of deformation is required for the material. It has been.

これらの理由で、強度が高く、優れた導電性を保ち、かつ、高い縦弾性係数を有する材料が望まれている。具体的には、強度は1000MPa以上、導電率は20%IACS以上、縦弾性係数は140GPa以上が求められている。
金属材料の強度を増加させる手法として材料に加工歪を導入する加工強化法や他の元素を固溶させた固溶強化法、第二相を析出させて強化する析出強化法が一般に行われている。
例えば、純銅(C1100)は強度が約300MPaで縦弾性係数は約124GPa、導電率は約101%IACSである。
加工強化法を用いて、C1100へ強加工を施しても強度が400MPa程度までしか上昇せず、導電率と縦弾性係数はわずかに低下する。
For these reasons, a material having high strength, maintaining excellent conductivity, and having a high longitudinal elastic modulus is desired. Specifically, the strength is required to be 1000 MPa or more, the conductivity is 20% IACS or more, and the longitudinal elastic modulus is 140 GPa or more.
As methods for increasing the strength of metal materials, there are generally used the process strengthening method that introduces processing strain into the material, the solid solution strengthening method that dissolves other elements in solid solution, and the precipitation strengthening method that precipitates and strengthens the second phase. Yes.
For example, pure copper (C1100) has a strength of about 300 MPa, a longitudinal elastic modulus of about 124 GPa, and a conductivity of about 101% IACS.
Even if strong processing is applied to C1100 using the processing strengthening method, the strength increases only to about 400 MPa, and the conductivity and the longitudinal elastic modulus are slightly decreased.

固溶強化法を使った合金としては、その例として黄銅のC2600やリン青銅のC5191やC5212などが市販されている。それらの強度は500MPa以上を示すが導電率はC2600で約28%IACS、C5191やC5212は約15%IACS以下である。また、縦弾性係数はSnやZnが固溶されると低下する。
析出強化法を利用したCu−Be合金(C17200)やCu−Cr合金(C18040)などがある。C17200は強度が1000MPa以上で導電率が20%IACS程度であるが、Beはその環境問題から使用について懸念があることも事実である。また、C18040の導電率は約80%IACSであるが強度は約600MPaであり更なる高強度化が望まれている。なお、これらいずれの材料の縦弾性係数も約120〜135GPaで低い。
このようにいずれの強化手法でも導電率の低下を招き導電率と強度は相反する特性となっている。そこで、導電性を低下させず、高強度、高い縦弾性係数を有した材料を開発することが強く求められている。
Examples of alloys using the solid solution strengthening method include brass C2600 and phosphor bronze C5191 and C5212. Their strength is over 500MPa, but the conductivity is about 28% IACS for C2600, and about 15% IACS for C5191 and C5212. The longitudinal elastic modulus decreases when Sn or Zn is dissolved.
There are Cu-Be alloy (C17200) and Cu-Cr alloy (C18040) using precipitation strengthening method. C17200 has a strength of 1000MPa or more and conductivity of about 20% IACS, but Be is also concerned about its use due to its environmental problems. The electrical conductivity of C18040 is about 80% IACS, but the strength is about 600 MPa, and further enhancement of strength is desired. In addition, the longitudinal elastic modulus of any of these materials is as low as about 120 to 135 GPa.
As described above, any of the strengthening methods causes a decrease in the conductivity, and the conductivity and the strength are contradictory. Therefore, there is a strong demand to develop a material having a high strength and a high longitudinal elastic modulus without reducing the conductivity.

例えば、強度と導電性の相反する特性を複相化あるいは複合化することにより両方の良い特性を両立させる試みは多くの提案がある。ステンレス鋼は強度が1500MPaを越え、縦弾性係数も200GPaを越える材料であるが、その導電率は約4%IACSである。また純銅(C1100)は約101%IACSの良好な導電性があるが、引張強度が約300MPa、縦弾性係数が約128GPaと強度と縦弾性係数が低い欠点がある。そのため、鉄系合金と銅系合金を積層した発明がなされている。
銅中にインバー合金粒子が分散された複合層と銅または銅合金を積層した例がある(例えば、特許文献1)。
また、鉄合金の両面または片面の前面または一部に銅合金をクラッドした電気接点用部材の例がある(例えば、特許文献2)。
鉄合金の両面に銅の薄膜を圧着した例がある(例えば、特許文献3)。
鉄合金を両側層として中間層に銅合金を複合した積層材の例がある(例えば、特許文献4、5)。
特開昭59−177950号公報 特開昭63−213221号公報 特開平5−102386号公報 特開平6−29436号公報 特開平6−29449号公報
For example, there have been many proposals for trying to achieve both of the good characteristics by making the characteristics in which the strength and the conductivity contradict each other into a multiphase or a composite. Stainless steel is a material with strength exceeding 1500MPa and longitudinal elastic modulus exceeding 200GPa, but its conductivity is about 4% IACS. Pure copper (C1100) has a good conductivity of about 101% IACS, but has the drawbacks of low strength and longitudinal elastic modulus, with a tensile strength of about 300 MPa and a longitudinal elastic modulus of about 128 GPa. Therefore, an invention in which an iron-based alloy and a copper-based alloy are laminated has been made.
There is an example in which a composite layer in which Invar alloy particles are dispersed in copper and copper or a copper alloy are laminated (for example, Patent Document 1).
In addition, there is an example of a member for an electrical contact in which a copper alloy is clad on the front surface or a part of one or both surfaces of an iron alloy (for example, Patent Document 2).
There is an example in which a copper thin film is bonded to both sides of an iron alloy (for example, Patent Document 3).
There is an example of a laminated material in which an iron alloy is used as both side layers and a copper alloy is combined in an intermediate layer (for example, Patent Documents 4 and 5).
JP 59-177950 A JP 63-213221 A Japanese Patent Laid-Open No. 5-102386 JP-A-6-29436 JP-A-6-29449

しかし、前記特許文献1は、本発明が目標とするレベルの強度、導電率、縦弾性係数の組合せを有する材料ではなく、また、その製法も粉末冶金法と高コストな製造方法である。
前記特許文献2は、本発明が目標とするレベルの強度、導電率、縦弾性係数の組合せを有する材料ではない。
また、前記特許文献3は、その用途がリードフレーム材であること、また、使われている素材がFe−Ni合金(インバー合金)であるため、本発明のFeと比較して非常に材料コストが高いことが問題である。
さらに、前記特許文献4は、本発明が目標とするレベルの強度、導電率、縦弾性係数の組合せを有する材料ではない。
However, Patent Document 1 is not a material having a combination of strength, electrical conductivity, and longitudinal elastic modulus that is a target level of the present invention, and its manufacturing method is a powder metallurgy method and a high-cost manufacturing method.
Patent Document 2 is not a material having a combination of strength, conductivity, and longitudinal elastic modulus at the target level of the present invention.
In addition, since Patent Document 3 uses a lead frame material, and the material used is an Fe-Ni alloy (Invar alloy), the material cost is much higher than that of Fe of the present invention. Is a problem.
Furthermore, Patent Document 4 is not a material having a combination of strength, conductivity, and longitudinal elastic modulus at the target levels of the present invention.

