JP2005222568A - Method and device for two-photon absorptive recording, and method and device for two-photon absorptive recording/reproducing - Google Patents

Method and device for two-photon absorptive recording, and method and device for two-photon absorptive recording/reproducing Download PDF

Info

Publication number
JP2005222568A
JP2005222568A JP2004026185A JP2004026185A JP2005222568A JP 2005222568 A JP2005222568 A JP 2005222568A JP 2004026185 A JP2004026185 A JP 2004026185A JP 2004026185 A JP2004026185 A JP 2004026185A JP 2005222568 A JP2005222568 A JP 2005222568A
Authority
JP
Japan
Prior art keywords
recording
recording medium
light
photon absorption
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004026185A
Other languages
Japanese (ja)
Inventor
Takeshi Miki
剛 三樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004026185A priority Critical patent/JP2005222568A/en
Publication of JP2005222568A publication Critical patent/JP2005222568A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Head (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for two-photon absorptive recording, and a method and a device for two-photon absorptive recording/reproducing, using a two-photon absorptive process using the two luminous fluxes of different wavelengths in which seeking and recording surface positioning are easy during recording/reproducing. <P>SOLUTION: The two-photon absorptive recording method is characterized in that the two luminous fluxes of different wavelengths emitted and modulated from one light source are separated in parallel to the optical axis of an objective lens for converging lights on a recording medium spatially, the separated luminous fluxes are introduced through different optical paths into the recording medium, and the luminous fluxes overlap each other only in the vicinity of the focus of the recording medium. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は2光子吸収記録方法、2光子吸収記録再生方法、2光子吸収記録装置及び2光子吸収記録再生装置に関し、詳細には記録媒体中の記録材料に2つの異なる波長の光束を用い2光子吸収による情報の記録を行う2光子吸収記録方法に関する。   The present invention relates to a two-photon absorption recording method, a two-photon absorption recording / reproducing method, a two-photon absorption recording / reproducing apparatus, and a two-photon absorption recording / reproducing apparatus, and more specifically, two-photons using light beams having two different wavelengths as recording materials in a recording medium. The present invention relates to a two-photon absorption recording method for recording information by absorption.

近年の光ディスクの大容量化は、主に記録波長の短波長化と対物レンズの高NA化による最短記録波長の改善による記録面密度の向上により成し遂げられてきた。これに対し、光の透過性を利用して、記録媒体全体を有効利用し大容量記録を成し遂げようとする試みは、ホグラムメモリに端を発し、ビット記録よる3次元光記録へと続いてきた。   In recent years, the increase in capacity of optical discs has been achieved mainly by increasing the recording surface density by shortening the recording wavelength and improving the shortest recording wavelength by increasing the NA of the objective lens. On the other hand, attempts to achieve large-capacity recording by effectively using the entire recording medium by utilizing light transmittance originated in the hologram memory and continued to three-dimensional optical recording by bit recording. It was.

このようなビット記録による3次元光記録は、現用の記録層が1層の光記録に比較し、深さ方向に多層化した分だけ大容量化が可能であり、現状の100倍を越える大容量記録の実現が期待されている。深さ方向に多重に記録するには、基本的に同一の性質を持った多重化された記録層の、意図した層にのみ書き込んだり、読み出したりすることが必要となる。従って、何らかの非線形性を導入し選択性を付与することが必要となる。この非線形性を付与する方法のひとつとして、2光子吸収反応を利用した書き込みが挙げられる。通常の吸収過程は吸収帯のエネルギーに対応した1光子吸収過程であるが、2光子吸収過程は吸収エネルギーよりも小さなエネルギーを持つ光子2つを吸収することにより誘起される。この際、吸収される2つの光子のエネルギーは、同一のエネルギー(同一波長)の場合の他に、二つの異なるエネルギー(2つの異なる波長)の場合が存在する。後者の2波長を用いた2光子吸収の場合は、2つの異なる波長を異なる光学系により絞り込み、焦点近傍で2つの異なる波長の光子を重ね合わせることによりピンポイントで反応を起す。即ち、この方法をバルクメディアに適応した場合、絞り込まれた2つの異なる波長の光束の交点でのみ記録が可能で、前述の交点をメディア内の任意の位置に移動することにより3次元記録を可能とする方法が非特許文献1に開示されている。しかし、実際には、絞り込まれた2つの異なる波長の各光束の焦点を重ね合わせることは非常に困難である。この解決方法として、一方の光束を他方の光束に垂直な平面状にエキスパンドしてバルクメディア内に導入し、アドレスビームとした構成が非特許文献2に開示されている。
「Three-Dimensional Optical Storage Memory」(Parthenopoulos,D.A. & Rentzepis,P.M.Science) 1989,24, P.843〜P.844) 「Experimental characterization of a two-photon memory」(Wang,M.M.& Esener,S.C.& McCormick,F.B.& Cokgor,I.& Dvornikov,A.S.& Rentzepis,P.M.)Optics Letters/Vol.22,No.8/April 15,1997,P.558〜P.560
Such three-dimensional optical recording by bit recording can increase the capacity by the number of layers in the depth direction as compared with optical recording with a single recording layer, which is 100 times larger than the current recording layer. Realization of capacity recording is expected. In order to multiplexly record in the depth direction, it is basically necessary to write or read only to the intended layer of the multiplexed recording layers having the same properties. Therefore, it is necessary to introduce some non-linearity to give selectivity. One method of imparting this nonlinearity is writing using a two-photon absorption reaction. The normal absorption process is a one-photon absorption process corresponding to the energy of the absorption band, but the two-photon absorption process is induced by absorbing two photons having energy smaller than the absorption energy. At this time, the energy of the two photons absorbed includes the case of two different energies (two different wavelengths) in addition to the case of the same energy (same wavelength). In the latter case of two-photon absorption using two wavelengths, two different wavelengths are narrowed down by different optical systems, and a photon reaction is caused by overlapping two different wavelength photons near the focal point. In other words, when this method is applied to a bulk medium, recording is possible only at the intersection of two narrowed light beams having different wavelengths, and three-dimensional recording is possible by moving the above-mentioned intersection to an arbitrary position in the medium. Is disclosed in Non-Patent Document 1. However, in practice, it is very difficult to superimpose the focused light beams having two different wavelengths. As a solution to this problem, Non-Patent Document 2 discloses a configuration in which one light beam is expanded into a plane perpendicular to the other light beam and introduced into a bulk medium to form an address beam.
`` Three-Dimensional Optical Storage Memory '' (Parthenopoulos, DA & Rentzepis, PMScience) 1989, 24, P.843 to P.844) “Experimental characterization of a two-photon memory” (Wang, MM & Esener, SC & McCormick, FB & Cokgor, I. & Dvornikov, AS & Rentzepis, PM) Optics Letters / Vol.22, No.8 / April 15,1997, P. 558-P.560

しかしながら、2つの異なる波長を用いる2光子吸収過程を用いた3次元記録の可能は示されたものの従来の光記録方式に比べ、複雑な光学系を要する等課題も多い。特に、2つの異なる波長の光源をそれぞれ用いるために、従来の光メモリ(CD,DVD)と全く異なる光学系が必要であり、記録・再生の際のシークに大きな課題を残している。   However, although the possibility of three-dimensional recording using a two-photon absorption process using two different wavelengths is shown, there are many problems such as requiring a complicated optical system as compared with the conventional optical recording method. In particular, in order to use light sources of two different wavelengths, an optical system that is completely different from the conventional optical memory (CD, DVD) is required, and a great problem remains in seeking during recording and reproduction.

本発明はこれらの問題点を解決するためのものであり、記録・再生の際のシーク及び記録面の位置決めの容易な2つの異なる波長の光束を用いる2光子吸収過程を用いた2光子吸収記録方法、2光子吸収記録再生方法、2光子吸収記録装置及び2光子吸収記録再生装置を提供することを目的とする。   The present invention is intended to solve these problems, and is a two-photon absorption recording using a two-photon absorption process that uses light beams of two different wavelengths, which facilitates seek and recording surface positioning during recording and reproduction. It is an object to provide a two-photon absorption recording / reproducing method, a two-photon absorption recording / reproducing apparatus, and a two-photon absorption recording / reproducing apparatus.

