JP2005221371A - Ultrasonic probe - Google Patents

Ultrasonic probe Download PDF

Info

Publication number
JP2005221371A
JP2005221371A JP2004029382A JP2004029382A JP2005221371A JP 2005221371 A JP2005221371 A JP 2005221371A JP 2004029382 A JP2004029382 A JP 2004029382A JP 2004029382 A JP2004029382 A JP 2004029382A JP 2005221371 A JP2005221371 A JP 2005221371A
Authority
JP
Japan
Prior art keywords
inclination
ultrasonic
probe
array probe
incident angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004029382A
Other languages
Japanese (ja)
Inventor
Hiroaki Kondo
廣章 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004029382A priority Critical patent/JP2005221371A/en
Publication of JP2005221371A publication Critical patent/JP2005221371A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0234Metals, e.g. steel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/042Wave modes
    • G01N2291/0421Longitudinal waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/04Wave modes and trajectories
    • G01N2291/044Internal reflections (echoes), e.g. on walls or defects

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an ultrasonic probe constituted so as to enhance the detection capacity of an oblique flaw having an inclination with respect to a pipe axis. <P>SOLUTION: An automatic ultrasonic oblique angle flaw detector of a steel pipe is constituted so that the advantage of an array probe is utilized as it is and the inclination α in a pipe peripheral direction of the individual vibrator 11 of the array probe calculated from an incident angle θi and the inclination β of a flaw and the pipe peripheral direction incident angle θ of the array probe are provided so as not to cause fluctuations in the incident angle and water distance of the array probe 10 of an individual channel. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、超音波斜角探触子に関し、特に継目無鋼管等における、管軸方向に対して傾きをもつ欠陥を検出するのに好適な超音波斜角探触子に関する。   The present invention relates to an ultrasonic oblique angle probe, and more particularly to an ultrasonic oblique angle probe suitable for detecting a defect having an inclination with respect to a tube axis direction in a seamless steel pipe or the like.

従来、例えば、電縫鋼管の溶接部における管軸方向の欠陥を検出するため、超音波斜角探触子による斜角探傷法が用いられている。斜角探傷法は被探傷材の検査面に対して、超音波斜角探触子を用いて、斜めに超音波を入射させ、被探傷材の欠陥から反射した反射波を捉えることによって被探傷材の欠陥を検出するものである。   Conventionally, for example, an oblique flaw detection method using an ultrasonic oblique probe has been used in order to detect a defect in the tube axis direction in a welded portion of an electric resistance steel pipe. The oblique flaw detection method uses an ultrasonic oblique angle probe to inspect the inspection surface of the material to be inspected, and injects ultrasonic waves obliquely and captures the reflected waves reflected from the defects in the inspection material. It detects material defects.

また、例えば、電縫鋼管の溶接部全長にわたって欠陥を検出するため、超音波斜角探触子を電縫鋼管の溶接シームに平行に走査して、溶接シームに対して超音波ビームを直角に伝播させるようにした技術も用いられている。   Also, for example, in order to detect defects over the entire welded portion of the ERW steel pipe, an ultrasonic oblique probe is scanned parallel to the weld seam of the ERW steel pipe, and the ultrasonic beam is perpendicular to the weld seam. Techniques that allow it to propagate are also used.

超音波は指向性の鋭いことが特徴であり、超音波の進行方向に対し直角方向に広がりを有する欠陥を検出することが可能である。鋼管の超音波斜角探傷は管軸方向欠陥を検出するLきず探傷及び管周方向欠陥を検出するTきず探傷が、従来、実施されている。   Ultrasonic waves are characterized by sharp directivity, and it is possible to detect defects that spread in a direction perpendicular to the traveling direction of the ultrasonic waves. Conventionally, ultrasonic oblique flaw detection of steel pipes has been implemented by L flaw detection for detecting defects in the pipe axial direction and T flaw detection for detecting defects in the pipe circumferential direction.

これに対して、管軸方向に対して傾きを有する欠陥を探傷するために、軸線が被検査材の表面と直交するような円錐面又は円錐面の一部を備えた超音波伝播体と、この超音波伝播体の前記円錐面上に周方向に並置されると共に、各々の超音波ビームの照射方向が前記円錐面の軸線が被検査材の表面と交わる定点に向うように構成された複数の振動子と、を備えた超音波探傷用の斜角探触子がある(例えば、特許文献1参照。)。   On the other hand, in order to detect defects having an inclination with respect to the tube axis direction, an ultrasonic wave propagating body having a conical surface or a part of the conical surface whose axis is orthogonal to the surface of the material to be inspected, A plurality of ultrasonic wave propagating members arranged in a circumferential direction on the conical surface of the ultrasonic wave propagating body and configured such that the irradiation direction of each ultrasonic beam faces a fixed point where the axis of the conical surface intersects the surface of the material to be inspected There is an oblique probe for ultrasonic flaw detection provided with the above-mentioned vibrator (for example, see Patent Document 1).

