JP2005223222A - Solid element package - Google Patents

Solid element package Download PDF

Info

Publication number
JP2005223222A
JP2005223222A JP2004031304A JP2004031304A JP2005223222A JP 2005223222 A JP2005223222 A JP 2005223222A JP 2004031304 A JP2004031304 A JP 2004031304A JP 2004031304 A JP2004031304 A JP 2004031304A JP 2005223222 A JP2005223222 A JP 2005223222A
Authority
JP
Japan
Prior art keywords
solid
glass
package according
filler
sealing portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004031304A
Other languages
Japanese (ja)
Inventor
Yoshinobu Suehiro
好伸 末広
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyoda Gosei Co Ltd
Original Assignee
Toyoda Gosei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyoda Gosei Co Ltd filed Critical Toyoda Gosei Co Ltd
Priority to JP2004031304A priority Critical patent/JP2005223222A/en
Publication of JP2005223222A publication Critical patent/JP2005223222A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Photovoltaic Devices (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a solid element package which can prevent reduction in sealing properties, caused by the difference in the coefficients of thermal expansion between the solid element package and a solid element to be sealed, and which will not cause exfoliation of glass material or the occurrence of cracks with proper optical transparency with superior reliability. <P>SOLUTION: A glass sealed part 4 obtained by mixing it with a filler made of silica glass at a low coefficient of thermal expansion is provided in phosphoric glass, having a large coefficient of thermal expansion. Thus, it is possible to form the glass sealed part 4, which maintains the optical transparency for an objective wavelength, while having a coefficient of thermal expansion almost equal to that of an LED element 2, and to prevent the exfoliation and the occurrence of cracks, caused by a difference in the coefficients of thermal expansion. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、LED素子、太陽電池等の固体素子を封止する固体素子パッケージに関し、特に、熱膨張率が小であり、かつ、低融点で光透過性を有する封止材料を用いた固体素子パッケージに関する。   The present invention relates to a solid element package for sealing a solid element such as an LED element or a solar cell, and in particular, a solid element using a sealing material having a low coefficient of thermal expansion and having a low melting point and light transmittance. Regarding packages.

従来、LED(Light-Emitting Diode:発光ダイオード)素子等の固体素子をガラス材料で封止した固体素子パッケージが知られている(例えば、特許文献1参照。)。ガラス材料は、封止材料として広く知られているエポキシ樹脂やシリコン樹脂と比べて光劣化性、耐熱性、封止性に優れており、このため、近年需要が高まりつつある大出力型、高輝度型LED光源の封止材料として有望視されている。   Conventionally, a solid element package in which a solid element such as an LED (Light-Emitting Diode) element is sealed with a glass material is known (for example, see Patent Document 1). Glass materials are superior in photodegradability, heat resistance, and sealing properties compared to epoxy resins and silicone resins, which are widely known as sealing materials. Promising as a sealing material for luminance-type LED light sources.

ガラス材料を用いた封止を実施するには、ガラス材料を軟化させて所望の形状に加工する必要があるが、ガラス材料は融点が高いために一般的なガラス加工温度の条件下で固体素子を封止しようとすると、固体素子が加工時の熱によってダメージを受けてしまうという不都合がある。   In order to perform sealing using a glass material, it is necessary to soften the glass material and process it into a desired shape. However, since the glass material has a high melting point, it is a solid element under conditions of general glass processing temperature. However, there is a disadvantage that the solid element is damaged by heat during processing.

係る不都合を回避するには、例えば、低融点のガラス材料を用いて固定素子にダメージを与えないようにする等の配慮が必要になる。
特開平11−204838号公報(図1)
In order to avoid such an inconvenience, it is necessary to consider, for example, that the fixing element is not damaged by using a glass material having a low melting point.
Japanese Patent Laid-Open No. 11-204838 (FIG. 1)

しかし、従来の固体素子パッケージによると、低融点のガラス材料を用いることで固体素子にかかる熱負荷を軽減することはできるが、一般に低融点のガラス材料は熱膨張率が大であるため、封止する固体素子との熱膨張率の差が大であると、接着される加工温度から常温に戻される際に固体素子とガラス材料との接着強度以上の応力が生じて剥離を生じるといった問題がある。また、固体素子とガラス材料との強固な接着性がある場合には、熱収縮差に基づいてガラス材料内に生じる応力によりクラックを生じてしまうという問題がある。このような問題は、特にガラス封止する固体素子のサイズが大であるほど顕著になる。また、ガラス材料についても紫外光に晒されることによって劣化が生じるため、長期にわたる使用においては光透過性が低下するという問題がある。   However, according to the conventional solid element package, it is possible to reduce the thermal load applied to the solid element by using a glass material having a low melting point. However, since a glass material having a low melting point generally has a large coefficient of thermal expansion, it is sealed. If the difference in coefficient of thermal expansion from the solid element to be stopped is large, there is a problem that when the temperature is returned from the bonding processing temperature to room temperature, stress exceeding the bonding strength between the solid element and the glass material is generated and peeling occurs. is there. In addition, when there is strong adhesion between the solid element and the glass material, there is a problem that a crack is generated due to a stress generated in the glass material based on a difference in thermal shrinkage. Such a problem becomes more prominent as the size of the solid element to be glass-sealed is larger. Further, since the glass material is deteriorated by being exposed to ultraviolet light, there is a problem that the light transmittance is lowered in the long-term use.

従って、本発明の目的は、封止する固体素子との熱膨張率の差に起因する封止性の低下を防止でき、光透過性が良好でガラス材料の剥離やクラックの発生を防じることのない信頼性に優れる固体素子パッケージを提供することにある。   Therefore, an object of the present invention is to prevent a decrease in sealing performance due to a difference in thermal expansion coefficient from a solid element to be sealed, and to prevent the occurrence of peeling and cracking of a glass material with good light transmittance. It is an object of the present invention to provide a solid-state device package that is excellent in reliability and never fails.

本発明は、上記の目的を達成するため固体素子と、前記固体素子と外部との間で電力を受供給する導電部と、前記固体素子を封止する封止部とを有し、前記封止部は、無機材料と前記無機材料の熱膨張率より小なる熱膨張率のフィラを含む固体素子パッケージを提供する。   In order to achieve the above object, the present invention includes a solid element, a conductive part that receives power between the solid element and the outside, and a sealing part that seals the solid element. The stop portion provides a solid element package including an inorganic material and a filler having a thermal expansion coefficient smaller than that of the inorganic material.

前記固体素子は、光学素子であり、前記封止部は前記光学素子の対象波長に対して透光性を有することが好ましい。   It is preferable that the solid element is an optical element, and the sealing portion has translucency with respect to a target wavelength of the optical element.

前記封止部の無機材料はガラス材料で形成することができる。   The inorganic material of the sealing part can be formed of a glass material.

前記封止部は、前記ガラス材料への混入時に溶解しない前記フィラを含むことができる。   The sealing portion may include the filler that does not dissolve when mixed into the glass material.

前記封止部は、前記ガラス材料の比重と同等の比重を有する前記フィラを含むことができる。   The sealing portion may include the filler having a specific gravity equivalent to that of the glass material.

