JP2005217282A - Method and apparatus for forming coating film - Google Patents

Method and apparatus for forming coating film Download PDF

Info

Publication number
JP2005217282A
JP2005217282A JP2004023730A JP2004023730A JP2005217282A JP 2005217282 A JP2005217282 A JP 2005217282A JP 2004023730 A JP2004023730 A JP 2004023730A JP 2004023730 A JP2004023730 A JP 2004023730A JP 2005217282 A JP2005217282 A JP 2005217282A
Authority
JP
Japan
Prior art keywords
substrate
coating
liquid
coating liquid
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004023730A
Other languages
Japanese (ja)
Inventor
Goshi Mizuno
剛資 水野
Kimihide Saito
公英 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Electron Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Electron Ltd
Priority to JP2004023730A priority Critical patent/JP2005217282A/en
Publication of JP2005217282A publication Critical patent/JP2005217282A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coating film forming method and coating film forming apparatus in which a coating liquid is applied to the surface of a substrate, an air current flowing from the center to the outside is then formed along with the surface, and an intra-surface uniform coating film can be formed on the surface of the substrate, by controlling the flow of the coating liquid on the substrate when forming the film by drying the coating liquid under pressure reduction. <P>SOLUTION: A liquid film is formed by supplying a coating liquid over the surface of a substrate so as to form a non-coated area all over the circumference at the edge of the substrate in the state of horizontally holding the substrate, the substrate is then carried into a treatment container, and pressure in the treatment container is reduced while confronting a rectifier plate to the surface of the substrate near the substrate, thereby forming an air current flowing from the center to the outside along with the surface of the substrate, and drying the liquid film. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、例えば半導体ウエハなどの基板の表面に所定の塗布液を塗布して例えば層間絶縁膜、デバイスの保護膜をなす絶縁膜、又はレジスト膜などを形成する塗布膜形成方法及び塗布膜形成装置に関する。   The present invention relates to a coating film forming method and a coating film forming method in which a predetermined coating liquid is applied to the surface of a substrate such as a semiconductor wafer to form, for example, an interlayer insulating film, an insulating film forming a protective film of a device, or a resist film. Relates to the device.

半導体製造工程の一つとして、例えば層間絶縁膜などの絶縁膜を形成するために、例えばシリコン酸化膜の前駆物質を溶剤に溶かした塗布液を半導体ウエハなどの基板の表面に塗布して液膜を形成し、この液膜から溶剤を蒸発させてシリコン酸化膜からなる塗布膜である絶縁膜を形成する手法が知られている。   As one of the semiconductor manufacturing processes, for example, in order to form an insulating film such as an interlayer insulating film, a liquid film is formed by applying a coating solution in which a precursor of a silicon oxide film is dissolved in a solvent to a surface of a substrate such as a semiconductor wafer. A method is known in which an insulating film, which is a coating film made of a silicon oxide film, is formed by evaporating a solvent from the liquid film.

ここで基板の表面に塗布液を塗布する手法の一つに、いわゆる一筆書きの要領で塗布する手法が知られている(例えば、特許文献1参照。)。   Here, as one of methods for applying the coating liquid to the surface of the substrate, a method of applying the coating solution in a so-called one-stroke manner is known (for example, see Patent Document 1).

この一筆書きの要領による塗布を行う塗布ユニットの一例について、半導体ウエハ(以下、ウエハと呼ぶ)を被処理基板とした例を挙げて簡単に述べておく。この塗布手法は、例えば図18(a)に示すように、基板保持部1上に保持されたウエハWの表面と対向して設けられた塗布液ノズル10の細径の吐出孔から塗布液11を供給しながらX方向に往復させると共に、ウエハWをY方向に間欠送りして塗布液11を供給するものである。また図中12は、ウエハの直径方向に進退自在に設けられ、ウエハWの外側にてユニット内に塗布液がこぼれ落ちるのを防ぐための一対の液受け手段である。また塗布液がウエハWの端面を介して裏面側に回り込むと、ウエハWの搬送時に発塵の原因となることから、液受け手段12はウエハWの外縁から僅かに内側に寄った位置となるように制御されている。一方、ウエハWの利用率を高めるためにデバイス形成領域の外側をできるだけウエハWの外縁に近付ける傾向にあり、そのため液受け手段12にマスクされて塗布液が塗られない領域は一番広い領域でもウエハWの外縁から0.3〜0.5mm程度である。より具体的には、液受け手段12は、図18(b)に示すように、非塗布領域が中央部にて最も広くなる三日月状となるように制御される。このような一筆書きの手法によれば例えばスピンコーティング法のようにウエハWを回転させないので無駄のない塗布が行なえる。そしてこの塗布方法は特に基板サイズが大きい場合に好適である。   An example of a coating unit that performs coating in accordance with the one-stroke method will be briefly described with an example in which a semiconductor wafer (hereinafter referred to as a wafer) is used as a substrate to be processed. For example, as shown in FIG. 18A, this coating method is performed by applying a coating liquid 11 from a small-diameter discharge hole of a coating liquid nozzle 10 provided facing the surface of the wafer W held on the substrate holding unit 1. The coating liquid 11 is supplied by reciprocating in the X direction while feeding the wafer W and intermittently feeding the wafer W in the Y direction. Reference numeral 12 in the figure denotes a pair of liquid receiving means which are provided so as to be able to advance and retract in the diameter direction of the wafer and prevent the coating liquid from spilling into the unit outside the wafer W. Further, if the coating liquid goes around to the back side through the end face of the wafer W, it causes dust generation when the wafer W is transported, so that the liquid receiving means 12 is positioned slightly inward from the outer edge of the wafer W. So that it is controlled. On the other hand, in order to increase the utilization rate of the wafer W, the outside of the device forming region tends to be as close as possible to the outer edge of the wafer W. Therefore, the region that is masked by the liquid receiving means 12 and is not coated with the coating liquid is the widest region. It is about 0.3 to 0.5 mm from the outer edge of the wafer W. More specifically, as shown in FIG. 18B, the liquid receiving means 12 is controlled so that the non-application area has a crescent shape that is widest at the center. According to such a one-stroke writing method, since the wafer W is not rotated as in the spin coating method, for example, the application can be performed without waste. This coating method is particularly suitable when the substrate size is large.

上述のような一筆書きによる手法では、即乾性のある塗布液を用いるとウエハWの後端側にある部位を塗布している間に前端側の既に塗り終えた部位にある塗布液が乾燥してしまうので蒸気圧の低い溶剤を選択して塗布中に蒸発するのを防いでいるが、ウエハWの表面全体に塗布液が塗布されれば、あとは成膜処理の高いスループットを確保するために減圧乾燥ユニットにて塗布液を減圧乾燥することで速やかに塗布液中の溶剤を蒸発させるようにしている(例えば、特許文献2参照。)。   In the one-stroke method as described above, when a coating liquid having an immediate drying property is used, the coating liquid in the already coated portion on the front end side is dried while the portion on the rear end side of the wafer W is coated. Therefore, a solvent having a low vapor pressure is selected to prevent evaporation during coating. However, if the coating liquid is applied to the entire surface of the wafer W, then a high throughput of the film forming process is secured. In addition, the solvent in the coating liquid is quickly evaporated by drying the coating liquid under reduced pressure in a vacuum drying unit (for example, see Patent Document 2).

ウエハW上の塗布液を減圧乾燥する装置として、例えば図19に示すような減圧乾燥装置が用いられる。先ず減圧乾燥装置の密閉容器13内の載置部に塗布処理されたウエハWを載置し、密閉容器13の天井部に設けられて排気口14を介して例えば真空ポンプなどの減圧手段15により密閉容器13を減圧することにより、塗布液に含まれる溶剤の蒸発を促進させて乾燥させるものである。この場合、密閉容器13の内部には、ウエハWの表面に沿って中心から外方側に向かって塗布液を押し広げながら流れる気流を形成するように整流板16が昇降可能に設けられており、これにより表面張力により塗布液の中央部が盛り上がるのを抑えて厚みが面内均一化される。   As an apparatus for drying the coating liquid on the wafer W under reduced pressure, for example, a reduced pressure drying apparatus as shown in FIG. 19 is used. First, the coated wafer W is placed on a placement portion in the hermetic container 13 of the reduced pressure drying apparatus, and is provided on the ceiling portion of the hermetic container 13 by a decompression means 15 such as a vacuum pump through an exhaust port 14. By reducing the pressure of the sealed container 13, evaporation of the solvent contained in the coating liquid is promoted and dried. In this case, a rectifying plate 16 is provided inside the hermetic container 13 so as to be movable up and down so as to form an air flow that flows while spreading the coating liquid from the center toward the outer side along the surface of the wafer W. Thus, the central portion of the coating liquid is prevented from rising due to surface tension, and the thickness is made uniform in the surface.

特開2000−077326号公報JP 2000-073326 A 特開2001−205165号公報JP 2001-205165 A

しかしながら上述の成膜手法では、ウエハWの周縁部例えば外周縁から内側5mmに亘る領域おいては、図20に模式的に示すように、周縁部の塗布液は内側からの気流に押されてもウエハWの表面からこぼれ落ちずに表面張力によりウエハWに引っ張られ周縁部に残った状態となり、そのため当該周縁部に溜まった液が上方向に跳ね上がって(ハンプが生じて)、膜厚が厚くなってしまう場合がある。この跳ね上がりの高さは3μm程度と僅かではあるが、近年、半導体デバイスのパターンは増々薄膜化し、また微細化する傾向にある。その結果、膜厚の大きい周縁部にデバイスを形成することができず、ウエハWの歩留まりが低下する懸念がある。   However, in the film forming method described above, in the peripheral area of the wafer W, for example, in the region extending from the outer peripheral edge to the inner side of 5 mm, the coating liquid at the peripheral edge is pushed by the air flow from the inner side as schematically shown in FIG. However, the surface tension does not spill from the surface of the wafer W and the wafer W is pulled by the wafer W and remains in the peripheral portion. Therefore, the liquid accumulated in the peripheral portion jumps upward (a hump occurs), and the film thickness increases. It may become. Although the height of the jump is as small as about 3 μm, in recent years, the pattern of the semiconductor device tends to become thinner and finer. As a result, a device cannot be formed in the peripheral portion having a large film thickness, and there is a concern that the yield of the wafer W is lowered.

本発明はこのような事情に基づいてなされたものであり、その目的は、基板の表面に塗布液を塗布した後に、基板の表面に沿って中心から外方側に向かって流れる気流を形成し、塗布液を減圧乾燥させて成膜させるにあたり、基板上の塗布液の液流れを制御して基板の表面に面内均一な塗布膜を形成することのできる塗布膜形成方法及び塗布膜形成装置を提供することにある。   The present invention has been made based on such circumstances, and its purpose is to form an airflow that flows from the center toward the outer side along the surface of the substrate after the coating liquid is applied to the surface of the substrate. A coating film forming method and a coating film forming apparatus capable of forming a uniform in-plane coating film on the surface of a substrate by controlling the liquid flow of the coating liquid on the substrate when forming a film by drying the coating liquid under reduced pressure Is to provide.

本発明の塗布膜形成方法は、基板を水平に保持した状態で基板の周縁部に全周に亘って非塗布領域が形成されるように基板の表面に塗布液を供給して液膜を形成する工程と、
前記基板の表面に整流板を対向させて当該基板を減圧雰囲気下に置くことによりその表面に沿って中央部から外側に向かう気流を形成すると共に前記液膜を乾燥させる工程と、を含むことを特徴とする。
In the coating film forming method of the present invention, a liquid film is formed by supplying a coating solution to the surface of the substrate so that a non-coating region is formed over the entire circumference of the peripheral edge of the substrate while the substrate is held horizontally. And a process of
Including a step of facing the current plate to the surface of the substrate and placing the substrate in a reduced-pressure atmosphere so as to form an air flow from the central portion to the outside along the surface and drying the liquid film. Features.

前記非塗布領域の幅は1mm以上であってもよい。また非塗布領域の幅は基板全周に亘って均一であってもよい。更に液膜を形成する工程は、口径が5μm〜200μmの塗布液ノズルと基板とを相対的に移動させながら液膜を形成すると共に塗布液ノズルと基板の周縁部との間に液受け手段を介在させることにより行われる構成であってもよい。   The width of the non-application area may be 1 mm or more. Further, the width of the non-application area may be uniform over the entire circumference of the substrate. Further, in the step of forming a liquid film, a liquid film is formed while relatively moving the coating liquid nozzle having a diameter of 5 μm to 200 μm and the substrate, and a liquid receiving means is provided between the coating liquid nozzle and the peripheral portion of the substrate. The structure performed by interposing may be sufficient.

他の発明の塗布膜形成方法は、基板を水平に保持した状態で基板の周縁部に全周に亘って形成される非塗布領域に相当する領域に対して表面処理を行う工程と、
この基板に前記非塗布領域が形成されるように基板の表面に塗布液を供給して液膜を形成する工程と、
次いで例えば前記基板を処理容器内に搬入し、この基板の表面に整流板を対向させて処理容器内を減圧して当該基板を減圧雰囲気下に置くことにより、その表面に沿って中央部から外側に向かう気流を形成すると共に前記液膜を乾燥させる工程と、を含むことを特徴とする。
The coating film forming method of another invention includes a step of performing a surface treatment on a region corresponding to a non-coating region formed over the entire periphery of the peripheral edge of the substrate while holding the substrate horizontally,
Supplying a coating liquid to the surface of the substrate so as to form the non-coating region on the substrate to form a liquid film;
Next, for example, the substrate is carried into the processing container, and the current plate is opposed to the surface of the substrate to depressurize the processing container, and the substrate is placed in a reduced pressure atmosphere. And a step of drying the liquid film.