この斜角探触子では、複数の振動子のうち、欠陥の傾きに対応する角度位置に配設された1個の振動子又は欠陥の傾きに近似する角度位置に配設された1又は2個の振動子のみが欠陥を検出することができ、その検出精度は著しく限定される。   In this oblique angle probe, among the plurality of transducers, one transducer arranged at an angular position corresponding to the inclination of the defect or 1 or 2 arranged at an angular position approximating the inclination of the defect. Only one transducer can detect a defect, and its detection accuracy is significantly limited.

また、被探傷材鋼管の外径に沿う内面と、被探傷材の外径及び超音波入射角から定まるインボリュート外面とからなる音響くさびを形成し、多数の電極を管周方向に並設したアレイ振動子を音響くさびのインボリュート外面上に装着した超音波斜角探触子がある。(例えば、特許文献2参照。)。   Also, an acoustic wedge consisting of an inner surface along the outer diameter of the steel tube to be tested and an outer surface of the involute determined from the outer diameter and ultrasonic incident angle of the material to be tested is formed, and an array in which a large number of electrodes are arranged in parallel in the pipe circumferential direction There is an ultrasonic bevel probe in which the transducer is mounted on the outer surface of the acoustic wedge involute. (For example, refer to Patent Document 2).

この技術は、電縫鋼管の溶接シーム部の肉厚方向の欠陥を精度よく検出するための技術である。   This technique is a technique for accurately detecting defects in the thickness direction of the welded seam portion of the ERW steel pipe.

継目無鋼管では、その製造工程の特徴から管軸方向に傾いた欠陥の発生を否定することはできない。ところが、例えばLきず探傷において、管軸に対して傾きを有する欠陥からのエコー高さは、図11に例示するようにその傾きの増加にともない大きく低下することが知られている。(例えば、非特許文献1参照。)。   In seamless steel pipes, the occurrence of defects tilted in the pipe axis direction cannot be denied due to the characteristics of the manufacturing process. However, it is known that, for example, in L flaw detection, the echo height from a defect having an inclination with respect to the tube axis greatly decreases as the inclination increases, as illustrated in FIG. (For example, refer nonpatent literature 1.).

例えば図12に示すように、超音波進行方向が管軸に対して直角に進行する場合に、管軸に対して角βだけ傾いた欠陥30からのエコー高さは傾き角βが増加すると急速に低減する。図11は欠陥の傾き角βを横軸にとりエコー高さを縦軸にとって示したもので、傾き角βが少し増加するとエコー高さは急速に低下することが示されている。   For example, as shown in FIG. 12, when the ultrasonic traveling direction travels at right angles to the tube axis, the echo height from the defect 30 tilted by the angle β with respect to the tube axis rapidly increases as the tilt angle β increases. To reduce. FIG. 11 shows the defect inclination angle β on the horizontal axis and the echo height on the vertical axis, and it is shown that the echo height rapidly decreases when the inclination angle β slightly increases.

また、検出対象の欠陥が管軸に対して傾き角βを有する場合、探触子が1個の場合は、図13に示すように、探触子を欠陥の傾きに対応して傾き角βだけ傾け、超音波の進行方向を傾き角βだけ傾いた方向(欠陥30の方向に直角な方向)に向ければ検出可能である。また、上述のように、前記特許文献1に開示されている探触子を用いれば、精度は高くはないが傾き角βを有する欠陥を傾き角が一致する1個の振動子で検出することは可能である。   When the defect to be detected has an inclination angle β with respect to the tube axis, and there is one probe, as shown in FIG. 13, the probe has an inclination angle β corresponding to the inclination of the defect. It is possible to detect if the ultrasonic wave travels in the direction inclined by the inclination angle β (the direction perpendicular to the direction of the defect 30). In addition, as described above, if the probe disclosed in Patent Document 1 is used, a defect having an inclination angle β that is not highly accurate can be detected by a single vibrator having the same inclination angle. Is possible.

