JP2005221170A - Operating method of supercritical pressure boiler - Google Patents

Operating method of supercritical pressure boiler Download PDF

Info

Publication number
JP2005221170A
JP2005221170A JP2004030531A JP2004030531A JP2005221170A JP 2005221170 A JP2005221170 A JP 2005221170A JP 2004030531 A JP2004030531 A JP 2004030531A JP 2004030531 A JP2004030531 A JP 2004030531A JP 2005221170 A JP2005221170 A JP 2005221170A
Authority
JP
Japan
Prior art keywords
temperature
evaporator tube
furnace
water
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004030531A
Other languages
Japanese (ja)
Other versions
JP4494817B2 (en
Inventor
Masahiko Nagai
正彦 永井
Kazuhisa Takeuchi
和久 竹内
Masaaki Fujita
正昭 藤田
Akito Yoshida
章人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2004030531A priority Critical patent/JP4494817B2/en
Publication of JP2005221170A publication Critical patent/JP2005221170A/en
Application granted granted Critical
Publication of JP4494817B2 publication Critical patent/JP4494817B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the occurrence of important impediment such as bursting in advance by accurately detecting the abnormal rise of temperature of an evaporation pipe in an early stage. <P>SOLUTION: The temperature of the evaporation pipe 9 of a part where the water (steam) flowing in the evaporation pipe 9 mounted in a furnace 2 may become in a supercritical state or a subcritical state, is constantly monitored, and a time to clean the part where the water (steam) is circulated, is determined on the basis of a result of the monitoring. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、水を加熱して臨界状態を超えた高温高圧の蒸気を発生させる超臨界圧ボイラの運転方法に関する。   The present invention relates to a method of operating a supercritical pressure boiler that generates high-temperature and high-pressure steam exceeding the critical state by heating water.

例えば火力発電施設に設置される超臨界圧ボイラにおいては、ボイラの各部を構成する鉄系材料の腐食を防止するため、加熱する水の水質管理を行っている。従来の水質管理には、水に含まれる酸素濃度を所定の値(例えば7ppb)以下に維持することで腐食の進行を抑える全揮発性物質処理(AVT;All Volatile Treatment)という方法が採用されていたが、この方法では、例えば蒸発管等の鉄系材料の表面にマグネタイトスケールが付着、析出し、成長して凹凸ができてしまい、管内を流れる水(蒸気)の圧力損失が増大してしまうため、蒸発管の内部を化学洗浄する必要がある。洗浄に際してはボイラの運転を停止させなければならず、機関の停止に伴う相当の損失が見込まれたり、化学洗浄作業自体に費用が嵩んだりといった問題がある。そこで、近年では、この方法にかえて、水に含まれる酸素濃度を20〜200ppb程度に維持することで腐食の進行ならびにスケールの成長を抑制する複合水処理(CWT;Combined Water Treatment)という方法が採用されるようになっている。この方法では、鉄系材料表面が溶解度の低いヘマタイトに変化するようになる。また、水中で析出したヘマタイトスケールは、蒸発管等の鉄系材料の表面への付着力は小さいので、作業費の嵩む化学洗浄に比べて非常に安価でかつ簡単な水洗によって相当のスケールを除去することが可能である。
特開平5−157207号
For example, in a supercritical pressure boiler installed in a thermal power generation facility, the quality of water to be heated is controlled in order to prevent corrosion of iron-based materials constituting each part of the boiler. Conventional water quality management employs a method called All Volatile Treatment (AVT) that suppresses the progress of corrosion by maintaining the oxygen concentration in water at a predetermined value (for example, 7 ppb) or less. However, in this method, for example, magnetite scale adheres and deposits on the surface of an iron-based material such as an evaporation tube, and grows to form irregularities, increasing the pressure loss of water (steam) flowing in the tube. Therefore, it is necessary to chemically clean the inside of the evaporation tube. When cleaning, it is necessary to stop the operation of the boiler, and there is a problem that considerable loss due to the stoppage of the engine is expected, and the cost of the chemical cleaning work itself increases. Therefore, in recent years, instead of this method, there is a method called combined water treatment (CWT) that suppresses the progress of corrosion and the growth of scale by maintaining the oxygen concentration in water at about 20 to 200 ppb. It has been adopted. In this method, the surface of the iron-based material changes to hematite with low solubility. In addition, hematite scale deposited in water has a low adhesion to the surface of ferrous materials such as evaporation tubes, so it is much cheaper than chemical cleaning, which requires a lot of work. Is possible.
JP-A-5-157207

上記特許文献では、火炉の熱負荷が高いところにスケールが多く付着するとして、熱負荷の高いバーナ周辺に配設された伝熱管の温度を計測し、その結果を基にスケールの付着状態を監視している。   In the above patent document, it is assumed that a large amount of scale adheres to a place where the heat load of the furnace is high, and the temperature of the heat transfer tubes arranged around the burner with a high heat load is measured, and the adhesion state of the scale is monitored based on the result. doing.

水質管理に複合水処理法を採用することにより、蒸発管内の圧力損失の増大は回避されるようになったが、近年、火炉内の蒸発管温度が異常に上昇して場合によっては噴破してしまうというという事象が報告されている。このような蒸発管温度の異常上昇は、必ずしも火炉内の熱負荷の高い箇所において発生しているとは限らず、予測が困難な点が大きな問題となっている。   By adopting the combined water treatment method for water quality management, an increase in pressure loss in the evaporation pipe has been avoided, but in recent years, the temperature of the evaporation pipe in the furnace has risen abnormally and in some cases blown up. It has been reported that the event will end. Such an abnormal rise in the temperature of the evaporator tube does not always occur at a location where the heat load in the furnace is high, and a serious problem is that it is difficult to predict.