更に他の発明の塗布膜形成方法は、基板を水平に保持した状態で基板の表面に塗布液を供給して液膜を形成する工程と、
この基板の周縁部に全周に亘って非塗布領域が形成されるように当該基板の周縁部の表面に処理液を供給して塗布液を除去すると共に当該領域の表面処理をする工程と、
前記基板を減圧雰囲気下に置いて前記液膜を乾燥させる工程と、を含むことを特徴とする。
Furthermore, the coating film forming method of another invention includes a step of forming a liquid film by supplying a coating liquid to the surface of the substrate while holding the substrate horizontally,
A step of supplying a treatment liquid to the surface of the peripheral edge of the substrate so as to form a non-application area over the entire periphery of the peripheral edge of the substrate, removing the coating liquid, and performing a surface treatment of the area;
Placing the substrate in a reduced-pressure atmosphere and drying the liquid film.

前記表面処理を行う工程は、前記非塗布領域に相当する領域に処理液又は当該処理液の蒸気を供給する工程であってもよ。処理液は例えば溶剤であってもよい。また表面処理を行う工程は、前記非塗布領域に相当する領域に光照射を行う工程であってもよい。また、非塗布領域に相当する領域に対して表面処理を行う場合、基板の表面に沿って中央部から外側に向かう気流は必ずしも必要ではないが、気流があればさらに効率的に塗布することができる。   The step of performing the surface treatment may be a step of supplying a treatment liquid or vapor of the treatment liquid to a region corresponding to the non-application region. The treatment liquid may be a solvent, for example. The step of performing the surface treatment may be a step of irradiating light to a region corresponding to the non-application region. In addition, when the surface treatment is performed on the area corresponding to the non-application area, an airflow from the central portion to the outside along the surface of the substrate is not necessarily required, but if there is an airflow, it can be applied more efficiently. it can.

本発明の塗布膜形成装置は、塗布膜を形成する成分を溶剤に溶かしてなる塗布液を基板の表面に供給した後に、基板の表面に沿って中央部から外側に向かって塗布液を押し広げながら流れる気流が形成される減圧雰囲気下で当該塗布液を乾燥し成膜するにあたり、この塗布液を基板の表面に塗布する塗布膜形成装置において、
基板を水平に保持する基板保持部と、
この基板保持部に保持された基板の表面に塗布液を供給する塗布液ノズルと、
前記基板保持部を塗布液ノズルに対して相対的に移動させる駆動部と、
基板の周縁部と塗布液ノズルとの間に介在し、当該周縁部に供給される塗布液を受けて基板の全周に亘って非塗布領域を形成するための液受け手段と、を備えたことを特徴とする。
The coating film forming apparatus of the present invention spreads the coating liquid from the central portion toward the outside along the surface of the substrate after supplying the coating solution obtained by dissolving the components forming the coating film in the solvent to the surface of the substrate. In the coating film forming apparatus that coats the coating liquid on the surface of the substrate when the coating liquid is dried and formed into a film under a reduced pressure atmosphere in which a flowing airflow is formed,
A substrate holder for horizontally holding the substrate;
A coating solution nozzle for supplying a coating solution to the surface of the substrate held by the substrate holding unit;
A drive unit for moving the substrate holding unit relative to the coating liquid nozzle;
A liquid receiving means interposed between the peripheral edge of the substrate and the coating liquid nozzle, for receiving the coating liquid supplied to the peripheral edge and forming a non-coating region over the entire circumference of the substrate; It is characterized by that.

前記非塗布領域の幅は1mm以上であってもよい。また非塗布領域の幅は基板全周に亘って均一であってもよい。更に塗布液ノズルの口径は5μm〜200μmであり、駆動部は、基板上に直線状の塗布液ラインが形成されるように塗布液ノズルを基板保持部に対して相対的に左右に移動させる手段と、基板上に前記塗布液ラインが前後に配列されるように前記塗布液ノズルを基板保持部に対して相対的に前後に移動させる手段と、を備えた構成であってもよい。更にまた、塗布液ノズルの口径は5μm〜200μmであり、駆動部は、基板保持部を回転させる手段と塗布液ノズルを基板の中央部上方から周縁部上方に基板保持部に対して相対的に移動させる手段と、を備え、塗布液は基板上にスパイラル状に塗布される構成であってもよい。   The width of the non-application area may be 1 mm or more. Further, the width of the non-application area may be uniform over the entire circumference of the substrate. Further, the diameter of the coating liquid nozzle is 5 μm to 200 μm, and the driving unit moves the coating liquid nozzle to the left and right relative to the substrate holding unit so that a linear coating liquid line is formed on the substrate. And means for moving the coating liquid nozzle back and forth relative to the substrate holder so that the coating liquid lines are arranged back and forth on the substrate. Furthermore, the diameter of the coating liquid nozzle is 5 μm to 200 μm, and the driving unit is configured to rotate the substrate holding unit and the coating liquid nozzle relative to the substrate holding unit from above the central part to above the peripheral part of the substrate. And a means for moving the coating liquid in a spiral shape on the substrate.

他の発明の塗布膜形成装置は、塗布膜を形成する成分を溶剤に溶かしてなる塗布液を基板の表面に供給した後に、基板の表面に沿って中央部から外側に向かって塗布液を押し広げながら流れる気流が形成される減圧雰囲気下で当該塗布液を乾燥し成膜するにあたり、この塗布液を基板の表面に塗布する塗布膜形成装置において、
基板を水平に保持する基板保持部と、
この基板保持部に保持された基板の表面に塗布液を供給する塗布液ノズルと、
前記基板保持部を塗布液ノズルに対して相対的に移動させる駆動部と、
基板の周縁部と塗布液ノズルとの間に介在し、当該周縁部に供給される塗布液を受けて基板の全周に亘って非塗布領域を形成するための液受け手段と、
前記基板の表面における前記非塗布領域に相当する領域に対して、塗布液を塗布する前に表面処理を行う手段と、を備えたことを特徴とする。
In another coating film forming apparatus of the present invention, after supplying a coating solution prepared by dissolving a component for forming a coating film in a solvent to the surface of the substrate, the coating solution is pushed outward from the center along the surface of the substrate. In the coating film forming apparatus for applying the coating liquid to the surface of the substrate when drying and forming the coating liquid in a reduced pressure atmosphere where a flowing airflow is formed,
A substrate holder for horizontally holding the substrate;
A coating solution nozzle for supplying a coating solution to the surface of the substrate held by the substrate holding unit;
A drive unit for moving the substrate holding unit relative to the coating liquid nozzle;
A liquid receiving means that is interposed between the peripheral edge of the substrate and the coating liquid nozzle, receives the coating liquid supplied to the peripheral edge, and forms a non-coating region over the entire circumference of the substrate;
Means for performing a surface treatment on a region corresponding to the non-application region on the surface of the substrate before applying a coating liquid.

更に他の発明の塗布膜形成装置は、塗布膜を形成する成分を溶剤に溶かしてなる塗布液を基板の表面に供給した後に、減圧雰囲気下で当該塗布液を乾燥し成膜するにあたり、この塗布液を基板の表面に塗布する塗布膜形成装置において、
基板を水平に保持する基板保持部と、
この基板保持部に保持された基板の表面に塗布液を供給する塗布液ノズルと、
前記基板保持部を塗布液ノズルに対して相対的に移動させる駆動部と、
その表面に塗布液が塗布された基板の全周に亘って非塗布領域を形成するために当該基板の周縁部の表面に処理液を供給して塗布液を除去すると共に当該領域の表面処理をする手段と、を備えたことを特徴とする。
In another coating film forming apparatus of the present invention, after supplying a coating solution obtained by dissolving a component for forming a coating film in a solvent to the surface of the substrate, the coating solution is dried to form a film in a reduced pressure atmosphere. In a coating film forming apparatus for applying a coating solution to the surface of a substrate,
A substrate holder for horizontally holding the substrate;
A coating solution nozzle for supplying a coating solution to the surface of the substrate held by the substrate holding unit;
A drive unit for moving the substrate holding unit relative to the coating liquid nozzle;
In order to form a non-coating region over the entire circumference of the substrate coated with the coating liquid on the surface, the processing liquid is supplied to the peripheral surface of the substrate to remove the coating liquid, and surface treatment of the region is performed. And means for carrying out the above.

前記表面処理を行う手段は、前記非塗布領域に相当する領域に処理液又は当該処理液の蒸気を供給する手段であってもよい。処理液は例えば溶剤であってもよい。また前記表面処理を行う手段は、前記非塗布領域に相当する領域に光照射を行う手段であってもよい。更には、上述の塗布膜形成装置は、基板の表面に液盛りする塗布液の厚みと非塗布領域の幅とを対応づけた情報を記憶した記憶部と、予定とする塗布液の厚みと前記情報とに基づいて非塗布領域の幅を決める手段と、を備えた構成であってもよい。また、非塗布領域に相当する領域に対して表面処理を行う場合、基板の表面に沿って中央部から外側に向かう気流は必ずしも必要ではないが、気流があればさらに効率的に塗布することができる。   The means for performing the surface treatment may be a means for supplying a treatment liquid or vapor of the treatment liquid to an area corresponding to the non-application area. The treatment liquid may be a solvent, for example. The means for performing the surface treatment may be a means for irradiating light to an area corresponding to the non-application area. Furthermore, the above-described coating film forming apparatus includes a storage unit that stores information that associates the thickness of the coating liquid deposited on the surface of the substrate with the width of the non-coating region, the thickness of the intended coating liquid, And a means for determining the width of the non-application area based on the information. In addition, when the surface treatment is performed on the area corresponding to the non-application area, an airflow from the central portion to the outside along the surface of the substrate is not necessarily required, but if there is an airflow, it can be applied more efficiently. it can.

本発明によれば、基板の周縁部に全周に亘って非塗布領域を形成し、この基板の近傍にて当該基板の表面に整流板を対向させて、その表面に沿って中心から外方側に流れる気流を形成しながら当該塗布液を減圧乾燥させる構成とすることにより、当該塗布液は当該気流により非塗布領域内まで押し広げられる。このため周縁部にある塗布液が上方側に跳ね上がるのを抑えることができ、その結果、基板の面内に均一な厚みの塗布膜を成膜することができ、基板のデバイス形成領域を極めて広くとることができる。   According to the present invention, a non-coating region is formed on the entire periphery of the peripheral portion of the substrate, the rectifying plate is opposed to the surface of the substrate in the vicinity of the substrate, and outward from the center along the surface. By adopting a configuration in which the coating liquid is dried under reduced pressure while forming an airflow flowing to the side, the coating liquid is pushed and spread into the non-application area by the airflow. For this reason, it is possible to suppress the coating liquid at the peripheral portion from jumping upward, and as a result, a coating film having a uniform thickness can be formed on the surface of the substrate, and the device formation region of the substrate is extremely wide. Can take.

更に本発明によれば、非塗布領域に相当する領域に対して表面処理を行う構成とすることにより、非塗布領域の表面の状態を良くすることができる。このため減圧乾燥時において非塗布領域を塗布液が速やかに広がるので、周縁部の塗布液の跳ね上がりを抑えることができる。更に履歴の異なる複数枚の基板を連続して処理する場合であっても非塗布領域の表面の状態を基板毎に揃えることができるので、結果として基板毎に膜厚が均一な塗布成膜処理をすることができる。   Furthermore, according to the present invention, the surface state of the non-application area can be improved by performing the surface treatment on the area corresponding to the non-application area. For this reason, since a coating liquid spreads rapidly in a non-application area | region at the time of drying under reduced pressure, the splash of the coating liquid of a peripheral part can be suppressed. Furthermore, even when processing a plurality of substrates having different histories, the surface state of the non-application region can be made uniform for each substrate. Can do.

(塗布膜成膜システムの全体構成)
本発明の実施の形態に係る塗布膜形成装置について説明する前に、この塗布膜形成装置を組み込んだ、本発明の実施の形態に係る塗布膜形成装置を実施するための塗布膜成膜システムの全体構成の一例について図1及び図2を用いて説明しておく。図中21はキャリアステーションであり、例えば25枚のウエハWを収納した例えば開閉蓋付きの密閉型キャリア22を載置するキャリア載置部23と、載置されたキャリア22との間でウエハWの受け渡しを行うための受け渡し手段24とが設けられている。なおキャリア22としてはオープン型キャリアであってもよい。この受け渡し手段24の奥側には筐体25にて周囲を囲まれる処理部S1が接続されている。処理部S1の中央には主搬送手段26が設けられており、これを取り囲むように例えば奥を見て右側には例えば絶縁膜を形成するための塗布膜形成装置に相当する塗布ユニット27が複数組み込まれ、更に左側、手前側、奥側には加熱・冷却系のユニット等を多段に積み重ねた棚ユニットU1,U2,U3が夫々配置されている。
(Overall configuration of coating film deposition system)
Before describing the coating film forming apparatus according to the embodiment of the present invention, a coating film forming system for implementing the coating film forming apparatus according to the embodiment of the present invention, which incorporates the coating film forming apparatus. An example of the overall configuration will be described with reference to FIGS. In the figure, reference numeral 21 denotes a carrier station. For example, a wafer W is placed between a carrier mounting portion 23 on which a closed carrier 22 having, for example, an openable / closable lid, which stores 25 wafers W, and the carrier 22 mounted thereon. Is provided with a delivery means 24 for performing delivery. The carrier 22 may be an open type carrier. A processing unit S1 surrounded by a casing 25 is connected to the back side of the delivery means 24. A main transport means 26 is provided at the center of the processing unit S1, and a plurality of coating units 27 corresponding to a coating film forming apparatus for forming, for example, an insulating film on the right side, for example, when viewed from the back so as to surround the processing unit S1. In addition, shelf units U1, U2, U3 in which heating / cooling units and the like are stacked in multiple stages are arranged on the left side, near side, and back side, respectively.