前記特許文献5は、用途も異なり、本発明が目標とするレベルの強度、導電率、縦弾性係数の組合せを有する材料ではない。
本発明の目的は、強度1000MPa以上、導電率20%IACS以上、縦弾性係数140GPa以上をすべて具備する新しい金属材料を提供することである。
さらに本発明は、高い縦弾性係数、高強度で良好な導電性を持ち、電気電子機器及び車載用端子・コネクタあるいはリレースイッチ等の電子部品端子材にも好適な複相合金材料を提供することである。
Patent Document 5 is different in application and is not a material having a combination of strength, conductivity, and longitudinal elastic modulus at the target levels of the present invention.
An object of the present invention is to provide a new metal material having a strength of 1000 MPa or more, an electrical conductivity of 20% IACS or more, and a longitudinal elastic modulus of 140 GPa or more.
Furthermore, the present invention provides a multiphase alloy material having a high modulus of elasticity, high strength and good conductivity, and suitable for electrical and electronic equipment and electronic parts terminal materials such as in-vehicle terminals / connectors or relay switches. It is.

本発明の上記の課題は以下の手段により達成された。
すなわち本発明は
(1)銅合金層と鉄合金層が交互に積層されている金属多層材料において、鉄合金層のアスペクト比が10以上であることを特徴とする金属多層材料。
(2)銅合金層のアスペクト比が10以上であることを特徴とする(1)記載の金属多層材料。
(3)鉄合金層が直径1〜100nmの銅析出物を含有し、銅合金層が直径1〜100nmの鉄析出物を含有することを特徴とする(1)または(2)記載の金属多層材料。
(4)引張強度が1000MPa以上、導電率が20%IACS以上、縦弾性係数が140GPa以上を有することを特徴とする(1)〜(3)のいずれか1項に記載の金属多層材料。
(5)銅もしくは銅合金の層と鉄もしくは鉄合金の層とが交互に積層されている金属材料を圧延によって製造する方法であって、銅もしくは銅合金層と鉄もしくは鉄合金層が積層された積層体に対し、750〜1085℃の温度で1〜1000分間の拡散熱処理を1回以上行うことを特徴とする(1)から(4)のいずれか1項に記載の金属多層材料の製造方法。
(6)銅もしくは銅合金の層と鉄もしくは鉄合金の層とが交互に積層されている金属多層材料を圧延によって製造する方法であって、厚さが10μm以下の銅もしくは銅合金層と、厚さが10μm以下の鉄もしくは鉄合金層が積層された積層体に対し、750〜1085℃の温度で1〜1000分間の拡散熱処理を1回以上行うことを特徴とする(5)に記載の金属多層材料の製造方法。
(7)銅もしくは銅合金の層と鉄もしくは鉄合金の層とが交互に積層されている金属多層材料を圧延によって製造する方法であって、厚さが1μm以下の銅もしくは銅合金層と、厚さが1μm以下の鉄もしくは鉄合金層が積層された積層体に対し、750〜1085℃の温度で1〜1000分間の拡散熱処理を1回以上行うことを特徴とする(5)に記載の金属多層材料の製造方法。
(8)銅もしくは銅合金の層と鉄もしくは鉄合金の層とが交互に積層されている金属多層材料を圧延によって製造する方法であって、銅もしくは銅合金層と鉄もしくは鉄合金層の積層数が100層以上積層された積層体に対し、750〜1085℃の温度で1〜1000分間の拡散熱処理を1回以上行うことを特徴とする(5)から(7)のいずれか1項に記載の金属多層材料の製造方法。
The above object of the present invention has been achieved by the following means.
That is, the present invention provides (1) a metal multilayer material in which copper alloy layers and iron alloy layers are alternately laminated, wherein the iron alloy layer has an aspect ratio of 10 or more.
(2) The metal multilayer material according to (1), wherein the copper alloy layer has an aspect ratio of 10 or more.
(3) The metal multilayer according to (1) or (2), wherein the iron alloy layer contains a copper precipitate having a diameter of 1 to 100 nm, and the copper alloy layer contains an iron precipitate having a diameter of 1 to 100 nm. material.
(4) The metal multilayer material according to any one of (1) to (3), which has a tensile strength of 1000 MPa or more, an electrical conductivity of 20% IACS or more, and a longitudinal elastic modulus of 140 GPa or more.
(5) A method of manufacturing a metal material in which copper or copper alloy layers and iron or iron alloy layers are alternately laminated by rolling, wherein the copper or copper alloy layer and the iron or iron alloy layer are laminated. The multi-layer metal material according to any one of (1) to (4), wherein the laminated body is subjected to diffusion heat treatment for 1 to 1000 minutes at a temperature of 750 to 185 ° C. at least once. Method.
(6) A method of rolling a metal multilayer material in which copper or copper alloy layers and iron or iron alloy layers are alternately laminated, the copper or copper alloy layer having a thickness of 10 μm or less; (5) The diffusion heat treatment for 1 to 1000 minutes is performed at least once at a temperature of 750 to 1085 ° C. for a laminate in which an iron or iron alloy layer having a thickness of 10 μm or less is laminated. A method for producing a metal multilayer material.
(7) A method for producing a metal multilayer material in which copper or copper alloy layers and iron or iron alloy layers are alternately laminated by rolling, wherein the copper or copper alloy layer has a thickness of 1 μm or less; (5) The diffusion heat treatment for 1 to 1000 minutes is performed at least once at a temperature of 750 to 1085 ° C. for a laminate in which an iron or iron alloy layer having a thickness of 1 μm or less is laminated. A method for producing a metal multilayer material.
(8) A method for producing a metal multilayer material in which copper or copper alloy layers and iron or iron alloy layers are alternately laminated by rolling, wherein the copper or copper alloy layer and iron or iron alloy layer are laminated. Any one of (5) to (7), wherein a diffusion heat treatment for 1 to 1000 minutes is performed at least once at a temperature of 750 to 1085 ° C. for a laminate in which 100 or more layers are laminated The manufacturing method of the metal multilayer material of description.

本発明の金属多層材料は、強度1000MPa以上、導電率20%IACS以上、縦弾性係数140GPa以上を有しており、小さな変形量で大きな接圧が得られ縦弾性係数及び導電率も高い。このような金属材料は電気電子機器及び車載用端子・コネクタあるいはリレースイッチ等に好適合金材料である。   The metal multilayer material of the present invention has a strength of 1000 MPa or more, an electrical conductivity of 20% IACS or more, and a longitudinal elastic modulus of 140 GPa or more. A large contact pressure can be obtained with a small amount of deformation, and the longitudinal elastic modulus and electrical conductivity are high. Such a metal material is an alloy material suitable for electrical and electronic equipment, in-vehicle terminals / connectors, relay switches, and the like.