前記封止部は、エッジ部を除去された形状を有する前記フィラを含むことができる。   The sealing part may include the filler having a shape from which an edge part is removed.

前記導電部は、無機材料基板上に形成されているものとすることができる。   The conductive part may be formed on an inorganic material substrate.

前記無機材料基板は、金属層を介して前記封止部と接合されていても良い。   The inorganic material substrate may be bonded to the sealing portion via a metal layer.

前記無機材料基板は、熱伝導率100W/(m・k)以上の熱伝導性材料からなることが好ましい。   The inorganic material substrate is preferably made of a heat conductive material having a heat conductivity of 100 W / (m · k) or more.

前記固体素子と、前記封止部と、前記無機材料基板とが同等の熱膨張率であることが好ましい。   It is preferable that the solid element, the sealing portion, and the inorganic material substrate have the same coefficient of thermal expansion.

前記固体素子は、フリップチップ接合型固体素子であっても良い。   The solid element may be a flip chip bonded solid element.

前記封止部は、前記対象波長として発光波長500nm以下の発光波長を含む光について透光性を有する前記ガラス材料および前記フィラからなるものとすることができる。   The said sealing part shall consist of the said glass material and the said filler which have translucency about the light containing the light emission wavelength of 500 nm or less as said target wavelength.

前記封止部は、前記光学素子の対象波長に対して前記ガラス材料より大なる光透過性を有する透光性材料からなる前記フィラを含むものとすることができる。   The sealing portion may include the filler made of a translucent material having a light transmissivity greater than that of the glass material with respect to a target wavelength of the optical element.

前記封止部は、石英ガラスからなる前記フィラを含むものとすることができる。   The sealing portion may include the filler made of quartz glass.

前記封止部は、前記ガラス材料と同等の屈折率を有する前記フィラを含むものとすることができる。   The said sealing part shall contain the said filler which has a refractive index equivalent to the said glass material.

前記封止部は、光学形状を有して前記固体素子を封止するように前記フィラを含む前記ガラス材料によって形成されるものとすることができる。   The sealing portion may be formed of the glass material including the filler so as to have an optical shape and seal the solid element.

前記固体素子は、発光素子であっても良い。   The solid state device may be a light emitting device.

前記固体素子は、LED素子であっても良い。   The solid element may be an LED element.

前記固体素子は、受光素子であっても良い。   The solid element may be a light receiving element.

前記固体素子は、太陽電池であっても良い。   The solid element may be a solar cell.

前記ガラス部は、蛍光体を含む前記ガラス材料によって形成されても良い。   The glass part may be formed of the glass material including a phosphor.

本発明の発光素子によれば、無機材料と、無機材料の熱膨張率より小なる熱膨張率のフィラを封止部で有した固体素子を封止するようにしたため、熱膨張率の差に起因する剥離やクラックの発生を防げる。   According to the light emitting device of the present invention, since the solid element having the sealing portion with the inorganic material and the filler having a thermal expansion coefficient smaller than the thermal expansion coefficient of the inorganic material is sealed, the difference in the thermal expansion coefficient is caused. Prevents the occurrence of peeling and cracks.

(第1の実施の形態)
図1は、本発明の第1の実施の形態に係るLED素子を用いた発光装置であり、(a)は平面図、(b)はLED素子の縦断面図、(c)は底面図である。この発光装置1は、GaN系半導体化合物からなるフリップチップタイプのLED素子2と、LED素子2と電気的に接続される配線層3Aおよび3Bを有した基板3と、LED素子2を封止して基板3の表面に接着されるガラス封止部4とを有し、基板3の底面側に設けられる電極3Cおよび3Dを介して外部回路と電気的に接続可能な構成を有する。
(First embodiment)
FIG. 1 is a light emitting device using an LED element according to a first embodiment of the present invention, where (a) is a plan view, (b) is a longitudinal sectional view of the LED element, and (c) is a bottom view. is there. The light emitting device 1 seals the LED element 2 with a flip chip type LED element 2 made of a GaN-based semiconductor compound, a substrate 3 having wiring layers 3A and 3B electrically connected to the LED element 2, and the LED element 2. And a glass sealing portion 4 bonded to the surface of the substrate 3, and has a configuration that can be electrically connected to an external circuit via electrodes 3 </ b> C and 3 </ b> D provided on the bottom surface side of the substrate 3.

LED素子2は、サファイア基板上にGaN系半導体を結晶成長させることによって形成されており、図示しない電極と基板3の配線層3Aおよび3BとをAuからなるバンプ5によって電気的に接続している。このLED素子2の熱膨張率は5×10−6/℃である。このLED素子2のサイズは0.3mm×0.3mmである。 The LED element 2 is formed by crystal growth of a GaN-based semiconductor on a sapphire substrate, and an electrode (not shown) and the wiring layers 3A and 3B of the substrate 3 are electrically connected by bumps 5 made of Au. . The thermal expansion coefficient of the LED element 2 is 5 × 10 −6 / ° C. The size of the LED element 2 is 0.3 mm × 0.3 mm.

基板3は、Al(熱膨張率:8×10−6/℃)によって形成されており、配線層3Aおよび3Bを一方の面に有し、他方の面に電極3Cおよび3Dを有しており、配線層3Bと電極3Cとはビアホール3Eで接続されている。また、配線層3Aと電極3Dとはビアホール3Fで接続されている。この配線層3A、3B、電極3C、および3Dは、基板3の焼結形成前にタングステン含有ペーストをスクリーン印刷し、基板焼結形成時に形成されるタングステン層と、タングステン層上に電気伝導性を高めるためにめっきを施したNi層と、Ni層上にAuバンプのボンダビリティを得るためのめっきを施したAu層とからなる。 The substrate 3 is made of Al 2 O 3 (thermal expansion coefficient: 8 × 10 −6 / ° C.), and has wiring layers 3A and 3B on one surface and electrodes 3C and 3D on the other surface. The wiring layer 3B and the electrode 3C are connected by a via hole 3E. The wiring layer 3A and the electrode 3D are connected by a via hole 3F. The wiring layers 3A, 3B, electrodes 3C, and 3D are screen-printed with a tungsten-containing paste before the substrate 3 is formed by sintering, and the tungsten layer formed at the time of forming the substrate and the electric conductivity on the tungsten layer. It consists of a Ni layer plated to enhance and an Au layer plated to obtain bondability of Au bumps on the Ni layer.