本発明者らは、事前に行った実験等において、加熱状態にある水中のヘマタイトスケールの析出量の分布傾向を調査し、超臨界あるいは亜臨界の状態にあると見なせる水温300℃から380℃付近でヘマタイトスケールの付着・析出が顕著に起こり、熱伝導率が極端に低下することを知見した。蒸発管の内部では、火炉内の熱負荷が高くない箇所でも、蒸発管内を流れる水(蒸気)が超臨界状態または亜臨界状態となると水の物性が急激に変化しヘマタイトスケールが他の箇所よりも多く付着する。ヘマタイトスケールは結晶性の微粒子で変形が小さく、また溶解度が小さくマグネタイトスケールで見られるような溶解・析出による空隙減少が生じないので、付着層を形成した場合、内部に無数の空隙が形成されることから、管内に付着したヘマタイトスケールが断熱材のように作用して蒸発管の熱伝導率を低下させ、蒸発管温度の異常上昇を発生させると予想されるのである。   The present inventors investigated the distribution tendency of the precipitation amount of hematite scale in heated water in experiments conducted in advance and the like, and a water temperature of about 300 ° C. to about 380 ° C. that can be regarded as being in a supercritical or subcritical state. It was found that hematite scale adhesion and precipitation occurred remarkably, and the thermal conductivity decreased extremely. Inside the evaporator tube, even when the heat load in the furnace is not high, when the water (steam) flowing in the evaporator tube becomes supercritical or subcritical, the physical properties of the water change drastically and the hematite scale is different from other parts. Also adheres a lot. Hematite scale is a crystalline fine particle with small deformation, and its solubility is small, so there is no decrease in voids due to dissolution / precipitation as seen in magnetite scale, so when an adhesion layer is formed, innumerable voids are formed inside Therefore, it is expected that the hematite scale attached in the pipe acts like a heat insulating material, lowers the thermal conductivity of the evaporation pipe, and causes an abnormal increase in the temperature of the evaporation pipe.

本発明は上記の事情に鑑みてなされたものであり、蒸発管温度の異常上昇を早い段階で的確に察知して噴破等の大きな障害の発生を未然に防ぐことを目的としている。   The present invention has been made in view of the above circumstances, and has as its object to accurately detect an abnormal rise in the temperature of the evaporator tube at an early stage and prevent the occurrence of a major failure such as blasting.

上記の課題を解決するために、次のような手段を採用する。すなわち本発明の超臨界圧ボイラの運転方法は、火炉内に配設された蒸発管内を流れる流体が超臨界状態または亜臨界状態となり得る箇所における前記蒸発管の温度を随時観察し、その観察結果に基づいて前記流体が流通する部分の洗浄を行う時期を決定することを特徴とする。   In order to solve the above problems, the following means are adopted. That is, the operation method of the supercritical pressure boiler according to the present invention is to observe the temperature of the evaporator tube at a place where the fluid flowing in the evaporator tube disposed in the furnace can be in a supercritical state or a subcritical state, and observe the results. The timing for cleaning the portion through which the fluid flows is determined based on the above.

本発明の超臨界圧ボイラの運転方法は、火炉内に配設された蒸発管内を流れる流体が超臨界状態または亜臨界状態となり得る箇所において前記蒸発管の温度を検出し、前記蒸発管の温度がその耐用温度を超えた場合に運転を停止することを特徴とする。   The operation method of the supercritical pressure boiler of the present invention detects the temperature of the evaporator tube at a location where the fluid flowing in the evaporator tube disposed in the furnace can be in a supercritical state or a subcritical state, and the temperature of the evaporator tube Is characterized in that the operation is stopped when the temperature exceeds its service temperature.

本発明の超臨界圧ボイラは、火炉内に配設された蒸発管内を流れる流体が超臨界状態または亜臨界状態となり得る箇所に設置されて前記蒸発管の温度を検出する温度検出部と、該温度検出部によって検出された前記蒸発管の温度がその耐用温度を超えた場合にボイラの運転を停止または運転の停止を促す警告を発する制御部とを備えることを特徴とする。   A supercritical pressure boiler according to the present invention is installed in a location where a fluid flowing in an evaporation pipe disposed in a furnace can be in a supercritical state or a subcritical state, and detects a temperature of the evaporation pipe, And a controller that issues a warning to stop the operation of the boiler or to stop the operation when the temperature of the evaporation tube detected by the temperature detection unit exceeds the allowable temperature.