探触子の製作技術の進歩にともない、電極のブリント技術を利用してアレイ探触子が安価に製作されるようになり、自動超音波探傷装置の探触子として多く利用されるようになった。図15に管軸方向欠陥探傷用アレイ探触子の一例を示す。この例は一枚の振動子に5チャンネル分の電極がプリントされた5チャンネルアレイ探触子である。この探触子は
汎用の探触子を並列に配置した場合に比較し、各振動子11間の距離を極端に狭くした探触子を製作することが可能である。つまり、振動子寸法とチャンネル問距離とをほぼ等しくすることができるから、密なビームプロファイルとなっている。
With the progress of probe fabrication technology, array probes have been manufactured at low cost by using electrode blind technology, and they have been widely used as probes for automatic ultrasonic flaw detectors. It was. FIG. 15 shows an example of an array probe for flaw detection in the tube axis direction. This example is a 5-channel array probe in which electrodes for 5 channels are printed on one transducer. This probe can produce a probe in which the distance between the transducers 11 is extremely narrow as compared with a case where general-purpose probes are arranged in parallel. That is, since the vibrator dimensions and the channel distance can be made almost equal, a dense beam profile is obtained.

このアレイ探触子は図15に示すように、多数の振動子11を隣接させて列設した探触子10であって、これを管軸方向に一致させてそれぞれの振動子11から発振された超音波を次々と伝播させると、図14に示すように欠陥等によって反射されたシャープな多数の反射波100が次々と検出され、精度の高い欠陥検出を行うことができる。図15に示すようなアレイ探触子10を使用する利点は、小さいスペースに多数の振動子11を連接して配置できるため、機構装置をコンパクトに設計・製作することができることであり、従って、超音波ビームの走査密度を向上させることができる点にある。   As shown in FIG. 15, this array probe is a probe 10 in which a large number of transducers 11 are arranged adjacent to each other, and is oscillated from each transducer 11 with the transducers aligned in the tube axis direction. When the ultrasonic waves are propagated one after another, a large number of sharp reflected waves 100 reflected by defects and the like are detected one after another as shown in FIG. 14, and defect detection with high accuracy can be performed. The advantage of using the array probe 10 as shown in FIG. 15 is that a large number of transducers 11 can be connected and arranged in a small space, so that the mechanism device can be designed and manufactured in a compact manner. It exists in the point which can improve the scanning density of an ultrasonic beam.

しかし、図15に示すような最近の鋼管用超音波探傷装置において使用されている多数の振動子を連設したアレイ探触子10では、管20の軸に平行に用いるとよいが、このアレイ探触子を単に欠陥の方向に合わせて傾けるだけでは傾いた斜め欠陥を検出することは不可能である。   However, in the array probe 10 in which a large number of transducers used in a recent ultrasonic inspection apparatus for steel pipes as shown in FIG. 15 are connected, it is preferable to use the array probe parallel to the axis of the pipe 20. It is impossible to detect a tilted defect by simply tilting the probe according to the direction of the defect.

図16は、管20上にアレイ探触子10、10aを配置した平面図、図17はその正面図を示したものである。図17に示すように、このような複数の振動子を連設したアレイ探触子10aを管20の軸に平行に配置した場合には、アレイ探触子10が複数の振動子が組込まれたものであっても、超音波発振ビーム16の入射角は一定となる。しかし、検出対象欠陥の傾き角βに対応した角度だけ傾けて設置したアレイ探触子10の場合には、探傷対象材である鋼管は断面が円形であるため、各振動子の発振ビーム17の入射角がそれぞれ異なることとなり、また振動子と鋼管表面との相対距離も異なることによって、アレイ探触子10の各振動子の探傷性能が異なることになるからである。
実開平4−4220号公報(第2−3頁、図3) 特願2003−039908号出願 日本鉄鋼協会:超音波シリーズIII:継目無鋼管の超音波探傷法 昭和63年 4月1日 p62〜63
FIG. 16 is a plan view in which the array probes 10 and 10a are arranged on the tube 20, and FIG. 17 is a front view thereof. As shown in FIG. 17, when the array probe 10a in which such a plurality of transducers are arranged in parallel is arranged in parallel to the axis of the tube 20, the array probe 10 incorporates a plurality of transducers. Even if it is a thing, the incident angle of the ultrasonic oscillation beam 16 becomes constant. However, in the case of the array probe 10 that is installed with an inclination corresponding to the inclination angle β of the defect to be detected, the steel pipe, which is the flaw detection target material, has a circular cross section. This is because the incident angle is different, and the relative distance between the transducer and the steel pipe surface is also different, so that the flaw detection performance of each transducer of the array probe 10 is different.
Japanese Utility Model Publication No. 4-4220 (page 2-3, FIG. 3) Application for Japanese Patent Application No. 2003-039908 Japan Iron and Steel Institute: Ultrasonic Series III: Ultrasonic flaw detection method for seamless steel pipes April 1, 1988 p62-63