前記問題点を解決するために、記録媒体中の記録材料に2つの異なる波長の光束を用い2光子吸収による情報の記録を行う、本発明の2光子吸収記録方法によれば、1つの光源から照射され変調された2つの異なる波長の光束を、記録媒体に集光するための対物レンズの光軸に平行に、かつ空間的に分離して、分離した各光束をそれぞれ別光路を介して記録媒体内に導入し、記録媒体での焦点近傍でのみ各光束が重なることに特徴がある。よって、記録の際のシーク及び記録面の位置決めの容易な2つの異なる波長を用いる2光子吸収過程を用いた2光子吸収記録方法を提供できる。   In order to solve the above-described problem, according to the two-photon absorption recording method of the present invention in which information is recorded by two-photon absorption using light beams of two different wavelengths on a recording material in a recording medium, a single light source is used. The irradiated and modulated light beams of two different wavelengths are separated in parallel and spatially with the optical axis of the objective lens for condensing on the recording medium, and the separated light beams are recorded through different optical paths. The light beam is introduced into the medium and overlaps only near the focal point of the recording medium. Therefore, it is possible to provide a two-photon absorption recording method using a two-photon absorption process using two different wavelengths, which facilitates seek and recording surface positioning during recording.

また、2つの異なる波長の光束の何れか一方を変調して2光子吸収を制御し、他方の波長の光束は変調せずにフォーカス及びトラッキングのプローブ光とすることにより、ダイナミックに振動等の外乱の影響を排除することが可能となる。また、除震台等の設備が不要となると共に、環境温度等の変化による部材の伸縮の影響、組み付け後の経時変化等をダイナミックに制御可能となり、可用性の高い、高信頼性の、かつ小型で、低コストな大容量光記録が可能となる。   Also, by modulating one of the two light beams having different wavelengths to control the two-photon absorption, the light beam having the other wavelength is not modulated, and is used as the focus and tracking probe light, so that disturbances such as vibration are dynamically generated. It becomes possible to eliminate the influence of. In addition, it eliminates the need for equipment such as a vibration isolation table, and enables dynamic control of the effects of expansion and contraction of members due to changes in environmental temperature, changes over time after assembly, etc., making it highly available, highly reliable, and compact. Thus, low-cost, large-capacity optical recording is possible.

更に、対物レンズの焦点距離を2つの異なる波長の光束間で同一にするために、対物レンズは色収差の補正を行う対物レンズであることにより、蛍光検出等の多波長を用いた多層記録も可能となる。   Furthermore, in order to make the focal length of the objective lens the same between two light beams having different wavelengths, the objective lens is an objective lens that corrects chromatic aberration, so that multi-layer recording using multiple wavelengths such as fluorescence detection is possible. It becomes.

また、対物レンズの焦点距離を2つの異なる波長の光束間で同一にするために、対物レンズは各波長に対応するレンズを組み合わせて構成した対物レンズであることにより、2つの異なる波長の光束を同一焦点面に集光することが可能となる。特に、光軸に軸対称な位置に同一波長に対応したレンズを配置することで、反射光にも有効に働かせることが可能となる。   Further, in order to make the focal length of the objective lens the same between the light beams having two different wavelengths, the objective lens is an objective lens configured by combining lenses corresponding to the respective wavelengths, so that the light beams having two different wavelengths can be obtained. It is possible to focus on the same focal plane. In particular, by arranging lenses corresponding to the same wavelength at positions that are axially symmetric with respect to the optical axis, it is possible to effectively act on reflected light.

更に、記録媒体は、記録色素を含む記録層と光感度を有しない中間層を積層した構造より成る。つまり、中間層を導入した多層構造を取ることにより、記録ビットの書き込み位置が記録媒体内に指定され、しかもこの情報は光学的に検出可能であるので、フォーカスおよびトラッキングサーボを掛けることで、ダイナミックに補正可能となる。従って、振動等による外乱の影響がない、小型で、高信頼性、かつ低コストの大容量光記録を可能にする。   Further, the recording medium has a structure in which a recording layer containing a recording dye and an intermediate layer having no photosensitivity are laminated. In other words, by adopting a multilayer structure with an intermediate layer introduced, the write position of the recording bit is designated in the recording medium, and this information can be detected optically. Can be corrected. Therefore, it is possible to perform large-capacity optical recording that is small, highly reliable, and low in cost without being affected by disturbance due to vibration or the like.

また、別の発明の2光子吸収記録再生方法によれば、1つの光源から照射され変調された2つの異なる波長の光束を、記録媒体に集光するための対物レンズの光軸に平行に、かつ空間的に分離して、分離した各光束をそれぞれ別光路を介して記録媒体内に導入し、記録媒体での焦点近傍でのみ各光束を重ねて2光子吸収による情報の記録を行う。そして、基本波のみを記録媒体に照射して、記録媒体で発生した光強度を検出し、検出した光強度の変化として記録された情報を再生する。よって、記録の際のシーク及び記録面の位置決めが容易となり、かつ吸収の無い波長を用い情報の再生が可能となる2光子吸収記録再生方法を提供できる。   Further, according to the two-photon absorption recording / reproducing method of another invention, parallel to the optical axis of an objective lens for condensing two different wavelength light beams irradiated and modulated from one light source on a recording medium, In addition, the light beams are spatially separated, and the separated light beams are introduced into the recording medium through different optical paths, and information is recorded by two-photon absorption by superimposing the light beams only near the focal point of the recording medium. Then, the recording medium is irradiated with only the fundamental wave, the light intensity generated on the recording medium is detected, and the information recorded as the detected change in the light intensity is reproduced. Therefore, it is possible to provide a two-photon absorption recording / reproducing method that facilitates the positioning of the seek and recording surface during recording and enables the reproduction of information using a wavelength that does not absorb.

更に、別の発明としての2光子吸収記録装置は、1つの光源から照射された光束を、記録媒体に集光するための対物レンズの光軸に平行に、かつ空間的に分離する2波長分離手段と、分離された一方の波長の光束を2次高調波に変換して記録媒体上に焦点を結ばせる第1の光学系手段と、分離された他方の波長の光束を書き込み情報に基づいた変調を施した光束を、第1の光学系手段によって記録媒体上に焦点を結んだ光束に、記録媒体での焦点近傍で、重なるように記録媒体上に焦点を結ばせる第2の光学系手段とを有することに特徴がある。よって、記録の際のシーク及び記録面の位置決めの容易な2つの異なる波長を用いる2光子吸収過程を用いた2光子吸収記録装置を提供できる。また、厚さ方向では無く、入射光に直交する方向に拡大したメディア、即ちディスク型あるいはシート型の媒体を採用することができ、容易に対物光学系を設計することが可能となり、装置のコストを大幅に低減することを可能にする。   Further, the two-photon absorption recording apparatus as another invention is a two-wavelength separation that spatially separates a light beam emitted from one light source in parallel to the optical axis of an objective lens for condensing on a recording medium. Means, a first optical system means for converting the separated light flux of one wavelength into a second harmonic to focus on the recording medium, and the separated light flux of the other wavelength based on the writing information Second optical system means for focusing the modulated light beam on the recording medium so as to overlap the light beam focused on the recording medium by the first optical system means in the vicinity of the focus on the recording medium. It has the characteristics. Therefore, it is possible to provide a two-photon absorption recording apparatus that uses a two-photon absorption process that uses two different wavelengths for easy recording and recording surface positioning. Further, it is possible to adopt a medium expanded in a direction perpendicular to the incident light, not the thickness direction, that is, a disk type or a sheet type medium, and it becomes possible to easily design an objective optical system, thereby reducing the cost of the apparatus. Can be greatly reduced.