棚ユニットU1,U2,U3は、塗布ユニット27の前処理及び後処理を行うためのユニットなどを各種組み合わせて構成されるものであり、その組み合わせは塗布ユニット27にて表面に塗布液が塗られたウエハWを減圧乾燥する減圧乾燥ユニット、加熱(ベーク)する加熱ユニット、ウエハWを冷却する冷却ユニット等が含まれる。なお棚ユニットU3については、ウエハWを受け渡すための受け渡し台を備えた受け渡しユニットも組み込まれる。また、上述した主搬送手段26は例えば昇降及び前後に移動自在で且つ鉛直軸周りに回転自在に構成されており、塗布ユニット27及び棚ユニットU1,U2,U3を構成する各ユニット間でウエハWの受け渡しを行うことが可能となっている。   The shelf units U1, U2, and U3 are configured by combining various units for performing pre-processing and post-processing of the coating unit 27, and the coating liquid is applied to the surface by the coating unit 27. A vacuum drying unit for drying the wafer W under reduced pressure, a heating unit for heating (baking), a cooling unit for cooling the wafer W, and the like are included. As for the shelf unit U3, a delivery unit including a delivery table for delivering the wafer W is also incorporated. Further, the main transfer means 26 described above is configured to be movable up and down and back and forth and to rotate around the vertical axis, for example, and the wafer W between the units constituting the coating unit 27 and the shelf units U1, U2, and U3. It is possible to deliver.

この装置のウエハWの流れについて説明すると、先ず外部からウエハWが収納されたキャリア22がキャリア載置部23に載置され、受け渡し手段24によりキャリア22内からウエハWが取り出され、加熱・冷却ユニットU3の棚の一つである受け渡しユニットを介して主搬送手段26に受け渡される。次いでユニットU3の一の棚の処理部内にて所定の温度に冷却された後、塗布ユニット27にて塗布液が塗布される。その後ウエハWは減圧乾燥ユニット28で減圧乾燥され、加熱ユニットで加熱された後、冷却ユニットで所定の温度に冷却される。しかる後ウエハWはキャリア載置部23上のキャリア22内に戻される。   The flow of the wafer W in this apparatus will be described. First, the carrier 22 in which the wafer W is stored from the outside is placed on the carrier placing portion 23, and the wafer W is taken out from the carrier 22 by the transfer means 24, and heated / cooled. It is delivered to the main transport means 26 via a delivery unit that is one of the shelves of the unit U3. Next, after cooling to a predetermined temperature in the processing section of one shelf of the unit U3, the coating liquid is applied by the coating unit 27. Thereafter, the wafer W is dried under reduced pressure by the reduced pressure drying unit 28, heated by the heating unit, and then cooled to a predetermined temperature by the cooling unit. Thereafter, the wafer W is returned into the carrier 22 on the carrier mounting portion 23.

(塗布膜形成装置)
続いて、本発明の塗布膜形成装置の実施の形態について図3及び図4を参照しながら説明する。図中3は塗布ユニット27に相当する塗布膜形成装置の外装体をなす筐体であり、その内部空間は中央にX方向に伸びるスリット31aが形成された仕切り板31が設けられて上下に区画されている。また仕切り板31の下方側にある下部側空間には、被処理基板例えばウエハWの裏面側を吸着して当該ウエハWを略水平に保持するための基板保持部4が設けられており、この基板保持部4は軸部41を介して接続された駆動機構42によりウエハWを保持した状態で昇降及び鉛直軸周りに回転可能なように構成されている。更に駆動機構42は移動基体43により支持されている。
(Coating film forming device)
Next, an embodiment of the coating film forming apparatus of the present invention will be described with reference to FIGS. In the figure, reference numeral 3 denotes a casing which forms an exterior body of a coating film forming apparatus corresponding to the coating unit 27, and its internal space is provided with a partition plate 31 in which a slit 31a extending in the X direction is formed at the center, and is partitioned vertically. Has been. Further, a lower side space below the partition plate 31 is provided with a substrate holding portion 4 for attracting the rear surface side of the substrate to be processed, for example, the wafer W and holding the wafer W substantially horizontally. The substrate holding unit 4 is configured to be able to move up and down and rotate around a vertical axis in a state where the wafer W is held by a driving mechanism 42 connected via a shaft 41. Further, the drive mechanism 42 is supported by the moving base 43.

また筐体3の底面には、例えば筺体3の長手方向であるY方向に伸びる2本のガイドレール44が設けられており、このガイドレール44の上面に前記移動基体43が支持されている。更にガイドレール44に沿ってボールネジ部45が配置され、例えば筺体3の外に設けられた駆動部46例えばモータによりこのボールネジ部45を回動させることによりこのボールネジ部45に螺合された移動基体43と共に基板保持部4がウエハWを保持した状態で前後方向(Y方向)に例えば1000mm/secで移動可能なように構成されている。即ち、第1の駆動部は、移動基体43、ガイドレール44、ボールネジ部45および駆動部46を備えた構成である。また筺体3内は、図示しないクリーンエア供給手段により例えばクリーンエアによるダウンフロ−が形成されている。   Further, on the bottom surface of the housing 3, for example, two guide rails 44 extending in the Y direction which is the longitudinal direction of the housing 3 are provided, and the moving base body 43 is supported on the upper surface of the guide rail 44. Further, a ball screw portion 45 is disposed along the guide rail 44, and a moving base that is screwed into the ball screw portion 45 by rotating the ball screw portion 45 by, for example, a drive portion 46 provided outside the housing 3, for example, a motor. 43, the substrate holding unit 4 is configured to be movable in the front-rear direction (Y direction) at, for example, 1000 mm / sec while holding the wafer W. That is, the first drive unit includes a moving base 43, a guide rail 44, a ball screw unit 45, and a drive unit 46. Further, in the housing 3, for example, a clean air downflow is formed by clean air supply means (not shown).

前記仕切り板31の上方側にある上部側空間には、基板保持部4上のウエハWの表面と対向して塗布液ノズル5が設けられている。この塗布液ノズル5には、下方側に例えば口径が例えば5μm〜200μmの細孔の吐出孔51を有しており、例えば筺体3の外に設けられた供給源52から流路52aを介して送られてくる例えばシリコン酸化膜の前駆物質である固形成分(シロキサンポリマー)を溶剤に溶かした絶縁膜用の塗布液が当該吐出孔51を介してウエハWの表面に供給されるように構成されている。また塗布液ノズル5を支持する支持部材53に螺合されたボールネジ部54が前記ガイドレール44と略直交してX方向に伸びるように配置されており、例えば筺体3の外に設けられた駆動部55例えばモータによりボールネジ部54を回動させることにより支持部材53と一体的に塗布液ノズル5が左右方向(X方向)に例えば1000mm/secで往復移動可能なように構成されている。即ち、第2の駆動部は、支持部材53、ガイドレール43およびボールネジ部54を備えた構成である。   A coating liquid nozzle 5 is provided in the upper space above the partition plate 31 so as to face the surface of the wafer W on the substrate holding unit 4. The coating liquid nozzle 5 has, for example, a discharge hole 51 having a pore diameter of, for example, 5 μm to 200 μm on the lower side. For example, a supply source 52 provided outside the housing 3 through a flow path 52a. For example, a coating solution for an insulating film in which a solid component (siloxane polymer) that is a precursor of a silicon oxide film is dissolved in a solvent is supplied to the surface of the wafer W through the discharge hole 51. ing. A ball screw portion 54 screwed into a support member 53 that supports the coating solution nozzle 5 is disposed so as to extend in the X direction substantially orthogonal to the guide rail 44, for example, a drive provided outside the housing 3. The coating liquid nozzle 5 is configured to be capable of reciprocating in the left-right direction (X direction) at, for example, 1000 mm / sec integrally with the support member 53 by rotating the ball screw portion 54 by a portion 55, for example, a motor. That is, the second drive unit includes a support member 53, a guide rail 43, and a ball screw unit 54.

また基板保持部4に保持されたウエハWの表面の僅かに高い位置に設けられ、前記塗布液ノズル5の移動方向の延長線であると共にウエハWの周縁に対応する部位に落下してくる塗布液ノズル5からの塗布液を受け止めて、これによりウエハWの表面に塗布液が塗られない領域である例えば幅が1mm以上であって例えばその幅の均一な非塗布領域をウエハWの全周に亘って形成するための一対の液受け手段6a、6bが設けられている。この液受け手段6a、6bは塗布液を受け止めて、これを回収することができるように例えばトレー状の液受け部61a、61bを備えており、この液受け部61a、61bには図示は省略するが表面に付着した塗布液を洗い流すための洗浄機構および受け止めた塗布液を排出するための排出路などが設けられている。また液受け部61a、61bは、その投影領域の内端部が非塗布領域の内縁(塗布領域の外縁)に対応する位置に配置可能なように軸部62a、62bを介して進退駆動部63a、63bによりX方向に進退自在に構成されている。   Further, the coating is provided at a slightly higher position on the surface of the wafer W held by the substrate holding unit 4 and is an extension line in the moving direction of the coating solution nozzle 5 and falls to a portion corresponding to the periphery of the wafer W. The coating liquid from the liquid nozzle 5 is received, and thereby the coating liquid is not applied to the surface of the wafer W, for example, a width of 1 mm or more, for example, a uniform non-coated area of the width of the entire area of the wafer W. A pair of liquid receiving means 6a and 6b are provided for forming the film. The liquid receiving means 6a and 6b are provided with, for example, tray-shaped liquid receiving portions 61a and 61b so that the coating liquid can be received and collected, and the liquid receiving portions 61a and 61b are not shown in the figure. However, a cleaning mechanism for washing away the coating solution adhering to the surface and a discharge path for discharging the received coating solution are provided. Further, the liquid receiving portions 61a and 61b are moved forward and backward through the shaft portions 62a and 62b so that the inner end portions of the projection regions can be arranged at positions corresponding to the inner edge of the non-application region (the outer edge of the application region). , 63b can be moved forward and backward in the X direction.

また、図中7は制御部であり、この制御部7は昇降機構42、駆動機構46、駆動機構55の動作を制御する機能を備えている。更に制御部7の有する制御機能について図5を用いて説明する。制御部7は、コンピュータ70を備えており、このコンピュータ70の有する記憶部71例えばメモリには複数のプロセスレシピ72が格納されている。このプロセスレシピ72には、例えば塗布液を乾燥させた後に得られる塗布膜の目標膜厚と、ウエハWの表面に液盛りする塗布液の液膜の厚みと、非塗布領域の幅と、を対応付けた情報が記憶されている。そして成膜する塗布膜の予定とする膜厚が決まれば、塗布液に含まれる固形成分の濃度が分かっているのでウエハWの表面に液盛りする塗布液の液膜の厚み(上述のパラメータ値)が決まる。具体的には、後述する実施例に示すように目標膜厚を800nmに設定した場合に、液膜の厚みを13000nmに、非塗布領域の幅を3mmに設定することが一例として挙げられる。また図中73は設定された非塗布領域の幅の長さの情報に基づいて、液受け部61の内端の軌跡が非塗布領域の内縁を描くように進退駆動部63の動作を制御するコントローラである。74は、例えば塗布膜の種類、厚みなどの情報を例えばオペレータが入力するための入力部である。75はCPUであり、76はバスである。なお当該情報の記憶態様はプロセスレシピ72に限られるものではなく、例えばデータベース化して記憶させてもよい。更には、制御部7により設定値を決定する構成に限られず、前記した塗布膜の目標膜厚と塗布液の液膜の厚みと非塗布領域の幅とを対応付けた情報を把握している例えばオペレータにより設定値を入力部74により直接入力するようにしてもよい。   In the figure, reference numeral 7 denotes a control unit. The control unit 7 has a function of controlling operations of the elevating mechanism 42, the drive mechanism 46, and the drive mechanism 55. Furthermore, the control function which the control part 7 has is demonstrated using FIG. The control unit 7 includes a computer 70, and a plurality of process recipes 72 are stored in a storage unit 71 included in the computer 70, for example, a memory. In this process recipe 72, for example, the target film thickness of the coating film obtained after drying the coating liquid, the thickness of the liquid film of the coating liquid deposited on the surface of the wafer W, and the width of the non-application area The associated information is stored. Then, when the expected film thickness of the coating film to be formed is determined, since the concentration of the solid component contained in the coating liquid is known, the thickness of the coating liquid film deposited on the surface of the wafer W (the parameter value described above) ) Is decided. Specifically, as shown in the examples described later, when the target film thickness is set to 800 nm, the thickness of the liquid film is set to 13000 nm and the width of the non-application area is set to 3 mm. Reference numeral 73 in the figure controls the operation of the advancing / retreating drive unit 63 so that the locus of the inner end of the liquid receiving part 61 describes the inner edge of the non-application area based on the set width information of the non-application area. It is a controller. 74 is an input unit for the operator to input information such as the type and thickness of the coating film, for example. 75 is a CPU and 76 is a bus. The storage mode of the information is not limited to the process recipe 72, and may be stored in a database, for example. Furthermore, the present invention is not limited to the configuration in which the setting value is determined by the control unit 7, and grasps information in which the target film thickness of the coating film, the thickness of the liquid film of the coating liquid, and the width of the non-coating area are associated with each other. For example, the set value may be directly input by the operator through the input unit 74.