本発明において、蒸発管温度の異常上昇によって起こる噴破等の障害は、蒸発管内を流れる流体、例えば水(蒸気)が超臨界状態または亜臨界状態となった箇所にヘマタイトスケールが多く付着することに起因すると予想される。したがって、蒸発管温度の異常上昇が起こり得る箇所が、管内を流れる水(蒸気)が超臨界状態または亜臨界状態となり得る箇所のなかのどこかであるというように大まかな絞り込みを行い、さらにその大まかに絞り込んだ箇所のなかで蒸発管の温度を随時観察することにより、蒸発管温度の異常上昇を早い段階で的確に察知することが可能になる。   In the present invention, troubles such as blasting caused by an abnormal rise in the temperature of the evaporator tube are caused by the fact that a large amount of hematite scale adheres to a location where the fluid flowing in the evaporator tube, for example, water (steam) becomes supercritical or subcritical. Is expected to be due to Therefore, a rough narrowing is performed such that the location where an abnormal increase in the temperature of the evaporation tube can occur is somewhere in the water (steam) flowing through the tube can be in a supercritical state or a subcritical state. By observing the temperature of the evaporator tube at any time in a roughly narrowed area, it is possible to accurately detect an abnormal rise in the evaporator tube temperature at an early stage.

本発明の超臨界圧ボイラの運転方法は、火炉内に配設された蒸発管の全域に分散する複数の箇所において前記蒸発管の温度を随時観察し、その観察結果に基づいて前記流体が流通する部分の洗浄を行う時期を決定することを特徴とする。   According to the operation method of the supercritical pressure boiler of the present invention, the temperature of the evaporator tube is observed as needed at a plurality of locations dispersed throughout the evaporator tube disposed in the furnace, and the fluid flows based on the observation result. It is characterized in that the timing for cleaning the portion to be cleaned is determined.

本発明の超臨界圧ボイラの運転方法は、火炉内に配設された蒸発管の全域に分散する複数の箇所において前記蒸発管の温度を検出し、前記蒸発管の温度がその耐用温度を超えた場合に運転を停止することを特徴とする。   The operation method of the supercritical pressure boiler according to the present invention detects the temperature of the evaporator tube at a plurality of locations dispersed throughout the evaporator tube disposed in the furnace, and the temperature of the evaporator tube exceeds its service temperature. The operation is stopped in the event of a failure.

本発明の超臨界圧ボイラは、火炉内に配設された蒸発管の全域に分散する箇所に個々に設置されて前記蒸発管の温度を検出する複数の温度検出部と、該温度検出部によって検出された前記蒸発管の温度がその耐用温度を超えた場合にボイラの運転を停止または運転の停止を促す警告を発する制御部とを備えることを特徴とする。   The supercritical pressure boiler according to the present invention is individually installed at locations dispersed in the entire area of the evaporation pipe disposed in the furnace and detects the temperature of the evaporation pipe, and the temperature detection section. And a controller that issues a warning to stop the operation of the boiler or to stop the operation when the detected temperature of the evaporator tube exceeds the allowable temperature.

本発明においては、火炉内に配設された蒸発管の全域の温度を随時観察することにより、蒸発管温度の異常上昇を早い段階で的確に察知することが可能になる。   In the present invention, it is possible to accurately detect an abnormal increase in the temperature of the evaporator tube at an early stage by observing the temperature of the entire area of the evaporator tube disposed in the furnace as needed.

本発明によれば、蒸発管温度の異常上昇が起こり得る箇所の大まかな絞り込みを行い、その大まかに絞り込んだ箇所のなかで蒸発管の温度を随時観察することにより、蒸発管温度の異常上昇を早い段階で的確に察知することが可能なので、噴破等の大きな障害の発生を未然に防ぐことができる。   According to the present invention, the temperature of the evaporator tube is roughly narrowed down where the abnormal rise in the evaporator tube temperature can occur, and the temperature of the evaporator tube is observed at any time in the roughly narrowed portion of the evaporator tube. Since it is possible to detect accurately at an early stage, it is possible to prevent the occurrence of large troubles such as blasting.

本発明によれば、火炉内に配設された蒸発管の全域の温度を随時観察することにより、蒸発管温度の異常上昇を早い段階で的確に察知することが可能なので、噴破等の大きな障害の発生を未然に防ぐことができる。   According to the present invention, it is possible to accurately detect an abnormal increase in the temperature of the evaporator tube at an early stage by observing the temperature of the entire area of the evaporator tube disposed in the furnace as needed. The occurrence of a failure can be prevented in advance.