また、別の発明としての2光子吸収記録再生装置は、情報記録手段と、情報再生手段とを具備している。そして、情報記録手段は、1つの光源から照射された光束を、記録媒体に集光するための対物レンズの光軸に平行に、かつ空間的に分離する2波長分離手段と、分離された一方の波長の光束を2次高調波に変換して記録媒体上に焦点を結ばせる第1の光学系手段と、分離された他方の波長の光束を書き込み情報に基づいた変調を施した光束を、第1の光学系手段によって記録媒体上に焦点を結んだ光束に、記録媒体での焦点近傍で、重なるように記録媒体上に焦点を結ばせる第2の光学系手段とを有している。また、情報再生手段は、基本波のみを記録媒体に照射して、記録媒体で発生した光強度を検出し、検出した光強度の変化として記録された情報を再生する。よって、記録の際のシーク及び記録面の位置決めが容易となり、かつ吸収の無い波長を用い情報の再生が可能となる2光子吸収記録再生装置を提供できる。   A two-photon absorption recording / reproducing apparatus as another invention includes an information recording means and an information reproducing means. The information recording means is separated from the two-wavelength separating means for separating the light beam emitted from one light source in parallel and spatially with the optical axis of the objective lens for condensing on the recording medium. A first optical system means for converting a light beam having a wavelength of 2 to a second harmonic to focus on a recording medium, and a light beam obtained by modulating the separated light beam having the other wavelength based on writing information, And second optical system means for focusing on the recording medium so that the light beam focused on the recording medium by the first optical system means overlaps in the vicinity of the focus on the recording medium. The information reproducing means irradiates the recording medium with only the fundamental wave, detects the light intensity generated on the recording medium, and reproduces the information recorded as the detected change in the light intensity. Therefore, it is possible to provide a two-photon absorption recording / reproducing apparatus that facilitates seek and recording surface positioning during recording and that can reproduce information using a wavelength without absorption.

更に、情報再生手段における基本波の光束を照射する光源は、情報記録手段における光束を照射する光源を兼ねることにより、装置全体の小型化及び低コスト化を図ることができる。   Further, the light source for irradiating the fundamental light beam in the information reproducing means also serves as the light source for irradiating the light flux in the information recording means, so that the entire apparatus can be reduced in size and cost.

また、情報再生手段における基本波の光束を照射する光源は、情報記録手段における光束を照射する光源と別に設けることにより、意図的にフォーカスをオフセットさせてレンズ効果による光量の変化を増強することが可能となる。   In addition, the light source for irradiating the fundamental light beam in the information reproducing means may be provided separately from the light source for irradiating the light flux in the information recording means, thereby intentionally offsetting the focus and enhancing the change in the light amount due to the lens effect. It becomes possible.

本発明の2光子吸収記録方法によれば、記録の際のシーク及び記録面の位置決めが容易となる。   According to the two-photon absorption recording method of the present invention, seeking during recording and positioning of the recording surface are facilitated.

図1は本発明の第1の実施の形態例に係る2光子吸収記録装置の構成を示す構成図である。同図に示す本実施の形態例の2光子吸収記録装置は、2つの異なる波長の光束を対物レンズの光軸に平行かつ空間的に分離して媒体内に導入し、焦点近傍でのみ2つの異なる波長の光束が重なる2波長での2光子記録方法で、かつ2つの異なる波長の光束の何れか一方を変調することにより2光子吸収を制御し、他方の波長は変調せずにフォーカス及びトラッキングのプローブ光を兼ねる記録方法を、対物レンズの焦点距離を2つの異なる波長の光束間で同一にして色収差を補正した対物レンズを用いて構成している。そして、記録情報の読み出しは、蛍光による読み出しを採用している。また、記録媒体は記録色素を含む記録層と光感度を有しない中間層を積層した構造より成る多層記録媒体を用いている。詳細に記録システムの動作の内、記録系について説明する。先ず、記録用パルスレーザ(1064nm)101からの出射光は、ビームエキスパンダ102によりビーム系を広げた後、全反射ミラー103によりビームの一部を取り出す。取り出したビームは、ミラー104により方向を変えた後、2次高調波発生結晶105へ導入され、2次高調波(532nm)に変換される。変換された2次高調波は、変調器106を経て、偏光ビームスプリッタ107、1/4波長板108よりなる光アイソレータを通り、円偏光に変換された後、ダイクロイックミラー109を経て、対物レンズ110により多層記録媒体200に焦点を結ぶ。多層記録媒体200の異種界面での屈折率による界面反射光は、対物レンズ110により集光され、偏光ビームスプリッタ107によりサーボ検出系に導入される。集光レンズ111により集光され、ピンホール112により焦点以外からの反射・散乱が除去された後、リレーレンズ113、シリンドリカルレンズ114を経て、4分割アバランシェフォトダイオード115で検出される。この検出信号を基に、多層記録媒体の任意の位置でフォーカス及びトラッキングサーボを動作させることが可能となる。全反射ミラー103により分離された他方の光は、変調器116により書き込み情報に依存した変調を受け、ミラー117、全反射ミラー118を経て、2次高調波と同軸に戻される。2次高調波同様に、偏光ビームスプリッタ107、1/4波長板108よりなる光アイソレータを通り、ダイクロイックミラー109を経て、対物レンズ110により多層記録媒体200に焦点を結ぶ。但し、光軸上で、2次高調波とは分離されており、焦点面以外で相互に作用することはない。焦点面では、2次高調波は書き込み時には常に照射されている。しかし、2次高調波単独では、焦点でも2光子吸収は起こらないが、書き込みデータにより変調された、基本波が照射されたときのみ焦点面で2つの異なる波長の光束による2光子吸収が起こり、書き込みが行われる。以上のような動作により、多層記録媒体への書き込みが行われる。   FIG. 1 is a block diagram showing the configuration of a two-photon absorption recording apparatus according to the first embodiment of the present invention. The two-photon absorption recording apparatus according to the present embodiment shown in the figure introduces two light beams having different wavelengths into the medium in parallel and spatially separated from the optical axis of the objective lens. Two-photon recording method with two wavelengths where light beams of different wavelengths overlap, and two-photon absorption is controlled by modulating one of the two light beams of different wavelengths, and focusing and tracking without modulating the other wavelength The recording method that also serves as the probe light is configured using an objective lens in which the focal length of the objective lens is the same between two light beams having different wavelengths and the chromatic aberration is corrected. And reading of record information adopts reading by fluorescence. The recording medium is a multilayer recording medium having a structure in which a recording layer containing a recording dye and an intermediate layer having no photosensitivity are laminated. The recording system will be described in detail among the operations of the recording system. First, the beam emitted from the recording pulse laser (1064 nm) 101 is expanded by the beam expander 102 and then a part of the beam is extracted by the total reflection mirror 103. The extracted beam is changed in direction by the mirror 104 and then introduced into the second harmonic generation crystal 105 to be converted into the second harmonic (532 nm). The converted second harmonic wave passes through a modulator 106, passes through an optical isolator including a polarizing beam splitter 107 and a quarter-wave plate 108, is converted into circularly polarized light, and then passes through a dichroic mirror 109, thereby passing through an objective lens 110. Thus, the multi-layer recording medium 200 is focused. The interface reflected light due to the refractive index at the different interface of the multilayer recording medium 200 is collected by the objective lens 110 and introduced into the servo detection system by the polarization beam splitter 107. The light is condensed by the condensing lens 111, and reflection / scattering from other than the focal point is removed by the pinhole 112, and then detected by the four-divided avalanche photodiode 115 through the relay lens 113 and the cylindrical lens 114. Based on this detection signal, the focus and tracking servo can be operated at an arbitrary position of the multilayer recording medium. The other light separated by the total reflection mirror 103 is modulated by the modulator 116 depending on the writing information, passes through the mirror 117 and the total reflection mirror 118, and is returned coaxially with the second harmonic. Similar to the second harmonic, it passes through the optical isolator including the polarization beam splitter 107 and the quarter wavelength plate 108, passes through the dichroic mirror 109, and is focused on the multilayer recording medium 200 by the objective lens 110. However, it is separated from the second harmonic on the optical axis and does not interact outside the focal plane. On the focal plane, the second harmonic is always irradiated during writing. However, with the second harmonic alone, two-photon absorption does not occur even at the focal point, but two-photon absorption by two light beams having different wavelengths occurs at the focal plane only when the fundamental wave modulated by the writing data is irradiated, Writing is performed. By the operation as described above, writing to the multilayer recording medium is performed.