ガラス封止部4は、リン酸系ガラス(熱膨張率11×10−6/℃、屈折率1.6)に石英ガラスからなるフィラ(熱膨張率:0.65×10−6/℃、屈折率1.5)を混合して形成されており、LED素子2の発光波長460nmにおいて光透過性を示すとともに、加工温度500℃でドーム状に形成されてLED素子2から放射された光を有効に外部放射する形状としてある。この石英ガラスからなるフィラは、約10μmの粒径で形成されており、火焔処理によってエッジ(尖った部分)を除かれたものである。また、このフィラは融点約2000℃で低融点ガラスの製造温度では溶融することがなく、発光波長330nmの紫外線条件下においても着色等の光劣化が急激に進むことはない安定した材料である。 The glass sealing part 4 is a filler (thermal expansion coefficient: 0.65 × 10 −6 / ° C.) made of quartz glass on phosphate glass (thermal expansion coefficient 11 × 10 −6 / ° C., refractive index 1.6). The refractive index of 1.5) is mixed to show light transmittance at an emission wavelength of 460 nm of the LED element 2, and the light emitted from the LED element 2 is formed in a dome shape at a processing temperature of 500 ° C. Effectively radiates to the outside. The filler made of quartz glass is formed with a particle size of about 10 μm, and has an edge (pointed portion) removed by a flame treatment. The filler is a stable material having a melting point of about 2000 ° C., which does not melt at the production temperature of the low melting point glass, and that does not undergo rapid deterioration of light such as coloring even under ultraviolet light conditions with an emission wavelength of 330 nm.

次に、第1の実施の形態の発光装置1の製造工程について以下に説明する。   Next, the manufacturing process of the light emitting device 1 according to the first embodiment will be described below.

まず、LED素子2と、基板の両面に配線層3A、3B、電極3C、3D、および複数のビアホール3E、3Fが形成されているAl焼結基板3を用意する。次に、バンプ5を介して複数のLED素子2を所定の位置に配置し、超音波併用の熱圧着接合に基づいて配線層3A、3Bに接合する。次に、図2で説明した配合比に基づいて予め生成されたガラス材料(リン酸系ガラス40%、石英ガラス60%)を用い、加熱温度500℃で型成型することにより、個々のLED素子2をガラス封止するとともに、ドーム状の光学形状を有するように加工してガラス封止部4を形成する。次に、ダイサーでガラス封止部4とともにAlの基板を切断することによって発光装置1を切り出す。 First, the LED element 2 and the Al 2 O 3 sintered substrate 3 in which the wiring layers 3A and 3B, the electrodes 3C and 3D, and the plurality of via holes 3E and 3F are formed on both surfaces of the substrate are prepared. Next, the plurality of LED elements 2 are arranged at predetermined positions via the bumps 5 and bonded to the wiring layers 3A and 3B based on thermocompression bonding using ultrasonic waves. Next, individual LED elements are formed by molding at a heating temperature of 500 ° C. using a glass material (phosphoric glass 40%, quartz glass 60%) produced in advance based on the blending ratio described in FIG. 2 is glass-sealed and processed to have a dome-like optical shape to form a glass-sealed portion 4. Next, the light emitting device 1 is cut out by cutting the substrate of Al 2 O 3 together with the glass sealing portion 4 with a dicer.

次に、第1の実施の形態の発光装置1の動作について以下に説明する。   Next, operation | movement of the light-emitting device 1 of 1st Embodiment is demonstrated below.

電極3Cおよび3Dに図示しない電源部から電力を供給すると、LED素子2の活性層から光が発せられる。活性層で生じた光はサファイア基板からガラス封止部4に入射し、ガラス封止部4内を透過して外部放射される。   When power is supplied to the electrodes 3 </ b> C and 3 </ b> D from a power supply unit (not shown), light is emitted from the active layer of the LED element 2. Light generated in the active layer enters the glass sealing portion 4 from the sapphire substrate, passes through the glass sealing portion 4 and is radiated to the outside.

上記した第1の実施の形態の発光装置1によると、以下の効果が得られる。
(1)熱膨張率の大なるリン酸系ガラスに低熱膨張率の石英ガラスからなるフィラを混合することによって、対象波長に対する光透過性を維持しながらLED素子2の熱膨張率とほぼ同等の熱膨張率を有したガラス封止部4を形成できるため、低融点ガラスを使用しながらも熱膨張率を小にでき、そのことによって低融点での加工性を損なうことなく、ガラス加工後の熱収縮時に熱収縮差に基づく内部応力の増大を防いで封止性に優れる発光装置1を得ることができる。
According to the light emitting device 1 of the first embodiment described above, the following effects are obtained.
(1) By mixing a filler made of quartz glass having a low coefficient of thermal expansion with a phosphate glass having a high coefficient of thermal expansion, the coefficient of thermal expansion of the LED element 2 is almost equal to that of the LED element 2 while maintaining light transmittance with respect to the target wavelength. Since the glass sealing portion 4 having a thermal expansion coefficient can be formed, the thermal expansion coefficient can be reduced while using a low-melting glass, thereby reducing the workability at the low melting point without damaging the workability at the low melting point. It is possible to obtain the light-emitting device 1 that is excellent in sealing performance by preventing an increase in internal stress based on the thermal shrinkage difference during heat shrinkage.

(2)LED素子2とガラス封止部4との熱膨張率をほぼ等しいものとすることによって、発光装置1の実装時の半田リフロー工程に伴う熱膨張・熱収縮に対してもガラス封止部4自体を含むパッケージ内の剥離やクラックの発生を防ぐことができる。 (2) By making the thermal expansion coefficients of the LED element 2 and the glass sealing portion 4 substantially equal, the glass sealing is also performed against thermal expansion and thermal shrinkage associated with the solder reflow process when the light emitting device 1 is mounted. It is possible to prevent peeling and cracks in the package including the part 4 itself.

(3)熱膨張率の異なるガラス材(リン酸系ガラスおよび石英ガラス)を混合するにあたり、近似した比重の材料であるため、混合および分散が良好であり、特別な工程管理を要することなく所望の熱膨張率を得るための作業を容易に行うことができる。 (3) When mixing glass materials having different coefficients of thermal expansion (phosphate glass and quartz glass), it is a material with an approximate specific gravity, so that mixing and dispersion are good and desired without requiring special process control. The work for obtaining the thermal expansion coefficient can be easily performed.

(4)石英ガラスは、紫外光に対する内部透過率に優れる特性を有する。例えば、330nmの紫外光の内部透過率はリン酸系ガラスでは81%であるが、混合ガラスとすることで約92%に向上することができる。このように、紫外LED素子を用いた場合でも光取り出し性に優れる発光装置1が得られる。また、屈折率についてもリン酸系ガラスとほぼ同等であるので、適当なフィラサイズ、形状とすることで肉厚封止としても実用性のあるものとできる。 (4) Quartz glass has a characteristic of excellent internal transmittance for ultraviolet light. For example, the internal transmittance of 330 nm ultraviolet light is 81% in phosphoric acid glass, but can be improved to about 92% by using mixed glass. Thus, the light-emitting device 1 which is excellent in light extraction property even when an ultraviolet LED element is used is obtained. In addition, since the refractive index is almost the same as that of phosphate glass, it can be practically used as a thick seal by setting an appropriate filler size and shape.

(5)封止ガラス内での応力を小さくするためには石英ガラスフィラは小サイズであることが望ましい。硅素微粉末を酸化処理する方法で0.1μmの石英ガラス粉末を形成することも可能である。厳密に等しい屈折率も低融点ガラスとフィラであれば問題ないが、これらに屈折率差がある場合、過度の微粒子では光の直進透過性を失い、拡散性が高まり、透光性はあるものの光が外部放射されにくくなる。このため、フィラの小サイズ化は封止ガラス内でのクラック発生等の応力による不具合が生じない範囲に留め、本実施の形態では数ミクロン乃至数10ミクロンの範囲となる平均粒径約10ミクロンで選択されている。これによれば、多少の拡散性はあるものの光が外部放射されにくくならない範囲とできる。また、フィラのエッジが除かれていることは、応力によるクラック、屈折率差による光拡散をともに抑える効果を有する。 (5) In order to reduce the stress in the sealing glass, it is desirable that the quartz glass filler has a small size. It is also possible to form a quartz glass powder of 0.1 μm by a method of oxidizing silicon fine powder. There is no problem if the refractive index is exactly the same as the low melting point glass and filler, but if there is a difference in the refractive index, excessive fine particles lose the straight transmission of light, but the diffusivity is increased, but the translucency is high Light is less likely to be emitted externally. For this reason, the reduction in the size of the filler is limited to a range that does not cause problems due to stress such as cracks in the sealing glass. Is selected. According to this, although it has some diffusivity, it can be set as the range where light is not easily radiated outside. Further, the removal of the edge of the filler has an effect of suppressing both cracks due to stress and light diffusion due to a difference in refractive index.

なお、発光素子であるLED素子に代えて、受光素子の封止に適用することもできる。受光素子で検知される光が僅かにでも受光素子へ至ればよいものであれば、ガラス封止部4は僅かな透光性があれば良い。この場合、封止材料とフィラについては同等の屈折率差、適度なサイズのフィラ等の制約はない。そのため、封止材料とフィラとの屈折率差が大なるもの、封止材料であるガラス材料が結晶化して失透したもの、あるいはフィラが微粒子のものであっても良い。   In addition, it can replace with the LED element which is a light emitting element, and can also be applied to sealing of a light receiving element. As long as the light detected by the light receiving element is only required to reach the light receiving element, the glass sealing portion 4 only needs to have a slight translucency. In this case, the sealing material and the filler are not limited by an equivalent refractive index difference, an appropriately sized filler, or the like. Therefore, the difference in refractive index between the sealing material and the filler may be large, the sealing glass material may be crystallized and devitrified, or the filler may be fine particles.

(6)また、石英ガラスは、短波長に対する耐劣化性に優れ、低融点ガラスの光透過性が低下してもフィラの光透過性は安定であるため、混合ガラスの光透過性低下は緩和される。このため、青色光や紫外光を対象波長とするLED素子2を用いた発光装置1の長期信頼性および安定性を向上させることができる。 (6) In addition, quartz glass has excellent resistance to short wavelengths, and the light transmission of the filler is stable even if the light transmission of the low melting point glass is reduced. Is done. For this reason, the long-term reliability and stability of the light-emitting device 1 using the LED element 2 which makes blue light and ultraviolet light a target wavelength can be improved.

(7)基板3は、基板上に形成された金属の配線層3A、3Bを介してガラス封止部4と接合されているので、図1(b)においてLED素子2から斜め下方向へ放射された光が基板3を透過して下方へ抜けるのを防ぐとともに、金属の塑性によって基板3とガラス封止部4との接合部の応力緩和を図り、接合部での剥離やクラック発生を防ぐ効果を有する。 (7) Since the substrate 3 is bonded to the glass sealing portion 4 via the metal wiring layers 3A and 3B formed on the substrate, the substrate 3 emits diagonally downward from the LED element 2 in FIG. The transmitted light is prevented from passing through the substrate 3 and escaping downward, and the stress of the joint between the substrate 3 and the glass sealing portion 4 is relaxed by metal plasticity to prevent peeling and cracking at the joint. Has an effect.

(8)封止部に限らず基板を含め、全てが無機材料によって形成されているので、耐候性、耐熱性に優れる。 (8) Since not only the sealing part but also the substrate is entirely formed of an inorganic material, it is excellent in weather resistance and heat resistance.

なお、第1の実施の形態では、低融点のガラス材料について熱膨張率を調整するものとして説明したが、低融点のガラス材料に限定されず、通常のガラス材料に対して熱膨張率調整用のフィラを混合することも可能である。   In the first embodiment, the low-melting glass material has been described as adjusting the coefficient of thermal expansion. However, the glass material is not limited to a low-melting glass material, and the coefficient of thermal expansion is adjusted with respect to a normal glass material. It is also possible to mix the fillers.

また、発光装置1の形態についても単色のLED素子2を封止する構成に限定されず、例えば、RGBの3色のLED素子2を一体的にガラス封止する構成に適用することも可能である。   Further, the form of the light emitting device 1 is not limited to the configuration in which the single-color LED element 2 is sealed, and for example, the light-emitting device 1 can be applied to a configuration in which the RGB three-color LED elements 2 are integrally glass-sealed. is there.

また、LED素子2についてもフリップチップタイプに限定されず、フェイスアップタイプのものを用いて配線層3A、3Bと電極とをワイヤで接続するものであっても良い。この場合、LED素子2およびワイヤの周囲を包囲するようにセラミックコート等を施してから上記した低融点ガラスによるガラス封止を行うことが望ましい。これにより、熱や圧力によるワイヤ潰れ等を防止することができる。このセラミックコートは第1の実施の形態のLED素子2の場合についても有効であり、LED素子2と基板3との間に充填するように設けることができる。   Further, the LED element 2 is not limited to the flip-chip type, and a face-up type may be used to connect the wiring layers 3A, 3B and the electrodes with wires. In this case, it is desirable to perform glass sealing with the above-described low-melting glass after applying a ceramic coat or the like so as to surround the LED element 2 and the wire. Thereby, wire crushing by heat or pressure can be prevented. This ceramic coat is effective also in the case of the LED element 2 of the first embodiment, and can be provided so as to be filled between the LED element 2 and the substrate 3.

また、発光装置1は、蛍光体や蛍光錯体による波長変換部を一体的に有した波長変換型発光装置であっても良く、蛍光体等はガラス材料に混合されていても良い。現在、一般に比重3〜7の蛍光体が比重約1の樹脂に分散され、用いられているが、比重差が大きく樹脂硬化時に沈殿する等の問題がある。これに対し、比重3のガラス材料に蛍光体を分散させることで蛍光体の分散性が向上し、蛍光体の凝縮を防ぐことができる。   Further, the light emitting device 1 may be a wavelength conversion type light emitting device integrally having a wavelength conversion unit made of a phosphor or a fluorescent complex, and the phosphor or the like may be mixed in a glass material. Currently, phosphors having a specific gravity of 3 to 7 are generally dispersed and used in a resin having a specific gravity of about 1. However, there is a problem that the specific gravity is large and precipitates when the resin is cured. In contrast, by dispersing the phosphor in a glass material having a specific gravity of 3, the dispersibility of the phosphor is improved, and the phosphor can be prevented from condensing.

また、第1の実施の形態では、低融点ガラスとしてリン酸系ガラスと石英ガラスのフィラとを用いた構成を説明したが、他の低融点ガラスと石英ガラスのフィラとの組み合わせ、あるいはリン酸系ガラスと他のフィラについても同様の効果を奏することを確認している。例えば、Siと有機官能機との有機無機ハイブリッドガラスといった超低融点ガラスを用いることが可能である。   Further, in the first embodiment, the configuration using the phosphate glass and the quartz glass filler as the low melting glass has been described. However, a combination of other low melting glass and the quartz glass filler, or phosphoric acid. It has been confirmed that the same effect can be obtained with the system glass and other fillers. For example, it is possible to use an ultra-low melting glass such as an organic-inorganic hybrid glass of Si and an organic functional machine.

また、第1の実施の形態の適用については、上記したLED素子2に限定されることなく他の発光素子や、パッケージとして耐候性が求められる受光素子等(例えば、太陽電池)の光学素子に適用することも可能である。更に、太陽光の照射がある場所等で耐候性の要求される場合や、例えば、100℃を超える環境下で耐熱性の要求される自動車のエンジンルーム等に使用される固体素子パッケージであれば、光学素子に限らず他の素子に適用することでも効果を得ることができる。この際にはガラス材料に透光性は要求されない。   In addition, the application of the first embodiment is not limited to the LED element 2 described above, but is applied to an optical element such as another light-emitting element or a light-receiving element that requires weather resistance as a package (for example, a solar cell). It is also possible to apply. Furthermore, if weather resistance is required in places where there is sunlight irradiation, for example, if it is a solid element package used in an engine room of a car that requires heat resistance in an environment exceeding 100 ° C. The effect can also be obtained by applying to other elements as well as the optical elements. In this case, the glass material is not required to have translucency.

また、第1の実施の形態では、ガラス材料より熱膨張率の小なるフィラを混合してガラス材料の熱膨張率を調整する構成を説明したが、ガラス材料より熱膨張率の大なるフィラを混合することによってガラス材料の熱膨張率を調整することも可能である。   Moreover, in 1st Embodiment, although the structure which mixes the filler with a smaller thermal expansion coefficient than glass material and adjusted the thermal expansion coefficient of glass material was demonstrated, the filler with larger thermal expansion coefficient than glass material was demonstrated. It is also possible to adjust the coefficient of thermal expansion of the glass material by mixing.

(第2の実施の形態)
第2の実施の形態として、図1で説明したものと同一の構造を有する発光装置1について、Al基板3に代えてガラス含有Al基板(熱膨張率:12×10−6/℃)を用いるものとし、加工温度360℃で封止加工が可能なリン酸系ガラス(熱膨張率:16×10−6/℃、屈折率1.5)とSiO結晶(熱膨張率:6×10−6/℃、屈折率1.5)をフィラとして用いてガラス封止部を形成するものとした。SiO結晶は2μmの微粒子状のものを用いている。
(Second Embodiment)
As a second embodiment, a glass-containing Al 2 O 3 substrate (thermal expansion coefficient: 12 × 10 −) is used instead of the Al 2 O 3 substrate 3 for the light emitting device 1 having the same structure as that described in FIG. 6 / ° C.), phosphoric acid glass (thermal expansion coefficient: 16 × 10 −6 / ° C., refractive index 1.5) and SiO 2 crystal (thermal expansion) that can be sealed at a processing temperature of 360 ° C. The glass sealing portion was formed using a rate of 6 × 10 −6 / ° C. and a refractive index of 1.5) as a filler. The SiO 2 crystal is in the form of fine particles of 2 μm.

リン酸系ガラスとSiO結晶との配合では、リン酸系ガラス70%とSiO30%の配合において、ガラス含有Al基板の熱膨張率とほぼ同等の熱膨張率(12.3×10−6/℃)が得られた。 In the combination of phosphoric acid glass and SiO 2 crystal, the thermal expansion coefficient (12.3) almost equal to the thermal expansion coefficient of the glass-containing Al 2 O 3 substrate in the mixing of phosphoric acid glass 70% and SiO 2 30%. × 10 −6 / ° C.) was obtained.

上記した第2の実施の形態によると、第1の実施の形態の好ましい効果に加えて、より低融点のガラスを用いた場合であっても良好な加工性を損なうことなく熱膨張率を所望の値に制御することが可能であり、耐熱性の低い固体素子に対してもガラス封止による信頼性の高いパッケージを形成することが可能になる。   According to the second embodiment described above, in addition to the preferable effects of the first embodiment, the coefficient of thermal expansion is desired without impairing good workability even when a glass having a lower melting point is used. It is possible to form a highly reliable package by glass sealing even for a solid element having low heat resistance.

なお、固体素子と封止ガラスとの熱膨張率に差があり、接合面積や形状によってクラックが生じやすい場合、固体素子をシリコン樹脂でコートしてからガラス封止するようにしても良い。このことによって固体素子と封止ガラスとの熱膨張率差を緩和することができる。この場合、400℃を超えるとシリコンが熱分解してガスが発生して問題を生じるが、400℃以下の加工温度でガラス封止することができ、ガラスを用いたことでこの処理を行うことができる。   If there is a difference in the thermal expansion coefficient between the solid element and the sealing glass and cracks are likely to occur depending on the bonding area and shape, the solid element may be coated with silicon resin and then sealed with glass. Thereby, the difference in thermal expansion coefficient between the solid element and the sealing glass can be reduced. In this case, if the temperature exceeds 400 ° C., the silicon is thermally decomposed and gas is generated, causing a problem. However, the glass can be sealed at a processing temperature of 400 ° C. or lower, and this processing is performed by using glass. Can do.

(第3の実施の形態)
図2は、第3の実施の形態に係るLED素子を用いた発光装置であり、(a)は平面図、(b)はLED素子の縦断面図、(c)は底面図である。なお、第1の実施の形態の各部に対応する部分には同一符号を付している。この発光装置1は、ラージサイズのLED素子(1mm×1mm)2と、AlN(熱膨張率:5×10−6/℃)からなる多層配線型の基板3と、LED素子2を封止して基板3の表面に接着されるガラス封止部4とを有し、基板3の底面側に設けられる電極3Cおよび3Dを介して外部回路と電気的に接続可能な構成を有する。なお、ガラス封止部4については第1の実施の形態で説明したリン酸系ガラス(熱膨張率:11×10−6/℃)に石英ガラスからなるフィラ(熱膨張率:0.65×10−6/℃)を混合したガラス材料によって形成されている。
(Third embodiment)
FIG. 2 is a light-emitting device using an LED element according to the third embodiment, wherein (a) is a plan view, (b) is a longitudinal sectional view of the LED element, and (c) is a bottom view. In addition, the same code | symbol is attached | subjected to the part corresponding to each part of 1st Embodiment. The light emitting device 1 seals a large-size LED element (1 mm × 1 mm) 2, a multilayer wiring board 3 made of AlN (thermal expansion coefficient: 5 × 10 −6 / ° C.), and the LED element 2. And a glass sealing portion 4 bonded to the surface of the substrate 3, and has a configuration that can be electrically connected to an external circuit via electrodes 3 </ b> C and 3 </ b> D provided on the bottom surface side of the substrate 3. In addition, about the glass sealing part 4, the filler (thermal expansion coefficient: 0.65 *) which consists of quartz glass in the phosphoric acid type glass (thermal expansion coefficient: 11 * 10 < -6 > / degreeC) demonstrated in 1st Embodiment. 10 −6 / ° C.).

基板3は、熱伝導性に優れるAlN(熱伝導率:180W/(m・k))によって形成されており、断面内に配線用のタングステン層を積層して形成されている。電極3Cおよび3Dを有する底面には図示しないヒートシンクと接続する際の伝熱層となる銅箔からなる放熱用パターン3Gが設けられている。なお、図1(b)においては配線層を図示するために当該部分のサイズ比を実物と異なるサイズで示している。   The substrate 3 is made of AlN (thermal conductivity: 180 W / (m · k)) excellent in thermal conductivity, and is formed by laminating a wiring tungsten layer in the cross section. On the bottom surface having the electrodes 3C and 3D, a heat radiating pattern 3G made of a copper foil serving as a heat transfer layer when connected to a heat sink (not shown) is provided. In FIG. 1B, the size ratio of the portion is shown in a size different from the actual size in order to illustrate the wiring layer.

ガラス封止部4は、LED素子2および基板3の熱膨張率とほぼ同等の熱膨張率5×10−6/℃に調整されたガラス材料で形成されており、その配合比はリン酸系ガラスが40%、石英ガラスが60%である。 The glass sealing part 4 is formed of a glass material adjusted to a thermal expansion coefficient of 5 × 10 −6 / ° C. which is substantially equal to the thermal expansion coefficient of the LED element 2 and the substrate 3, and the blending ratio thereof is phosphoric acid-based. Glass is 40% and quartz glass is 60%.

上記した第3の実施の形態によると、第1の実施の形態の好ましい効果に加えて、以下の効果が得られる。
(1)LED素子2および基板3とガラス材料との熱膨張率の差を解消してほぼ同等の熱膨張率とすることができるため、ガラス封止加工時に熱膨張率の差に基づいてガラス封止部4に内部応力が生じることを低減できる。このことにより、ラージサイズのLED素子2を用いた場合であってもガラス材料とLED素子2との接着性が温度の変化に関係なく良好に保たれる。
According to the above-described third embodiment, the following effects are obtained in addition to the preferable effects of the first embodiment.
(1) Since the difference in thermal expansion coefficient between the LED element 2 and the substrate 3 and the glass material can be eliminated and the coefficient of thermal expansion can be made substantially equal, the glass based on the difference in thermal expansion coefficient during glass sealing processing Generation of internal stress in the sealing portion 4 can be reduced. Thereby, even if it is a case where the large sized LED element 2 is used, the adhesiveness of a glass material and the LED element 2 is kept favorable irrespective of the change of temperature.

(2)LED素子2の大出力化、高輝度化に伴って発熱量が大になってもガラス封止部4にパッケージクラックを生じることがないため、信頼性の高い固体素子パッケージを実現できる。 (2) Since a package crack does not occur in the glass sealing part 4 even when the amount of heat generation increases with the increase in output and brightness of the LED element 2, a highly reliable solid element package can be realized. .

(3)LED素子2を放熱性に優れるAlNからなる基板3に搭載するようにしたため、ガラス封止部4に熱がこもることなく、速やかに外部放散させることができる。 (3) Since the LED element 2 is mounted on the substrate 3 made of AlN having excellent heat dissipation, the glass sealing part 4 can be quickly dissipated to the outside without the heat being accumulated in the glass sealing part 4.

(4)パッケージの主な構成部材が全て低熱膨張率材料であり、部材間の熱膨張率差が小さく、かつ、パッケージ全体の熱膨張率が小さいため、原理的に温度変化に対し内部クラックが生じにくいものとすることができる。発熱源であるLED素子2、および熱伝導性の高いAlNがLED素子2の点灯直後に温度上昇し、ガラス封止部は遅れて温度上昇する。このような温度分布が生じる場合、単に部材間の熱膨張率差が小さいのみではなく、熱膨張率が小さいもので構成されていることが望ましい。 (4) The main components of the package are all low thermal expansion coefficient materials, the difference in thermal expansion coefficient between the members is small, and the thermal expansion coefficient of the entire package is small. It can be made difficult to occur. The LED element 2 as a heat source and AlN having high thermal conductivity rise in temperature immediately after the LED element 2 is turned on, and the temperature of the glass sealing portion rises with a delay. When such a temperature distribution occurs, it is preferable that the temperature difference is not only small, but also that the coefficient of thermal expansion is small.

上記した第3の実施の形態によれば、封止部にガラスを用いたものとして説明したが、ガラスに限らず結晶化したものでも構わず、耐候性あるいは固体素子事態からの光や熱によって劣化しない無機材料であれば、他の材料を用いることも可能である。また、フィラとして石英ガラス、SiO結晶を用いたものとして説明したが、これに限らず、例えば、ダイヤモンド(熱膨張率:2×10−6/℃、熱伝導度1000N/m・k)を用いることで、封止部の低熱膨張率化と高放熱性を図ったもの等、他の材料を用いても構わない。 According to the third embodiment described above, the glass is used for the sealing portion. However, the glass is not limited to glass, and may be crystallized. Other materials can be used as long as they are inorganic materials that do not deteriorate. Further, quartz glass as filler, has been described as using a SiO 2 crystal is not limited thereto, for example, diamonds: (thermal expansion coefficient 2 × 10 -6 / ℃, thermal conductivity 1000N / m · k) By using it, other materials such as a material having a low thermal expansion coefficient and a high heat dissipation property of the sealing portion may be used.

本発明の第1の実施の形態に係るLED素子を用いた発光装置であり、(a)は平面図、(b)はLED素子の縦断面図、(c)は底面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a light-emitting device using the LED element which concerns on the 1st Embodiment of this invention, (a) is a top view, (b) is a longitudinal cross-sectional view of an LED element, (c) is a bottom view. 第3の実施の形態に係るLED素子を用いた発光装置であり、(a)は平面図、(b)はLED素子の縦断面図、(c)は底面図である。It is a light-emitting device using the LED element which concerns on 3rd Embodiment, (a) is a top view, (b) is a longitudinal cross-sectional view of an LED element, (c) is a bottom view.

符号の説明Explanation of symbols

1、発光装置
2、LED素子
3、基板
3A、配線層
3B、配線層
3C、電極
3D、電極
3E、ビアホール
3F、ビアホール
3G、放熱用パターン
4、ガラス封止部
5、バンプ
6、封止部
10、LEDランプ
11、光反射器
11A、蛍光体含有ガラス
11B、蒸着部
1. Light emitting device 2, LED element 3, substrate 3A, wiring layer 3B, wiring layer 3C, electrode 3D, electrode 3E, via hole 3F, via hole 3G, heat radiation pattern 4, glass sealing portion 5, bump 6, sealing portion 10, LED lamp 11, light reflector 11A, phosphor-containing glass 11B, vapor deposition section

Claims (21)

固体素子と、
前記固体素子と外部との間で電力を受供給する導電部と、
前記固体素子を封止する封止部とを有し、
前記封止部は、無機材料と前記無機材料の熱膨張率より小なる熱膨張率のフィラを含む固体素子パッケージ。
A solid state element;
A conductive portion for receiving and supplying power between the solid state element and the outside;
A sealing portion for sealing the solid element;
The sealing part is a solid element package including an inorganic material and a filler having a thermal expansion coefficient smaller than that of the inorganic material.
前記固体素子は、光学素子であり、前記封止部は前記光学素子の対象波長に対して透光性を有する請求項1記載の固体素子パッケージ。   The solid element package according to claim 1, wherein the solid element is an optical element, and the sealing portion has translucency with respect to a target wavelength of the optical element. 前記封止部の無機材料はガラス材料である1記載の固体素子パッケージ。   2. The solid element package according to 1, wherein the inorganic material of the sealing portion is a glass material. 前記封止部は、前記ガラス材料への混入時に溶解しない前記フィラを含む請求項1から3のいずれか1項に記載の固体素子パッケージ。   4. The solid state device package according to claim 1, wherein the sealing portion includes the filler that does not dissolve when mixed into the glass material. 5. 前記封止部は、前記ガラス材料の比重と同等の比重を有する前記フィラを含む請求項1から4のいずれか1項に記載の固体素子パッケージ。   5. The solid state device package according to claim 1, wherein the sealing portion includes the filler having a specific gravity equivalent to a specific gravity of the glass material. 前記封止部は、エッジ部を除去された形状を有する前記フィラを含む請求項1から5のいずれか1項に記載の固体素子パッケージ。   6. The solid state device package according to claim 1, wherein the sealing portion includes the filler having a shape from which an edge portion is removed. 前記導電部は、無機材料基板上に形成されている請求項1に記載の固体素子パッケージ。   The solid element package according to claim 1, wherein the conductive portion is formed on an inorganic material substrate. 前記無機材料基板は、金属層を介して前記封止部と接合されている請求項7に記載の固体素子パッケージ。   The solid element package according to claim 7, wherein the inorganic material substrate is joined to the sealing portion via a metal layer. 前記無機材料基板は、熱伝導率100W/(m・k)以上の熱伝導性材料からなる請求項7又は8記載の固体素子パッケージ。   The solid element package according to claim 7 or 8, wherein the inorganic material substrate is made of a thermally conductive material having a thermal conductivity of 100 W / (m · k) or more. 前記固体素子と、前記封止部と、前記無機材料基板とが同等の熱膨張率である請求項7から9のいずれか1項に記載の固体素子パッケージ。   10. The solid element package according to claim 7, wherein the solid element, the sealing portion, and the inorganic material substrate have the same thermal expansion coefficient. 前記固体素子は、フリップチップ接合型固体素子である請求項1から10のいずれか1項に記載の固体素子パッケージ。   The solid-state package according to claim 1, wherein the solid-state element is a flip-chip bonded solid-state element. 前記封止部は、前記対象波長として発光波長500nm以下の発光波長を含む光について透光性を有する前記ガラス材料および前記フィラからなる請求項1から11のいずれか1項に記載の固体素子パッケージ。   The solid element package according to any one of claims 1 to 11, wherein the sealing portion is made of the glass material and the filler having translucency for light having an emission wavelength of 500 nm or less as the target wavelength. . 前記封止部は、前記光学素子の対象波長に対して前記ガラス材料より大なる光透過性を有する透光性材料からなる前記フィラを含むことを特徴とする請求項1から12のいずれか1項に記載の固体素子パッケージ。   The said sealing part contains the said filler which consists of a translucent material which has a light transmittance larger than the said glass material with respect to the object wavelength of the said optical element, The any one of Claim 1 to 12 characterized by the above-mentioned. The solid element package according to Item. 前記封止部は、石英ガラスからなる前記フィラを含む請求項1から13のいずれか1項に記載の固体素子パッケージ。   The solid element package according to claim 1, wherein the sealing portion includes the filler made of quartz glass. 前記封止部は、前記ガラス材料と同等の屈折率を有する前記フィラを含む請求項1から14のいずれか1項に記載の固体素子パッケージ。   The solid element package according to claim 1, wherein the sealing portion includes the filler having a refractive index equivalent to that of the glass material. 前記封止部は、光学形状を有して前記固体素子を封止するように前記フィラを含む前記ガラス材料によって形成される請求項1から15のいずれか1項に記載の固体素子パッケージ。   16. The solid state device package according to claim 1, wherein the sealing portion has an optical shape and is formed of the glass material including the filler so as to seal the solid state device. 前記固体素子は、発光素子である請求項1から16のいずれか1項に記載の固体素子パッケージ。   The solid element package according to claim 1, wherein the solid element is a light emitting element. 前記固体素子は、LED素子である請求項1から17のいずれか1項に記載の固体素子パッケージ。   The solid-state package according to claim 1, wherein the solid-state element is an LED element. 前記固体素子は、受光素子である請求項1から18のいずれか1項に記載の固体素子パッケージ。   The solid element package according to claim 1, wherein the solid element is a light receiving element. 前記固体素子は、太陽電池である請求項1から19のいずれか1項に記載の固体素子パッケージ。   The solid element package according to claim 1, wherein the solid element is a solar cell. 前記ガラス部は、蛍光体を含む前記ガラス材料によって形成される請求項1から17のいずれか1項に記載の固体素子パッケージ。   The solid-state element package according to any one of claims 1 to 17, wherein the glass portion is formed of the glass material including a phosphor.
JP2004031304A 2004-02-06 2004-02-06 Solid element package Withdrawn JP2005223222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004031304A JP2005223222A (en) 2004-02-06 2004-02-06 Solid element package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004031304A JP2005223222A (en) 2004-02-06 2004-02-06 Solid element package

Publications (1)

Publication Number Publication Date
JP2005223222A true JP2005223222A (en) 2005-08-18

Family

ID=34998596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004031304A Withdrawn JP2005223222A (en) 2004-02-06 2004-02-06 Solid element package

Country Status (1)

Country Link
JP (1) JP2005223222A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007023807A1 (en) * 2005-08-23 2007-03-01 Kabushiki Kaisha Toshiba Light-emitting device, backlight using same, and liquid crystal display
JP2007080994A (en) * 2005-09-13 2007-03-29 Sumita Optical Glass Inc Solid element device and light emitting device employing it
JP2008153553A (en) * 2006-12-19 2008-07-03 Nichia Chem Ind Ltd Light-emitting device and method of manufacturing same
JP2010268013A (en) * 2010-09-01 2010-11-25 Nichia Corp Light emitting device
US7887225B2 (en) 2006-07-10 2011-02-15 Samsung Led Co., Ltd. Direct-type backlight unit having surface light source
US8101441B2 (en) 2009-02-12 2012-01-24 Sumita Optical Glass, Inc. Method of manufacturing light-emitting device
JP2012121968A (en) * 2010-12-07 2012-06-28 Sharp Corp Light emitting device, illuminating device, and vehicle headlamp
JP2012136686A (en) * 2010-12-07 2012-07-19 Sharp Corp Wavelength conversion member, light emitting device, illuminating device, vehicle headlamp, and production method
TWI452697B (en) * 2006-09-08 2014-09-11 Qimonda Ag Transistor and memory cell array
US8866169B2 (en) 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
US9035439B2 (en) 2006-03-28 2015-05-19 Cree Huizhou Solid State Lighting Company Limited Apparatus, system and method for use in mounting electronic elements
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US9601670B2 (en) 2014-07-11 2017-03-21 Cree, Inc. Method to form primary optic with variable shapes and/or geometries without a substrate
US9711703B2 (en) 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US9722158B2 (en) 2009-01-14 2017-08-01 Cree Huizhou Solid State Lighting Company Limited Aligned multiple emitter package
JP2017168620A (en) * 2016-03-16 2017-09-21 豊田合成株式会社 Light-emitting device and manufacturing method thereof
JP2018148206A (en) * 2017-03-03 2018-09-20 光感動股▲ふん▼有限公司Ison Corporation Optical semiconductor device and package of optical semiconductor device
US10096757B2 (en) 2016-03-09 2018-10-09 Toyoda Gosei Co., Ltd. LED package
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
WO2019117452A1 (en) * 2017-12-12 2019-06-20 삼성에스디아이 주식회사 Epoxy resin composition for sealing semiconductor device and semiconductor device sealed using same
US10622522B2 (en) 2014-09-05 2020-04-14 Theodore Lowes LED packages with chips having insulated surfaces
WO2021111731A1 (en) * 2019-12-06 2021-06-10 株式会社ジャパンディスプレイ Light-emitting device and display device

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007023807A1 (en) * 2005-08-23 2009-02-26 株式会社東芝 LIGHT EMITTING DEVICE, BACKLIGHT AND LIQUID CRYSTAL DISPLAY DEVICE USING THE SAME
US7709855B2 (en) 2005-08-23 2010-05-04 Kabushiki Kaisha Toshiba Light-emitting device, backlight using same, and liquid crystal display
WO2007023807A1 (en) * 2005-08-23 2007-03-01 Kabushiki Kaisha Toshiba Light-emitting device, backlight using same, and liquid crystal display
JP2007080994A (en) * 2005-09-13 2007-03-29 Sumita Optical Glass Inc Solid element device and light emitting device employing it
US7825575B2 (en) 2005-09-13 2010-11-02 Sumita Optical Glass, Inc. Solid-state element device and light-emitting apparatus using same
US9035439B2 (en) 2006-03-28 2015-05-19 Cree Huizhou Solid State Lighting Company Limited Apparatus, system and method for use in mounting electronic elements
US7887225B2 (en) 2006-07-10 2011-02-15 Samsung Led Co., Ltd. Direct-type backlight unit having surface light source
TWI452697B (en) * 2006-09-08 2014-09-11 Qimonda Ag Transistor and memory cell array
JP2008153553A (en) * 2006-12-19 2008-07-03 Nichia Chem Ind Ltd Light-emitting device and method of manufacturing same
US9711703B2 (en) 2007-02-12 2017-07-18 Cree Huizhou Opto Limited Apparatus, system and method for use in mounting electronic elements
US8866169B2 (en) 2007-10-31 2014-10-21 Cree, Inc. LED package with increased feature sizes
US10892383B2 (en) 2007-10-31 2021-01-12 Cree, Inc. Light emitting diode package and method for fabricating same
US11791442B2 (en) 2007-10-31 2023-10-17 Creeled, Inc. Light emitting diode package and method for fabricating same
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
US10256385B2 (en) 2007-10-31 2019-04-09 Cree, Inc. Light emitting die (LED) packages and related methods
US9722158B2 (en) 2009-01-14 2017-08-01 Cree Huizhou Solid State Lighting Company Limited Aligned multiple emitter package
US8101441B2 (en) 2009-02-12 2012-01-24 Sumita Optical Glass, Inc. Method of manufacturing light-emitting device
JP2010268013A (en) * 2010-09-01 2010-11-25 Nichia Corp Light emitting device
JP2012136686A (en) * 2010-12-07 2012-07-19 Sharp Corp Wavelength conversion member, light emitting device, illuminating device, vehicle headlamp, and production method
JP2012121968A (en) * 2010-12-07 2012-06-28 Sharp Corp Light emitting device, illuminating device, and vehicle headlamp
US9601670B2 (en) 2014-07-11 2017-03-21 Cree, Inc. Method to form primary optic with variable shapes and/or geometries without a substrate
US10622522B2 (en) 2014-09-05 2020-04-14 Theodore Lowes LED packages with chips having insulated surfaces
US10096757B2 (en) 2016-03-09 2018-10-09 Toyoda Gosei Co., Ltd. LED package
JP2017168620A (en) * 2016-03-16 2017-09-21 豊田合成株式会社 Light-emitting device and manufacturing method thereof
JP2018148206A (en) * 2017-03-03 2018-09-20 光感動股▲ふん▼有限公司Ison Corporation Optical semiconductor device and package of optical semiconductor device
WO2019117452A1 (en) * 2017-12-12 2019-06-20 삼성에스디아이 주식회사 Epoxy resin composition for sealing semiconductor device and semiconductor device sealed using same
WO2021111731A1 (en) * 2019-12-06 2021-06-10 株式会社ジャパンディスプレイ Light-emitting device and display device

Similar Documents

Publication Publication Date Title
JP2005223222A (en) Solid element package
CN100565951C (en) Luminescent device and manufacture method thereof
EP2596948B1 (en) Method of making a semiconductor device
US7417220B2 (en) Solid state device and light-emitting element
US8129743B2 (en) Light emitting device
JP4747726B2 (en) Light emitting device
US20080284310A1 (en) Light emitting device, light source and method of making the device
US20100176751A1 (en) Semiconductor light-emitting device as well as light source device and lighting system including the same
JP5307364B2 (en) Method for producing phosphor-containing glass and method for producing solid-state device
JP2009059883A (en) Light emitting device
TWI381564B (en) Light emitting diode
WO2013168802A1 (en) Led module
CN102194971A (en) Light-emitting device (LED) package structure and method for manufacturing the same
EP2297278A1 (en) Semiconductor light emitting apparatus and light source apparatus using the same
JP2008060542A (en) Light-emitting device, method of manufacturing same, and light source device provided with the same
JP2008010872A (en) Led device having top surface heat dissipator
CN102130268A (en) Solid-state light-emitting component and light source module
JP2012069645A (en) Semiconductor light-emitting device and manufacturing method therefor
JP2012079776A (en) Semiconductor light-emitting device and method of manufacturing the same
JP2007066939A (en) Semiconductor light emitting device
TW201735405A (en) LED chip encapsulation member comprising phosphor, LED package including the LED chip encapsulation member, and manufacturing method for the same
TWI458140B (en) Thermally-enhanced hybrid led package components
JP2006080312A (en) Light emitting device and its manufacturing method
KR101310107B1 (en) Encapsulant For UVLED Device, UVLED Device Using The Same And Manufacturing Method thereof
JP2009135543A (en) Method of manufacturing light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060529

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20080228