本発明の第1の実施形態について説明する。
図1には、火力発電施設用の超臨界圧ボイラの一例を示す。図において、符号1は燃焼装置、2は火炉、3はボイラ本体、4は過熱器、5は節炭器、6は空気予熱器、7は再熱器、8は通風装置である。
燃焼装置1は、微粉石炭や重油、天然ガス等の化石燃料を火炉2に供給して燃焼させ、熱を発生させる。火炉2には、炉内で発生させた高熱に対し炉壁を保護するとともに炉内の高熱を有効に利用して蒸発を行わせるために、図2に示すように炉壁の内側に蒸発管9を配した水冷炉壁が採用されている。ボイラ本体3は、炉内で発生させた高熱を放射や燃焼ガスとの接触によって水に伝達して蒸気を発生させる。蒸発管9を配した水冷炉壁は炉内の炎からの放射熱等を吸収し、燃焼ガスの通路に置かれた各部(過熱器4、節炭器5、空気予熱器6等)は燃焼ガスとの接触によって熱を吸収する。過熱器4は、ボイラ本体3において発生させた飽和蒸気をさらに加熱して高温の過熱蒸気とする。節炭器5は燃焼ガスの余熱を利用してボイラ本体3に供給する水を予熱することで燃料消費量を節約する。空気予熱器6は、燃焼ガスの余熱を利用して燃焼装置1に供給する空気を予熱する。再熱器7は、蒸気タービンで仕事をして温度の下がった蒸気を再び加熱してタービンに送り返す。通風装置8は、火炉2に所要の空気を供給するとともに燃焼ガスをボイラ本体3に流動させる。なお、水質管理には複合水処理法を適用した例で説明する。
A first embodiment of the present invention will be described.
FIG. 1 shows an example of a supercritical pressure boiler for a thermal power generation facility. In the figure, reference numeral 1 is a combustion device, 2 is a furnace, 3 is a boiler body, 4 is a superheater, 5 is a economizer, 6 is an air preheater, 7 is a reheater, and 8 is a ventilation device.
The combustion apparatus 1 supplies fossil fuels such as fine coal, heavy oil, and natural gas to the furnace 2 and burns them to generate heat. In order to protect the furnace wall against the high heat generated in the furnace and to perform the evaporation by effectively using the high heat in the furnace, the furnace 2 has an evaporation tube inside the furnace wall as shown in FIG. A water-cooled furnace wall with 9 is adopted. The boiler body 3 generates steam by transmitting high heat generated in the furnace to water by contact with radiation or combustion gas. The water-cooled furnace wall with the evaporator tube 9 absorbs radiant heat from the flame in the furnace, and each part (superheater 4, economizer 5, air preheater 6 etc.) placed in the combustion gas passage burns. Absorbs heat by contact with gas. The superheater 4 further heats the saturated steam generated in the boiler body 3 to form high-temperature superheated steam. The economizer 5 saves fuel consumption by preheating water supplied to the boiler body 3 using the residual heat of the combustion gas. The air preheater 6 preheats the air supplied to the combustion apparatus 1 using the residual heat of the combustion gas. The reheater 7 works on the steam turbine to reheat the steam that has fallen in temperature and send it back to the turbine. The ventilation device 8 supplies necessary air to the furnace 2 and causes the combustion gas to flow to the boiler body 3. An example in which the composite water treatment method is applied to water quality management will be described.

上記の超臨界圧ボイラにおいては、事前に、火炉2の水冷炉壁を構成する蒸発管9の内部を流通する水(蒸気)の温度を計測し、どの箇所で水(蒸気)が超臨界状態(水温374℃を目安とする)または亜臨界状態(水温350℃を目安とする)となるかを調べる。調査にあたっては、まず、任意の蒸発管9に、水が流通する方向すなわち高さ方向に沿って分布するように複数の温度計を貼設し、超臨界圧ボイラを試験的に定格運転させてそれぞれの箇所において蒸発管9の内部を流通する水(蒸気)の温度を計測する。そして、水(蒸気)の温度が上記それぞれの目安温度以上になった箇所では、定格運転時に水(蒸気)が超臨界状態または亜臨界状態となると認める。図3には、火炉2を画成するボイラ本体3の前面(燃焼装置1が設置されている面)に沿って配設されたある蒸発管9について上記の調査を行った結果を示している。蒸発管9の内部を流通する水(蒸気)の温度は、燃焼装置1による火炉2内の熱負荷には必ずしも比例せず、ボイラ本体3の上方に向かうほど上昇しており、亜臨界状態から超臨界状態に変化する。この箇所は熱負荷最大の位置とは必ずしも一致しない。
なお、上記の調査は火炉2を画成するボイラ本体3のすべての側面において実施することが望ましい。
In the above supercritical pressure boiler, the temperature of water (steam) flowing through the inside of the evaporation pipe 9 constituting the water-cooled furnace wall of the furnace 2 is measured in advance, and the water (steam) is in a supercritical state at any location. Whether the water temperature is 374 ° C. or a subcritical state (water temperature is 350 ° C.) is examined. In the investigation, first, a plurality of thermometers are affixed to an arbitrary evaporation pipe 9 so as to be distributed along the direction in which water flows, that is, along the height direction, and the supercritical pressure boiler is rated and operated on a trial basis. The temperature of water (steam) flowing through the inside of the evaporation pipe 9 is measured at each location. Then, it is recognized that the water (steam) is in a supercritical state or a subcritical state at the rated operation at a location where the temperature of the water (steam) is equal to or higher than each of the above reference temperatures. FIG. 3 shows the result of the above investigation on a certain evaporation tube 9 disposed along the front surface of the boiler body 3 that defines the furnace 2 (the surface on which the combustion device 1 is installed). . The temperature of the water (steam) flowing through the inside of the evaporation pipe 9 is not necessarily proportional to the heat load in the furnace 2 by the combustion device 1, and increases toward the upper side of the boiler body 3. Change to supercritical state. This location does not necessarily coincide with the maximum heat load position.
In addition, it is desirable to carry out the above investigation on all sides of the boiler body 3 that defines the furnace 2.