続いて説明を図2に移すと、筺体3の側面に形成された図示しない基板搬入出口を介して搬入されたウエハWを基板保持部4が受け取る位置にあるウエハWの一側縁と対向して、当該ウエハW表面の非塗布領域に相当する領域に対して所定の表面処理をする手段をなす例えば矩形状のコ字型部材からなる液供給部8が設けられている。液供給部8は支持アーム80を介して駆動機構81と接続されており、この駆動機構81により進退自在なように構成されている。なお作図の便宜上、図1には液供給部8、支持アーム80及び駆動機構81の記載は省略してある。   Subsequently, when the explanation is moved to FIG. 2, it opposes one side edge of the wafer W at a position where the substrate holding unit 4 receives the wafer W loaded through a substrate loading / unloading port (not shown) formed on the side surface of the housing 3. In addition, a liquid supply unit 8 made of, for example, a rectangular U-shaped member is provided that serves as a means for performing a predetermined surface treatment on an area corresponding to a non-application area on the surface of the wafer W. The liquid supply unit 8 is connected to a drive mechanism 81 via a support arm 80, and is configured to be able to advance and retreat by the drive mechanism 81. For convenience of drawing, the description of the liquid supply unit 8, the support arm 80, and the drive mechanism 81 is omitted in FIG.

前記液供給部8の構成について図6を用いて詳しく説明すると、当該液供給部8のウエハWと対向する一側面に形成された横に伸びる凹部領域はウエハWを処理するための処理空間82として形成されている。即ち、駆動機構81により液供給部8がウエハWに向かって水平移動して、処理空間82内に進入したウエハWの周縁部の非塗布領域に相当する領域に対して所定の表面処理例えば洗浄がなされるように構成されている。処理空間82の上面側には処理液である洗浄液例えば既述の絶縁膜用塗布液に含まれる溶剤と同じ溶剤を供給するための洗浄液吐出孔83が設けられており、この吐出孔83は供給路84を介して洗浄液供給源85と接続されている。洗浄液はウエハWの表面に対して接触角が10°以下のものを選択するのが好ましい。また処理空間82の例えば内側面には、前記洗浄液供給孔83から供給された洗浄液がこぼれ落ちないようにするために、当該洗浄液を吸引して回収するための吸引孔86が設けられており、この吸引孔86は吸引路87を介して吸引手段88と接続されている。   The configuration of the liquid supply unit 8 will be described in detail with reference to FIG. 6. A laterally extending recessed region formed on one side of the liquid supply unit 8 facing the wafer W is a processing space 82 for processing the wafer W. It is formed as. That is, the liquid supply unit 8 is moved horizontally toward the wafer W by the driving mechanism 81, and a predetermined surface treatment such as cleaning is performed on a region corresponding to the non-coating region at the peripheral portion of the wafer W that has entered the processing space 82. Is configured to be performed. A cleaning liquid discharge hole 83 is provided on the upper surface side of the processing space 82 to supply a cleaning liquid as a processing liquid, for example, the same solvent as the solvent contained in the above-described insulating film coating liquid. The cleaning liquid supply source 85 is connected via a path 84. It is preferable to select a cleaning liquid having a contact angle of 10 ° or less with respect to the surface of the wafer W. Further, for example, an inner surface of the processing space 82 is provided with a suction hole 86 for sucking and collecting the cleaning liquid supplied from the cleaning liquid supply hole 83 in order to prevent the cleaning liquid from spilling out. The suction hole 86 is connected to the suction means 88 through the suction path 87.

(減圧乾燥装置)
続いて塗布液を減圧乾燥する装置の好ましい構成の一例について図7を参照しながら説明する。減圧乾燥装置は処理容器をなす気密容器90を備えており、この気密容器90の内部には上述の塗布装置にて塗布液が塗布されたウエハWを水平姿勢で載置するための基板載置部である載置台91が設けられている。この載置台91にはウエハWの温度を調節するための温度調整部92例えばペルチェ素子が埋設されている。また載置台91には、ウエハWを搬入出する際にウエハWの裏面を下方向から支持して昇降するように基板支持ピン93が突没自在に設けられており、ウエハWは例えば前記した主搬送手段26と基板支持ピン93との協働作用により載置台91に載置されるように構成されている。
(Vacuum drying equipment)
Next, an example of a preferable configuration of an apparatus for drying the coating liquid under reduced pressure will be described with reference to FIG. The reduced-pressure drying apparatus includes an airtight container 90 serving as a processing container, and a substrate placement for placing the wafer W coated with the coating liquid by the above-described coating apparatus in a horizontal position in the airtight container 90. A mounting table 91 is provided. A temperature adjusting unit 92 for adjusting the temperature of the wafer W, for example, a Peltier element is embedded in the mounting table 91. The mounting table 91 is provided with substrate support pins 93 so as to protrude and retract so that the back surface of the wafer W is supported from below when the wafer W is loaded and unloaded. The main conveying means 26 and the substrate support pins 93 are configured to be mounted on the mounting table 91 by the cooperative action.

載置台91の上方側には、ウエハWの搬入出時に気密容器90内を開放するための蓋体94が図示しない昇降機構により昇降自在に設けられている。また蓋体94の天井部には中心付近に排気口95が設けられ、この排気口95は排気路例えば排気管を介して真空排気手段である真空ポンプ96と接続されている。そして排気路の途中には排気流量を制御して気密容器90内の圧力を調節する圧力調節部97が設けられている。   On the upper side of the mounting table 91, a lid 94 for opening the inside of the hermetic container 90 when the wafer W is loaded and unloaded is provided so as to be movable up and down by a lifting mechanism (not shown). An exhaust port 95 is provided near the center of the ceiling of the lid 94, and the exhaust port 95 is connected to a vacuum pump 96, which is a vacuum exhaust unit, through an exhaust path, for example, an exhaust pipe. A pressure adjusting unit 97 that controls the flow rate of the exhaust gas to adjust the pressure in the hermetic container 90 is provided in the exhaust path.

また載置台91上のウエハWの表面と対向するようにウエハWと同じかそれよりも大きい例えば円形状の整流板100が設けられている。この整流板100は、その周縁部を例えば3ヵ所で支持部材101により支持されており、これら支持部材101は載置台91を貫通し、昇降ベース102を介して昇降機構103により高さ調整ができるように構成されている。なお104は載置台91の貫通孔を介して気密容器90の気密状態が破られないようにするためのベローズである。   Further, for example, a circular rectifying plate 100 which is the same as or larger than the wafer W is provided so as to face the surface of the wafer W on the mounting table 91. The rectifying plate 100 is supported at its peripheral edge by, for example, three support members 101, and these support members 101 pass through the mounting table 91 and can be adjusted in height by the lifting mechanism 103 via the lifting base 102. It is configured as follows. Reference numeral 104 denotes a bellows for preventing the airtight state of the airtight container 90 from being broken through the through hole of the mounting table 91.

続いて、上述の塗布膜形成装置を用いて被処理基板例えばウエハWの表面に絶縁膜を形成する手法について説明する。先ず、基板保持部4が後方位置で下降位置に設定され、液受け手段6の液受け部61が外に開いた状態において、例えば必要な前処理が施されたウエハWが筺体3の側面に設けられた図示しない搬入出口を介して主搬送手段26により搬入され、そして基板保持部4上に吸着保持される。続いて、図8に示すように、駆動機構81により液供給部8がウエハWに所定の距離だけ接近し、ウエハWの周縁の一部が処理空間82内に進入すると、洗浄液供給孔83から洗浄液を吐出してウエハWの表面に供給すると共に、駆動機構42によりウエハWを鉛直軸回りに回転させて、ウエハの全周に亘って非塗布領域にあたる部位に洗浄液を供給する。これにより非塗布領域にあたる部位に付着していた不純物例えば有機物、水などが除去される。しかる後、洗浄液の供給動作を停止し、次いで液供給部8が後退した後、例えばウエハWの表面に供給された洗浄液が乾燥してから基板保持部4が上昇して液受け部61の下面と僅かな隙間となる高さ位置に設定される。続いてウエハWを保持した状態で基板保持部4がY方向に移動し、当該ウエハWの一端(前端)が塗布開始位置へ案内されると共に、塗布液ノズル5の吐出孔がこのウエハWの塗布領域の一端(塗布開始位置)の上方に配置される。更に液受け部61の内端面が非塗布領域の内縁に対応する位置まで閉じられて当該非塗布領域を上から覆うように設定される。   Next, a method for forming an insulating film on the surface of the substrate to be processed, for example, the wafer W, using the above-described coating film forming apparatus will be described. First, in a state where the substrate holding unit 4 is set to the lowered position at the rear position and the liquid receiving unit 61 of the liquid receiving unit 6 is opened to the outside, for example, a wafer W that has been subjected to necessary pretreatment is placed on the side surface of the housing 3. It is carried in by the main transfer means 26 through a loading / unloading port (not shown), and is sucked and held on the substrate holding unit 4. Subsequently, as shown in FIG. 8, when the liquid supply unit 8 approaches the wafer W by a predetermined distance by the driving mechanism 81 and a part of the periphery of the wafer W enters the processing space 82, the cleaning liquid supply hole 83 The cleaning liquid is discharged and supplied to the surface of the wafer W, and the driving mechanism 42 rotates the wafer W around the vertical axis to supply the cleaning liquid to the portion corresponding to the non-application area over the entire circumference of the wafer. As a result, impurities such as organic substances and water adhering to the portion corresponding to the non-application area are removed. Thereafter, the supply operation of the cleaning liquid is stopped, and then the liquid supply section 8 is retracted. Then, for example, the cleaning liquid supplied to the surface of the wafer W is dried, and then the substrate holding section 4 is lifted to lower the bottom surface of the liquid receiving section 61. And a height position that is a slight gap. Subsequently, the substrate holding unit 4 moves in the Y direction while holding the wafer W, one end (front end) of the wafer W is guided to the coating start position, and the discharge hole of the coating solution nozzle 5 is formed on the wafer W. It arrange | positions above one end (application | coating start position) of an application | coating area | region. Further, the inner end face of the liquid receiving portion 61 is set to be closed to a position corresponding to the inner edge of the non-application area so as to cover the non-application area from above.

続いて図9に示すように、塗布液ノズル5が塗布液を吐出しながら左右方向のうちの一方向にスキャンされ、ウエハWの表面に直線状に塗布液を液盛りすると、基板保持部4が前方向に間欠移動していく。この動作の繰り返し、つまりウエハWの周縁から中心線を挟んで対向する周縁に亘って塗布液ノズル5が塗布液を供給しながら左右に往復移動すると共に、ウエハWが前方向に間欠的に移動することにより、いわゆる一筆書きの要領で塗布液がウエハWの表面の前端縁から後端縁に向かって塗布される。そしてこのとき液受け部61の位置を制御することにより、ウエハWの周縁部に全周に亘って例えば幅の均一なリング状の非塗布領域200が形成されることとなる。なお液受け部61の形状は角型であるため、厳密には非塗布領域200の内縁の形状は完全な円ではなく階段状であるが、ウエハWの移動ピッチが例えば1mmと非常に小さいため、実質リング状とみなすことができ、「幅の均一な」という表現を使っている。   Subsequently, as shown in FIG. 9, when the coating liquid nozzle 5 is scanned in one of the left and right directions while discharging the coating liquid, and the coating liquid is deposited linearly on the surface of the wafer W, the substrate holding unit 4. Moves intermittently forward. This operation is repeated, that is, the coating liquid nozzle 5 reciprocates left and right while supplying the coating liquid from the peripheral edge of the wafer W across the center line to the opposite peripheral edge, and the wafer W intermittently moves forward. By doing so, the coating liquid is applied from the front edge of the surface of the wafer W toward the rear edge in a so-called one-stroke manner. At this time, by controlling the position of the liquid receiving portion 61, for example, a ring-shaped non-application region 200 having a uniform width is formed on the entire periphery of the wafer W. In addition, since the shape of the liquid receiving portion 61 is a square shape, strictly speaking, the shape of the inner edge of the non-application region 200 is not a perfect circle but a step shape, but the movement pitch of the wafer W is very small, for example, 1 mm. It can be regarded as a substantially ring shape, and the expression “uniform width” is used.

上述の塗布手法により表面に塗布液が液盛りされたウエハWは主搬送手段26により塗布膜形成装置の筺体3から搬出され、次いで減圧乾燥装置に搬入されて載置台91の載置領域に載置される。そして蓋体94が下降してウエハWの周囲を囲む気密容器90が形成され、整流板100の下面がウエハWの表面から例えば0.7〜1.5mm離れた高さ位置に設定される。またウエハWは、基板温度調整手段92により裏面側から加熱されて所定の温度例えば15℃に設定される。次いで真空ポンプ96により減圧排気が開始されると、ウエハWの表面と、整流板100の表面との間の僅かな隙間を中心側から外方側に向かって流れる排気流が形成されると共に、図10に示すように気密容器90内の圧力は大気圧雰囲気から急速に低下する(A領域)。   The wafer W on which the coating liquid is deposited on the surface by the above-described coating technique is unloaded from the casing 3 of the coating film forming apparatus by the main transfer means 26, and then loaded into the reduced pressure drying apparatus and mounted on the mounting area of the mounting table 91. Placed. Then, the lid 94 is lowered to form an airtight container 90 surrounding the periphery of the wafer W, and the lower surface of the rectifying plate 100 is set at a height position separated from the surface of the wafer W by, for example, 0.7 to 1.5 mm. The wafer W is heated from the back side by the substrate temperature adjusting means 92 and set to a predetermined temperature, for example, 15 ° C. Next, when vacuum exhaust is started by the vacuum pump 96, an exhaust flow is formed that flows from the center side toward the outer side through a slight gap between the surface of the wafer W and the surface of the rectifying plate 100, and As shown in FIG. 10, the pressure in the airtight container 90 rapidly decreases from the atmospheric pressure atmosphere (A region).

このときのウエハWの表面にある塗布液の様子を図11に模式的に示す。減圧排気前においてはウエハW表面上の塗布液201は表面張力により周縁から中央に向かって盛り上がった形状をしている。そして減圧排気が開始されると、気密容器90内の雰囲気が急速に外部へ排気されるため、ウエハWと整流板100との間の僅かな隙間に流量の大きい気流が形成され、この気流により塗布液は外方側に押されて非塗布領域200にまで広げられる。そして塗布液201はウエハWの外周縁に達すると表面張力によりウエハWに引っ張られてこぼれ落ちずに表面に保持される。これにより、結果としてウエハWの表面全体に塗布液201が液盛りされることとなる。   The state of the coating liquid on the surface of the wafer W at this time is schematically shown in FIG. Before evacuation under reduced pressure, the coating liquid 201 on the surface of the wafer W has a shape that rises from the periphery toward the center due to surface tension. When decompression is started, the atmosphere in the hermetic container 90 is rapidly exhausted to the outside, so that a large airflow is formed in a slight gap between the wafer W and the rectifying plate 100, and this airflow The coating liquid is pushed outward and spreads to the non-coating area 200. When the coating liquid 201 reaches the outer peripheral edge of the wafer W, it is pulled by the wafer W due to surface tension and is held on the surface without falling off. As a result, the coating liquid 201 is deposited on the entire surface of the wafer W.

しかる後、気密容器90内の圧力が塗布液中の溶剤の蒸気圧付近になると、ウエハW表面の塗布液中の溶剤が激しく蒸発し、この溶剤雰囲気により気流が形成されながら塗布液に含まれる固形成分が残って塗布膜が形成される。この溶剤が激しく蒸発しているときは、溶剤が沸騰して塗布膜の表面を粗くするのを抑えるために気密容器90内の圧力は圧力調整部97により調整されて溶剤の蒸気圧手前付近にて緩やかに低下させるのが好ましい(図10のB領域)。なお、塗布液は図10のA領域において溶剤が少し蒸発することにより粘性が大きくなってその表面形状つまり膜厚分布が略決定され、B領域において溶剤が略完全に除去されることとなる。そして、塗布液からの溶剤の蒸発が終わり再度気密容器90内の圧力が急速に低下し始めると減圧排気を停止し(図10のC領域)、図示しない給気手段によりパージ用の気体例えば窒素等の不活性ガスを気密容器90内に供給して大気圧まで圧力を復帰した後、蓋体94を上昇させて気密容器90を開放し、ウエハWを搬出して減圧乾燥処理を終了する。   Thereafter, when the pressure in the hermetic container 90 becomes near the vapor pressure of the solvent in the coating solution, the solvent in the coating solution on the surface of the wafer W evaporates violently and is contained in the coating solution while an air flow is formed by this solvent atmosphere. The solid component remains and a coating film is formed. When this solvent is violently evaporating, the pressure in the airtight container 90 is adjusted by the pressure adjusting unit 97 in order to prevent the solvent from boiling and roughening the surface of the coating film. It is preferable that the voltage is gradually lowered (B area in FIG. 10). Note that the viscosity of the coating solution is increased by slightly evaporating the solvent in the area A in FIG. 10, the surface shape, that is, the film thickness distribution is substantially determined, and the solvent is almost completely removed in the area B. Then, when the evaporation of the solvent from the coating liquid is finished and the pressure in the airtight container 90 begins to rapidly decrease again, the vacuum exhaust is stopped (region C in FIG. 10), and a purge gas such as nitrogen is supplied by an air supply means (not shown). After the inert gas such as is supplied into the hermetic container 90 and the pressure is restored to atmospheric pressure, the lid 94 is raised to open the hermetic container 90, the wafer W is unloaded, and the vacuum drying process is completed.

上述の実施の形態によれば、ウエハW表面の塗布液が塗布される領域の外側に、全周に亘って例えば幅の均一なリング状の非塗布領域を形成し、このウエハWの表面に沿って中心から外方側に流れる気流を形成しながら当該塗布液を減圧乾燥させる構成とすることにより、当該塗布液は当該気流により外側に向かって押し広げられて非塗布領域に供給され、この非塗布領域内を広がる。つまり、従来技術のように塗布液の塗布領域の外縁がウエハWの外周縁と略同じ場合には、外周縁において表面張力で引っ張られて上方側に跳ね上がろうとしていた塗布液を非塗布領域に広げることにより、周縁部に生じるハンプの高さを小さくできる。その結果、ウエハWの面内に均一な厚みの塗布膜を成膜することができ、ウエハWのデバイス形成領域を極めて広くとることができる。   According to the above-described embodiment, a ring-shaped non-application region having a uniform width, for example, is formed over the entire periphery outside the region where the coating liquid is applied on the surface of the wafer W. The coating liquid is dried under reduced pressure while forming an air flow that flows outward from the center along the center, so that the coating liquid is spread outward by the air flow and supplied to the non-application area. Spread in the non-application area. That is, when the outer edge of the application region of the coating liquid is substantially the same as the outer peripheral edge of the wafer W as in the prior art, the coating liquid that is pulled by the surface tension at the outer peripheral edge and is about to jump upward is not applied. By expanding the area, the height of the hump generated at the peripheral edge can be reduced. As a result, a coating film having a uniform thickness can be formed on the surface of the wafer W, and the device formation region of the wafer W can be made extremely wide.

また上述の実施の形態によれば、ウエハWの表面に盛られる塗布液の液膜の厚みに基づいて非塗布領域の幅を決める構成としたことにより、後述する実施例の結果からも明らかなように、より確実に周縁部に生じるハンプの高さを小さくすることができ、かつウエハWのデバイス形成領域を極めて大きくとることができる。即ち、ウエハWの表面に液盛りされる液の厚みに対して非塗布領域の幅が小さすぎればハンプしようとする液量が多いのでその全部を非塗布領域で吸収することができず、そのためウエハWの周縁部に液が溜まってしまいハンプが大きくなる。反対に幅が大きければウエハWの周縁端部まで液が流れずに非塗布領域に塗布液が塗られない領域が生じてデバイスを形成できなくなってしまう。よって、ウエハWの表面に液盛りする液膜の厚みの設定値と、非塗布領域の幅の設定値との間には適切な組み合わせがあることに着目し、互いの設定値を対応付けた情報を記憶した制御部により非塗布領域の幅の設定値を決めることにより、より確実にハンプを小さくすることができる。   In addition, according to the above-described embodiment, the width of the non-application area is determined based on the thickness of the liquid film of the application liquid deposited on the surface of the wafer W, which is apparent from the results of the examples described later. As described above, the height of the hump generated at the peripheral edge can be reduced more reliably, and the device formation region of the wafer W can be made extremely large. That is, if the width of the non-application area is too small with respect to the thickness of the liquid deposited on the surface of the wafer W, the amount of liquid to be humped is large, so that all of the liquid cannot be absorbed in the non-application area. The liquid accumulates at the peripheral edge of the wafer W, and the hump increases. On the other hand, if the width is large, the liquid does not flow to the peripheral edge of the wafer W, and an area where the coating liquid is not applied is generated in the non-application area, so that a device cannot be formed. Therefore, focusing on the fact that there is an appropriate combination between the set value of the thickness of the liquid film deposited on the surface of the wafer W and the set value of the width of the non-application area, the set values are associated with each other. By determining the set value of the width of the non-application area by the control unit storing the information, the hump can be reduced more reliably.

更に上述の例においては、ウエハWの表面に液盛りする塗布液の液膜の厚みの情報に対応付けた非塗布領域の幅の情報に基づいて非塗布領域の幅を決める構成に限られず、塗布液の広がり具合に影響するパラメータ例えば選択する塗布液の粘度の情報に対応付けた非塗布領域の幅の情報に基づいて決めるようにしてもよい。更には整流板100の設定する高さの情報に対応付けた非塗布領域の幅の情報に基づいて決めるようにしてもよい。また更に、これら液膜の厚み、塗布液の粘度及び整流板100の設定する高さのうちのいずれかを組み合わせた情報に非塗布領域の幅の情報を対応付けるようにしてもよい。   Furthermore, in the above-described example, the present invention is not limited to the configuration in which the width of the non-application area is determined based on the information on the width of the non-application area associated with the information on the thickness of the liquid film of the application liquid deposited on the surface of the wafer W. You may make it determine based on the parameter which affects the spreading condition of a coating liquid, for example, the information of the width | variety of the non-application area | region matched with the information of the viscosity of the coating liquid to select. Furthermore, it may be determined based on the information on the width of the non-application area associated with the information on the height set by the current plate 100. Furthermore, information on the width of the non-application area may be associated with information obtained by combining any of the thickness of the liquid film, the viscosity of the application liquid, and the height set by the rectifying plate 100.

更に上述の実施の形態によれば、ウエハWの非塗布領域に相当する領域に対して洗浄を行ってから塗布液を塗布する構成とすることにより、当該非塗布領域の表面に付着した不純物、水分などを除去して表面の状態を良くすることができる。このため減圧乾燥時において塗布液が非塗布領域を速やかに広がるので、その結果、後述する実施例の結果からも明らかなように、周縁部のハンプを小さくすることができ、デバイスの形成領域を極めて広くとることができる。     Further, according to the above-described embodiment, by applying the coating liquid after cleaning the region corresponding to the non-application region of the wafer W, impurities attached to the surface of the non-application region, The surface condition can be improved by removing moisture and the like. For this reason, the coating liquid spreads quickly in the non-application area during drying under reduced pressure, and as a result, as is clear from the results of Examples described later, the peripheral hump can be reduced, and the device formation area can be reduced. It can be taken very widely.

ここで多数枚のウエハWに対して繰り返し塗布処理をする場合、ウエハWの表面の状態例えばその表面の親水性、清浄度などは厳密に言えばウエハW毎、更には塗布液が塗られるウエハWの下地膜の種類毎例えばシリコン、シリコンナイトライドによって異なる。このため減圧乾燥時における非塗布領域の塗布液の広がり具合もウエハW毎に異なり、結果としてウエハ毎に成膜される膜厚の精度がばらついてしまう。表面の状態は良くもあったり悪くもありするので、状態が良い場合にはハンプが小さい高精度な処理をすることができる。しかしながら、ウエハWの表面にパーティクルが付着したり、あるいは自然酸化膜が形成されるのを防止するために例えば密閉状態のキャリア22内に多数枚のウエハWを棚状に収納して各処理工程間を移送する場合には、キャリア22は一般に樹脂製であるため、この樹脂から飛散してキャリア22内の空間を飛んでいる有機物がウエハWの表面に付着して表面の状態は悪くなっていることが多い。オープン型キャリアの場合には更に周辺雰囲気に飛んでいる不純物が付着することがある。従って、本例のように非塗布領域に相当する領域に対して洗浄液を供給して洗浄することにより、非塗布領域の親水性の程度をウエハW毎に揃えることができるので、減圧乾燥時における非塗布領域を広がる塗布液の液流れの状態をウエハW毎に揃えることができ、結果としてウエハW毎に膜厚が均一な塗布成膜処理をすることができる。   Here, when the coating process is repeatedly performed on a large number of wafers W, the state of the surface of the wafer W, such as the hydrophilicity and cleanliness of the surface, strictly speaking, every wafer W, and further, the wafer to which the coating liquid is applied. It differs depending on the type of the underlying film of W, for example, silicon or silicon nitride. For this reason, the spread of the coating liquid in the non-coating region during vacuum drying varies from wafer W to wafer W, and as a result, the accuracy of the film thickness deposited on each wafer varies. Since the surface state may be good or bad, high-precision processing with a small hump can be performed when the state is good. However, in order to prevent particles from adhering to the surface of the wafer W or forming a natural oxide film, for example, a plurality of wafers W are stored in a shelf shape in a hermetically sealed carrier 22, and each processing step is performed. In the case of transferring between them, since the carrier 22 is generally made of resin, the organic matter scattered from the resin and flying in the space in the carrier 22 adheres to the surface of the wafer W and the surface condition becomes worse. There are many. In the case of an open type carrier, impurities flying to the surrounding atmosphere may further adhere. Therefore, by supplying the cleaning liquid to the region corresponding to the non-application region and cleaning it as in this example, the degree of hydrophilicity in the non-application region can be made uniform for each wafer W. The liquid flow state of the coating liquid spreading in the non-coating region can be made uniform for each wafer W, and as a result, a coating film forming process with a uniform film thickness can be performed for each wafer W.

更に上述の実施例においては、塗布液を塗るタイミングは、既述のように非塗布領域に供給された洗浄液が乾燥した後に限られず、例えば洗浄液が乾燥する前であってもよい。ハンプが生じる要因の殆どは既述したように気流によるものと考えられているが、別の要因として次のものがあると発明者らは推測している。即ち、ウエハWの周縁部にある塗布液は表面からだけでなく側周面からも溶剤が蒸発するので中央部に比して乾燥するのが早い。そのため早く乾燥して溶剤成分が希薄になったところに濃度拡散により内側から溶剤が若干の固形成分を伴って流れ込み、固形成分が周縁部に溜まってハンプが生じることとなる。よって非塗布領域に供給した洗浄液が乾燥する前に塗布液を塗布する構成とすることにより、非塗布領域に塗布液が広がった際に溶剤と混ざりあって周縁部にある塗布液の溶剤濃度が高くなる。そのため周縁部の乾燥状態と、中央部の乾燥状態との差が小さくなり、結果としてハンプが生じるのを抑えることができる。   Further, in the above-described embodiment, the timing of applying the coating liquid is not limited to after the cleaning liquid supplied to the non-application area is dried as described above, and may be before the cleaning liquid is dried, for example. Most of the factors causing the hump are thought to be due to the airflow as described above, but the inventors speculate that there are the following factors as another factor. That is, since the solvent evaporates not only from the surface but also from the side peripheral surface, the coating liquid at the peripheral edge of the wafer W is dried faster than the central portion. Therefore, when the solvent component is diluted by drying quickly, the solvent flows from the inside with some solid component due to concentration diffusion, and the solid component accumulates at the peripheral portion, resulting in a hump. Therefore, by adopting a configuration in which the coating liquid is applied before the cleaning liquid supplied to the non-application area is dried, when the coating liquid spreads in the non-application area, the solvent is mixed with the solvent and the solvent concentration of the coating liquid at the peripheral portion is reduced. Get higher. Therefore, the difference between the dry state of the peripheral portion and the dry state of the central portion is reduced, and as a result, the occurrence of hump can be suppressed.