そして、読み出し時には、逆に、基本波のみが照射され、記録媒体中の色素が2光子吸収により励起され発光する蛍光を蛍光検出系により検出する。蛍光検出系の動作を説明する。連続照射された基本波により、焦点でのみ蛍光が発生する。発生した蛍光は、対物レンズ110により集光され、ダイクロイックミラー109により蛍光検出系に導かれる。集光レンズ119によりアバランシェフォトダイオード120に集光され、蛍光強度の変化として、記録情報が検出される。   At the time of reading, on the contrary, only the fundamental wave is irradiated, and the fluorescence in the recording medium excited by the two-photon absorption and emitted is detected by the fluorescence detection system. The operation of the fluorescence detection system will be described. Fluorescence is generated only at the focal point due to the fundamental wave irradiated continuously. The generated fluorescence is collected by the objective lens 110 and guided to the fluorescence detection system by the dichroic mirror 109. The light is condensed on the avalanche photodiode 120 by the condenser lens 119, and the recorded information is detected as a change in the fluorescence intensity.

ここで、多層記録媒体の構造の一例を図2に示す。図2の多層記録媒体の構造はCD,DVDと同様のディスク状の多層記録媒体の断面構造を示したものである。図2において、多層記録媒体の記録層203は、記録色素であるスピロピランをアクリル樹脂に分散したものを、記録層支持基板204上にスピンコートしている。両者の間に所望とする界面反射率を実現する屈折率差を設けることにより、サーボを掛けるための戻り光を確保することができる。また、記録層支持基板204上に、グルーブを刻印することにより、CD,DVD同様に、トラッキングサーボを掛けることも可能となる。記録層支持基板204上に形成された記録層203を多層に重ね、表面保護基板201、支持基板205を介して接着層202により一体化することで多層記録媒体200は形成されている。   Here, an example of the structure of the multilayer recording medium is shown in FIG. The structure of the multilayer recording medium in FIG. 2 shows the cross-sectional structure of a disk-shaped multilayer recording medium similar to CD and DVD. In FIG. 2, the recording layer 203 of the multilayer recording medium is obtained by spin-coating a recording layer supporting substrate 204 with spiropyran as a recording dye dispersed in an acrylic resin. By providing a difference in refractive index that realizes a desired interface reflectance between the two, it is possible to ensure return light for applying servo. Further, by marking grooves on the recording layer support substrate 204, it is possible to apply tracking servo as in the case of CD and DVD. The multilayer recording medium 200 is formed by stacking the recording layers 203 formed on the recording layer support substrate 204 in multiple layers and integrating them with the adhesive layer 202 via the surface protection substrate 201 and the support substrate 205.

以上説明したように、本実施の形態例によれば、2つの異なる波長の光束を対物レンズの光軸に平行かつ空間的に分離して媒体内に導入し、焦点近傍でのみ2つの異なる波長の光束が重なる2光子記録方法である。つまり、2つの異なる波長の光を用いた2光子吸収過程を利用した書き込みの利点は、2つ異なる波長のいずれかの光を収束させただけでは2光子吸収は起こらず、2つの異なる波長の光のそれぞれの焦点が重なった場所でだけ2光子吸収が起こる。このために書き込み時に3次元分解能が発現することにある。本実施の形態例の構成では、2つの異なる波長の光のそれぞれの光路は対物レンズの光軸に並行であり、かつ空間的に分離されているため、干渉が起こることはない。一方、2つの異なる波長の光について同一焦点面を持つように対物レンズが設計されていれば、2つの異なる波長の光はそれぞれ対物レンズの焦点面に集光され、焦点面近傍でのみ2つの異なる波長の光は重なり2光子吸収が起こるが、それ以外の空間ではそれぞれの光は集光されていないためにエネルギー密度は低く、かつ空間的に分離されているので2光子吸収は起こらない。また、焦点距離が2つの異なる波長の光で一致していれば、直交する光の焦点を合せるような制御は不要であることは言うまでもない。また、記録媒体の形状に対する制約条件を考えてみると、従来のように2つの異なる波長の光を直交するそれぞれ別のレンズ系を用いて収束させる方法では2つの異なる波長の各光の結像性能をほほ同一とする必要から媒体は立方体であることが望ましいが、この場合には立方体の媒体の表面からレンズから最も遠い面まで焦点が合う必要があり、球面収差の補正等、光学系の設計は困難を極める。これに対し、本実施の形態例のように、2つの異なる波長の光を同軸に配置した場合には、2つの異なる波長の光は同じ方向から照射されるため媒体はディスク型もしくはプレート形を取ることが可能であり、2つの異なる波長の光のパスは厚さ方向の数mm以下の範囲で焦点が合えばよく、立方体の媒体に比べ光学設計は格段に容易となる。   As described above, according to the present embodiment, light beams having two different wavelengths are introduced into the medium in parallel and spatially separated from the optical axis of the objective lens, and the two different wavelengths are only in the vicinity of the focal point. Is a two-photon recording method in which the light beams overlap. In other words, the advantage of writing using a two-photon absorption process using light of two different wavelengths is that two-photon absorption does not occur just by converging light of two different wavelengths. Two-photon absorption occurs only where the respective focal points of light overlap. For this reason, three-dimensional resolution is manifested at the time of writing. In the configuration of the present embodiment, since the optical paths of light of two different wavelengths are parallel to the optical axis of the objective lens and spatially separated, no interference occurs. On the other hand, if the objective lens is designed to have the same focal plane for light of two different wavelengths, the light of two different wavelengths is condensed on the focal plane of the objective lens, and only two in the vicinity of the focal plane. Light of different wavelengths overlaps and two-photon absorption occurs. However, in each other space, each light is not collected, so that the energy density is low and spatially separated, and thus two-photon absorption does not occur. Needless to say, if the focal lengths of two different wavelengths of light coincide with each other, it is not necessary to control the orthogonal light to be focused. Also, considering the constraints on the shape of the recording medium, the conventional method of converging two different wavelengths of light using different orthogonal lens systems forms an image of the two different wavelengths of light. It is desirable that the medium is a cube because it is necessary to have almost the same performance, but in this case, it is necessary to focus from the surface of the cubic medium to the surface farthest from the lens. Design is extremely difficult. On the other hand, when two different wavelengths of light are arranged coaxially as in the present embodiment, the two different wavelengths of light are emitted from the same direction, so the medium has a disk shape or a plate shape. The optical paths of two different wavelengths need only be focused within a range of several mm or less in the thickness direction, and the optical design becomes much easier compared to a cubic medium.

また、従来のバルクメディア内に書き込まれた記録は機械的に位置決めがなされてきており、この機械的な位置決めの精度はフィードバック等を行い高精度に行うことが可能であるが、外部からの振動等の外乱には弱く、除震台等の設備を必要としてきた。本実施の形態例では、2つの異なる波長の光の何れか一方をフォーカスおよびトラッキングに用いることによりダイナミックに振動等の外乱の影響を排除することが可能となる。即ち、除震台等の設備が不要となると共に、環境温度等の変化による部材の伸縮の影響、組み付け後の経時変化等をダイナミックに制御可能となる。従って、可用性の高い、高信頼性の、かつ小型で、低コストな大容量光記録が可能となる。   In addition, the records written in the conventional bulk media have been mechanically positioned, and the accuracy of this mechanical positioning can be performed with high accuracy by feedback or the like. It is vulnerable to disturbances such as, and has required equipment such as a vibration isolation table. In the present embodiment, it is possible to dynamically eliminate the influence of disturbance such as vibration by using any one of two different wavelengths of light for focusing and tracking. That is, equipment such as a vibration isolation table is not required, and the influence of expansion and contraction of members due to changes in the environmental temperature and the like, and changes over time after assembly can be dynamically controlled. Therefore, high-capacity optical recording with high availability, high reliability, small size, and low cost is possible.