本発明は、鋼管の自動超音波斜角探傷装置において、管軸に対して傾きを有する欠陥の検出性能を向上させた超音波探触子を提供することを目的とするものである。   An object of the present invention is to provide an ultrasonic probe with improved detection performance of a defect having an inclination with respect to a tube axis in an automatic ultrasonic oblique flaw detection apparatus for a steel pipe.

すなわち、本発明は、鋼管の管軸方向探傷において、管軸に対して傾きを有する斜め欠陥を効率良く探傷するため、アレイ探触子の利点はそのまま利用し、個々の振動子の入射角及び水距離変動を生じないように構成した、鋼管の斜め欠陥探傷用の超音波斜角探傷用探触子を提供する。   That is, according to the present invention, in the tube axis direction flaw detection of a steel pipe, in order to efficiently detect an oblique defect having an inclination with respect to the tube axis, the advantage of the array probe is used as it is, and the incident angle of each transducer and Provided is an ultrasonic oblique flaw detection probe for detecting flaws in a steel pipe, which is configured not to cause fluctuations in water distance.

本発明は、上記課題を解決するためになされたもので、次の技術手段を講じたことを特徴とする超音波探触子である。すなわち、本発明は、被探傷材鋼管の自動超音波探傷装置用のアレイ探触子において、
(1)探傷屈折角θrから求めた入射角θiと欠陥の傾きβとから算出したアレイ探触子の個々の振動子の管軸方向の傾きα、及び
(2)アレイ探触子の管周方向入射角θ
を備えたことを特徴とする。
The present invention has been made to solve the above-described problems, and is an ultrasonic probe characterized by taking the following technical means. That is, the present invention provides an array probe for an automatic ultrasonic flaw detector for a steel pipe to be flawed,
(1) The inclination α in the tube axis direction of each transducer of the array probe calculated from the incident angle θi obtained from the flaw detection refraction angle θr and the defect inclination β, and (2) the tube circumference of the array probe Directional incident angle θ
It is provided with.

上記本発明において前記アレイ探触子の個々の振動子は水距離が等しくなるように階段状に配設すると、エコーがほぼ等間隔の整った配列となるので好ましい。   In the present invention, it is preferable that the individual transducers of the array probe are arranged in a stepped manner so that the water distances are equal, since the echoes are arranged in a substantially uniform interval.

また、上記超音波探触子において、前記入射角θi、前記振動子の管軸方向の傾きα及び前記アレイ探触子の周方向入射角θはそれぞれ下記(1)式〜(3)式で求めることができる。   In the ultrasonic probe, the incident angle θi, the inclination α in the tube axis direction of the transducer, and the circumferential incident angle θ of the array probe are expressed by the following equations (1) to (3), respectively. Can be sought.

sinθi=sinθr×(Ci/Cr)……(1)
tanα=tanθi×sinβ………………(2)
tanθ=tanθi×cosβ………………(3)
但し、
θi:入射角
θr:屈折角
Ci:入射側縦波音速
Cr:鋼内横波音速
α:振動子の管軸方向の傾き
β:欠陥の傾き(欠陥と交差する管軸に平行な線からの傾き)
θ:アレイ探触子の管周方向入射角
である。
sin θi = sin θr × (Ci / Cr) (1)
tan α = tan θi × sin β (2)
tan θ = tan θi × cos β (3)
However,
θi: Incident angle θr: Refraction angle Ci: Incident-side longitudinal sound velocity Cr: In-steel transverse wave sound velocity α: Inclination in the tube axis direction of the vibrator β: Inclination of the defect (inclination from a line parallel to the tube axis intersecting the defect) )
θ is the incident angle in the tube circumferential direction of the array probe.

本発明によれば、アレイ探触子を用いる超音波探傷において、鋼管の管軸に対してある傾き角βを有する斜め欠陥の有無を、効率良く探傷することが可能となった。   According to the present invention, in ultrasonic flaw detection using an array probe, it has become possible to efficiently detect the presence or absence of an oblique defect having an inclination angle β with respect to the tube axis of a steel pipe.

本発明は、管軸に対して傾き角βを有する欠陥を効率よく検出する超音波探触子であって、個々の振動子の管軸方向の傾きα、及びアレイ探触子の管周方向入射角θを備えた超音波探触子である。   The present invention relates to an ultrasonic probe that efficiently detects a defect having an inclination angle β with respect to a tube axis, the inclination α in the tube axis direction of each transducer, and the tube circumferential direction of the array probe. This is an ultrasonic probe having an incident angle θ.

以下図面を参照して本発明の実施の形態を説明する。図1は本発明の実施例の超音波探触子を示す側面図、図2はその正面図である。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a side view showing an ultrasonic probe according to an embodiment of the present invention, and FIG. 2 is a front view thereof.

本発明に係る被探傷材鋼管の自動超音波探傷装置用のアレイ探触子10は、図1に示すように振動子11が管20の軸方向に対して傾き角αを有する。この管軸方向の傾きαは、探傷屈折角θrから求めた入射角θiと欠陥の傾きβとから算出される。アレイ探触子10の個々の振動子11は、水距離が等しくなるように階段状に配設されている。一方、図2に示すように、アレイ探触子は超音波ビームの管周方向入射角θを備えるように構成されている。   In an array probe 10 for an automatic ultrasonic flaw detector for a steel pipe to be inspected according to the present invention, the vibrator 11 has an inclination angle α with respect to the axial direction of the pipe 20 as shown in FIG. The inclination α in the tube axis direction is calculated from the incident angle θi obtained from the flaw detection refraction angle θr and the defect inclination β. The individual transducers 11 of the array probe 10 are arranged stepwise so that the water distances are equal. On the other hand, as shown in FIG. 2, the array probe is configured to have an incident angle θ of the ultrasonic beam in the tube circumferential direction.

すなわち、管軸方向に配置されるアレイ振動子の個々に対して、管軸方向の傾きαと管周方向入射角θを与えることによって、管軸に対して傾き角βを持つ斜め欠陥を効率よく検出することができる。   That is, for each array transducer arranged in the tube axis direction, a slant defect having a tilt angle β with respect to the tube axis is efficiently obtained by giving the tube axis direction inclination α and the tube circumferential direction incident angle θ. Can be detected well.

管軸方向に対して傾き角βだけ傾いた斜め欠陥を検出するには、管周方向に傾き角βだけ傾いた超音波ビームを発生させることが必要である。図5は、上記管軸方向の傾きαと管周方向入射角θを求めるための説明図である。図10に、管20と超音波探触子10の配置関係を示す一般的な斜視図を示した。アレイ超音波探触子10の各振動子11から超音波ビーム14が管20の表面に向けて発射される。矢印51は平面図の矢視方向、矢印52は管軸に直交する方向からの側面図の矢視方向、矢印53は管軸方向からの側面図の矢視方向を示している。図5は、1個の振動子11と管20の表面との関係を示す斜視図である。   In order to detect an oblique defect inclined by the inclination angle β with respect to the tube axis direction, it is necessary to generate an ultrasonic beam inclined by the inclination angle β in the tube circumferential direction. FIG. 5 is an explanatory diagram for obtaining the inclination α in the tube axis direction and the incident angle θ in the tube circumferential direction. FIG. 10 is a general perspective view showing the positional relationship between the tube 20 and the ultrasonic probe 10. An ultrasonic beam 14 is emitted from each transducer 11 of the array ultrasonic probe 10 toward the surface of the tube 20. An arrow 51 indicates an arrow direction in the plan view, an arrow 52 indicates an arrow direction in a side view from a direction orthogonal to the tube axis, and an arrow 53 indicates an arrow direction in the side view from the tube axis direction. FIG. 5 is a perspective view showing the relationship between one vibrator 11 and the surface of the tube 20.

図5において、「P」点は振動子11のビーム発射中心を示し、「Q」点は管20の表面のビーム入射点を示す。便宜のために、「Q」点を通る管周方向X、これに直角な方向Y、鉛直方向Zを定め、「P」点を通る管周方向L、これに直角な方向M、鉛直方向Nを定める。図5の平面図(A−A矢視図)を図6に、管周方向に直角な側面図(B−B矢視図)を図7に、管周方向視側面図(C−C矢視図)を図8に、超音波ビームの真傾斜方向側面図(D−D矢視図)を図9に示す。   In FIG. 5, “P” point indicates the beam emission center of the transducer 11, and “Q” point indicates the beam incident point on the surface of the tube 20. For convenience, a pipe circumferential direction X passing through the “Q” point, a direction Y perpendicular to this, and a vertical direction Z are defined, and a pipe circumferential direction L passing through the “P” point, a direction M perpendicular thereto, a vertical direction N Determine. 5 is a plan view (AA arrow view), FIG. 7 is a side view perpendicular to the pipe circumferential direction (BB arrow view), and FIG. 7 is a side view (CC arrow). 8) and FIG. 9 is a side view of the ultrasonic beam in the true inclination direction (DD view).