次に、上記の調査によって水(蒸気)が超臨界状態または亜臨界状態となると認められた箇所、例えば図1におけるノーズ部13、火炉を構成する蒸発管、特に定格運転時の温度が350℃以上となるような箇所に、図4に示すように蒸発管9を形成する材料の温度を計測する熱電対(温度検出部)10を取り付け、さらに熱電対10の出力に基づいて蒸発管9の温度を随時監視する監視装置11を設置する。監視装置11は、蒸発管9を形成する材料の耐用温度を超えた場合にボイラの緊急停止を促す警告を発する制御部12を備える。なお、温度検出部として熱電対以外の計測手段を用いてもよい。   Next, the location where water (steam) is recognized to be in a supercritical state or subcritical state, for example, the nose portion 13 in FIG. 1, the evaporator tube constituting the furnace, particularly the rated operation temperature is 350 ° C. A thermocouple (temperature detection unit) 10 for measuring the temperature of the material forming the evaporation tube 9 is attached to such a location as shown in FIG. 4, and further, based on the output of the thermocouple 10, A monitoring device 11 for monitoring the temperature as needed is installed. The monitoring device 11 includes a control unit 12 that issues a warning that prompts an emergency stop of the boiler when the temperature of the material forming the evaporation tube 9 is exceeded. In addition, you may use measuring means other than a thermocouple as a temperature detection part.

超臨界圧ボイラの操業を本格的に開始して定格運転させたら、熱電対10を取り付けた蒸発管9の温度を監視装置11によって随時監視する。操業開始後2〜4年毎に行われる大規模な定期検査では、蒸発管9の温度が最も高い値を示した箇所を中心に蒸発管9の一部を取り出して劣化の状況や管の内面に付着した硬質な自己酸化スケールの付着状況を調査し(これを抜管調査という)、蒸発管9の健全性を確認する。2〜4年毎の大規模定期検査時でなくても、蒸発管9の温度が異常な上昇を示した場合は、その後の定期検査において上記の抜管調査を実施し、蒸発管9の健全性を確認する。   When the operation of the supercritical pressure boiler is started in earnest and rated operation is performed, the temperature of the evaporator tube 9 to which the thermocouple 10 is attached is monitored by the monitoring device 11 as needed. In a large-scale periodic inspection conducted every 2 to 4 years after the start of operation, a part of the evaporator tube 9 is taken out mainly at the point where the temperature of the evaporator tube 9 shows the highest value, and the deterioration situation and the inner surface of the tube The adhesion state of the hard self-oxidation scale adhering to the surface is investigated (this is called extubation investigation), and the soundness of the evaporation tube 9 is confirmed. If the temperature of the evaporator tube 9 shows an abnormal rise even at the time of a large-scale periodic inspection every 2 to 4 years, the extubation survey is conducted in the subsequent periodic inspection, and the soundness of the evaporator tube 9 is confirmed. Confirm.

抜管調査において蒸発管9の健全性に不安要素が確認されたら、ボイラの運転を停止し、蒸発管9を含むすべての給水系統の水がすべて凝縮したうえで水抜きを行い、内面に付着していたヘマタイトスケールを系外に排出する(これを水洗という)。その際、燃焼装置1を間欠的に点火して管内の水を突沸させ、水の流量を変化させて管内面からのヘマタイトスケールの剥離を促進する。   If anxiety factors are confirmed in the exhaust pipe survey, the boiler operation is stopped, all the water in the water supply system including the evaporator pipe 9 is condensed, drained, and adhered to the inner surface. Drain the hematite scale that had been discharged out of the system (this is called washing with water). At that time, the combustion device 1 is intermittently ignited to bump the water in the pipe, and the flow rate of the water is changed to promote the separation of the hematite scale from the pipe inner surface.

蒸発管9が極端に異常な上昇を示し、蒸発管9を形成する材料の耐用温度を超えた場合は、監視装置11がボイラの緊急停止を促す警告を発するので、警告に従ってボイラの運転を停止し、上記と同様の水洗作業を実施する。   When the evaporating pipe 9 shows an extremely abnormal rise and exceeds the service temperature of the material forming the evaporating pipe 9, the monitoring device 11 issues a warning prompting an emergency stop of the boiler, so the operation of the boiler is stopped according to the warning. Then, the same water washing operation as described above is performed.

本実施形態によれば、蒸発管9の異常な温度上昇が起こり得る箇所が、管内を流れる水(蒸気)が超臨界状態または亜臨界状態となり得る箇所のなかのどこかであるというように大まかな絞り込みを行い、さらにその大まかに絞り込んだ箇所のなかで蒸発管9の温度を随時観察することにより、蒸発管9の異常な温度上昇を早い段階で的確に察知することが可能になり、異常を察知した段階で水洗を行って蒸発管9の温度上昇の原因となるヘマタイトスケールを除去するので、噴破等の大きな障害の発生を未然に防ぐことができる。   According to the present embodiment, the location where the abnormal temperature increase of the evaporation tube 9 may occur is somewhere in the location where the water (steam) flowing in the tube can be in a supercritical state or a subcritical state. It is possible to accurately detect an abnormal temperature rise of the evaporator tube 9 at an early stage by observing the temperature of the evaporator tube 9 at any time within the narrowed-down portion. Since the hematite scale that causes the temperature rise of the evaporation tube 9 is removed by washing with water at the stage of detecting the above, occurrence of a large failure such as blasting can be prevented.

本発明の第2の実施形態について説明する。なお、上記第1の実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
本実施形態においては、図5に示すように、火炉2内に配設された任意の蒸発管9の全域に分散する複数の箇所に、蒸発管9を形成する材料の温度を計測する熱電対10を取り付ける。なお、温度計測を実施する蒸発管9は、火炉2を画成するボイラ本体3のすべての側面に分散して選択されることが望ましい。
A second embodiment of the present invention will be described. In addition, the same code | symbol is attached | subjected to the component already demonstrated in the said 1st Embodiment, and description is abbreviate | omitted.
In the present embodiment, as shown in FIG. 5, a thermocouple that measures the temperature of the material forming the evaporation tube 9 at a plurality of locations dispersed throughout the entire evaporation tube 9 disposed in the furnace 2. 10 is attached. In addition, it is desirable that the evaporation pipes 9 that perform temperature measurement are selected in a distributed manner on all side surfaces of the boiler body 3 that defines the furnace 2.