更に、本実施の形態例のように対物レンズに色収差の補正を施すことにより2つの異なる波長の光でどういつ焦点となることはもとより、蛍光検出等の多波長を用いた多層記録も可能となる。   Furthermore, by correcting the chromatic aberration on the objective lens as in this embodiment, it is possible to perform multi-layer recording using multiple wavelengths such as fluorescence detection, as well as how to focus on light of two different wavelengths. Become.

なお、多層記録媒体を構成する色素、分散剤等の材料は一例であり、上記に限定されるものではない。また、多層記録媒体の形状は、カード型など他の形態を取ることも可能であり、それらに対応する記録再生システムも含め、本実施の形態例はその構成を制限するものではない。   Note that materials such as a dye and a dispersant constituting the multilayer recording medium are examples, and are not limited to the above. Further, the shape of the multilayer recording medium can take other forms such as a card type, and the configuration of the present embodiment, including the recording / reproducing system corresponding thereto, is not limited.

図3は本発明の第2の実施の形態例に係る2光子吸収記録装置の構成を示す構成図である。同図に示す本実施の形態例の2光子吸収記録装置は、2つの異なる波長の光束での2光子記録方法で、かつ2つの異なる波長の光束の内一方がプローブ光を兼ねる記録方法を、2つの異なる波長の光束に対応するレンズを組み合わせた対物レンズを用いて構成している。そして、記録情報の読み出しは、第3の波長による反射型光学系による読み出しを採用している。また、記録媒体は記録色素を含む記録層と光感度を有しない中間層を積層した構造より成る多層記録媒体を用いている。詳細に記録システムの動作の内、記録系について説明する。先ず、記録用パルスレーザ(1064nm)301からの出射光は、ビームエキスパンダ302によりビーム系を広げた後、全反射ミラー303によりビームの一部を取り出す。取り出したビームは、ミラー304により方向を変えた後、2次高調波発生結晶305へ導入され、2次高調波(532nm)に変換される。変換された2次高調波は、偏光ビームスプリッタ306、1/4波長板307よりなる光アイソレータを通り、円偏光に変換された後、対物レンズ308により多層記録媒体200に焦点を結ぶ。多層記録媒体200の異種界面での屈折率による界面反射光は、対物レンズ308により集光され、偏光ビームスプリッタ306によりサーボ検出系に導入される。集光レンズ309により集光され、ピンホール310により焦点以外からの反射・散乱が除去された後、リレーレンズ311、シリンドリカルレンズ312を経て、4分割アバランシェフォトダイオード313で検出される。この検出信号を基に、多層記録媒体の任意の位置でフォーカス及びトラッキングサーボを動作させることが可能となる。全反射ミラー303により分離された他方の光は、変調器314により書き込み情報に依存した変調を受け、ミラー315、全反射ミラー316を経て、2次高調波と同軸に戻される。2次高調波同様に、偏光ビームスプリッタ306、1/4波長板307よりなる光アイソレータを通り、対物レンズ308により多層記録媒体200に焦点を結ぶ。但し、光軸上で、2次高調波とは分離されており、焦点面以外で相互に作用することはない。また、対物レンズ308は、それぞれの波長が通る部分は異なった面で構成されており、両波長共に同一焦点面に焦点を結ぶ。また、レンズの光軸に対し対象な位置が、同一波長に対応したており、反射光も集光可能な設計となっている。第1の実施の形態例同様に、2次高調波は書き込み時には常に照射されている。しかし、2次高調波単独では、焦点でも2光子吸収は起こらないが、書き込みデータにより変調された、基本波が照射されたときのみ焦点面で2つの異なる波長の光による2光子吸収が起こり、書き込みが行われる。以上のような動作により、多層記録媒体200への書き込みが行われる。   FIG. 3 is a block diagram showing the configuration of a two-photon absorption recording apparatus according to the second embodiment of the present invention. The two-photon absorption recording apparatus of the present embodiment shown in the figure is a two-photon recording method using two light beams having different wavelengths, and a recording method in which one of the two light beams having different wavelengths also serves as probe light. The objective lens is configured by combining lenses corresponding to light beams having two different wavelengths. And the reading of the record information employs the reading by the reflection type optical system with the third wavelength. The recording medium is a multilayer recording medium having a structure in which a recording layer containing a recording dye and an intermediate layer having no photosensitivity are laminated. The recording system will be described in detail among the operations of the recording system. First, the beam emitted from the recording pulse laser (1064 nm) 301 is expanded by the beam expander 302 and then a part of the beam is extracted by the total reflection mirror 303. The extracted beam is changed in direction by the mirror 304 and then introduced into the second harmonic generation crystal 305 to be converted into the second harmonic (532 nm). The converted second harmonic passes through an optical isolator composed of a polarizing beam splitter 306 and a quarter wavelength plate 307 and is converted into circularly polarized light, and then focused on the multilayer recording medium 200 by the objective lens 308. Interface reflected light due to the refractive index at the different interface of the multilayer recording medium 200 is collected by the objective lens 308 and introduced into the servo detection system by the polarization beam splitter 306. The light is condensed by the condensing lens 309, and reflection / scattering from other than the focal point is removed by the pinhole 310, and then detected by the four-divided avalanche photodiode 313 through the relay lens 311 and the cylindrical lens 312. Based on this detection signal, the focus and tracking servo can be operated at an arbitrary position of the multilayer recording medium. The other light separated by the total reflection mirror 303 is modulated by the modulator 314 depending on the writing information, passes through the mirror 315 and the total reflection mirror 316, and is returned coaxially with the second harmonic. Similar to the second harmonic, it passes through an optical isolator including a polarizing beam splitter 306 and a quarter-wave plate 307, and is focused on the multilayer recording medium 200 by an objective lens 308. However, it is separated from the second harmonic on the optical axis and does not interact outside the focal plane. In addition, the objective lens 308 is configured by different planes through which each wavelength passes, and both wavelengths are focused on the same focal plane. In addition, the target position with respect to the optical axis of the lens corresponds to the same wavelength, and the reflected light can be condensed. Similar to the first embodiment, the second harmonic is always irradiated during writing. However, the second harmonic alone does not cause two-photon absorption even at the focal point, but two-photon absorption due to light of two different wavelengths occurs at the focal plane only when the fundamental wave modulated by the writing data is irradiated, Writing is performed. By the above operation, writing to the multilayer recording medium 200 is performed.

そして、読み出し時の動作であるが、本実施の形態例では読み出し専用のピックアップを用いる構成となっている。半導体レーザ317から出射される波長780nmの連続光を、ビームエキスパンダ318により広げ、偏光ビームスプリッタ319、1/4波長板320よりなる光アイソレータを介して対物レンズ321により多層記録媒体200に集光する。多層基板内での異種界面からの反射を、対物レンズ321により集光し、偏光ビームスプリッタ319により検出系に導く。集光レンズ321により集光された反射光は、ピンホール323により、焦点以外からの反射・散乱光をカットし、リレーレンズ324、シリンドリカルレンズ325を経て、4分割アバランシェフォトダイオード326に集光され、異種界面での反射と、記録により生じる屈折率の波長分散の変化成分の和として検出される。4分割アバランシェフォトダイオード326の差信号により、フォーカス及びトラッキング信号が得られ、和信号からは、記録信号が得られる。以上のような動作により、2波長による2光子記録および屈折率変化による記録の読み出しが可能となる。なお、多層記録媒体は、第1の実施の形態例と同様の構成を用いている。また、多層記録媒体の形状は、ディスク以外にもカードなど他の形態を取ることも可能であり、それらに対応する記録再生システムも含め、本実施の形態例はその構成を制限するものではない。   In this embodiment, a read-only pickup is used as an operation at the time of reading. Continuous light having a wavelength of 780 nm emitted from the semiconductor laser 317 is spread by a beam expander 318 and condensed on a multilayer recording medium 200 by an objective lens 321 via an optical isolator composed of a polarizing beam splitter 319 and a quarter wavelength plate 320. To do. The reflection from the heterogeneous interface in the multilayer substrate is condensed by the objective lens 321 and guided to the detection system by the polarization beam splitter 319. The reflected light collected by the condensing lens 321 is reflected and scattered light other than the focal point by the pinhole 323, passes through the relay lens 324 and the cylindrical lens 325, and is collected by the four-divided avalanche photodiode 326. It is detected as the sum of the reflection component at the different interface and the change component of the chromatic dispersion of the refractive index caused by recording. A focus and tracking signal is obtained from the difference signal of the four-divided avalanche photodiode 326, and a recording signal is obtained from the sum signal. By the operation as described above, two-photon recording with two wavelengths and reading of a record with a change in refractive index can be performed. The multilayer recording medium uses the same configuration as that of the first embodiment. Further, the shape of the multilayer recording medium can take other forms such as a card in addition to the disk, and the configuration of the present embodiment, including the recording / reproducing system corresponding to the form, does not limit the configuration. .

図4は本発明の第3の実施の形態例に係る2光子吸収記録装置の構成を示す構成図である。同図に示す本実施の形態例の2光子吸収記録装置は、2つの異なる波長の光束での2光子記録方法で、かつ2つの異なる波長の光束の内一方がプローブ光を兼ねる記録方法を、色収差を補正した対物レンズを用いて構成している。そして、記録情報の読み出しは、第3の波長による透過型光学系による読み出しを採用している。また、記録媒体は記録色素を含む記録層と光感度を有しない中間層を積層した構造より成る多層記録媒体を用いている。詳細に記録システムの動作の内、記録系について説明する。先ず、記録用パルスレーザ(1064nm)401からの出射光は、ビームエキスパンダ402によりビーム系を広げた後、全反射ミラー403によりビームの一部を取り出す。取り出したビームは、ミラー404により方向を変えた後、2次高調波発生結晶405へ導入され、2次高調波(532nm)に変換される。変換された2次高調波は、偏光ビームスプリッタ406、1/4波長板407よりなる光アイソレータを通り、円偏光に変換された後、対物レンズ408により多層記録媒体200に焦点を結ぶ。多層記録媒体200の異種界面での屈折率による界面反射光は、対物レンズ408により集光され、偏光ビームスプリッタ406によりサーボ検出系に導入される。集光レンズ409により集光され、ピンホール410により焦点以外からの反射・散乱が除去された後、リレーレンズ411、シリンドリカルレンズ412を経て、4分割アバランシェフォトダイオード413で検出される。この検出信号を基に、多層記録媒体200の任意の位置でフォーカス及びトラッキングサーボを動作させることが可能となる。全反射ミラー403により分離された他方の光は、変調器414により書き込み情報に依存した変調を受け、ミラー415、全反射ミラー416を経て、2次高調波と同軸に戻される。2次高調波同様に、偏光ビームスプリッタ406、1/4波長板407よりなる光アイソレータを通り、対物レンズ408により多層記録媒体200に焦点を結ぶ。但し、光軸上で、2次高調波とは分離されており、焦点面以外で相互に作用することはない。また、対物レンズ408は、それぞれの波長が通る部分は異なった曲面で構成されており、両波長共に同一焦点面に焦点を結ぶ。また、レンズの光軸に対し対象な位置が、同一波長に対応しており、反射光も集光可能な設計となっている。更に、第1の実施の形態例同様に、2次高調波は書き込み時には常に照射されている。しかし、2次高調波単独では、焦点でも2光子吸収は起こらないが、書き込みデータにより変調された、基本波が照射されたときのみ焦点面で2つの異なる波長の光による2光子吸収が起こり、書き込みが行われる。以上のような動作により、多層記録媒体200への書き込みが行われる。   FIG. 4 is a block diagram showing the configuration of a two-photon absorption recording apparatus according to the third embodiment of the present invention. The two-photon absorption recording apparatus of the present embodiment shown in the figure is a two-photon recording method using two light beams having different wavelengths, and a recording method in which one of the two light beams having different wavelengths also serves as probe light. An objective lens with corrected chromatic aberration is used. Then, reading of recorded information employs reading by a transmission optical system with a third wavelength. The recording medium is a multilayer recording medium having a structure in which a recording layer containing a recording dye and an intermediate layer having no photosensitivity are laminated. The recording system will be described in detail among the operations of the recording system. First, the beam emitted from the recording pulse laser (1064 nm) 401 is expanded by the beam expander 402 and then a part of the beam is extracted by the total reflection mirror 403. The extracted beam is changed in direction by the mirror 404 and then introduced into the second harmonic generation crystal 405 and converted into the second harmonic (532 nm). The converted second harmonic passes through an optical isolator composed of a polarizing beam splitter 406 and a quarter-wave plate 407, is converted into circularly polarized light, and is then focused on the multilayer recording medium 200 by the objective lens 408. The interface reflected light due to the refractive index at the different interface of the multilayer recording medium 200 is collected by the objective lens 408 and introduced into the servo detection system by the polarization beam splitter 406. After being condensed by the condensing lens 409, reflection / scattering from other than the focal point is removed by the pinhole 410, and then detected by the four-divided avalanche photodiode 413 through the relay lens 411 and the cylindrical lens 412. Based on this detection signal, the focus and tracking servo can be operated at an arbitrary position of the multilayer recording medium 200. The other light separated by the total reflection mirror 403 is modulated by the modulator 414 depending on the writing information, passes through the mirror 415 and the total reflection mirror 416, and is returned coaxially with the second harmonic. Similar to the second harmonic, it passes through an optical isolator composed of a polarizing beam splitter 406 and a quarter-wave plate 407 and is focused on the multilayer recording medium 200 by an objective lens 408. However, it is separated from the second harmonic on the optical axis and does not interact outside the focal plane. In addition, the objective lens 408 has a curved surface where each wavelength passes, and both wavelengths are focused on the same focal plane. Further, the target position with respect to the optical axis of the lens corresponds to the same wavelength, and the reflected light can be condensed. Further, as in the first embodiment, the second harmonic is always irradiated during writing. However, the second harmonic alone does not cause two-photon absorption even at the focal point, but two-photon absorption due to light of two different wavelengths occurs at the focal plane only when the fundamental wave modulated by the writing data is irradiated, Writing is performed. By the above operation, writing to the multilayer recording medium 200 is performed.

そして、読み出し時の動作であるが、本実施の形態例では読み出し専用のピックアップを用いる構成となっている。半導体レーザ417から出射される波長780nmの連続光を、ビームエキスパンダ418により広げ、偏光ビームスプリッタ419、1/4波長板420よりなる光アイソレータを介して対物レンズ421により多層記録媒体200に集光する。多層基板内での異種界面からの反射光を、対物レンズ421により集光し、偏光ビームスプリッタ419により検出系に導く。集光レンズ422により集光された反射光は、ピンホール423により、焦点以外からの反射・散乱光をカットし、リレーレンズ424、シリンドリカルレンズ425を経て、4分割アバランシェフォトダイオード426に集光され、異種界面での反射と、記録により生じる屈折率の波長分散の変化成分の和として検出される。4分割アバランシェフォトダイオード426の差信号により、フォーカス及びトラッキング信号が得られる。一方、多層記録媒体200を透過した光は、対物レンズ427により集光後、ピンホール428により焦点以外からの透過光をカットされ、リレーレンズ429により、アバランシェフォトダイオード430上に導かれる。検出信号は、単一の検出器による光量変化として用いることも、トラックの走行方向に2分割された検出器の差分信号を取ることにより、微分波形として検出することも可能である。また、意図的にフォーカスをオフセットさせることにより、レンズ効果による光量変化を増強することも可能である。以上のような動作により、2つの異なる波長の光による2光子記録及び屈折率変化による記録の読み出しが可能となった。なお、多層記録媒体は、第1の実施の形態例と同様の構成を用いている。また、多層記録媒体の形状は、ディスク以外にもカードなど他の形態を取ることも可能であり、それらに対応する記録再生システムも含め、本実施の形態例はその構成を制限するものではない。   In this embodiment, a read-only pickup is used as an operation at the time of reading. Continuous light having a wavelength of 780 nm emitted from the semiconductor laser 417 is spread by a beam expander 418 and condensed on the multilayer recording medium 200 by an objective lens 421 via an optical isolator comprising a polarizing beam splitter 419 and a quarter wavelength plate 420. To do. Reflected light from different interfaces in the multilayer substrate is collected by the objective lens 421 and guided to the detection system by the polarization beam splitter 419. The reflected light collected by the condensing lens 422 is reflected and scattered light from other than the focal point by the pinhole 423, passes through the relay lens 424 and the cylindrical lens 425, and is collected by the four-divided avalanche photodiode 426. It is detected as the sum of the reflection component at the different interface and the change component of the chromatic dispersion of the refractive index caused by recording. A focus and tracking signal is obtained by the difference signal of the quadrant avalanche photodiode 426. On the other hand, the light transmitted through the multilayer recording medium 200 is condensed by the objective lens 427, then the transmitted light from other than the focal point is cut by the pinhole 428, and guided to the avalanche photodiode 430 by the relay lens 429. The detection signal can be used as a change in the amount of light by a single detector, or it can be detected as a differential waveform by taking a difference signal of the detector divided into two in the track traveling direction. It is also possible to enhance the change in the amount of light due to the lens effect by intentionally offsetting the focus. With the operation as described above, two-photon recording with two different wavelengths of light and reading of the record with a change in refractive index are possible. The multilayer recording medium uses the same configuration as that of the first embodiment. Further, the shape of the multilayer recording medium can take other forms such as a card in addition to the disk, and the configuration of the present embodiment, including the recording / reproducing system corresponding to the form, does not limit the configuration. .