本発明においては、非塗布領域に相当する領域に対してなされる所定の表面処理は、洗浄に限られず、塗布液を供給して親水性の高い薄膜例えばシリコン酸化膜を形成するようにしてもよい。このような構成であっても非塗布領域の表面の状態をウエハW毎に揃えることができるので、ウエハW毎にハンプの状態を揃えることができる。更には所定の表面処理は洗浄液又は塗布液を供給する液処理に限られず、液供給部8に代えて例えばUV線、電子線などを照射する光照射手段を設け、非塗布領域に相当する領域に対して光照射をするようにしてもよい。このような構成であっても、有機物などの不純物を除去することができるので、上述の場合と同様の効果を得ることができる。表面処理をする手段は、塗布膜形成装置内に設けた構成に限られず、例えば図1及び図2記載の塗布膜成膜システムのいずれかのユニット内に設けるようにしてもよい。   In the present invention, the predetermined surface treatment performed on the region corresponding to the non-application region is not limited to cleaning, and a coating solution is supplied to form a highly hydrophilic thin film such as a silicon oxide film. Good. Even with such a configuration, the surface state of the non-application area can be made uniform for each wafer W, so that the hump state can be made uniform for each wafer W. Furthermore, the predetermined surface treatment is not limited to the liquid treatment for supplying the cleaning liquid or the coating liquid, but instead of the liquid supply unit 8, for example, a light irradiation means for irradiating UV rays, electron beams or the like is provided, and the area corresponding to the non-application area May be irradiated with light. Even with such a configuration, since impurities such as organic substances can be removed, the same effect as described above can be obtained. The means for performing the surface treatment is not limited to the configuration provided in the coating film forming apparatus, and may be provided, for example, in any unit of the coating film forming system shown in FIGS.

更に本発明においては、非塗布領域に相当する領域に対して所定の表面処理を行う構成に限られず、表面処理を行わないで塗布液を塗布するようにしてもよい。この場合であっても後述する実施例からも明らかなように整流板を対向させて減圧乾燥すれば、非塗布領域に塗布液が広がってハンプの高さを極めて小さくすることができる。特に、塗布液の供給量に対し適切な塗布領域の幅を設定することにより、より確実にハンプの高さを小さくすることができ、かつウエハWの外縁近傍まで厚みの均一な塗布膜を形成することができる。   Furthermore, in this invention, it is not restricted to the structure which performs predetermined surface treatment with respect to the area | region corresponded to a non-application area | region, You may make it apply | coat a coating liquid, without performing surface treatment. Even in this case, as will be apparent from the examples described later, if the rectifying plates are made to face each other and dried under reduced pressure, the coating liquid spreads in the non-application area and the height of the hump can be made extremely small. In particular, by setting an appropriate width of the coating region with respect to the amount of coating solution supplied, the height of the hump can be reduced more reliably and a coating film having a uniform thickness can be formed up to the vicinity of the outer edge of the wafer W. can do.

更に本発明においては、液受け手段は、トレー状の液受け部61を備えた構成に限られず、例えば図12に示すように、ウエハWの非塗布領域にあたる部位と対向するようにリング状のマスク部材300を配置して塗布液ノズル4からの液を受け止めるようにしてもよい。また本発明においては、ウエハWの表面に塗布液を塗布する手法は、上述のように直線状の塗布液を隙間なく並べて塗布するものに限られず、例えば図13に示すように、ウエハWを鉛直軸周りに回転させながら塗布液供給ノズル5を径方向に移動させて渦巻き状に塗布液を隙間なく並べて塗布するようにしてもよい。更に本発明においては図14に示すように、ウエハWの直径と同じか、あるいは直径よりも長い横に伸びる吐出口を有する横長の塗布液ノズル5をウエハWの表面に対して僅かに浮かせた状態で配置し、例えばリング状のマスク部材300の上方から塗布液を吐出しながらウエハWの一端側から他端側に塗布液ノズル5をスキャンして塗布するようにしてもよい。   Further, in the present invention, the liquid receiving means is not limited to the configuration provided with the tray-shaped liquid receiving portion 61, and for example, as shown in FIG. 12, the ring receiving means has a ring shape so as to face the portion corresponding to the non-application area of the wafer W. The mask member 300 may be disposed to receive the liquid from the coating liquid nozzle 4. In the present invention, the method of applying the coating liquid to the surface of the wafer W is not limited to the method of applying the linear coating liquids side by side without any gaps as described above. For example, as shown in FIG. The coating liquid supply nozzle 5 may be moved in the radial direction while rotating around the vertical axis so that the coating liquids are arranged in a spiral shape without gaps. Further, in the present invention, as shown in FIG. 14, the horizontally long coating liquid nozzle 5 having a discharge port extending horizontally that is equal to the diameter of the wafer W or longer than the diameter is slightly floated with respect to the surface of the wafer W. For example, the coating liquid nozzle 5 may be scanned and applied from one end side to the other end side of the wafer W while discharging the coating liquid from above the ring-shaped mask member 300.

更に本発明においては、液受け手段で塗布液を受け止めて非塗布領域を形成する構成に限られず、例えばウエハWの表面の例えば全体に塗布液を塗布し、次いでウエハWの周縁部にある塗布液を除去して非塗布領域を形成するようにしてもよい。塗布液を除去する手段としては例えば図6記載の液供給部8を用いることができ、この液供給部8によりウエハWの周縁部の表面に処理液例えば溶剤又は溶剤蒸気を供給することにより塗布液を除去する。なお必ずしも液供給部8を用いる必要はなく、例えば溶剤供給ノズルを別途設けるようにしてもよい。この場合、ウエハWの表面に塗布液が塗布された後、次いで例えば遠心力により塗布液が外に広がらないように所定の回転速度でウエハWを鉛直軸回りに回転させると共にウエハWの周縁部の表面に溶剤を供給して塗布液を除去する。そして既述のように減圧乾燥により塗布液を乾燥させる。但し、ウエハWの表面に塗布液を塗布した後、速やかに周縁部の塗布液を除去することにより、ウエハW表面にある塗布液の流動性を維持した状態で減圧乾燥するのが好ましい。このような構成であっても上述の場合と同様の効果を得ることができる。
更には、上記のようにウエハWの周縁部表面に溶剤を供給して塗布液を除去した場合には、非塗布領域を形成すると同時に当該非塗布領域にあたるウエハW表面の表面処理を行うこととなり、そのため上述の表面処理をする場合と同様の効果を得ることができる。
Further, the present invention is not limited to the configuration in which the coating liquid is received by the liquid receiving means to form the non-coating region. For example, the coating liquid is applied to the entire surface of the wafer W, for example, and then the coating on the periphery of the wafer W is applied. The liquid may be removed to form a non-application area. As a means for removing the coating liquid, for example, the liquid supply unit 8 shown in FIG. 6 can be used, and the liquid supply unit 8 applies the processing liquid such as a solvent or a solvent vapor to the peripheral surface of the wafer W. Remove the liquid. The liquid supply unit 8 is not necessarily used, and for example, a solvent supply nozzle may be provided separately. In this case, after the coating liquid is applied to the surface of the wafer W, the wafer W is then rotated around the vertical axis at a predetermined rotational speed so that the coating liquid does not spread outward by, for example, centrifugal force, and the peripheral portion of the wafer W A solvent is supplied to the surface of the coating to remove the coating solution. Then, as described above, the coating solution is dried by drying under reduced pressure. However, it is preferable to dry under reduced pressure while maintaining the fluidity of the coating liquid on the surface of the wafer W by applying the coating liquid on the surface of the wafer W and then quickly removing the coating liquid at the periphery. Even if it is such a structure, the effect similar to the above-mentioned case can be acquired.
Further, when the solvent is supplied to the peripheral surface of the wafer W and the coating liquid is removed as described above, the surface treatment of the surface of the wafer W corresponding to the non-coating area is performed simultaneously with the formation of the non-coating area. For this reason, the same effect as in the case of the surface treatment described above can be obtained.

更に本発明おいては、図6記載のような液処理部8を設けた構成に限られず、例えば液受け手段6の液受け部61の下面側に洗浄液吐出孔を設け、例えば塗布液ノズル4により塗布液を供給すると共にこの洗浄液吐出孔から洗浄液を供給するようにしてもよい。更には表面処理をするための処理は非塗布領域だけでなく、例えばウエハWの全面に処理液を供給するようにしてもよい。この場合であっても上述の場合と同様の効果を得ることができる。   Furthermore, in the present invention, the configuration is not limited to the configuration in which the liquid processing section 8 as shown in FIG. 6 is provided. For example, a cleaning liquid discharge hole is provided on the lower surface side of the liquid receiving section 61 of the liquid receiving means 6. In addition to supplying the coating liquid, the cleaning liquid may be supplied from the cleaning liquid discharge hole. Furthermore, the treatment for performing the surface treatment may be performed not only on the non-application area but also on the entire surface of the wafer W, for example. Even in this case, the same effects as those described above can be obtained.

本発明においては、塗布膜は絶縁膜に限られず、例えばレジスト膜であってもよい。つまり、塗布膜を形成する成分を溶剤に溶かしてなる塗布液を供給する手法であれば本発明を適用することができる。更に本発明においては、基板はウエハWに限られず例えば例えばLCD基板、フォトマスク用レチクル基板の成膜処理にも適用できる。   In the present invention, the coating film is not limited to an insulating film, and may be, for example, a resist film. That is, the present invention can be applied as long as it is a technique for supplying a coating solution obtained by dissolving a component for forming a coating film in a solvent. Further, in the present invention, the substrate is not limited to the wafer W, and can be applied to, for example, a film forming process of an LCD substrate or a photomask reticle substrate.

続いて本発明の効果を確認するために行った実施例について説明する。
(実施例1)
本例は、8インチサイズのウエハWの周縁に全周に亘って幅の均一なリング状の非塗布領域を形成するように塗布液を塗布した後に、減圧乾燥して成膜した実施例である。詳細な条件を以下に示す。成膜された塗布膜の周縁部の厚みを膜厚計で測定した結果を図15に示す。
・非塗布領域の幅;1mm
・塗布膜の厚み;800nm
・塗布液の供給量;1.0ml(液膜の厚み13μm)
・塗布膜の種類;シリコン酸化膜(絶縁膜)
・下地膜の種類;シリコン窒化膜
・整流板の高さ;ウエハWの表面から0.7mm
Next, examples performed to confirm the effects of the present invention will be described.
(Example 1)
In this example, a coating solution is applied to form a ring-shaped non-coating region having a uniform width over the entire periphery of an 8-inch wafer W, and then dried under reduced pressure to form a film. is there. Detailed conditions are shown below. The result of having measured the thickness of the peripheral part of the formed coating film with the film thickness meter is shown in FIG.
・ Width of non-application area: 1 mm
・ Thickness of coating film: 800 nm
-Supply amount of coating solution: 1.0 ml (thickness of liquid film 13 μm)
・ Type of coating film; silicon oxide film (insulating film)
・ Type of base film: Silicon nitride film ・ Height of rectifying plate: 0.7 mm from the surface of wafer W

(実施例2)
本例は、非塗布領域の幅を2mmにしたことを除いて実施例1と同じ処理を行って成膜した実施例である。成膜された塗布膜の周縁部の厚みを膜厚計で測定した結果を図15に示す。
(Example 2)
This example is an example in which a film was formed by performing the same process as in Example 1 except that the width of the non-application area was 2 mm. The result of having measured the thickness of the peripheral part of the formed coating film with the film thickness meter is shown in FIG.

(実施例3)
本例は、非塗布領域の幅を3mmにしたことを除いて実施例1と同じ処理を行って成膜した実施例である。成膜された塗布膜の周縁部の厚みを膜厚計で測定した結果を図15に示す。
(Example 3)
This example is an example in which a film was formed by performing the same process as in Example 1 except that the width of the non-application region was 3 mm. The result of having measured the thickness of the peripheral part of the formed coating film with the film thickness meter is shown in FIG.

(実施例4)
本例は、非塗布領域の幅を5mmにしたことを除いて実施例1と同じ処理を行って成膜した実施例である。成膜された塗布膜の周縁部の厚みを膜厚計で測定した結果を図15に示す。
Example 4
This example is an example in which a film was formed by performing the same process as in Example 1 except that the width of the non-application area was 5 mm. The result of having measured the thickness of the peripheral part of the formed coating film with the film thickness meter is shown in FIG.

(比較例1)
本例は、非塗布領域の幅を0.3mmにしたことを除いて実施例1と同じ処理を行って成膜した比較例である。成膜された塗布膜の周縁部の厚みを膜厚計で測定した結果を図15に示す。
(Comparative Example 1)
This example is a comparative example in which a film was formed by performing the same process as in Example 1 except that the width of the non-application area was 0.3 mm. The result of having measured the thickness of the peripheral part of the formed coating film with the film thickness meter is shown in FIG.

(実施例1〜4、比較例1の結果と考察)
図15の結果からも明らかなように、実施例1のハンプの高さ(内側の膜表面との高さの差)は2000nm程度であり、実施例2は1200nm程度であり、実施例3は500nm程度であり、実施例4は500nm程度であった。これに対し比較例1のハンプの高さは2400nm程度であった。即ち、ウエハWの周縁部に非塗布領域を形成することにより、ハンプが起きるのを抑えることができることが確認された。更に、実施例1、2、3及び4の順にハンプが小さくなっており、またハンプの高さが略同じ実施例3と4とを比べると実施例3の方が僅かに膜形成領域が広い。即ち、塗布液の供給量に対し適切な塗布領域の幅を設定すれば、より確実にハンプの高さを小さくすることができ、かつウエハWの外縁近傍まで厚みの均一な塗布膜を形成できることが確認された。
(Results and discussion of Examples 1 to 4 and Comparative Example 1)
As is clear from the results of FIG. 15, the height of the hump in Example 1 (the difference in height from the inner film surface) is about 2000 nm, Example 2 is about 1200 nm, and Example 3 is The thickness was about 500 nm, and Example 4 was about 500 nm. On the other hand, the height of the hump in Comparative Example 1 was about 2400 nm. That is, it has been confirmed that by forming a non-coating region on the peripheral edge of the wafer W, it is possible to suppress the occurrence of hump. Furthermore, the humps become smaller in the order of Examples 1, 2, 3 and 4, and compared with Examples 3 and 4 where the height of the hump is substantially the same, Example 3 has a slightly wider film formation region. . That is, if the width of the coating area is set appropriately with respect to the supply amount of the coating liquid, the height of the hump can be reduced more reliably and a coating film having a uniform thickness can be formed up to the vicinity of the outer edge of the wafer W. Was confirmed.

(実施例5)
本例は、8インチサイズのウエハWの非塗布領域にあたる部位に対してシンナで表面処理をした後に塗布液を塗布し、次いで減圧乾燥して成膜した実施例である。詳細な条件を以下に示す。成膜された塗布膜の周縁部の厚みを膜厚計で測定した結果を図16に示す。
・非塗布領域の幅;5.0mm
・塗布膜の厚み;800nm
・塗布液の供給量;1.0ml(液膜の厚み13μm)
・塗布膜の種類;シリコン酸化膜(絶縁膜)
・下地膜の種類;シリコン窒化膜
・整流板の高さ;ウエハWの表面から0.7mm
(Example 5)
In this example, the surface corresponding to the non-application area of the 8-inch wafer W is surface-treated with thinner, and then the application liquid is applied, followed by drying under reduced pressure to form a film. Detailed conditions are shown below. The result of having measured the thickness of the peripheral part of the formed coating film with the film thickness meter is shown in FIG.
・ Width of non-application area: 5.0 mm
・ Thickness of coating film: 800 nm
-Supply amount of coating solution: 1.0 ml (thickness of liquid film 13 μm)
・ Type of coating film; silicon oxide film (insulating film)
・ Type of base film: Silicon nitride film ・ Height of rectifying plate: 0.7 mm from the surface of wafer W

(比較例2)
本例は表面処理をしなかったことを除いて実施例5と同じ処理を行って成膜した比較例である。成膜された塗布膜の周縁部の厚みを膜厚計で測定した結果を図16に示す。
(Comparative Example 2)
This example is a comparative example in which a film was formed by performing the same process as in Example 5 except that the surface treatment was not performed. The result of having measured the thickness of the peripheral part of the formed coating film with the film thickness meter is shown in FIG.

(実施例5、比較例2の結果と考察)
図16の結果からも明らかなように、実施例5のハンプの高さは500nm程度であるのに対し、比較例2は1200nm程度とハンプが大きい。即ち、非塗布領域に相当する領域に対して洗浄処理を行うことにより、ハンプの高さを小さくできることが確認された。ハンプが小さくなる要因として、シンナで表面を洗浄することにより、表面の不純物が除去されて親水性が高くなるので、減圧乾燥時に塗布液が外方側に向かってより確実に広げることができたためと推測する。
(Results and discussion of Example 5 and Comparative Example 2)
As is apparent from the results of FIG. 16, the height of the hump in Example 5 is about 500 nm, whereas the hump in Comparative Example 2 is about 1200 nm, which is large. That is, it was confirmed that the height of the hump can be reduced by performing the cleaning process on the region corresponding to the non-application region. As a factor to reduce the hump, washing the surface with thinner removes impurities on the surface and increases the hydrophilicity, so the coating liquid can be spread more reliably outward when drying under reduced pressure. I guess.

(実施例6)
本例は、非塗布領域に相当する領域にあたる表面の状態が減圧乾燥時の塗布液の液流れに与える影響を確認するために行った実施例である。実施例5と同様の処理を行って非塗布領域にあたる部位の洗浄を行い、洗浄後速やかに塗布、乾燥処理を行って成膜した。成膜の条件を以下に示す。成膜された塗布膜の周縁部の厚みを膜厚計で測定した結果を図17に示す。
・非塗布領域の幅;5.0mm
・塗布膜の厚み;800nm
・塗布液の供給量;1.0ml(液膜の厚み13μm)
・塗布膜の種類;シリコン酸化膜(絶縁膜)
・下地膜の種類;シリコン窒化膜
・整流板の高さ;ウエハWの表面から0.7mm
(Example 6)
This example is an example carried out in order to confirm the influence of the state of the surface corresponding to the region corresponding to the non-application region on the liquid flow of the coating solution during drying under reduced pressure. The same treatment as in Example 5 was performed to clean the portion corresponding to the non-application region, and the film was formed by applying and drying immediately after the cleaning. The conditions for film formation are shown below. The result of having measured the thickness of the peripheral part of the formed coating film with the film thickness meter is shown in FIG.
・ Width of non-application area: 5.0 mm
・ Thickness of coating film: 800 nm
-Supply amount of coating solution: 1.0 ml (thickness of liquid film 13 μm)
・ Type of coating film; silicon oxide film (insulating film)
・ Type of base film: Silicon nitride film ・ Height of rectifying plate: 0.7 mm from the surface of wafer W

(比較例3)
本例は洗浄後にキャリア22内にウエハWを収納し、3日が経過した後に塗布、乾燥を行って成膜した比較例である。成膜された塗布膜の周縁部の厚みを膜厚計で測定した結果を図17に示す。
(Comparative Example 3)
This example is a comparative example in which the wafer W is stored in the carrier 22 after cleaning, and the film is formed by coating and drying after 3 days. The result of having measured the thickness of the peripheral part of the formed coating film with the film thickness meter is shown in FIG.

(比較例4)
本例は洗浄後にキャリア22内にウエハWを収納し、10日が経過した後に塗布、乾燥を行って成膜した比較例である。成膜された塗布膜の周縁部の厚みを膜厚計で測定した結果を図17に示す。
(Comparative Example 4)
This example is a comparative example in which the wafer W is stored in the carrier 22 after cleaning, and the film is formed by coating and drying after 10 days. The result of having measured the thickness of the peripheral part of the formed coating film with the film thickness meter is shown in FIG.

(実施例6、比較例3、4の結果と考察)
図17の結果からも明らかなように、実施例6のハンプ高さは150nm程度であるのに対し、比較例3は500nm程度、比較例4は1000nmとハンプが大きい。即ち、非塗布領域に相当する領域に対して表面処理を行って表面の状態をよくすることにより、ハンプの高さを小さくできることが確認された。このようにハンプの程度が変るのは、洗浄後にウエハWを放置することで表面の親水性が低下、つまり表面の状態が悪くなってしまい、そのため塗布液の外に広がらずにハンプしたためと考えられる。
(Results and discussion of Example 6, Comparative Examples 3 and 4)
As is clear from the results of FIG. 17, the hump height of Example 6 is about 150 nm, whereas Comparative Example 3 has a large hump of about 500 nm and Comparative Example 4 has a large hump of 1000 nm. That is, it was confirmed that the height of the hump can be reduced by performing surface treatment on the region corresponding to the non-coated region to improve the surface state. The degree of hump change in this way is considered to be because the hydrophilicity of the surface is lowered by leaving the wafer W after cleaning, that is, the surface condition is deteriorated, and therefore the hump is not spread out of the coating solution. It is done.

本発明の塗布装置を組み込んだ塗布装置の斜視図である。It is a perspective view of the coating device incorporating the coating device of this invention. 本発明の塗布装置を組み込んだ塗布装置の平面図である。It is a top view of the coating device incorporating the coating device of this invention. 本発明の実施の形態にかかる塗布装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the coating device concerning embodiment of this invention. 本発明の実施の形態にかかる塗布装置を示す平面図である。It is a top view which shows the coating device concerning embodiment of this invention. 上記塗布装置の制御部の機能を説明するための説明図である。It is explanatory drawing for demonstrating the function of the control part of the said coating device. 上記塗布膜形成装置の液供給部を示す説明図である。It is explanatory drawing which shows the liquid supply part of the said coating film forming apparatus. 上記塗布装置にて塗布した基板表面の塗布液を乾燥させる減圧乾燥装置を示す説明図である。It is explanatory drawing which shows the reduced pressure drying apparatus which dries the coating liquid of the board | substrate surface apply | coated with the said coating device. 上記液供給部によりウエハの非塗布領域に相当する領域を洗浄する様子を示す説明図である。It is explanatory drawing which shows a mode that the area | region equivalent to the non-application | coating area | region of a wafer is wash | cleaned by the said liquid supply part. 上記塗布装置によりウエハに塗布液を塗布する様子を示す説明図である。It is explanatory drawing which shows a mode that a coating liquid is apply | coated to a wafer with the said coating device. 上記減圧乾燥装置の気密容器内の圧力の様子を示す説明図である。It is explanatory drawing which shows the mode of the pressure in the airtight container of the said vacuum drying apparatus. 減圧乾燥時のウエハ上の塗布液の様子を示す説明図である。It is explanatory drawing which shows the mode of the coating liquid on the wafer at the time of reduced pressure drying. 液受け手段の他の例を示す説明図である。It is explanatory drawing which shows the other example of a liquid receiving means. 塗布液ノズルの他の例を示す説明図である。It is explanatory drawing which shows the other example of a coating liquid nozzle. 塗布液ノズルの他の例を示す説明図である。It is explanatory drawing which shows the other example of a coating liquid nozzle. 本発明の効果を確認するために行った実施例の結果を示す特性図である。It is a characteristic view which shows the result of the Example performed in order to confirm the effect of this invention. 本発明の効果を確認するために行った実施例の結果を示す特性図である。It is a characteristic view which shows the result of the Example performed in order to confirm the effect of this invention. 本発明の効果を確認するために行った実施例の結果を示す特性図である。It is a characteristic view which shows the result of the Example performed in order to confirm the effect of this invention. 従来の塗布手法を示す説明図である。It is explanatory drawing which shows the conventional application | coating method. 従来の減圧乾燥装置を示す説明図である。It is explanatory drawing which shows the conventional vacuum drying apparatus. ウエハの周縁部の塗布膜の様子を示す説明図である。It is explanatory drawing which shows the mode of the coating film of the peripheral part of a wafer.

符号の説明Explanation of symbols

3 筐体
4 基板保持部
5 塗布液ノズル
6 液受け手段
61 液受け部
7 制御部
8 液供給部
90 気密容器
DESCRIPTION OF SYMBOLS 3 Housing | casing 4 Board | substrate holding part 5 Coating liquid nozzle 6 Liquid receiving means 61 Liquid receiving part 7 Control part 8 Liquid supply part 90 Airtight container

Claims (20)

基板を水平に保持した状態で基板の周縁部に全周に亘って非塗布領域が形成されるように基板の表面に塗布液を供給して液膜を形成する工程と、
前記基板の表面に整流板を対向させて当該基板を減圧雰囲気下に置くことによりその表面に沿って中央部から外側に向かう気流を形成すると共に前記液膜を乾燥させる工程と、を含むことを特徴とする塗布膜形成方法。
Forming a liquid film by supplying a coating liquid to the surface of the substrate so that a non-coating region is formed over the entire circumference in the peripheral portion of the substrate while holding the substrate horizontally;
Including a step of facing the current plate to the surface of the substrate and placing the substrate in a reduced-pressure atmosphere so as to form an air flow from the central portion to the outside along the surface and drying the liquid film. A method for forming a coating film.
非塗布領域の幅は1mm以上であることを特徴とする請求項1記載の塗布膜形成方法。   2. The coating film forming method according to claim 1, wherein the width of the non-application region is 1 mm or more. 非塗布領域の幅は基板全周に亘って均一であることを特徴とする請求項1又は2記載の塗布膜形成方法。   3. The method for forming a coating film according to claim 1, wherein the width of the non-coated region is uniform over the entire circumference of the substrate. 液膜を形成する工程は、口径が5μm〜200μmの塗布液ノズルと基板とを相対的に移動させながら液膜を形成すると共に塗布液ノズルと基板の周縁部との間に液受け手段を介在させることにより行われることを特徴とする請求項1ないし3のいずれか一つに記載の塗布膜形成方法。   In the step of forming the liquid film, the liquid film is formed while relatively moving the coating liquid nozzle having a diameter of 5 μm to 200 μm and the substrate, and a liquid receiving means is interposed between the coating liquid nozzle and the peripheral portion of the substrate. The coating film forming method according to claim 1, wherein the coating film forming method is performed. 基板を水平に保持した状態で基板の周縁部に全周に亘って形成される非塗布領域に相当する領域に対して表面処理を行う工程と、
この基板に前記非塗布領域が形成されるように基板の表面に塗布液を供給して液膜を形成する工程と、
この基板を減圧雰囲気下に置いて前記液膜を乾燥させる工程と、を含むことを特徴とする塗布膜形成方法。
Performing a surface treatment on a region corresponding to a non-coating region formed over the entire periphery of the peripheral edge of the substrate while holding the substrate horizontally;
Supplying a coating liquid to the surface of the substrate so as to form the non-coating region on the substrate to form a liquid film;
And a step of placing the substrate in a reduced-pressure atmosphere and drying the liquid film.
基板を水平に保持した状態で基板の表面に塗布液を供給して液膜を形成する工程と、
この基板の周縁部に全周に亘って非塗布領域が形成されるように当該基板の周縁部の表面に処理液を供給して塗布液を除去すると共に当該領域の表面処理をする工程と、
前記基板を減圧雰囲気下に置いて前記液膜を乾燥させる工程と、を含むことを特徴とする塗布膜形成方法。
Supplying a coating liquid to the surface of the substrate while holding the substrate horizontally to form a liquid film;
A step of supplying a treatment liquid to the surface of the peripheral edge of the substrate so as to form a non-application area over the entire periphery of the peripheral edge of the substrate, removing the coating liquid, and performing a surface treatment of the area;
And a step of drying the liquid film by placing the substrate in a reduced-pressure atmosphere.
前記表面処理を行う工程は、前記非塗布領域に相当する領域に処理液又は当該処理液の蒸気を供給する工程であることを特徴とする請求項5記載の塗布膜形成方法。   6. The method of forming a coating film according to claim 5, wherein the surface treatment step is a step of supplying a treatment liquid or vapor of the treatment liquid to an area corresponding to the non-application area. 前記処理液は、溶剤であることを特徴とする請求項6又は7記載の塗布膜形成方法。   8. The coating film forming method according to claim 6, wherein the treatment liquid is a solvent. 表面処理を行う工程は、前記非塗布領域に相当する領域に光照射を行う工程であることを特徴とする請求項5記載の塗布膜形成方法。   6. The method of forming a coating film according to claim 5, wherein the surface treatment step is a step of irradiating light to a region corresponding to the non-coating region. 塗布膜を形成する成分を溶剤に溶かしてなる塗布液を基板の表面に供給した後に、その表面に沿って中央部から外側に向かって塗布液を押し広げながら流れる気流が形成される減圧雰囲気下で当該塗布液を乾燥し成膜するにあたり、この塗布液を基板の表面に塗布する塗布膜形成装置において、
基板を水平に保持する基板保持部と、
この基板保持部に保持された基板の表面に塗布液を供給する塗布液ノズルと、
前記基板保持部を塗布液ノズルに対して相対的に移動させる駆動部と、
基板の周縁部と塗布液ノズルとの間に介在し、当該周縁部に供給される塗布液を受けて基板の全周に亘って非塗布領域を形成するための液受け手段と、を備えたことを特徴とする塗布膜形成装置。
Under a reduced-pressure atmosphere in which a coating liquid formed by dissolving a component that forms a coating film in a solvent is supplied to the surface of the substrate, and then an airflow is generated while the coating liquid is spread from the center to the outside along the surface. In the coating film forming apparatus for applying the coating liquid on the surface of the substrate when the coating liquid is dried and formed into a film,
A substrate holder for horizontally holding the substrate;
A coating solution nozzle for supplying a coating solution to the surface of the substrate held by the substrate holding unit;
A drive unit for moving the substrate holding unit relative to the coating liquid nozzle;
A liquid receiving means interposed between the peripheral edge of the substrate and the coating liquid nozzle, for receiving the coating liquid supplied to the peripheral edge and forming a non-coating region over the entire circumference of the substrate; A coating film forming apparatus.
非塗布領域の幅は1mm以上であることを特徴とする請求項10記載の塗布膜形成装置。   The coating film forming apparatus according to claim 10, wherein the width of the non-application area is 1 mm or more. 非塗布領域の幅は基板全周に亘って均一であることを特徴とする請求項10又は11記載の塗布膜形成装置。   12. The coating film forming apparatus according to claim 10, wherein the width of the non-coating region is uniform over the entire circumference of the substrate. 塗布液ノズルの口径は5μm〜200μmであり、
駆動部は、基板上に直線状の塗布液ラインが形成されるように塗布液ノズルを基板保持部に対して相対的に左右に移動させる手段と、基板上に前記塗布液ラインが前後に配列されるように前記塗布液ノズルを基板保持部に対して相対的に前後に移動させる手段と、を備えたことを特徴とする請求項10ないし12のいずれか一つに記載の塗布膜形成装置。
The diameter of the coating liquid nozzle is 5 μm to 200 μm,
The drive unit includes means for moving the coating liquid nozzle to the left and right relative to the substrate holding unit so that a linear coating liquid line is formed on the substrate, and the coating liquid line is arranged on the substrate in the front-rear direction. The coating film forming apparatus according to claim 10, further comprising means for moving the coating liquid nozzle back and forth relative to the substrate holding portion. .
塗布液ノズルの口径は5μm〜200μmであり、
駆動部は、基板保持部を回転させる手段と塗布液ノズルを基板の中央部上方から周縁部上方に基板保持部に対して相対的に移動させる手段と、を備え、
塗布液は基板上にスパイラル状に塗布されることを特徴とする請求項10ないし12のいずれか一つに記載の塗布膜形成装置。
The diameter of the coating liquid nozzle is 5 μm to 200 μm,
The drive unit includes means for rotating the substrate holding unit and means for moving the coating liquid nozzle relative to the substrate holding unit from above the central part to above the peripheral part of the substrate,
The coating film forming apparatus according to claim 10, wherein the coating liquid is applied on the substrate in a spiral shape.
塗布膜を形成する成分を溶剤に溶かしてなる塗布液を基板の表面に供給した後に、減圧雰囲気下で当該塗布液を乾燥し成膜するにあたり、この塗布液を基板の表面に塗布する塗布膜形成装置において、
基板を水平に保持する基板保持部と、
この基板保持部に保持された基板の表面に塗布液を供給する塗布液ノズルと、
前記基板保持部を塗布液ノズルに対して相対的に移動させる駆動部と、
基板の周縁部と塗布液ノズルとの間に介在し、当該周縁部に供給される塗布液を受けて基板の全周に亘って非塗布領域を形成するための液受け手段と、
前記基板の表面における前記非塗布領域に相当する領域に対して、塗布液を塗布する前に表面処理を行う手段と、を備えたことを特徴とする塗布膜形成装置。
After supplying a coating solution obtained by dissolving a component for forming a coating film in a solvent to the surface of the substrate, the coating solution is applied to the surface of the substrate when the coating solution is dried and formed in a reduced-pressure atmosphere. In the forming device,
A substrate holder for horizontally holding the substrate;
A coating solution nozzle for supplying a coating solution to the surface of the substrate held by the substrate holding unit;
A drive unit for moving the substrate holding unit relative to the coating liquid nozzle;
A liquid receiving means that is interposed between the peripheral edge of the substrate and the coating liquid nozzle, receives the coating liquid supplied to the peripheral edge, and forms a non-coating region over the entire circumference of the substrate;
A coating film forming apparatus comprising: means for performing a surface treatment on an area corresponding to the non-application area on the surface of the substrate before applying a coating liquid.
塗布膜を形成する成分を溶剤に溶かしてなる塗布液を基板の表面に供給した後に、減圧雰囲気下で当該塗布液を乾燥し成膜するにあたり、この塗布液を基板の表面に塗布する塗布膜形成装置において、
基板を水平に保持する基板保持部と、
この基板保持部に保持された基板の表面に塗布液を供給する塗布液ノズルと、
前記基板保持部を塗布液ノズルに対して相対的に移動させる駆動部と、
その表面に塗布液が塗布された基板の全周に亘って非塗布領域を形成するために当該基板の周縁部の表面に処理液を供給して塗布液を除去すると共に当該領域の表面処理をする手段と、を備えたことを特徴とする塗布膜形成装置。
After supplying a coating solution obtained by dissolving a component for forming a coating film in a solvent to the surface of the substrate, the coating solution is applied to the surface of the substrate when the coating solution is dried and formed in a reduced-pressure atmosphere. In the forming device,
A substrate holder for horizontally holding the substrate;
A coating solution nozzle for supplying a coating solution to the surface of the substrate held by the substrate holding unit;
A drive unit for moving the substrate holding unit relative to the coating liquid nozzle;
In order to form a non-coating region over the entire circumference of the substrate coated with the coating liquid on the surface, the processing liquid is supplied to the peripheral surface of the substrate to remove the coating liquid, and surface treatment of the region is performed. And a coating film forming apparatus.
前記表面処理を行う手段は、前記非塗布領域に相当する領域に処理液又は当該処理液の蒸気を供給する手段であることを特徴とする請求項15記載の塗布膜形成装置。   16. The coating film forming apparatus according to claim 15, wherein the surface treatment means is means for supplying a treatment liquid or vapor of the treatment liquid to an area corresponding to the non-application area. 前記処理液は、溶剤であることを特徴とする請求項16又は17記載の塗布膜形成装置。   18. The coating film forming apparatus according to claim 16, wherein the treatment liquid is a solvent. 前記表面処理を行う手段は、前記非塗布領域に相当する領域に光照射を行う手段であることを特徴とする請求項15記載の塗布膜形成装置。   The coating film forming apparatus according to claim 15, wherein the surface treatment unit is a unit that irradiates a region corresponding to the non-coating region. 基板の表面に液盛りする塗布液の厚みと非塗布領域の幅とを対応づけた情報を記憶した記憶部と、
予定とする塗布液の厚みと前記情報とに基づいて非塗布領域の幅を決める手段と、を備えたことを特徴とする請求項10ないし19のいずれか一つに記載の塗布膜形成装置。
A storage unit that stores information that associates the thickness of the coating liquid that accumulates on the surface of the substrate with the width of the non-application area;
20. The coating film forming apparatus according to claim 10, further comprising: means for determining a width of the non-application area based on a predetermined thickness of the application liquid and the information.
JP2004023730A 2004-01-30 2004-01-30 Method and apparatus for forming coating film Pending JP2005217282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004023730A JP2005217282A (en) 2004-01-30 2004-01-30 Method and apparatus for forming coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004023730A JP2005217282A (en) 2004-01-30 2004-01-30 Method and apparatus for forming coating film

Publications (1)

Publication Number Publication Date
JP2005217282A true JP2005217282A (en) 2005-08-11

Family

ID=34906649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004023730A Pending JP2005217282A (en) 2004-01-30 2004-01-30 Method and apparatus for forming coating film

Country Status (1)

Country Link
JP (1) JP2005217282A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160735A (en) * 2005-05-30 2012-08-23 Tokyo Electron Ltd Coating method and coating device
CN110214365A (en) * 2017-02-09 2019-09-06 株式会社斯库林集团 Substrate processing method using same and substrate board treatment
CN110226216A (en) * 2017-02-28 2019-09-10 株式会社斯库林集团 Substrate board treatment and substrate processing method using same
JP2019165040A (en) * 2018-03-19 2019-09-26 株式会社リコー Method for manufacturing film containing indium oxide and method for manufacturing field effect transistor
US11551949B2 (en) 2019-09-10 2023-01-10 Kioxia Corporation Substrate processing device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012160735A (en) * 2005-05-30 2012-08-23 Tokyo Electron Ltd Coating method and coating device
CN110214365A (en) * 2017-02-09 2019-09-06 株式会社斯库林集团 Substrate processing method using same and substrate board treatment
CN110214365B (en) * 2017-02-09 2023-06-06 株式会社斯库林集团 Substrate processing method and substrate processing apparatus
CN110226216A (en) * 2017-02-28 2019-09-10 株式会社斯库林集团 Substrate board treatment and substrate processing method using same
JP2019165040A (en) * 2018-03-19 2019-09-26 株式会社リコー Method for manufacturing film containing indium oxide and method for manufacturing field effect transistor
US11551949B2 (en) 2019-09-10 2023-01-10 Kioxia Corporation Substrate processing device

Similar Documents

Publication Publication Date Title
KR102566736B1 (en) Substrate processing apparatus, substrate processing method, and storage medium
US9623435B2 (en) Substrate processing apparatus for coating liquid composed of first coating liquid and second coating liquid on substrate with slit-shaped ejection port
KR101864001B1 (en) Substrate processing method and substrate processing apparatus
KR102514003B1 (en) Substrate processing apparatus, substrate processing method and recording medium
JP2004207573A (en) Coating processor
TWI636158B (en) Substrate processing method and substrate processing device
JP2012084931A (en) Method for treating substrate
TW201701082A (en) Coating treatment method, computer-recordable medium, and coating treatment device
TWI238470B (en) Film coating unit and film coating method
TWI669769B (en) Method of processing substrate and substrate processing apparatus
US9997379B2 (en) Method and apparatus for wafer wet processing
KR102493554B1 (en) Substrate processing method, substrate processing apparatus and storage medium
JP5726686B2 (en) Liquid processing apparatus and method for controlling liquid processing apparatus
JP4924467B2 (en) Processing apparatus, cleaning method, and storage medium
JP4256584B2 (en) Coating film forming apparatus and coating film forming method
US10707098B2 (en) Substrate processing apparatus, substrate processing method and memory medium
JP2005217282A (en) Method and apparatus for forming coating film
TWI756451B (en) Substrate processing method and substrate processing apparatus
JP6983571B2 (en) Board processing method and board processing equipment
KR102113931B1 (en) Substrate treatment method and substrate treatment device
TWI828832B (en) Substrate processing method and substrate processing device
JP6817821B2 (en) Substrate processing equipment and substrate processing method
JP7138493B2 (en) Substrate liquid processing method, storage medium and substrate liquid processing apparatus
JP2005246312A (en) Coating method and coating apparatus
US20230023792A1 (en) Substrate processing method