超臨界圧ボイラの操業を本格的に開始して定格運転させたら、熱電対10を取り付けた蒸発管9の温度を監視装置11によって随時監視する。操業開始後2〜4年毎に行われる大規模な定期検査では、蒸発管9の温度が最も高い値を示した箇所を中心に蒸発管9の一部を取り出して劣化の状況や管の内面に付着した硬質な自己酸化スケールの付着状況を調査し(これを抜管調査という)、蒸発管9の健全性を確認する。2〜4年毎の大規模定期検査時でなくても、蒸発管9の温度が異常な上昇を示した箇所が存在する場合は、その後の定期検査において上記の抜管調査を実施し、蒸発管9の健全性を確認する。   When the operation of the supercritical pressure boiler is started in earnest and rated operation is performed, the temperature of the evaporator tube 9 to which the thermocouple 10 is attached is monitored by the monitoring device 11 as needed. In a large-scale periodic inspection conducted every 2 to 4 years after the start of operation, a part of the evaporator tube 9 is taken out mainly at the point where the temperature of the evaporator tube 9 shows the highest value, and the deterioration situation and the inner surface of the tube The adhesion state of the hard self-oxidation scale adhering to the surface is investigated (this is called extubation investigation), and the soundness of the evaporation tube 9 is confirmed. If there is a part where the temperature of the evaporator tube 9 showed an abnormal rise even at the time of the large-scale regular inspection every 2 to 4 years, the above extubation survey is conducted in the subsequent periodic inspection. Check the soundness of 9.

抜管調査において蒸発管9の健全性に不安要素が確認されたら、ボイラの運転を停止し、蒸発管9を含むすべての給水系統の水がすべて凝縮したうえで水抜きを行い、内面に付着していたヘマタイトスケールを系外に排出する(水洗)。その際、燃焼装置1を間欠的に点火して管内の水を突沸させ、水の流量を変化させて管内面からのヘマタイトスケールの剥離を促進する。   If anxiety factors are confirmed in the exhaust pipe survey, the boiler operation is stopped, all the water in the water supply system including the evaporator pipe 9 is condensed, drained, and adhered to the inner surface. Drain the hematite scale from the system (washing with water). At that time, the combustion device 1 is intermittently ignited to bump the water in the pipe, and the flow rate of the water is changed to promote the separation of the hematite scale from the pipe inner surface.

蒸発管9のどこかが極端に異常な上昇を示し、蒸発管9を形成する材料の耐用温度を超えた場合は、監視装置11がボイラの緊急停止を促す警告を発するので、警告に従ってボイラの運転を停止し、上記と同様の水洗作業を実施する。   If any part of the evaporating tube 9 shows an extremely abnormal rise and the service temperature of the material forming the evaporating tube 9 is exceeded, the monitoring device 11 issues a warning prompting the emergency stop of the boiler. Stop operation and carry out the same water washing operation as above.

本実施形態によれば、火炉2内に配設された任意の蒸発管9全域の温度を随時観察することにより、蒸発管9の異常な温度上昇を早い段階で的確に察知することが可能になり、異常を察知した段階で水洗を行って蒸発管9の温度上昇の原因となるヘマタイトスケールを除去するので、噴破等の大きな障害の発生を未然に防ぐことができる。   According to the present embodiment, it is possible to accurately detect an abnormal temperature rise of the evaporation tube 9 at an early stage by observing the temperature of the entire region of the arbitrary evaporation tube 9 disposed in the furnace 2 as needed. Thus, when the abnormality is detected, washing with water is performed to remove the hematite scale that causes the temperature of the evaporation tube 9 to rise, so that it is possible to prevent the occurrence of a large failure such as blasting.

本発明の第1の実施形態を示す図であって、超臨界圧ボイラの構造を示す概略図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the 1st Embodiment of this invention, Comprising: It is the schematic which shows the structure of a supercritical pressure boiler. 図1のII−II線矢視断面図である。It is the II-II sectional view taken on the line of FIG. 蒸発管の高さ方向の各箇所における水(蒸気)の温度ならびにボイラ内の熱負荷を示すグラフである。It is a graph which shows the temperature of the water (steam) in each location of the height direction of an evaporation pipe, and the thermal load in a boiler. 蒸発管の温度変化を監視するシステムの概略図である。It is the schematic of the system which monitors the temperature change of an evaporation pipe. 本発明の第2の実施形態を示す図であって、蒸発管の温度変化を監視するシステムの概略図である。It is a figure which shows the 2nd Embodiment of this invention, Comprising: It is the schematic of the system which monitors the temperature change of an evaporation pipe.