なお、本発明は上記実施の形態例に限定されるものではなく、特許請求の範囲内の記載であれば多種の変形や置換可能であることは言うまでもない。   The present invention is not limited to the above-described embodiments, and it goes without saying that various modifications and substitutions are possible as long as they are described within the scope of the claims.

本発明の第1の実施の形態例に係る2光子吸収記録装置の構成を示す構成図である。It is a block diagram which shows the structure of the two-photon absorption recording apparatus based on the 1st Example of this invention. 多層記録媒体の構造の一例を示す断面図である。It is sectional drawing which shows an example of the structure of a multilayer recording medium. 本発明の第2の実施の形態例に係る2光子吸収記録装置の構成を示す構成図である。It is a block diagram which shows the structure of the two-photon absorption recording apparatus based on the 2nd Example of this invention. 本発明の第3の実施の形態例に係る2光子吸収記録装置の構成を示す構成図である。It is a block diagram which shows the structure of the two-photon absorption recording apparatus based on the 3rd Embodiment of this invention.

符号の説明Explanation of symbols

101;記録用パルスレーザ、102;ビームエキスパンダ、
103,118;全反射ミラー、104,117;ミラー、
105;2次高調波発生結晶、106,116;変調器、
107;偏光ビームスプリッタ、108;1/4波長板、
109;ダイクロイックミラー、110;対物レンズ、
111,119;集光レンズ、112;ピンホール、
113;リレーレンズ、114;シリンドリカルレンズ、
115;4分割アバランシェフォトダイオード、
120;アバランシェフォトダイオード、200;多層記録媒体。
101; pulse laser for recording; 102; beam expander;
103, 118; total reflection mirror, 104, 117; mirror,
105; second harmonic generation crystal; 106, 116; modulator;
107; polarizing beam splitter; 108; quarter wave plate;
109; dichroic mirror, 110; objective lens,
111, 119; condenser lens, 112; pinhole,
113; Relay lens, 114; Cylindrical lens,
115; 4-divided avalanche photodiodes;
120; avalanche photodiode, 200; multilayer recording medium.

Claims (10)

記録媒体中の記録材料に2つの異なる波長の光束を用い2光子吸収による情報の記録を行う2光子吸収記録方法において、
1つの光源から照射され変調された2つの異なる波長の光束を、前記記録媒体に集光するための対物レンズの光軸に平行に、かつ空間的に分離して、分離した各光束をそれぞれ別光路を介して前記記録媒体内に導入し、前記記録媒体での焦点近傍でのみ各光束が重なることを特徴とする2光子吸収記録方法。
In a two-photon absorption recording method for recording information by two-photon absorption using light beams of two different wavelengths as a recording material in a recording medium,
Two light beams of different wavelengths irradiated and modulated from one light source are spatially separated parallel to the optical axis of the objective lens for focusing on the recording medium, and the separated light beams are separated from each other. A two-photon absorption recording method which is introduced into the recording medium through an optical path, and each light beam overlaps only in the vicinity of a focal point on the recording medium.
2つの異なる波長の光束の何れか一方を変調して2光子吸収を制御し、他方の波長の光束は変調せずにフォーカス及びトラッキングのプローブ光とする請求項1記載の2光子吸収記録方法。   2. The two-photon absorption recording method according to claim 1, wherein either one of two light beams having different wavelengths is modulated to control two-photon absorption, and the light beam having the other wavelength is not modulated and is used as focus and tracking probe light. 前記対物レンズの焦点距離を2つの異なる波長の光束間で同一にするために、前記対物レンズは色収差の補正を行う対物レンズである請求項1又は2に記載の2光子吸収記録方法。   3. The two-photon absorption recording method according to claim 1, wherein the objective lens is an objective lens that corrects chromatic aberration in order to make the focal length of the objective lens the same between light beams having two different wavelengths. 前記対物レンズの焦点距離を2つの異なる波長の光束間で同一にするために、前記対物レンズは各波長に対応するレンズを組み合わせて構成した対物レンズである請求項1又は2に記載の2光子吸収記録方法。   3. The two-photon according to claim 1, wherein the objective lens is an objective lens configured by combining lenses corresponding to respective wavelengths in order to make the focal length of the objective lens the same between two light beams having different wavelengths. Absorption recording method. 前記記録媒体は、記録色素を含む記録層と光感度を有しない中間層を積層した構造より成る請求項1記載の2光子吸収記録方法。   2. The two-photon absorption recording method according to claim 1, wherein the recording medium has a structure in which a recording layer containing a recording dye and an intermediate layer having no photosensitivity are laminated. 記録媒体中の記録材料に2つの異なる波長の光束を用い2光子吸収による記録を行い、前記記録媒体に記録された情報の再生を行う2光子吸収記録再生方法において、
1つの光源から照射され変調された2つの異なる波長の光束を、前記記録媒体に集光するための対物レンズの光軸に平行に、かつ空間的に分離して、分離した各光束をそれぞれ別光路を介して前記記録媒体内に導入し、前記記録媒体での焦点近傍でのみ各光束を重ねて2光子吸収による情報の記録を行い、
基本波のみを前記記録媒体に照射して、前記記録媒体で発生した光強度を検出し、検出した光強度の変化として記録された情報を再生することを特徴とする2光子吸収記録再生方法。
In a two-photon absorption recording / reproducing method for performing recording by two-photon absorption using light beams of two different wavelengths on a recording material in a recording medium, and reproducing information recorded on the recording medium,
Two light beams of different wavelengths irradiated and modulated from one light source are spatially separated parallel to the optical axis of the objective lens for focusing on the recording medium, and the separated light beams are separated from each other. Introducing into the recording medium through an optical path, and recording information by two-photon absorption by superimposing each light beam only near the focal point of the recording medium,
A two-photon absorption recording / reproducing method comprising: irradiating the recording medium only with a fundamental wave; detecting light intensity generated on the recording medium; and reproducing information recorded as a change in the detected light intensity.
記録媒体中の記録材料に2つの異なる波長の光束を用い2光子吸収による情報の記録を行う2光子吸収記録装置において、
1つの光源から照射された光束を、前記記録媒体に集光するための対物レンズの光軸に平行に、かつ空間的に分離する2波長分離手段と、
分離された一方の波長の光束を2次高調波に変換して前記記録媒体上に焦点を結ばせる第1の光学系手段と、
分離された他方の波長の光束を書き込み情報に基づいた変調を施した光束を、前記第1の光学系手段によって前記記録媒体上に焦点を結んだ光束に、前記記録媒体での焦点近傍で、重なるように前記記録媒体上に焦点を結ばせる第2の光学系手段と
を有することを特徴とする2光子吸収記録装置。
In a two-photon absorption recording apparatus for recording information by two-photon absorption using light beams of two different wavelengths as a recording material in a recording medium,
Two-wavelength separation means for spatially separating the light beam emitted from one light source in parallel with the optical axis of the objective lens for condensing on the recording medium, and
First optical system means for converting the separated light flux of one wavelength into a second harmonic to focus on the recording medium;
A light beam obtained by modulating the separated light beam of the other wavelength based on writing information into a light beam focused on the recording medium by the first optical system means, in the vicinity of the focus on the recording medium, And a second optical system means for focusing on the recording medium so as to overlap with each other.
記録媒体中の記録材料に2つの異なる波長の光束を用い2光子吸収による記録を行い、前記記録媒体に記録された情報の再生を行う2光子吸収記録再生装置において、
1つの光源から照射された光束を、前記記録媒体に集光するための対物レンズの光軸に平行に、かつ空間的に分離する2波長分離手段と、分離された一方の波長の光束を2次高調波に変換して前記記録媒体上に焦点を結ばせる第1の光学系手段と、分離された他方の波長の光束を書き込み情報に基づいた変調を施した光束を、前記第1の光学系手段によって前記記録媒体上に焦点を結んだ光束に、前記記録媒体での焦点近傍で、重なるように前記記録媒体上に焦点を結ばせる第2の光学系手段とを有する情報記録手段と、
基本波のみを前記記録媒体に照射して、前記記録媒体で発生した光強度を検出し、検出した光強度の変化として記録された情報を再生する情報再生手段と
を具備することを特徴とする2光子吸収記録再生装置。
In a two-photon absorption recording / reproducing apparatus for performing recording by two-photon absorption using light beams of two different wavelengths on a recording material in a recording medium, and reproducing information recorded on the recording medium,
A two-wavelength separating unit that spatially separates a light beam emitted from one light source in parallel with an optical axis of an objective lens for condensing the light beam on the recording medium, and two separated light beams having one wavelength. A first optical system means for converting the second harmonic into a focus on the recording medium, and a light beam obtained by modulating the light beam having the other wavelength separated based on the writing information; Information recording means having second optical system means for focusing on the recording medium so as to overlap the light beam focused on the recording medium by a system means in the vicinity of the focus on the recording medium;
And an information reproducing means for irradiating only the fundamental wave to the recording medium, detecting the light intensity generated on the recording medium, and reproducing the information recorded as a change in the detected light intensity. Two-photon absorption recording / reproducing apparatus.
前記情報再生手段における基本波の光束を照射する光源は、前記情報記録手段における光束を照射する光源を兼ねる請求項8記載の2光子吸収記録再生装置。   9. The two-photon absorption recording / reproducing apparatus according to claim 8, wherein a light source for irradiating a fundamental light beam in the information reproducing unit also serves as a light source for irradiating the light beam in the information recording unit. 前記情報再生手段における基本波の光束を照射する光源は、前期情報記録手段における光束を照射する光源と別に設ける請求項8記載の2光子吸収記録再生装置。

9. The two-photon absorption recording / reproducing apparatus according to claim 8, wherein the light source for irradiating the fundamental light beam in the information reproducing means is provided separately from the light source for irradiating the light flux in the previous information recording means.

JP2004026185A 2004-02-03 2004-02-03 Method and device for two-photon absorptive recording, and method and device for two-photon absorptive recording/reproducing Pending JP2005222568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004026185A JP2005222568A (en) 2004-02-03 2004-02-03 Method and device for two-photon absorptive recording, and method and device for two-photon absorptive recording/reproducing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004026185A JP2005222568A (en) 2004-02-03 2004-02-03 Method and device for two-photon absorptive recording, and method and device for two-photon absorptive recording/reproducing

Publications (1)

Publication Number Publication Date
JP2005222568A true JP2005222568A (en) 2005-08-18

Family

ID=34998095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004026185A Pending JP2005222568A (en) 2004-02-03 2004-02-03 Method and device for two-photon absorptive recording, and method and device for two-photon absorptive recording/reproducing

Country Status (1)

Country Link
JP (1) JP2005222568A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034616A1 (en) * 2005-09-22 2007-03-29 Fujifilm Corporation Two-photon-absorbing recording medium, two-photon-absorbing recording/reproducing method, and two-photon-absorbing recording/reproducing apparatus
WO2007055249A1 (en) * 2005-11-08 2007-05-18 Matsushita Electric Industrial Co., Ltd. Information recording medium, its manufacturing method, and optical information recording/reproducing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034616A1 (en) * 2005-09-22 2007-03-29 Fujifilm Corporation Two-photon-absorbing recording medium, two-photon-absorbing recording/reproducing method, and two-photon-absorbing recording/reproducing apparatus
JP2007087532A (en) * 2005-09-22 2007-04-05 Fujifilm Corp Two-photon absorption recording medium, two-photon absorption recording and reproducing method, and two-photon absorption recording and reproducing apparatus
JP4636984B2 (en) * 2005-09-22 2011-02-23 富士フイルム株式会社 Two-photon absorption recording medium, two-photon absorption recording / reproducing method, and two-photon absorption recording / reproducing apparatus
WO2007055249A1 (en) * 2005-11-08 2007-05-18 Matsushita Electric Industrial Co., Ltd. Information recording medium, its manufacturing method, and optical information recording/reproducing device
JPWO2007055249A1 (en) * 2005-11-08 2009-04-30 パナソニック株式会社 Information recording medium, manufacturing method thereof, and optical information recording / reproducing apparatus
US8054727B2 (en) 2005-11-08 2011-11-08 Panasonic Corporation Information recording medium and method for manufacturing the same, and optical information recording/reproducing device

Similar Documents

Publication Publication Date Title
JP4859089B2 (en) Extraction optical system, optical pickup device, and optical disc device
JP2006260669A (en) Optical information recording and reproducing apparatus and recording medium
JP4540115B2 (en) Multilayer optical information recording medium, optical head, optical drive device
TW200929195A (en) Recording and reproducing method, recording and reproducing device and record carrier
JP2008021348A (en) Optical information recording medium, optical information recording/reproducing optical system, and optical information recording/reproducing device
JP2007133918A (en) Extraction optical system, optical pickup and optical disk drive
JP2006244535A (en) Optical head device and optical disk drive
KR100661896B1 (en) Optical disc apparatus
JP2009104717A (en) Recording and reproducing device, and recording and reproducing method
KR20090029025A (en) Apparatus and method for recording/reproducing holographic data and holographic data storage medium
JPWO2006115161A1 (en) Optical head device and optical information device
WO2005055216A1 (en) Optical information reproduction device
JP4483898B2 (en) Recording apparatus, reproducing apparatus, recording method, reproducing method, and recording medium
KR20070025635A (en) Compatible optical pickup and optical recording and/or reproducing apparatus employing the same
JP2009070437A (en) Extraction optical system, optical pickup device, optical disk device, and information processing device
TW200929200A (en) Optical pickup apparatus, optical recording medium driving apparatus, and signal recording/reproducing method
JP2008052793A (en) Recording medium, servo signal detecting method using the same, and information recording and reproducing apparatus
JP2009238284A (en) Focus servo method, optical reproducing method, and optical reproducing device
JP2005353259A (en) Optical pickup, optical disk apparatus, and optical magnification adjusting method
JP2005222568A (en) Method and device for two-photon absorptive recording, and method and device for two-photon absorptive recording/reproducing
JP2010097632A (en) Method and apparatus for reproducing information from optical recording medium
JP2008175925A (en) Optical information recording and reproducing device and optical recording medium
JP2005327328A (en) Three-dimensional optical information recording medium
JP2009070419A (en) Extraction optical system, optical pickup device, optical disk device, and information processing device
JP4498056B2 (en) Optical information recording medium and optical information recording / reproducing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090317

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090421