探傷屈折角(θr)を得るための入射する超音波ビームの入射角(θi)は下式で求めることができる。   The incident angle (θi) of the incident ultrasonic beam for obtaining the flaw detection refraction angle (θr) can be obtained by the following equation.

sinθi=sinθr×(Ci/Cr)
ここでθi:入射角
θr:屈折角
Ci:入射側縦波音速
Cr:鋼内横波音速
次に、入射角(θi)と検出目的の斜め欠陥の傾き角βから矩形振動子の管周方向の傾きαは図6、図8、図9を参照して、図7から下式によって求めることができる。
sin θi = sin θr × (Ci / Cr)
Where θi is the incident angle
θr: refraction angle
Ci: Incident side longitudinal wave sound velocity
Cr: In-steel transverse wave sound velocity Next, the inclination α in the tube circumferential direction of the rectangular vibrator from the incident angle (θi) and the inclination angle β of the oblique defect to be detected is shown in FIG. 6, FIG. 8, and FIG. 7 from the following equation.

tanα=(W×sinθi×sinβ)/(W×cosθi)
=tanθi×sinβ
また振動子11からの超音波ビームの管周方向入射角θは、図6、図7、図9を参照して、図8から下式で求められる。
tan α = (W × sin θi × sin β) / (W × cos θi)
= Tanθi × sinβ
Further, the incident angle θ of the ultrasonic beam from the transducer 11 in the tube circumferential direction can be obtained by the following equation from FIG. 8 with reference to FIG. 6, FIG. 7, and FIG.

tanθ=(W×sinθi×cosβ)/(W×cosθi)
=tanθi×cosβ
tan θ = (W × sin θi × cos β) / (W × cos θi)
= Tan θi × cos β

図3、図4に本発明の実施例を示した。図3は実施例のアレイ探触子10の正面断面図、図4はその側面断面図である。   3 and 4 show an embodiment of the present invention. 3 is a front sectional view of the array probe 10 of the embodiment, and FIG. 4 is a side sectional view thereof.

管周方向に配置される各振動子11に対して管周方向の傾きαを与え、かつ、一定の水距離15を付与するために、例えば図4に示すように上下面を傾きαをもつ鋸歯状に加工した音響遅延材12に、振動子11を階段状に装着する。音響遅延材12としては、例えばアクリル樹脂等を用いるとよい。振動子11の貼付け面は音響遅延材12の上下面どちらでもよい。   In order to give each vibrator 11 arranged in the pipe circumferential direction an inclination α in the pipe circumferential direction and to give a certain water distance 15, for example, as shown in FIG. The vibrator 11 is mounted in a stepped manner on the acoustic delay material 12 processed into a sawtooth shape. As the acoustic delay material 12, for example, an acrylic resin may be used. Either the upper or lower surface of the acoustic delay material 12 may be used as the attachment surface of the vibrator 11.

次に、図3に示すように、振動子11からの超音波ビーム14に管周方向入射角θを与えるように、アレイ探触子10をハウジング13内に固定する。ハウジング13は、探触子保持部材に装着可能な外形を有している。なお、この実施例では、図3に示すように、左右対称に2個のアレイ探触子11を配しているが左右いずれか片方のみに配設してで作製してもよい。   Next, as shown in FIG. 3, the array probe 10 is fixed in the housing 13 so that the ultrasonic beam 14 from the transducer 11 is given an incident angle θ in the tube circumferential direction. The housing 13 has an outer shape that can be attached to the probe holding member. In this embodiment, as shown in FIG. 3, the two array probes 11 are arranged symmetrically in the left-right direction.

実施例の超音波探触子の側面図である。It is a side view of the ultrasonic probe of an Example. 実施例の超音波探触子の正面図である。It is a front view of the ultrasonic probe of an example. 実施例の超音波アレイ探触子の正面断面図である。It is front sectional drawing of the ultrasonic array probe of an Example. 実施例の超音波アレイ探触子の側面断面図である。It is side surface sectional drawing of the ultrasonic array probe of an Example. 1個の振動子と管表面の関係を示す斜視図である。It is a perspective view which shows the relationship between one vibrator | oscillator and a tube surface. 図5の平面図(A−A矢視図)である。Fig. 6 is a plan view (AA arrow view) of Fig. 5. 図5の管周方向側面図(B−B矢視図)である。FIG. 6 is a pipe circumferential direction side view (BB arrow view) of FIG. 5. 図5の管周方向側面図(C−C矢視図)である。FIG. 6 is a pipe circumferential side view (CC arrow view) of FIG. 5. 図5の真傾斜方向側面図(D−D矢視図)である。It is a true inclination direction side view (DD arrow view) of FIG. 超音波探触子と管との配置関係を示す一般図である。It is a general view showing an arrangement relationship between an ultrasonic probe and a tube. 欠陥の管軸に対する傾きとエコー高さの関係を示すグラフである。It is a graph which shows the relationship between the inclination with respect to the pipe axis of a defect, and echo height. 斜め欠陥検出を説明する平面図である。It is a top view explaining diagonal defect detection. アレイ探触子を傾けて配置したときの平面図である。It is a top view when arranging an array probe inclining. アレイ探触子のエコーを示すグラフである。It is a graph which shows the echo of an array probe. アレイ探触子の平面図である。It is a top view of an array probe. アレイ探触子の配置平面図である。It is an arrangement plan view of an array probe. アレイ探触子を傾けたときの超音波ビームを示す説明図である。It is explanatory drawing which shows an ultrasonic beam when an array probe is inclined.

符号の説明Explanation of symbols

10,10a アレイ探触子
11 振動子
12 音響遅延材
13 ハウジング
14 超音波ビーム
15 水距離
16 超音波発振ビーム
17 発振ビーム
20 管
30 欠陥
51,52,53 矢印
100 反射板
DESCRIPTION OF SYMBOLS 10, 10a Array probe 11 Transducer 12 Acoustic delay material 13 Housing 14 Ultrasonic beam 15 Water distance 16 Ultrasonic oscillation beam 17 Oscillation beam 20 Tube 30 Defect 51, 52, 53 Arrow 100 Reflector

Claims (3)

被探傷材鋼管の自動超音波探傷装置用のアレイ探触子において、探傷屈折角θrから求めた入射角θiと欠陥の傾きβとから算出した振動子の管軸方向の傾きα、及びアレイ探触子の管周方向入射角θを各振動子が備えたことを特徴とする超音波探触子。   In an array probe for an automatic ultrasonic flaw detector for a steel pipe to be inspected, the inclination α in the tube axis direction of the transducer calculated from the incident angle θi obtained from the flaw detection refraction angle θr and the inclination β of the defect, and the array probe An ultrasonic probe characterized in that each transducer has an incidence angle θ in the tube circumferential direction of the transducer. 前記アレイ探触子の個々の振動子は被探傷材鋼管表面までの水距離が等しくなるように階段状に配設されたことを特徴とする請求項1記載の超音波探触子。   2. The ultrasonic probe according to claim 1, wherein the individual transducers of the array probe are arranged in steps so that the water distance to the surface of the steel pipe to be inspected becomes equal. 前記入射角θi、前記振動子の管軸方向の傾きα及び前記アレイ探触子の周方向入射角θはそれぞれ下記(1)式〜(3)式で求める値であることを特徴とする請求項1又は2記載の超音波探触子。
sinθi=sinθr×(Ci/Cr)……(1)
tanα=tanθi×sinβ………………(2)
tanθ=tanθi×cosβ………………(3)
但し
θi:入射角
θr:探傷屈折角
Ci:入射側縦波音速
Cr:鋼内横波音速
α:振動子の管軸方向の傾き
β:欠陥の傾き(欠陥と交差する管軸に平行な線からの傾き)
θ:アレイ探触子の管周方向入射角
The incident angle θi, the inclination α in the tube axis direction of the transducer, and the circumferential incident angle θ of the array probe are values obtained by the following equations (1) to (3), respectively: Item 3. The ultrasonic probe according to Item 1 or 2.
sin θi = sin θr × (Ci / Cr) (1)
tan α = tan θi × sin β (2)
tan θ = tan θi × cos β (3)
Θi: incident angle θr: flaw detection refraction angle Ci: incident side longitudinal wave sound velocity Cr: transverse wave acoustic velocity in steel α: inclination of the tube axis direction of the vibrator β: inclination of the defect (from a line parallel to the tube axis intersecting the defect) Slope)
θ: Incident angle in the circumferential direction of the array probe
JP2004029382A 2004-02-05 2004-02-05 Ultrasonic probe Withdrawn JP2005221371A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004029382A JP2005221371A (en) 2004-02-05 2004-02-05 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004029382A JP2005221371A (en) 2004-02-05 2004-02-05 Ultrasonic probe

Publications (1)

Publication Number Publication Date
JP2005221371A true JP2005221371A (en) 2005-08-18

Family

ID=34997125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004029382A Withdrawn JP2005221371A (en) 2004-02-05 2004-02-05 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JP2005221371A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007024001A1 (en) * 2005-08-26 2009-03-26 住友金属工業株式会社 Ultrasonic flaw detection method and seamless tube manufacturing method
JP2014185895A (en) * 2013-03-22 2014-10-02 Jfe Steel Corp Ultrasonic flaw detection probe and ultrasonic flaw detection method
JP6081028B1 (en) * 2016-01-15 2017-02-15 三菱電機株式会社 Ultrasonic measuring device
CN110320275A (en) * 2019-08-09 2019-10-11 华中科技大学无锡研究院 Promote the method and ultrasound detection voussoir of ultrasonic probe sound field effective coverage range

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2007024001A1 (en) * 2005-08-26 2009-03-26 住友金属工業株式会社 Ultrasonic flaw detection method and seamless tube manufacturing method
JP4596337B2 (en) * 2005-08-26 2010-12-08 住友金属工業株式会社 Ultrasonic flaw detection method and seamless tube manufacturing method
US8495915B2 (en) 2005-08-26 2013-07-30 Nippon Steel & Sumitomo Metal Corporation Ultrasonic testing method and manufacturing method of seamless pipe or tube
JP2014185895A (en) * 2013-03-22 2014-10-02 Jfe Steel Corp Ultrasonic flaw detection probe and ultrasonic flaw detection method
JP6081028B1 (en) * 2016-01-15 2017-02-15 三菱電機株式会社 Ultrasonic measuring device
WO2017122346A1 (en) * 2016-01-15 2017-07-20 三菱電機株式会社 Ultrasonic measuring device
CN110320275A (en) * 2019-08-09 2019-10-11 华中科技大学无锡研究院 Promote the method and ultrasound detection voussoir of ultrasonic probe sound field effective coverage range

Similar Documents

Publication Publication Date Title
US7874212B2 (en) Ultrasonic probe, ultrasonic flaw detection method, and ultrasonic flaw detection apparatus
JP4910770B2 (en) Tubular ultrasonic inspection apparatus and ultrasonic inspection method
US7694569B2 (en) Phased array ultrasonic water wedge apparatus
JP5448030B2 (en) Ultrasonic flaw detection method and apparatus
JP2007163470A (en) Apparatus and method for ultrasonically detecting flaw of tube
JPWO2007145200A1 (en) Ultrasonic flaw detection method, welded steel pipe manufacturing method, and ultrasonic flaw detection apparatus
JP6014525B2 (en) Ultrasonic flaw detection probe and ultrasonic flaw detection method
JP5420525B2 (en) Apparatus and method for ultrasonic inspection of small diameter tube
JP2004279144A (en) Ultrasonic inspection method and device
JP2006234701A (en) Ultrasonic test device and ultrasonic test method
JP2006047328A (en) Ultrasonic flaw detecting method
JP2007132789A (en) Ultrasonic oblique angle probe
JP6871534B2 (en) Comparison test piece and ultrasonic phased array flaw detection test method
JP5642248B2 (en) Ultrasonic probe
JP3731369B2 (en) Ultrasonic flaw detection method for welded pipe
JP2005221371A (en) Ultrasonic probe
JP3671819B2 (en) Ultrasonic flaw detector for welded steel pipe
JP3165888B2 (en) Ultrasonic flaw detection method and ultrasonic flaw detection apparatus
JP5810873B2 (en) Ultrasonic flaw detection method
JP3791436B2 (en) Ultrasonic flaw detection method
JP4359892B2 (en) Ultrasonic flaw detection method
JP2019174239A (en) Ultrasonic flaw detection method
JP4415313B2 (en) Ultrasonic probe, ultrasonic flaw detection method and ultrasonic flaw detection apparatus
EP3654031B1 (en) Ultrasonic inspection system
JP2002071648A (en) Method and device for ultrasonic flaw detection

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070501