符号の説明Explanation of symbols

2 火炉
3 ボイラ本体
9 蒸発管
10 熱電対(温度検出部)
11 監視装置
12 制御部
2 Furnace 3 Boiler body 9 Evaporating tube 10 Thermocouple (Temperature detector)
11 Monitoring device 12 Control unit

Claims (6)

火炉内に配設された蒸発管内を流れる流体が超臨界状態または亜臨界状態となり得る箇所における前記蒸発管の温度を随時観察し、その観察結果に基づいて前記流体が流通する部分の洗浄を行う時期を決定することを特徴とする超臨界圧ボイラの運転方法。   Observe the temperature of the evaporating tube at a location where the fluid flowing in the evaporating tube disposed in the furnace can be in a supercritical state or a subcritical state, and clean the portion through which the fluid flows based on the observation result. A method for operating a supercritical pressure boiler, characterized by determining a timing. 火炉内に配設された蒸発管内を流れる流体が超臨界状態または亜臨界状態となり得る箇所において前記蒸発管の温度を検出し、前記蒸発管の温度がその耐用温度を超えた場合に運転を停止することを特徴とする超臨界圧ボイラの運転方法。   The temperature of the evaporator tube is detected at a location where the fluid flowing in the evaporator tube disposed in the furnace can be in a supercritical state or a subcritical state, and the operation is stopped when the temperature of the evaporator tube exceeds the allowable temperature. A method for operating a supercritical pressure boiler, characterized in that: 火炉内に配設された蒸発管内を流れる流体が超臨界状態または亜臨界状態となり得る箇所に設置されて前記蒸発管の温度を検出する温度検出部と、該温度検出部によって検出された前記蒸発管の温度がその耐用温度を超えた場合にボイラの運転を停止または運転の停止を促す警告を発する制御部とを備えることを特徴とする超臨界圧ボイラ。   A temperature detector for detecting the temperature of the evaporator tube installed at a location where the fluid flowing in the evaporator tube disposed in the furnace can be in a supercritical state or a subcritical state, and the evaporation detected by the temperature detector A supercritical pressure boiler, comprising: a controller that issues a warning to stop operation of the boiler or to stop operation when the temperature of the pipe exceeds the serviceable temperature. 火炉内に配設された蒸発管の全域に分散する複数の箇所において前記蒸発管の温度を随時観察し、その観察結果に基づいて前記流体が流通する部分の洗浄を行う時期を決定することを特徴とする超臨界圧ボイラの運転方法。   Observing the temperature of the evaporator tube as needed at a plurality of locations distributed over the entire area of the evaporator tube disposed in the furnace, and determining when to wash the portion through which the fluid flows based on the observation result The operation method of the characteristic supercritical pressure boiler. 火炉内に配設された蒸発管の全域に分散する複数の箇所において前記蒸発管の温度を検出し、前記蒸発管の温度がその耐用温度を超えた場合に運転を停止することを特徴とする超臨界圧ボイラの運転方法。   The temperature of the evaporator tube is detected at a plurality of locations dispersed in the entire area of the evaporator tube disposed in the furnace, and the operation is stopped when the temperature of the evaporator tube exceeds the allowable temperature. How to operate a supercritical pressure boiler. 火炉内に配設された蒸発管の全域に分散する箇所に個々に設置されて前記蒸発管の温度を検出する複数の温度検出部と、該温度検出部によって検出された前記蒸発管の温度がその耐用温度を超えた場合にボイラの運転を停止または運転の停止を促す警告を発する制御部とを備えることを特徴とする超臨界圧ボイラ。   A plurality of temperature detectors that are individually installed at locations dispersed in the entire area of the evaporation pipe disposed in the furnace and detect the temperature of the evaporation pipe, and the temperature of the evaporation pipe detected by the temperature detection section is A supercritical pressure boiler, comprising: a controller that issues a warning to stop or stop operation of the boiler when the allowable temperature is exceeded.
JP2004030531A 2004-02-06 2004-02-06 Operating method of supercritical pressure boiler Expired - Fee Related JP4494817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004030531A JP4494817B2 (en) 2004-02-06 2004-02-06 Operating method of supercritical pressure boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004030531A JP4494817B2 (en) 2004-02-06 2004-02-06 Operating method of supercritical pressure boiler

Publications (2)

Publication Number Publication Date
JP2005221170A true JP2005221170A (en) 2005-08-18
JP4494817B2 JP4494817B2 (en) 2010-06-30

Family

ID=34996947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004030531A Expired - Fee Related JP4494817B2 (en) 2004-02-06 2004-02-06 Operating method of supercritical pressure boiler

Country Status (1)