本発明の金属多層材料中の鉄合金層又は/及び銅合金層のアスペクト比を10以上としたのは、アスペクト比が小さすぎると密着性が向上しないためである。前記アスペクト比は大きければ大きい程良い。好ましくは50以上である。
アスペクト比の上限は制限するものではないが通常100程度である。また鉄合金層のアスペクト比の値は銅合金層のアスペクト比と同様である。
この場合、前記の鉄合金層である平板状合金層の平板状面と同面積の円を想定した場合の円相当径(本明細書及び請求項では単に直径という。)と厚みの比であるアスペクト比が大きくなると、銅合金層と鉄合金層の接地面積が大きくなり、銅と鉄の密着性が向上する。
ここで鉄合金層又は銅合金層とは、鉄合金板と銅合金板とを積層体としたのち、拡散熱処理、冷間圧延などの加工によって、積層体の各層がいくつかの部分に分断された分断物が横方向に並んだ状態となっている場合も包含する。この場合のアスペクト比とは、分断物それぞれのアスペクト比をいう。
また、鉄合金層中に大きさ1〜100nmのCu析出相、銅合金層中に大きさ1〜100nmのFe析出相が同時に存在することとしたのは、析出物を相互の相に析出させることで強度および導電率が向上するためである。ここでCu析出相及びFe析出相の大きさとは、直径を表わし各析出物が長径と短径を有する場合は長径をいう。Cu側へのFe相の析出は多くの報告があるが、本発明においては、Fe側にCu相が析出することが同時に起こっていることが特徴である。このCu析出相、Fe析出相の大きさは拡散熱処理によって制御することができる。拡散熱処理温度が高いと析出相のサイズが大きく、強度が向上しないが、低いと析出相のサイズが小さく、導電率が低くなる。拡散熱処理の時間も同様であり、長いと析出相のサイズが大きく、強度が向上しないが、短いと析出相のサイズが小さく、導電率が低くなる。銅析出のみまたは鉄析出のみでは強度および導電率向上の効果が得られない。
The reason why the aspect ratio of the iron alloy layer and / or the copper alloy layer in the metal multilayer material of the present invention is 10 or more is that if the aspect ratio is too small, the adhesion is not improved. The larger the aspect ratio, the better. Preferably it is 50 or more.
The upper limit of the aspect ratio is not limited, but is usually about 100. The value of the aspect ratio of the iron alloy layer is the same as the aspect ratio of the copper alloy layer.
In this case, it is the ratio of the equivalent circle diameter (simply referred to as the diameter in the present specification and claims) to the thickness when assuming a circle having the same area as the flat surface of the flat alloy layer as the iron alloy layer. As the aspect ratio increases, the ground contact area between the copper alloy layer and the iron alloy layer increases, and the adhesion between copper and iron improves.
Here, an iron alloy layer or a copper alloy layer is a laminate of an iron alloy plate and a copper alloy plate, and then each layer of the laminate is divided into several parts by processing such as diffusion heat treatment and cold rolling. It also includes the case where the cut pieces are arranged in the horizontal direction. The aspect ratio in this case refers to the aspect ratio of each fragmented product.
In addition, the reason for the simultaneous existence of a 1-100 nm Cu precipitate phase in the iron alloy layer and the 1-100 nm Fe precipitate phase in the copper alloy layer is that the precipitates are precipitated in each other phase. This is because the strength and conductivity are improved. Here, the size of the Cu precipitation phase and the Fe precipitation phase represents a diameter, and when each precipitate has a major axis and a minor axis, it refers to the major axis. There are many reports on the precipitation of the Fe phase on the Cu side, but the present invention is characterized by the simultaneous occurrence of the Cu phase on the Fe side. The size of the Cu precipitation phase and Fe precipitation phase can be controlled by diffusion heat treatment. If the diffusion heat treatment temperature is high, the size of the precipitated phase is large and the strength is not improved, but if it is low, the size of the precipitated phase is small and the conductivity is low. The time for the diffusion heat treatment is the same. If the time is long, the size of the precipitated phase is large and the strength is not improved, but if it is short, the size of the precipitated phase is small and the conductivity is low. The effect of improving strength and conductivity cannot be obtained by only copper precipitation or iron precipitation alone.

以下に、本発明の好ましい実施の形態を述べる。
本発明において厚さが10μm以下の銅合金層と、厚さが10μm以下の鉄合金層が交互に積層するとするのは、単純な重ね合わせの計算の複合則から予期される特性からを超越し、優れた強度および縦弾性係数を実現するためである。銅合金層および鉄合金層の厚さが10μmを超えると強度および縦弾性係数が所望の要求特性を得ることができない。また、銅合金層および鉄合金層が交互に積層しない場合も目的とする強度および縦弾性係数が得られない。なお、各相の厚さは薄ければ薄い方がよい。好ましくは10μm以下であり、また下限は特に制限するものではないが圧延機の制約により通常は0.01μm以上となる。より好ましくは0.1μm以上1μm以下である。
また積層の数を合計100層以上としたのは、100層未満では強度および縦弾性係数が低下するためである。なお、積層数は多ければ多いほど良い。好ましくは300層以上である。
本発明の金属多層材料の製造には、銅もしくは銅合金板と鉄もしくは鉄合金板を用いる。ここで銅合金板の場合の銅合金とは、特に制限はないがTPC(タフピッチ銅、OFC(無酸素銅)などでCu(銅)を90質量%以上含有するものである。また鉄合金板とはやはり特に制限はないが、SS400、S45C、SPCCなどでFe(鉄)を90質量%以上含有するものである。また、ステンレス鋼の例えば、SUS301やSUS304、SUS430などを用いても同様の効果がある。
Hereinafter, preferred embodiments of the present invention will be described.
In the present invention, it is assumed that the copper alloy layer having a thickness of 10 μm or less and the iron alloy layer having a thickness of 10 μm or less are alternately laminated, which exceeds the characteristics expected from the complex rule of calculation of simple overlay. In order to realize excellent strength and longitudinal elastic modulus. If the thicknesses of the copper alloy layer and the iron alloy layer exceed 10 μm, the desired characteristics of strength and longitudinal elastic modulus cannot be obtained. Further, even when the copper alloy layer and the iron alloy layer are not alternately laminated, the intended strength and longitudinal elastic modulus cannot be obtained. The thinner each phase, the better. Preferably, it is 10 μm or less, and the lower limit is not particularly limited, but is usually 0.01 μm or more due to restrictions of the rolling mill. More preferably, it is 0.1 μm or more and 1 μm or less.
The reason why the total number of layers is 100 or more is that when the number is less than 100, the strength and the longitudinal elastic modulus are lowered. Note that the larger the number of layers, the better. Preferably it is 300 layers or more.
For the production of the metal multilayer material of the present invention, a copper or copper alloy plate and an iron or iron alloy plate are used. Here, the copper alloy in the case of the copper alloy plate is not particularly limited, but is TPC (tough pitch copper, OFC (oxygen-free copper), etc.) containing 90% by mass or more of Cu (copper). Although there is no particular limitation, SS400, S45C, SPCC, etc. contain Fe (iron) in an amount of 90% by mass or more. effective.

次にこの金属多層材料の製造方法を図面に言及して説明する。
図1は走査型電子顕微鏡(SEM)による、本発明の金属多層材料の拡散熱処理前における断面組織である。本発明の金属多層材料は銅合金層と鉄合金層が交互に積み重なっている。黒色が鉄合金層、白色が銅合金層である。このときの銅合金層及び鉄合金層の厚さは、好ましくは1μm〜1000μm、より好ましくは1μm〜100μm、特に好ましくは1μm〜10μmである。
次に、このようにして積層した材料を特定の条件で拡散熱処理をすることにより、図2のように鉄合金層が分断され、粒状の鉄合金部となる。これは銅中の鉄の拡散の方が鉄中の銅の拡散よりも早いためであり、鉄合金層の体積が減少して分断されるように見えると考えられる。
この状態から冷間圧延を施すと、粒状の鉄合金部が圧延方向に延ばされ、扁平状になる。この冷間圧延の圧下率は、特に制限するものでなく、上記の粒状の鉄合金部が圧延方向に延ばされ、扁平状になって互いに連結するに十分な程度が好ましい。
Next, the manufacturing method of this metal multilayer material is demonstrated with reference to drawings.
FIG. 1 is a cross-sectional structure of a metal multilayer material of the present invention before diffusion heat treatment by a scanning electron microscope (SEM). In the metal multilayer material of the present invention, copper alloy layers and iron alloy layers are alternately stacked. Black is an iron alloy layer, and white is a copper alloy layer. The thickness of the copper alloy layer and the iron alloy layer at this time is preferably 1 μm to 1000 μm, more preferably 1 μm to 100 μm, and particularly preferably 1 μm to 10 μm.
Next, the material laminated in this manner is subjected to diffusion heat treatment under specific conditions, whereby the iron alloy layer is divided as shown in FIG. 2 to form a granular iron alloy part. This is because the diffusion of iron in copper is faster than the diffusion of copper in iron, and it seems that the volume of the iron alloy layer decreases and appears to be divided.
When cold rolling is performed from this state, the granular iron alloy part is extended in the rolling direction and becomes flat. The rolling reduction of the cold rolling is not particularly limited, and is preferably a degree sufficient for the above-described granular iron alloy portions to be extended in the rolling direction and become flat and connected to each other.

具体的には圧下率は、好ましくは50%以上、より好ましくは50〜90%である。このようにして図3に示す本発明の規定するアスペクト比の金属多層材料が得られる(圧下率60%の例である)。
図3は本発明の金属多層材料の一例のSEMにより観察された断面組織である。黒色の鉄合金層が扁平状となっている。この断面組織において、任意の位置において圧延方向に垂直に切断する線を引くと、すべての位置において、銅合金層と鉄合金層が交互に積層されており、各層は厚さ10μm以下で、かつ、板厚全体では積層数が100層以上となる。また鉄合金層に直径1〜100nmの銅析出物が存在し、銅合金層中に直径1〜100nmの鉄析出物が存在する。本願発明は図1のような状態の層状の組織だけでなく、図3のように拡散熱処理により扁平状の鉄合金部を有する組織を有する金属多層材料も発明に含まれる。
Specifically, the rolling reduction is preferably 50% or more, more preferably 50 to 90%. In this way, a metal multilayer material having an aspect ratio defined by the present invention shown in FIG. 3 is obtained (an example of a rolling reduction of 60%).
FIG. 3 is a cross-sectional structure observed by SEM of an example of the metal multilayer material of the present invention. The black iron alloy layer is flat. In this cross-sectional structure, when a line perpendicular to the rolling direction is drawn at any position, copper alloy layers and iron alloy layers are alternately stacked at all positions, and each layer has a thickness of 10 μm or less, and In the entire plate thickness, the number of laminated layers is 100 layers or more. Further, a copper precipitate having a diameter of 1 to 100 nm is present in the iron alloy layer, and an iron precipitate having a diameter of 1 to 100 nm is present in the copper alloy layer. The present invention includes not only a layered structure in a state as shown in FIG. 1, but also a metal multilayer material having a structure having a flat iron alloy part by diffusion heat treatment as shown in FIG.

さらに詳細に実施様態を述べると、本発明の金属多層材料を製造するには、銅を主成分とする条と鉄を主成分とする条(ステンレス系材料でも構わない)を積層し、700〜1200℃で熱間圧延して、次いで圧下率50%以上の冷間圧延を行う。更に、750〜1085℃の温度で1〜1000分間の拡散熱処理を1回以上行うと、鉄合金層のアスペクト比で10以上となるため銅合金層との密着性が向上する。この拡散熱処理は銅と鉄の相互拡散を起こすものであり、Cu相とFe相の密着性を向上させる効果がある。この温度が低すぎるとその密着性を向上させる効果が小さく、また高すぎると、Cuの融点を超えて工業的に安定な製造ができない。また、1分以下の時間では最適な密着性を得ることができず、1000分間以上では密着性の向上効果が飽和し、コスト高となることがある。   To describe the embodiment in more detail, in order to produce the metal multilayer material of the present invention, a strip composed mainly of copper and a strip composed mainly of iron (may be a stainless steel material) are laminated, and 700 to Hot rolling is performed at 1200 ° C., followed by cold rolling with a reduction rate of 50% or more. Furthermore, when diffusion heat treatment for 1 to 1000 minutes at a temperature of 750 to 185 ° C. is performed once or more, the iron alloy layer has an aspect ratio of 10 or more, so that the adhesion with the copper alloy layer is improved. This diffusion heat treatment causes mutual diffusion of copper and iron, and has an effect of improving the adhesion between the Cu phase and the Fe phase. If this temperature is too low, the effect of improving the adhesion is small, and if it is too high, the melting point of Cu is exceeded and industrially stable production cannot be achieved. In addition, optimal adhesiveness cannot be obtained in a time of 1 minute or less, and in 1000 minutes or more, the effect of improving the adhesiveness is saturated and the cost may be increased.

また、表層にNi層を形成すると腐食による通電不良を抑制できて好ましい。NiはCuまたはFeと非常に強固に密着する最適な元素である。Ni層が1μm以上とするのは、1μm未満では腐食を抑制する効果が得られないことがあるためである。
さらに、本発明の金属多層材料にSn、Cu、Ag、Au、Pd等のメッキを施すと、接点における接触信頼性が高まり好ましい。
In addition, it is preferable to form a Ni layer on the surface layer because it is possible to suppress current conduction failure due to corrosion. Ni is an optimal element that adheres very firmly to Cu or Fe. The reason why the Ni layer is 1 μm or more is that if it is less than 1 μm, the effect of suppressing corrosion may not be obtained.
Furthermore, when the metal multilayer material of the present invention is plated with Sn, Cu, Ag, Au, Pd or the like, the contact reliability at the contacts is preferably increased.

次に本発明に実施例に基づきさらに詳細に説明する。
各評価項目の測定方法は以下の通りである。
引張強度:圧延平行方向から切り出したJIS−13B号の試験片をJIS−Z2241に準じて3本測定しその平均値を示した。
導電率:圧延平行方向から切り出した10×150mmの試験片を作製して四端子法を用いて、20℃(±1℃)に設定された恒温槽中で2本測定しその平均値を示した。なお、端子間距離は100mmである。
Next, the present invention will be described in more detail based on examples.
The measurement method for each evaluation item is as follows.
Tensile strength: Three test pieces of JIS-13B cut from the rolling parallel direction were measured according to JIS-Z2241, and the average value was shown.
Conductivity: 10 × 150mm test piece cut from the rolling parallel direction was prepared and measured using a four-terminal method in a thermostat set at 20 ° C (± 1 ° C), and the average value was shown. It was. The distance between terminals is 100 mm.

縦弾性係数:インストロン縦型引張試験を用いて、ダイヤルゲージ法で測定した。試験片のサイズは20×200mmで、歪ゲージを装着して弾性限界内にて応力と歪の相関関係を測定し、その勾配から縦弾性係数を算出した。なお、算出に用いた点は8〜10点でそれらの点を最小二乗法でその勾配を求め、縦弾性係数へ変換した。
層の厚さ:原料に用いた板の厚さから加工率によって計算を行った。例えば、厚さ0.1mmの板を初期に用いた場合、加工率90%の時には層の厚さは0.01mm(100μm)となる。
密着性の評価:各層の密着性の評価は、まず、熱間圧延、冷間圧延中に圧延材の板厚方向に剥がれていく材料は密着性が低いと判断できる。また、所望の材料板厚に加工できた場合でも、その断面を調査することにより、各層の界面にボイドなどの隙間が無いことを確認して評価している。断面観察は材料の板厚方向を機械研磨して、光学顕微鏡、走査型電子顕微鏡で行った。同時に、層の厚さについても確認し、希望の厚さになっているか調査した。
Longitudinal elastic modulus: Measured by dial gauge method using Instron vertical tensile test. The size of the test piece was 20 × 200 mm, a strain gauge was attached, the correlation between stress and strain was measured within the elastic limit, and the longitudinal elastic modulus was calculated from the gradient. The points used for the calculation were 8 to 10 points, and the gradients of these points were obtained by the least square method and converted to the longitudinal elastic modulus.
Layer thickness: Calculation was performed according to the processing rate from the thickness of the plate used as a raw material. For example, when a plate having a thickness of 0.1 mm is used initially, the layer thickness is 0.01 mm (100 μm) when the processing rate is 90%.
Evaluation of adhesion: The evaluation of the adhesion of each layer can be first determined that the material that peels off in the thickness direction of the rolled material during hot rolling and cold rolling has low adhesion. Moreover, even if it can process to the desired material plate | board thickness, it confirms and evaluates that there are no gaps, such as a void, in the interface of each layer by investigating the cross section. The cross-sectional observation was performed with an optical microscope and a scanning electron microscope after mechanically polishing the thickness direction of the material. At the same time, the thickness of the layer was also checked to investigate whether it had the desired thickness.

アスペクト比:アスペクト比はJISH0501(切断法)に基づいて測定した。即ち、板材の最終冷間圧延方向(最終塑性加工方向)と平行な断面において最終冷間圧延方向と平行な方向と直角な方向の2方向で銅合金層または鉄合金層の寸法を測定し、圧延方向の直径と板厚方向の長さ(厚み)の比を測定した。前記寸法は、前記銅合金板の結晶組織を走査型電子顕微鏡で1000倍に拡大して写真に撮り、銅合金層および鉄合金層それぞれ10個の寸法の平均値を求め、前記直径を前記厚みで除した値で示した。
析出物:析出物のサイズは微小なので透過電子顕微鏡(TEM)により観察を行って×1万倍〜×20万倍の写真を撮影した後、その円相当直径を測定して10個の平均値を求めた。
実施例1
Aspect ratio: The aspect ratio was measured based on JISH0501 (cutting method). That is, the dimension of the copper alloy layer or the iron alloy layer is measured in two directions, a direction perpendicular to the direction parallel to the final cold rolling direction, in a cross section parallel to the final cold rolling direction (final plastic working direction) of the plate material, The ratio of the diameter in the rolling direction to the length (thickness) in the thickness direction was measured. The dimensions are obtained by enlarging the crystal structure of the copper alloy plate 1000 times with a scanning electron microscope and taking a photograph, obtaining an average value of 10 dimensions of each of the copper alloy layer and the iron alloy layer, and determining the diameter as the thickness. It was shown by the value divided by.
Precipitates: Since the size of the precipitates is very small, observe with a transmission electron microscope (TEM) and take a photograph of × 10,000 to × 200,000 times, then measure the equivalent circle diameter and average the 10 Asked.
Example 1

<請求項1、2、4の実施例>
素材として厚さ0.1mmの純鉄と厚さ0.1mmの無酸素銅を準備した。これらをNi容器に交互に積層に積重ねて、30mm×150mm×300mmの鋳塊を作製した。これを1000℃で厚さ6mmに熱間圧延、次いで厚さ2mmまで冷間圧延し1075℃で100分間拡散熱処理を行った後、水冷と表面面削を施した。その後、圧下率を10〜90%で冷間圧延して、必要に応じ表面面削を行って、板厚1.0mmの中間素材に仕上げた。次いで、その中間素材を焼鈍し、冷間圧延を行って、厚さ0.1〜0.2mmに仕上げ、鉄合金層及び銅合金層のアスペクト比を変えた多層材料を作製した。
表1に示すアスペクト比を有する多層材料について引張強度、導電率、縦弾性係数を求めた。なお、銅合金層および鉄合金層の厚さ、積層数は本願発明の範囲内である。表1から明らかなように、本願発明の実施例1〜5はいずれも優れた特性を有した。これに対し、比較例1は鉄合金層のアスペクト比が小さく、比較例2、3は鉄合金層と銅合金層のアスペクト比が小さいので引張強度が劣った。
<Examples of Claims 1, 2, and 4>
As materials, 0.1 mm thick pure iron and 0.1 mm thick oxygen-free copper were prepared. These were alternately stacked on a Ni container to produce a 30 mm × 150 mm × 300 mm ingot. This was hot-rolled at 1000 ° C. to a thickness of 6 mm, then cold-rolled to a thickness of 2 mm, subjected to diffusion heat treatment at 1075 ° C. for 100 minutes, and then subjected to water cooling and surface chamfering. Thereafter, it was cold-rolled at a rolling reduction of 10 to 90%, and surface chamfering was performed as necessary to finish an intermediate material having a thickness of 1.0 mm. Subsequently, the intermediate material was annealed and cold-rolled to finish a thickness of 0.1 to 0.2 mm, thereby producing a multilayer material in which the aspect ratios of the iron alloy layer and the copper alloy layer were changed.
Tensile strength, electrical conductivity, and longitudinal elastic modulus were determined for the multilayer material having the aspect ratio shown in Table 1. In addition, the thickness of the copper alloy layer and the iron alloy layer and the number of laminated layers are within the scope of the present invention. As is clear from Table 1, Examples 1 to 5 of the present invention all had excellent characteristics. In contrast, Comparative Example 1 had a low aspect ratio of the iron alloy layer, and Comparative Examples 2 and 3 had poor tensile strength because the aspect ratio of the iron alloy layer and the copper alloy layer was small.

実施例2
<請求項3の実施例>
素材として厚さ0.1mmの純鉄と厚さ0.1mmの無酸素銅を準備した。これらをNi容器に交互に積層に積重ねて、30mm×150mm×300mmの鋳塊を作製した。これを1000℃で厚さ6mmに熱間圧延、次いで厚さ2mmまで冷間圧延し拡散熱処理を条件を750〜1050℃及び1〜1000分間の間で変化させて行った後、水冷と表面面削を施した。その後、圧下率50%で冷間圧延して、必要に応じ表面面削を行って、板厚1.0mmの中間素材に仕上げた。次いで、その中間素材を焼鈍し、冷間圧延を行って、厚さ0.1〜0.2mmに仕上げた。
Example 2
<Example of Claim 3>
As materials, 0.1 mm thick pure iron and 0.1 mm thick oxygen-free copper were prepared. These were alternately stacked on a Ni container to produce a 30 mm × 150 mm × 300 mm ingot. This is hot-rolled at 1000 ° C to a thickness of 6 mm, then cold-rolled to a thickness of 2 mm, and diffusion heat treatment is carried out by changing the conditions between 750-1050 ° C and 1-1000 minutes, followed by water cooling and surface surface Sharpened. After that, it was cold-rolled at a reduction ratio of 50%, and surface chamfering was performed as necessary to finish an intermediate material with a thickness of 1.0 mm. Next, the intermediate material was annealed and cold-rolled to a thickness of 0.1 to 0.2 mm.

TEMにより観察した表2に示す大きさの銅析出物および鉄析出物を有する多層材料について引張強度、導電率、縦弾性係数を求めた。なお、銅合金層および鉄合金層の厚さ、積層数は本発明の範囲内である。またSEMにより観察した鉄合金層もしくは銅合金層のアスペクト比は10以上であった。
表2から明らかなように、本願発明の実施例21〜25はいずれも優れた特性を有した。
Tensile strength, electrical conductivity, and longitudinal elastic modulus were determined for a multilayer material having copper precipitates and iron precipitates having the sizes shown in Table 2 as observed by TEM. In addition, the thickness of the copper alloy layer and the iron alloy layer and the number of laminated layers are within the scope of the present invention. The aspect ratio of the iron alloy layer or copper alloy layer observed by SEM was 10 or more.
As is clear from Table 2, Examples 21 to 25 of the present invention all had excellent characteristics.

これに対し、比較例21は銅析出物と鉄析出物の両方が大きすぎるので引張強度と縦弾性係数が劣った。比較例22は銅析出物が大きすぎるので引張強度と縦弾性係数が劣った。比較例23は鉄析出物が大きすぎるので引張強度と縦弾性係数が劣った。比較例24は銅析出物と鉄析出物の両方が小さすぎるので導電率と縦弾性係数が劣った。比較例25は銅析出物が小さすぎるので導電率と縦弾性係数が劣った。比較例26は鉄析出物が小さいので引張強度と縦弾性係数が劣った。   In contrast, Comparative Example 21 was inferior in tensile strength and longitudinal elastic modulus because both copper precipitates and iron precipitates were too large. In Comparative Example 22, since the copper precipitate was too large, the tensile strength and the longitudinal elastic modulus were inferior. Comparative Example 23 was inferior in tensile strength and longitudinal elastic modulus because the iron precipitate was too large. In Comparative Example 24, both the copper precipitate and the iron precipitate were too small, so the conductivity and the longitudinal elastic modulus were inferior. In Comparative Example 25, since the copper precipitate was too small, the conductivity and the longitudinal elastic modulus were inferior. In Comparative Example 26, since the iron precipitate was small, the tensile strength and the longitudinal elastic modulus were inferior.

実施例3
<請求項5の実施例>
表3に示すように拡散熱処理条件を変えた以外は実施例1と全く同様にして製造した。この多層材料について引張強度、導電率、縦弾性係数を求めた。
なお、この多層材料中、実施例のものの析出物の直径は1nm〜1000nmの範囲、鉄合金層及び銅合金層のアスペクト比は10〜100の範囲であった。
しかし比較例のものはアスペクト比が10未満であった。
表3から明らかなように、本願発明の実施例31〜37はいずれも優れた特性を有した。
これに対し、比較例31は熱処理温度が低いので引張強度と縦弾性係数が劣った。比較例32は熱処理温度が高いので引張強度と縦弾性係数が劣った。比較例33は熱処理時間が短いので引張強度と縦弾性係数が劣った。比較例34は熱処理時間が長いので引張強度と縦弾性係数が劣った。比較例35は拡散熱処理を行わなかったので引張強度と縦弾性係数が劣った。
Example 3
<Embodiment of claim 5>
As shown in Table 3, it was produced in the same manner as in Example 1 except that the diffusion heat treatment conditions were changed. Tensile strength, electrical conductivity, and longitudinal elastic modulus were determined for this multilayer material.
In this multilayer material, the diameter of the precipitates of the examples was in the range of 1 nm to 1000 nm, and the aspect ratio of the iron alloy layer and the copper alloy layer was in the range of 10 to 100.
However, the comparative example had an aspect ratio of less than 10.
As apparent from Table 3, Examples 31 to 37 of the present invention all had excellent characteristics.
On the other hand, since the heat treatment temperature was low in Comparative Example 31, the tensile strength and the longitudinal elastic modulus were inferior. In Comparative Example 32, since the heat treatment temperature was high, the tensile strength and the longitudinal elastic modulus were inferior. In Comparative Example 33, the heat treatment time was short, so the tensile strength and the longitudinal elastic modulus were inferior. In Comparative Example 34, the heat treatment time was long, so the tensile strength and the longitudinal elastic modulus were inferior. Comparative Example 35 was inferior in tensile strength and longitudinal elastic modulus because no diffusion heat treatment was performed.

実施例4
<請求項6の実施例>
表4に示す銅合金層および鉄合金層の厚さ、積層数を有する多層材料を製造した。素材組立は厚さ0.1mmの鉄合金層と厚さ0.09mmの銅合金層を積層し、それに上下4mmのFe蓋を付けて素材を作った。これを1000℃でt=6mm程度まで熱間圧延し、次いで、冷間圧延でt=2mmに仕上げた。それを種々の拡散熱処理条件で熱処理して、蓋の素材を削って素材を製造した。その素材は、種々の熱処理条件と冷間圧延を繰り返して、t=0.05〜0.2mmの薄板に加工した。
この多層材料について引張強度、導電率、縦弾性係数を求めた。このとき用いた銅合金層の組成は無酸素銅であり、鉄合金層の組成はSS400であった。
表4から明らかなように、本願発明の実施例41〜51はいずれも優れた特性を有した。
これに対し、比較例41は銅合金層が厚いので引張強度が劣った。比較例42は鉄合金層が厚いので引張強度が劣った。比較例43は銅合金層と鉄合金層の両方が厚いので更に引張強度が劣った。比較例44、45は積層数が少ないので引張強度と縦弾性係数が劣った。
Example 4
<Example of Claim 6>
A multilayer material having the thickness and the number of laminated layers of the copper alloy layer and the iron alloy layer shown in Table 4 was produced. The material assembly was made by laminating an iron alloy layer with a thickness of 0.1 mm and a copper alloy layer with a thickness of 0.09 mm, and attaching a 4 mm upper and lower Fe lid to the material. This was hot rolled at 1000 ° C. to about t = 6 mm, and then finished to t = 2 mm by cold rolling. It was heat-treated under various diffusion heat treatment conditions, and the material of the lid was shaved to produce the material. The material was processed into a thin plate of t = 0.05 to 0.2 mm by repeating various heat treatment conditions and cold rolling.
Tensile strength, electrical conductivity, and longitudinal elastic modulus were determined for this multilayer material. The composition of the copper alloy layer used at this time was oxygen-free copper, and the composition of the iron alloy layer was SS400.
As is apparent from Table 4, Examples 41 to 51 of the present invention all had excellent characteristics.
In contrast, Comparative Example 41 was inferior in tensile strength because the copper alloy layer was thick. Comparative Example 42 was inferior in tensile strength because the iron alloy layer was thick. In Comparative Example 43, since both the copper alloy layer and the iron alloy layer were thick, the tensile strength was further inferior. In Comparative Examples 44 and 45, since the number of laminated layers was small, the tensile strength and the longitudinal elastic modulus were inferior.

本発明の金属多層材料の断面組織の電子顕微鏡写真(SEM)であり、熱処理前を示す。It is an electron micrograph (SEM) of the cross-sectional structure | tissue of the metal multilayer material of this invention, and shows before heat processing. 本発明の金属多層材料の断面組織の電子顕微鏡写真(SEM)であり、熱処理後を示す。It is an electron micrograph (SEM) of the cross-sectional structure | tissue of the metal multilayer material of this invention, and shows after heat processing. 本発明の金属多層材料の断面組織の電子顕微鏡写真(SEM)であり、冷間圧延後を示す。It is an electron micrograph (SEM) of the cross-sectional structure of the metal multilayer material of the present invention, and shows after cold rolling.

Claims (8)

銅合金層と鉄合金層が交互に積層されている金属多層材料において、鉄合金層のアスペクト比が10以上であることを特徴とする金属多層材料。   A metal multilayer material in which copper alloy layers and iron alloy layers are alternately laminated, wherein the iron alloy layer has an aspect ratio of 10 or more. 銅合金層のアスペクト比が10以上であることを特徴とする請求項1記載の金属多層材料。   2. The metal multilayer material according to claim 1, wherein the aspect ratio of the copper alloy layer is 10 or more. 鉄合金層が直径1〜100nmの銅析出物を含有し、銅合金層が直径1〜100nmの鉄析出物を含有することを特徴とする請求項1または2記載の金属多層材料。   The metal multilayer material according to claim 1 or 2, wherein the iron alloy layer contains a copper precipitate having a diameter of 1 to 100 nm, and the copper alloy layer contains an iron precipitate having a diameter of 1 to 100 nm. 引張強度が1000MPa以上、導電率が20%IACS以上、縦弾性係数が140GPa以上を有することを特徴とする請求項1〜3のいずれか1項に記載の金属多層材料。   The metal multilayer material according to any one of claims 1 to 3, which has a tensile strength of 1000 MPa or more, an electrical conductivity of 20% IACS or more, and a longitudinal elastic modulus of 140 GPa or more. 銅もしくは銅合金の層と鉄もしくは鉄合金の層とが交互に積層されている金属材料を圧延によって製造する方法であって、銅もしくは銅合金層と鉄もしくは鉄合金層が積層された積層体に対し、750〜1085℃の温度で1〜1000分間の拡散熱処理を1回以上行うことを特徴とする請求項1から4のいずれか1項に記載の金属多層材料の製造方法。   A method for producing a metal material in which copper or copper alloy layers and iron or iron alloy layers are alternately laminated by rolling, wherein the copper or copper alloy layer and iron or iron alloy layer are laminated. On the other hand, the diffusion heat treatment for 1 to 1000 minutes at a temperature of 750 to 185 ° C. is performed once or more, and the method for producing a metal multilayer material according to any one of claims 1 to 4. 銅もしくは銅合金の層と鉄もしくは鉄合金の層とが交互に積層されている金属多層材料を圧延によって製造する方法であって、厚さが10μm以下の銅もしくは銅合金層と、厚さが10μm以下の鉄もしくは鉄合金層が積層された積層体に対し、750〜1085℃の温度で1〜1000分間の拡散熱処理を1回以上行うことを特徴とする請求項5に記載の金属多層材料の製造方法。   A method for producing a metal multilayer material in which copper or copper alloy layers and iron or iron alloy layers are alternately laminated by rolling, wherein the copper or copper alloy layer has a thickness of 10 μm or less, and the thickness is 6. The metal multilayer material according to claim 5, wherein a diffusion heat treatment for 1 to 1000 minutes is performed at least once at a temperature of 750 to 1085 [deg.] C. for a laminate in which iron or iron alloy layers of 10 [mu] m or less are laminated. Manufacturing method. 銅もしくは銅合金の層と鉄もしくは鉄合金の層とが交互に積層されている金属多層材料を圧延によって製造する方法であって、厚さが1μm以下の銅もしくは銅合金層と、厚さが1μm以下の鉄もしくは鉄合金層が積層された積層体に対し、750〜1085℃の温度で1〜1000分間の拡散熱処理を1回以上行うことを特徴とする請求項5に記載の金属多層材料の製造方法。   A method for producing a metal multilayer material in which copper or copper alloy layers and iron or iron alloy layers are alternately laminated by rolling, wherein a copper or copper alloy layer having a thickness of 1 μm or less and a thickness of 6. The metal multilayer material according to claim 5, wherein diffusion heat treatment for 1 to 1000 minutes is performed at least once at a temperature of 750 to 1085 [deg.] C. for a laminate in which iron or iron alloy layers of 1 [mu] m or less are laminated. Manufacturing method. 銅もしくは銅合金の層と鉄もしくは鉄合金の層とが交互に積層されている金属多層材料を圧延によって製造する方法であって、銅もしくは銅合金層と鉄もしくは鉄合金層の積層数が100層以上積層された積層体に対し、750〜1085℃の温度で1〜1000分間の拡散熱処理を1回以上行うことを特徴とする請求項5から7のいずれか1項に記載の金属多層材料の製造方法。
A method for producing a metal multilayer material in which copper or copper alloy layers and iron or iron alloy layers are alternately laminated by rolling, wherein the number of laminated copper or copper alloy layers and iron or iron alloy layers is 100. 8. The metal multilayer material according to claim 5, wherein a diffusion heat treatment is performed at least once for 1 to 1000 minutes at a temperature of 750 to 1085 ° C. with respect to the laminated body in which at least one layer is laminated. Manufacturing method.
JP2004035789A 2004-02-12 2004-02-12 Metal multilayered material and its manufacturing method Pending JP2005225063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004035789A JP2005225063A (en) 2004-02-12 2004-02-12 Metal multilayered material and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004035789A JP2005225063A (en) 2004-02-12 2004-02-12 Metal multilayered material and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005225063A true JP2005225063A (en) 2005-08-25

Family

ID=35000146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004035789A Pending JP2005225063A (en) 2004-02-12 2004-02-12 Metal multilayered material and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005225063A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096023A (en) * 2007-10-15 2009-05-07 Nisshin Steel Co Ltd High strength composite metal material and its production method
JP2010221600A (en) * 2009-03-24 2010-10-07 Nisshin Steel Co Ltd Steel/copper composite material and method of manufacturing the same
WO2012026611A1 (en) 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and method for producing same
WO2012026610A1 (en) 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and manufacturing method for same
JP2014514434A (en) * 2011-01-12 2014-06-19 コリア インスティチュート オブ マシナリー アンド マテリアルズ High-strength and high-electrical conductivity nanocrystalline multilayer copper alloy sheet and method for producing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213221A (en) * 1987-02-27 1988-09-06 株式会社東芝 Member for electric contact
JP2000150219A (en) * 1998-09-10 2000-05-30 Hitachi Metals Ltd Manufacture of semihard magnetic material, the semihard magnetic material, and magnetic marker formed using it
JP2001326114A (en) * 2000-05-15 2001-11-22 Hitachi Metals Ltd Method of manufacturing semi-hard magnetic material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63213221A (en) * 1987-02-27 1988-09-06 株式会社東芝 Member for electric contact
JP2000150219A (en) * 1998-09-10 2000-05-30 Hitachi Metals Ltd Manufacture of semihard magnetic material, the semihard magnetic material, and magnetic marker formed using it
JP2001326114A (en) * 2000-05-15 2001-11-22 Hitachi Metals Ltd Method of manufacturing semi-hard magnetic material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009096023A (en) * 2007-10-15 2009-05-07 Nisshin Steel Co Ltd High strength composite metal material and its production method
JP2010221600A (en) * 2009-03-24 2010-10-07 Nisshin Steel Co Ltd Steel/copper composite material and method of manufacturing the same
WO2012026611A1 (en) 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and method for producing same
WO2012026610A1 (en) 2010-08-27 2012-03-01 古河電気工業株式会社 Copper alloy sheet and manufacturing method for same
JP2014514434A (en) * 2011-01-12 2014-06-19 コリア インスティチュート オブ マシナリー アンド マテリアルズ High-strength and high-electrical conductivity nanocrystalline multilayer copper alloy sheet and method for producing the same

Similar Documents

Publication Publication Date Title
KR101811080B1 (en) Copper alloy sheet and method for producing same
JP4961512B2 (en) Aluminum copper clad material
JP5191725B2 (en) Cu-Zn-Sn based copper alloy sheet, manufacturing method thereof, and connector
JP4716520B2 (en) Rolled copper foil
CN106460099B (en) Copper alloy sheet material, connector made of copper alloy sheet material, and method for manufacturing copper alloy sheet material
EP2319947A1 (en) Copper alloy material for electrical and electronic components, and manufacturing method therefor
CN103227369A (en) Tin-plated copper-alloy material for terminal and method for producing the same
HU228707B1 (en) Method for producing copper alloy band or bar
JP4444245B2 (en) Cu-Zn-Sn alloy for electrical and electronic equipment
MX2014006312A (en) Copper alloy for electronic/electric device, copper alloy thin plate for electronic/electric device, method for manufacturing copper alloy for electronic/electric device, and conductive part and terminal for electronic/electric device.
JP2008095186A (en) Copper-based deposited alloy board for contact material and process for producing the same
KR20120104532A (en) Copper alloy sheet material, connector using same, and copper alloy sheet material production method for producing same
JP5189708B1 (en) Cu-Ni-Si-based copper alloy sheet having good mold wear resistance and shearing workability and method for producing the same
JP4579705B2 (en) Clad material and manufacturing method thereof
JP5243744B2 (en) Connector terminal
JP7116870B2 (en) Copper alloy sheet, copper alloy sheet with plating film, and method for producing the same
JP5132467B2 (en) Copper alloy and Sn-plated copper alloy material for electrical and electronic parts with excellent electrical conductivity and strength
KR102098479B1 (en) Copper foil for flexible printed circuit, copper clad laminate using the same, flexible printed circuit and electronic device
JP6181392B2 (en) Cu-Ni-Si copper alloy
KR20160003555A (en) Copper alloy material, method for producing copper alloy material, lead frames and connectors
CN107046763B (en) Copper foil for flexible printed board and copper-clad laminate using same
JP2005225063A (en) Metal multilayered material and its manufacturing method
JP4646192B2 (en) Copper alloy material for electrical and electronic equipment and method for producing the same
CN101784684A (en) High-strength high-electroconductivity copper alloy possessing excellent hot workability
KR102367066B1 (en) Flat cable, manufacturing method of flat cable, and rotating connector device with flat cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20061025

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20091021

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A02 Decision of refusal

Effective date: 20100518

Free format text: JAPANESE INTERMEDIATE CODE: A02