Country Link
JP (1) JP4494817B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159932A (en) * 2009-01-09 2010-07-22 Sharp Corp Heating cooker and method of cleaning steam generator
JP2011214764A (en) * 2010-03-31 2011-10-27 Babcock Hitachi Kk Method of diagnosing adhesion of hematite scale
JP2015124991A (en) * 2013-12-27 2015-07-06 川崎重工業株式会社 Scale adhesion amount estimation system
JP2015132453A (en) * 2014-01-15 2015-07-23 三菱日立パワーシステムズ株式会社 Boiler water wall tube overheat damage diagnostic apparatus and boiler water wall tube overheat damage diagnostic method
JP2016044881A (en) * 2014-08-22 2016-04-04 三菱日立パワーシステムズ株式会社 Defect event occurrence prediction device, defect event occurrence prediction method and defect event occurrence prediction program
JP2018179401A (en) * 2017-04-12 2018-11-15 三菱日立パワーシステムズ株式会社 Scale removing method and scale removing device
JP2019211150A (en) * 2018-06-04 2019-12-12 一般財団法人電力中央研究所 Boiler device and power generating installation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352211A (en) * 1976-10-23 1978-05-12 Sumitomo Metal Ind Ltd Estimation method for scale thickness on membrance water tube of converter
JPS5883604U (en) * 1981-11-26 1983-06-06 株式会社荏原製作所 Boiler overheating prevention device
JPH02154903A (en) * 1988-12-06 1990-06-14 Babcock Hitachi Kk Tube wall thermometer detecting end monitor system
JPH02157502A (en) * 1988-12-09 1990-06-18 Hitachi Ltd Temperature monitoring device for boiler tube
JPH05157207A (en) * 1991-12-04 1993-06-22 Babcock Hitachi Kk Scale-adhered state monitoring device
JP2002061837A (en) * 2000-08-17 2002-02-28 Babcock Hitachi Kk Portable furnace combustion-diagnosing device and method of diagnosing combustion in furnace
JP2004116810A (en) * 2002-09-24 2004-04-15 Babcock Hitachi Kk Temperature distribution measuring device and method of heat transfer pipe panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5352211A (en) * 1976-10-23 1978-05-12 Sumitomo Metal Ind Ltd Estimation method for scale thickness on membrance water tube of converter
JPS5883604U (en) * 1981-11-26 1983-06-06 株式会社荏原製作所 Boiler overheating prevention device
JPH02154903A (en) * 1988-12-06 1990-06-14 Babcock Hitachi Kk Tube wall thermometer detecting end monitor system
JPH02157502A (en) * 1988-12-09 1990-06-18 Hitachi Ltd Temperature monitoring device for boiler tube
JPH05157207A (en) * 1991-12-04 1993-06-22 Babcock Hitachi Kk Scale-adhered state monitoring device
JP2002061837A (en) * 2000-08-17 2002-02-28 Babcock Hitachi Kk Portable furnace combustion-diagnosing device and method of diagnosing combustion in furnace
JP2004116810A (en) * 2002-09-24 2004-04-15 Babcock Hitachi Kk Temperature distribution measuring device and method of heat transfer pipe panel

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010159932A (en) * 2009-01-09 2010-07-22 Sharp Corp Heating cooker and method of cleaning steam generator
JP2011214764A (en) * 2010-03-31 2011-10-27 Babcock Hitachi Kk Method of diagnosing adhesion of hematite scale
JP2015124991A (en) * 2013-12-27 2015-07-06 川崎重工業株式会社 Scale adhesion amount estimation system
JP2015132453A (en) * 2014-01-15 2015-07-23 三菱日立パワーシステムズ株式会社 Boiler water wall tube overheat damage diagnostic apparatus and boiler water wall tube overheat damage diagnostic method
JP2016044881A (en) * 2014-08-22 2016-04-04 三菱日立パワーシステムズ株式会社 Defect event occurrence prediction device, defect event occurrence prediction method and defect event occurrence prediction program
JP2018179401A (en) * 2017-04-12 2018-11-15 三菱日立パワーシステムズ株式会社 Scale removing method and scale removing device
JP2019211150A (en) * 2018-06-04 2019-12-12 一般財団法人電力中央研究所 Boiler device and power generating installation
JP7000255B2 (en) 2018-06-04 2022-01-19 一般財団法人電力中央研究所 Boiler equipment and power generation equipment

Also Published As

Publication number Publication date
JP4494817B2 (en) 2010-06-30

Similar Documents

Publication Publication Date Title
US20230258326A1 (en) Systems and methods for utilizing flue gas
RU2499213C2 (en) Control of cooling air flow in sootblowing device based on blowing tube temperature
JP5500642B2 (en) Low-temperature heat recovery system from exhaust gas after waste gas treatment facility of waste incineration facility
JP4494817B2 (en) Operating method of supercritical pressure boiler
JP5019861B2 (en) Plant leak detection system
TWI595148B (en) Hybrid water treatment for high temperature steam generators
KR101393138B1 (en) A analytical method for industrial boiler condition using operating signal pattern
Sobota Improving steam boiler operation by on-line monitoring of the strength and thermal performance
JP6504525B2 (en) Overheater
CN115698622A (en) System and method for heat exchanger control based on real-time corrosion monitoring
JP5652072B2 (en) Wear amount management method of refractory material layer
JP2008039224A (en) Structure of constant pressure once-through boiler and operating method therefor
DK2737273T3 (en) METHOD FOR INCREASING THE IMPACT DEGREE IN INCINERATION PLANTS IN PARTICULAR a waste OR BIOMASS POWER PLANT
JP5374344B2 (en) Marine boiler structure
Taler et al. Thermal performance and stress monitoring of power boiler
JP4950324B2 (en) Waste heat recovery system
Gonzalez et al. Experimental thermal behavior of a power plant reheater
AU2021387203B2 (en) Abnormality detection device and abnormality detection method
JP7000255B2 (en) Boiler equipment and power generation equipment
JP2016156545A (en) Energy recovery device and waste incineration facility
JP2020046138A (en) Combined cycle power generation facility and operation method for the combined cycle power generation facility
KR101657877B1 (en) Industrial vapor boiler system
JP2019105393A (en) Method for suppressing blockage and corrosion in waste incinerator boiler
JPH05157207A (en) Scale-adhered state monitoring device
TWI845885B (en) Method and system for assessing a condition of a boiler

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090602

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090819

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100408

R151 Written notification of patent or utility model registration

Ref document number: 4494817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130416

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140416

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees