JP2005217232A - Ozone treatment apparatus - Google Patents

Ozone treatment apparatus Download PDF

Info

Publication number
JP2005217232A
JP2005217232A JP2004022682A JP2004022682A JP2005217232A JP 2005217232 A JP2005217232 A JP 2005217232A JP 2004022682 A JP2004022682 A JP 2004022682A JP 2004022682 A JP2004022682 A JP 2004022682A JP 2005217232 A JP2005217232 A JP 2005217232A
Authority
JP
Japan
Prior art keywords
ozone
ozone gas
processed
workpiece
treatment apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004022682A
Other languages
Japanese (ja)
Other versions
JP4286158B2 (en
Inventor
Tetsuya Nishiguchi
哲也 西口
Shingo Ichimura
信吾 一村
Hidehiko Nonaka
秀彦 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd, National Institute of Advanced Industrial Science and Technology AIST filed Critical Meidensha Corp
Priority to JP2004022682A priority Critical patent/JP4286158B2/en
Publication of JP2005217232A publication Critical patent/JP2005217232A/en
Application granted granted Critical
Publication of JP4286158B2 publication Critical patent/JP4286158B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To extract oxidation power of ozone gas to the utmost without depending on conditions such as process temperature. <P>SOLUTION: A treatment chamber 10 for storing a workpiece processed by ozone gas is provided, and an ozone circulation part for circulating ozone gas is formed by oppositely disposing an ozone gas supply 11 and an ozone gas discharge 12 in the treatment chamber 10, and the workpiece is supported in the treatment chamber 10. Moving means 16 is provided for moving the workpiece in parallel to the circulation of ozone gas while processed surfaces of the workpieces are exposed to the ozone gas circulation part, and a heating part 162 is provided for heating the workpiece. Consequently, the surfaces of the workpieces are sequentially exposed to the ozone gas circulation part to subject the entire surface of the workpiece to the ozone treatment by making use of the operation of the moving means 16. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、VLSI、ULSIロジック、メモリ用デバイス、薄膜トランジスタ(TFT)用のシリコン絶縁膜作成、およびウエハー上の有機物を分解、除去するアッシング等の半導体プロセス用ガスとして高濃度オゾンガスを用いる場合の適切なオゾンガス供給を行うオゾン処理装置に関するものである。   The present invention is suitable when a high-concentration ozone gas is used as a gas for semiconductor processes such as VLSI, ULSI logic, memory devices, silicon insulating film formation for thin film transistors (TFTs), and ashing for decomposing and removing organic substances on the wafer. The present invention relates to an ozone treatment apparatus that performs a simple ozone gas supply.

近年、VLSI,ULSIロジック、メモリ用デバイスの微細化および基板として用いるシリコンウエハーの大口径化が進むにつれ、プロセス温度の低温化が求められてきている。   In recent years, as miniaturization of VLSI, ULSI logic and memory devices and the increase in the diameter of silicon wafers used as substrates, there has been a demand for lower process temperatures.

特に、デバイスの特性に大きな影響を与えるゲート酸化膜作成は、900℃以上に保持された電気炉内でシリコンを酸素ガスあるいは水蒸気ガス雰囲気で直接酸化する熱酸化法が今まで用いられてきた。   In particular, for the production of a gate oxide film that greatly affects the characteristics of a device, a thermal oxidation method in which silicon is directly oxidized in an oxygen gas or water vapor gas atmosphere in an electric furnace maintained at 900 ° C. or higher has been used.

一方、TFT(薄膜トランジスタ)に代表されるように、つまり、ガラス基板上のアモルファスシリコン、ポリシリコン薄膜上にシリコン酸化膜を作成する場合のように、基板の耐熱温度の関係から、シリコン酸化膜を低温で作成する技術がVLSI,ULSIデバイス製造以外にも求められている。   On the other hand, as represented by TFT (Thin Film Transistor), that is, when a silicon oxide film is formed on an amorphous silicon or polysilicon thin film on a glass substrate, the silicon oxide film is formed from the relationship of the heat resistance temperature of the substrate. A technique for producing at low temperature is required in addition to VLSI and ULSI device manufacturing.

TFT用絶縁膜作成には、上記の熱酸化法は、ガラスの歪点(700℃)以下では酸化速度が遅いため適用できず、CVD(化学気相成長)法が主に用いられてきた。   For the production of an insulating film for TFT, the above-mentioned thermal oxidation method cannot be applied at a glass strain point (700 ° C.) or less because the oxidation rate is slow, and a CVD (chemical vapor deposition) method has been mainly used.

しかし、CVD法で堆積した絶縁膜は、不対結合手や水素の濃度が高く、またSi02/Si界面特性も熱酸化膜に比べ劣っている。そのため、ホットエレクトロンの注入に対しても弱く、不対結合手や水素が原因となって電荷捕獲中心が形成されやすい。その結果、TFTのゲート酸化膜として用いた場合、電界移動度やサブシレシュホールド(S値)の低下、リーク電流の増大、オン電流の低下が大きいという問題がある。 However, the insulating film deposited by CVD has a high concentration of dangling bonds and hydrogen, also Si0 2 / Si interface properties are also inferior to the thermal oxide film. Therefore, it is weak against hot electron injection, and charge trapping centers are easily formed due to dangling bonds and hydrogen. As a result, when used as a gate oxide film of a TFT, there are problems that electric field mobility and subthreshold (S value) decrease, leakage current increases, and on-current decreases greatly.

これらの問題を解決できる手法として、酸素雰囲気に紫外線を照射して得られる原子状酸素あるいはオゾンを用いる方法がある。550℃程度での高速(50mm/1時間)でのポリシリコン酸化の実現、従来のCVD法で作成した絶縁膜より素子の信頼性の向上が実現できている。例えば、特許文献1(特開平8−78694号公報)に開示された絶縁膜形成法がある。   As a method for solving these problems, there is a method using atomic oxygen or ozone obtained by irradiating an oxygen atmosphere with ultraviolet rays. Realization of polysilicon oxidation at a high speed (50 mm / 1 hour) at about 550 ° C., and improvement of element reliability can be realized compared with an insulating film formed by a conventional CVD method. For example, there is an insulating film forming method disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 8-78694).

また、フレキシブル情報端末(フレキシブルPC、携帯)に代表されるように、今後、プラスチック等の有機(フレキシブル)基板上のシリコンデバイス、特にシリコン酸化膜作成技術が重要となると予想される。プロセス温度の上限は、プラスチック等の有機物の耐熱温度から200℃程度となる。この場合も上記CVD法を用いる必要があるが、現状の主な手法であるSiH4/O2ガスを用いた熱CVD法では300℃以下の成膜は困難であること、絶縁膜中に水分、不純物を大量に含むこと、その結果、絶縁耐圧が低く、リーク電流が多くなる等の問題がある。また、TEOS/O2ガスを原料ガスとして用いたCVDでも同様の問題がおきている。プラズマ励起CVDを用いれば200℃以下での堆積が可能となるが、プラズマプロセスを用いるため気相中にパーティクルが多い、ステップカバレッジが悪い、膜にストレスが入る、条件(ガス圧力、ガス流量、対向電極間の距離等)の幅が狭く、最適条件が得られにくいという欠点がある。そこで、Si−H結合を有する有機化合物、例えばアルコキシシラン、あるいは環状シロキサン、あるいは鎖状シロキサンとオゾンを用いた熱CVD法が提案され、先の問題が解決されている。例えば、特許文献2(特開平8−31815号公報)に開示されたCVD法がある。 Further, as represented by flexible information terminals (flexible PCs, mobile phones), it is expected that silicon devices on organic (flexible) substrates such as plastics, especially silicon oxide film forming technology will become important in the future. The upper limit of the process temperature is about 200 ° C. from the heat resistance temperature of organic substances such as plastics. In this case as well, it is necessary to use the above-mentioned CVD method. However, it is difficult to form a film at 300 ° C. or lower by the thermal CVD method using SiH 4 / O 2 gas which is the current main method, and moisture in the insulating film However, there are problems such as containing a large amount of impurities, resulting in a low withstand voltage and an increased leakage current. Similar problems occur in CVD using TEOS / O 2 gas as a source gas. When plasma-excited CVD is used, deposition at 200 ° C. or lower is possible, but because the plasma process is used, there are many particles in the gas phase, poor step coverage, and stress on the film (gas pressure, gas flow rate, The width of the distance between the counter electrodes, etc.) is narrow and the optimum condition is difficult to obtain. Therefore, a thermal CVD method using an organic compound having a Si—H bond, such as alkoxysilane, cyclic siloxane, or chain siloxane and ozone, has been proposed to solve the above problem. For example, there is a CVD method disclosed in Patent Document 2 (Japanese Patent Laid-Open No. 8-31815).

上記で使われたオゾンは反応活性度の高い原子状酸素の供給源となること、多数の運動エネルギー的に活性なイオン種が反応に寄与するプラズマプロセスの場合と異なり、反応活性種は電気的中性で熱速度を有していることから、プロセスの低温化と高品質化が同時に実現できる。更なるプロセスの低温化、高品質化の要求される現状の流れを鑑みると、今後ますますオゾンガスに対する需要が高まると予想される。   The ozone used above is a source of atomic oxygen with high reaction activity, and unlike the plasma process where many kinetically active ion species contribute to the reaction, the reaction active species are electrically Since it is neutral and has a heat speed, it is possible to simultaneously achieve low temperature and high quality processes. In view of the current situation where further process temperature reduction and higher quality are required, it is expected that demand for ozone gas will increase further in the future.

現在主に産業で用いられている最大10vol%程度のオゾンガスだけではなく、高濃度化した100%に近い濃度のオゾンガスの需要も大きい。100%に高濃度化したオゾンガスを利用する効果については、Appl.Phys.Lett.2190(2002)に記載されている。チップ状に切り出した15mm角程度のシリコン基板に対して、10vol%以下の濃度のオゾンガスを用いた場合以上にプロセスの低温化および400℃程度の低温処理でも900℃熱酸化膜に匹敵する高品質な膜作成が実現できることが分かっている。   There is a great demand not only for ozone gas of about 10 vol% at the maximum, which is currently used mainly in industry, but also for ozone gas with a concentration close to 100%. For the effect of using ozone gas having a high concentration of 100%, see Appl. Phys. Lett. 2190 (2002). High quality comparable to 900 ° C. thermal oxide film even when the temperature is lowered and the temperature is lowered to about 400 ° C. even when ozone gas with a concentration of 10 vol% or less is used for a silicon substrate of about 15 mm square cut into a chip shape. It has been found that a simple film formation can be realized.

但し、オゾンは400℃以上の高温環境ではオゾン同士の分解反応(2O3→3O2)が起こり、オゾンの気相での寿命が短くなるため容易に濃度が低下するという問題がある。これはオゾンガスを用いた大口径基板の均一処理を実現するに当り欠点となる。 However, there is a problem that ozone is decomposed in a high temperature environment of 400 ° C. or higher (2O 3 → 3O 2 ), and the lifetime of ozone in the gas phase is shortened, so that the concentration is easily lowered. This is a drawback in realizing uniform processing of a large-diameter substrate using ozone gas.

すなわち、処理基板表面上に、均一濃度のオゾンガスを均一に供給する供給方法、装置構成が必要となる。例えば、特許文献3(特開2002−134478号公報)によると、100vol%のオゾンガスを用いた場合、オゾン分圧が1000Paから500Paへと半分になると、基板温度が同じ場合でも熱酸化の成膜レートが約40%低下することが知られている。このとき、表面上のオゾン濃度(分圧)を一定にするために、現状では、シャワープレート(ガス均一分布板)の利用、それらの複数配置、シャワープレートの穴径、穴の間隔、配置等穴の面内分布等の設計、シャワープレートと処理基板の間(間隙)の適切な距離設定、必要十分なオゾン流速でオゾンガスを供給すること、すなわちオゾンの寿命に比べ十分短い時間でオゾンガスを供給することで対応している。   That is, a supply method and apparatus configuration for uniformly supplying ozone gas having a uniform concentration on the surface of the processing substrate are required. For example, according to Patent Document 3 (Japanese Patent Application Laid-Open No. 2002-134478), when 100 vol% ozone gas is used, if the ozone partial pressure is halved from 1000 Pa to 500 Pa, even if the substrate temperature is the same, the film is formed by thermal oxidation. It is known that the rate drops by about 40%. At this time, in order to make the ozone concentration (partial pressure) on the surface constant, at present, use of shower plates (gas uniform distribution plates), multiple arrangements of them, diameters of holes in the shower plates, intervals of holes, arrangements, etc. Design of hole in-plane distribution, etc., setting appropriate distance between shower plate and processing substrate (gap), supplying ozone gas at necessary and sufficient ozone flow rate, that is, supplying ozone gas in a sufficiently short time compared to the lifetime of ozone It corresponds by doing.

一方で、オゾンガスの高い酸化カは、ウエハー表面上の有機物除去(アッシング)等へも適用されている。アッシングが行われるプロセス温度である200℃程度以下の低温では、逆にオゾンが気相で十分安定なため、処理表面に到達しても分解せず、主な反応種である酸素原子が発生しないことが予想される研究結果が多数報告されている。例えば、特許文献3によると、高速なアッシング速度を実現するには、200℃の処理表面にオゾンを供給する前に、前もって100℃程度に予熱した表面にオゾンを衝突させ、処理表面に到達する前に酸素原子に分解しておくことが、処理速度の増大には有効であるとの記載がある。   On the other hand, oxidized ozone with a high ozone gas is also applied to organic substance removal (ashing) on the wafer surface. At a low temperature of about 200 ° C. or less, which is the process temperature at which ashing is performed, ozone is sufficiently stable in the gas phase, so that it does not decompose even when it reaches the treatment surface, and oxygen atoms that are the main reactive species are not generated. Many research results have been reported. For example, according to Patent Document 3, in order to realize a high ashing speed, ozone is collided with a surface preheated to about 100 ° C. in advance before ozone is supplied to the processing surface at 200 ° C., and reaches the processing surface. There is a description that it is effective to increase the processing speed to decompose into oxygen atoms in advance.

以上はシリコンやSiC等難酸化性材料の熱酸化で400℃以上の高温処理環境が必要となる場合とプラスチック上のCVDプロセス、有機物除去プロセス等でオゾンを用いる場合の200℃以下の低温処理が必要となる場合で、それぞれで最適なオゾンガスの供給方法、装置が存在することを示唆している。
特開平8−78694号公報 特開平8−31815号公報 特開2002−134478号公報
The above is a low temperature treatment of 200 ° C. or lower when ozone is used in a CVD process on a plastic, an organic matter removal process, etc. when a high temperature treatment environment of 400 ° C. or higher is required due to thermal oxidation of a hardly oxidizable material such as silicon or SiC. This suggests that there is an optimal ozone gas supply method and apparatus in each case.
Japanese Patent Application Laid-Open No. 8-78694 JP-A-8-31815 JP 2002-134478 A

前述のように、オゾン、特に今後ますます需要が高まるであろう高濃度のオゾンガスを用いるにあたり、大面積基板の均一かつ高効率な処理を実現でき、幅広い処理温度域に対応できるオゾンガスの供給方法、オゾン処理装置の開発が必要とされる。   As described above, when using ozone, especially high-concentration ozone gas, which will be increasingly demanded in the future, it is possible to achieve a uniform and highly efficient treatment of large-area substrates, and a supply method of ozone gas that can accommodate a wide range of processing temperatures. Development of ozone treatment equipment is required.

本発明は、かかる事情に鑑みなされたもので、その目的は、プロセス温度等の条件によらずオゾンガスの酸化力を最大限に引き出すことができるオゾン処理装置の提供にある。   The present invention has been made in view of such circumstances, and an object thereof is to provide an ozone treatment apparatus capable of maximizing the oxidizing power of ozone gas regardless of conditions such as process temperature.

そこで、本発明のオゾン処理装置は、オゾンガスによって処理される被処理物を格納する処理室を設け、この処理室内にオゾンガス供給部及びオゾンガス排出部を対向配置してオゾンガスを流通させるオゾン流通部を形成し、前記処理室内において前記被処理物を支持し、且つ前記被処理物の処理表面が前記オゾンガス流通部に曝された状態で前記被処理物をオゾンガスの流通と平行に移動させる移動手段を設け、前記被処理物を加熱する加熱部を設け、前記移動手段の動作によって前記被処理物の表面を順次オゾンガス流通部に曝して前記被処理物表面全体をオゾン処理することを特徴とする。   Therefore, the ozone treatment apparatus of the present invention is provided with a treatment chamber for storing an object to be treated by ozone gas, and an ozone circulation portion for circulating ozone gas by disposing an ozone gas supply portion and an ozone gas discharge portion facing each other in the treatment chamber. A moving means configured to move the object to be processed in parallel with the flow of ozone gas in a state in which the object to be processed is supported in the processing chamber and the processing surface of the object to be processed is exposed to the ozone gas circulation unit. There is provided a heating unit for heating the object to be processed, and the entire surface of the object to be processed is subjected to ozone treatment by sequentially exposing the surface of the object to be processed to an ozone gas circulation part by the operation of the moving means.

本発明のオゾン処理装置によれば、処理室内において前記オゾン流通部と対向しながら被処理物が移動自在であるので、処理基板上の全ての位置で、基板移動開始から終了の間に供給されるオゾン分圧の時間積量が一定になると共に、処理表面上の任意の点がオゾンガス供給口付近に来たときに温度低下を受けた場合でも、移動の開始から終了の間に受ける温度の経時的変化が一定となる。したがって、前記各位置でのオゾン分圧の変化も一定であることを考慮すると、被処理物の面内では処理速度が一定となる。すなわち、オゾン分圧、処理基板温度の空間分布の歪が問題でなくなる。   According to the ozone processing apparatus of the present invention, the object to be processed can move while facing the ozone circulation section in the processing chamber, and thus is supplied at all positions on the processing substrate between the start and end of the substrate movement. The time product of the ozone partial pressure is constant, and even if a temperature drop occurs when an arbitrary point on the processing surface comes near the ozone gas supply port, the temperature received between the start and end of the movement The change over time is constant. Accordingly, considering that the change in the ozone partial pressure at each position is constant, the processing speed is constant within the surface of the workpiece. That is, the distortion of the spatial distribution of ozone partial pressure and processing substrate temperature is not a problem.

前記オゾン処理装置においては、前記オゾンガス供給部及びオゾンガス排出部は各々スリット状の開口部を有することで、前記作用効果に加え、オゾンガスを処理面に対してより均一に供給できる。このとき、前記開口部のスリット長さを、前記オゾンガス処理面の最大幅よりも大きく設定すると、その効果は高まる。尚、前記処理室天井部の前記オゾンガス流通部に凸状の天板部を設けると、前記オゾン流通部においてはオゾンガスがこの天板部を迂回して流通するのでオゾン処理面との接触効率が高まる。   In the ozone treatment apparatus, the ozone gas supply unit and the ozone gas discharge unit each have a slit-like opening, so that ozone gas can be more uniformly supplied to the treatment surface in addition to the above-described effects. At this time, if the slit length of the opening is set larger than the maximum width of the ozone gas treatment surface, the effect is enhanced. In addition, when a convex top plate portion is provided in the ozone gas circulation portion of the processing chamber ceiling portion, ozone gas circulates around the top plate portion in the ozone circulation portion, so that contact efficiency with the ozone treatment surface is improved. Rise.

また、前記移動手段は、前記オゾン供給部とオゾンガス前記排出部との間を流れるオゾンガスの流れと同方向、逆方向、直交方向、若しくは前記同方向又は前記逆方向と前記直交方向を組み合わせてジグザグに移動自在に構成すると、前記作用効果に加え、オゾン処理面を任意に設定できる。さらに、オゾンガスが流通する前記処理室の天井面と前記オゾンガス処理面との間隔を調節できるように高さ調節可能に構成すると、前記作用効果に加え、前記天板部と前記オゾンガス処理面との間隔を任意に設定できる。このとき、前記間隔は、導入されたオゾンガスが前記スリット間を移動時にそのガス流が層流となるように設定すると、オゾンガスの供給は処理面に対してより均一なものとなる。   In addition, the moving means is zigzag in the same direction, reverse direction, orthogonal direction, or the same direction or the reverse direction and the orthogonal direction as the flow of ozone gas flowing between the ozone supply unit and the ozone gas discharge unit. In addition to the above-described effects, the ozone treatment surface can be arbitrarily set. Further, when the height can be adjusted so that the distance between the ceiling surface of the processing chamber through which ozone gas flows and the ozone gas processing surface can be adjusted, in addition to the operational effects, the top plate portion and the ozone gas processing surface The interval can be set arbitrarily. At this time, if the introduced ozone gas is set so that the gas flow becomes a laminar flow when moving between the slits, the supply of the ozone gas becomes more uniform with respect to the processing surface.

前記加熱部は、前記処理物を支持する移動手段に設けるとよい。前記加熱部としては、電気熱または赤外線熱の輻射体からなるものがある。前記加熱部が前記赤外線熱の輻射体からなる場合、赤外線を発する光源は、前記オゾンガス供給部における前記オゾンガス処理面と対向する面に赤外線を均一に照射するとよい。   The heating unit may be provided in a moving unit that supports the processed material. As the heating unit, there is one made of a radiator of electric heat or infrared heat. When the heating unit is made of the infrared heat radiator, the light source that emits infrared light may uniformly irradiate the surface of the ozone gas supply unit that faces the ozone gas treatment surface.

また、前記天板部は前記被処理物表面に照射させる紫外線を透過する部材を備えると、紫外線によるオゾンの光分解反応で生じた原子状酸素を被処理物の表面に供給できる。前記紫外線は前記処理室外より照射される。このとき、オゾンの紫外光吸収係数に基づき算出される紫外光の10%以上の光が基板表面に到達するように、前記天板部と前記オゾンガス処理面との間隔を調整するとなおよい。   Further, when the top plate part is provided with a member that transmits ultraviolet rays to be irradiated on the surface of the object to be processed, atomic oxygen generated by the photolysis reaction of ozone by the ultraviolet rays can be supplied to the surface of the object to be processed. The ultraviolet rays are emitted from outside the processing chamber. At this time, it is more preferable to adjust the distance between the top plate portion and the ozone gas treatment surface so that 10% or more of the ultraviolet light calculated based on the ultraviolet light absorption coefficient of ozone reaches the substrate surface.

以上のように、本発明のオゾン処理装置によれば、被処理物のオゾン処理にあたり、プロセス温度等の条件によらずオゾンガスの酸化力を最大限に引き出すことができる。   As described above, according to the ozone treatment apparatus of the present invention, it is possible to maximize the oxidizing power of ozone gas regardless of the process temperature or the like when the object to be treated is subjected to ozone treatment.

本発明の実施の形態について図面を参照しながら説明する。   Embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1(a)は、本発明の実施形態1に係るオゾン処理装置の横断面を示した概略図である。また、図1(b)はこのオゾン処理装置内のオゾンガス供給及び排出廻りの詳細を説明した説明図である。
(Embodiment 1)
Fig.1 (a) is the schematic which showed the cross section of the ozone treatment apparatus which concerns on Embodiment 1 of this invention. Moreover, FIG.1 (b) is explanatory drawing explaining the detail of the ozone gas supply in this ozone processing apparatus, and discharge | circulation.

図1(a)に示されたように、本実施形態のオゾン処理装置は、オゾンガスによって処理される被処理物を格納する処理室10を設け、この処理室内にオゾンガス供給部11及びオゾンガス排出部12を対向配置してオゾンガスを流通させるオゾン流通部を形成し、さらに処理室10内において、前記被処理物を支持し且つ前記被処理物の処理表面が前記オゾンガス流通部に曝された状態で前記被処理物をオゾンガスの流通と平行に移動させる移動手段16を設けている。移動手段16は前記被処理物を加熱する加熱部162を備えている。尚、本実施形態においては処理室10天井部の前記オゾンガス流通部には凸状の天板部13が設けられている。   As shown in FIG. 1A, the ozone treatment apparatus of this embodiment is provided with a treatment chamber 10 for storing an object to be treated by ozone gas, and an ozone gas supply unit 11 and an ozone gas discharge unit are provided in the treatment chamber. The ozone circulation part which distribute | circulates ozone gas by arrange | positioning 12 oppositely is formed, and also in the process chamber 10, the said to-be-processed object is supported, and the process surface of the said to-be-processed object is exposed to the said ozone gas circulation part. A moving means 16 for moving the object to be processed in parallel with the circulation of ozone gas is provided. The moving means 16 includes a heating unit 162 that heats the workpiece. In the present embodiment, a convex top plate portion 13 is provided in the ozone gas circulation portion of the ceiling portion of the processing chamber 10.

オゾンガス供給部11は、図1(b)に示されたように、導入管111を介して導入したオゾンガスを天板部13側の側面に形成された開口部から供給する形態となっている。オゾンガス排出部12は、天板部13側の側面に形成された開口部からオゾンガスを排出する形態となっており、オゾンガスを排出管121によって装置外に排出している。そして、本実施形態のオゾンガス流通部は、オゾンガス供給部11と天板部13とによって隙間14を、また天板部13とオゾンガス排出部12とによって隙間15を形成し、導入されたオゾンガスが隙間14を通過して天板部13の面131に沿って迂回しながら流通した後に隙間15を通過してオゾンガス排出部12から排出する形態となっている(図1(b)記載の点線矢印)。   As shown in FIG. 1B, the ozone gas supply unit 11 is configured to supply ozone gas introduced through the introduction pipe 111 from an opening formed on the side surface on the top plate part 13 side. The ozone gas discharge unit 12 is configured to discharge ozone gas from an opening formed on the side surface on the top plate 13 side, and discharges ozone gas out of the apparatus through a discharge pipe 121. And the ozone gas distribution part of this embodiment forms the clearance gap 14 by the ozone gas supply part 11 and the top plate part 13, and the clearance gap 15 by the top plate part 13 and the ozone gas discharge part 12, and the introduced ozone gas is a clearance gap. After passing through 14 and circulating along the surface 131 of the top plate part 13, it passes through the gap 15 and is discharged from the ozone gas discharge part 12 (dotted arrow in FIG. 1B). .

オゾンガスは既知のオゾン発生手段(放電管、紫外光照射式のものだけではなく、酸素オゾン混合ガスからオゾンのみを分留する等の機構で生成した高濃度オゾン発生装置も含む)により生成されたものでよい。オゾンガス処理室10から排出されたオゾンガスは、前記オゾンガスを発生する手段に供給して再生処理に供してもよいし、または、オゾンキラー(オゾンガス処理手段、既知のものでよい)に供して分解処理して系外排出してもよい。   Ozone gas was generated by known ozone generation means (including discharge tubes, ultraviolet light irradiation type as well as high-concentration ozone generators generated by a mechanism such as fractionating only ozone from oxygen-ozone mixed gas) Things can be used. The ozone gas discharged from the ozone gas processing chamber 10 may be supplied to the means for generating the ozone gas and used for the regeneration process, or may be supplied to an ozone killer (ozone gas processing means, which may be known) and decomposed. Then, it may be discharged out of the system.

処理室10及び天板部13の材質は、オゾンに対し不活性、水冷が可能、加熱手段からの熱輻射を反射し、自身は100℃以上に温まらないという観点から、電解研磨を施したステンレスやアルミニウム、チタン等が望ましい。また、オゾンガスを給排気する配管類、供給部11及び排出部12は電界研磨済みステンレス管等のオゾンに対し不活性表面を生成可能な配管を採用するとよい。   The processing chamber 10 and the top plate 13 are made of stainless steel that has been subjected to electropolishing from the viewpoint that it is inert to ozone, water-cooled, reflects heat radiation from the heating means, and does not warm to 100 ° C. or more. Aluminum, titanium, etc. are desirable. In addition, the piping for supplying and exhausting ozone gas, the supply unit 11 and the discharge unit 12 may employ pipes capable of generating an inert surface against ozone, such as an electropolished stainless steel pipe.

移動手段16は、半導体製造装置等で採用される既知のものでよく、例えば、ベローズとギアを用いた機構などが採用可能である。本実施形態における移動手段16は、ステージ161と、ステージ161に設けられ被処理物が置かれる加熱部162と、ステージ161を支持し駆動源160と連絡される支持部163とを備え、天板部13の面131と平行に対向しながら被処理物1を支持しながら移動を可能としている。このとき、移動手段16は、前記供給部と前記排出部との間を流通するオゾンガスの流れと同方向(オゾンガス供給部11→オゾンガス排出部12)、逆方向(オゾンガス排出部12→オゾンガス供給部11)、垂直方向(図2記載の開口部112,開口部122の長手方向)若しくは前記同方向又は前記逆方向と前記直交方向を組み合わせてジグザグに移動自在となるように調整されて、オゾン処理面が任意に設定される。例えば、微少の進退を繰り返しながら、オゾンガス供給部11→オゾンガス排出部12の方向、またはオゾンガス排出部12→オゾンガス供給部11の方向に順次酸化処理が実行される。また、移動手段16は、前記オゾンガス処理面を上下移動自在となるように調整されて、前記天板部と前記オゾンガス処理面との間隔が任意に設定される。このとき、前記間隔はレイノルズ数を考慮しながらオゾンガスのガス流が層流となるように調整される。   The moving means 16 may be a known one used in a semiconductor manufacturing apparatus or the like. For example, a mechanism using a bellows and a gear can be used. The moving means 16 in this embodiment includes a stage 161, a heating unit 162 provided on the stage 161 and on which an object to be processed is placed, and a support unit 163 that supports the stage 161 and communicates with the driving source 160. It is possible to move while supporting the workpiece 1 while facing the surface 131 of the part 13 in parallel. At this time, the moving means 16 is in the same direction (ozone gas supply unit 11 → ozone gas discharge unit 12) and reverse direction (ozone gas discharge unit 12 → ozone gas supply unit) as the flow of ozone gas flowing between the supply unit and the discharge unit. 11), adjusted in a vertical direction (longitudinal direction of the opening portion 112 and the opening portion 122 shown in FIG. 2), or the same direction or a combination of the reverse direction and the orthogonal direction so as to be movable in a zigzag manner. The surface is set arbitrarily. For example, the oxidation process is sequentially performed in the direction of the ozone gas supply unit 11 → the ozone gas discharge unit 12 or the direction of the ozone gas discharge unit 12 → the ozone gas supply unit 11 while repeating a slight advance and retreat. Moreover, the moving means 16 is adjusted so that the ozone gas processing surface can be moved up and down, and an interval between the top plate portion and the ozone gas processing surface is arbitrarily set. At this time, the interval is adjusted so that the gas flow of ozone gas becomes a laminar flow while taking into account the Reynolds number.

移動手段16の材質は、電解研磨を施したステンレスやアルミニウム、チタンなどの材質が望ましい。ステージの161の材質は、支持部163と加熱部162とを熱的に遮断するため、石英等の熱伝導の低い材料が採用される。加熱部162は、通常の枚葉処理のCVDプロセスで用いられる焼結SiC等からなるものが用いられている。   The material of the moving means 16 is preferably a material such as stainless steel, aluminum or titanium subjected to electrolytic polishing. The material of the stage 161 is made of a material having a low thermal conductivity such as quartz in order to thermally shield the support part 163 and the heating part 162. The heating unit 162 is made of sintered SiC or the like used in a normal single wafer processing CVD process.

前記オゾンガスを供給するための開口部は、図2に示した開口部112ように、スリット形状(スリット幅d×スリット長さL)に成すとよい。図2は、望ましいオゾンガス供給領域を説明するために、被処理物1のオゾン処理領域幅と開口部112及び開口部122の長さとの関係を示した概略説明図である(図4及び図6についても同様)。白矢印は被処理物1を保持した加熱部162の移動方向を示す。図示されるように、スリット(開口部112)長さL(被処理物の走査方向に垂直な方向の長さ)は、被処理物の最大幅以上に設定される。例えば、300mm四方の被処理物(基板)を処理する場合、スリット長さLは300mm以上に設定される。さらに、開口部112の開口面で均一にオゾンガスが分布するように、前記開口面の開口面積は、導入管111及び排出管121の断面積より小さく設定される。例えば、開口部112の上流側及び開口部122の下流側が内径20mm(開口面積314mm2)の配管(導入管111,排出管121)で接続されている場合、開口部112のスリット開口面積が314mm2以下になるように、例えば300mm四方の被処理物の表面をオゾン処理する場合、スリット幅dは1mm以下に設定される。これにより、スリット部分で主な圧力損失が発生し、ガスがスリット長さ方向に均一に噴出される。尚、オゾンガス排気口側(開口部122)に関しては、形状の制約はないが、図2に示すような均一なオゾンガスフロー(細矢印)を実現するためにも、開口部112と同様のスリット形状を有している方が望ましい。そのため、オゾンガス供給部11、オゾンガス排出部12及び天板部13は、角柱状のものを採用するとよい。 The opening for supplying the ozone gas may have a slit shape (slit width d × slit length L) as in the opening 112 shown in FIG. FIG. 2 is a schematic explanatory diagram showing the relationship between the ozone treatment area width of the workpiece 1 and the lengths of the opening 112 and the opening 122 in order to describe a desirable ozone gas supply area (FIGS. 4 and 6). The same applies to. A white arrow indicates a moving direction of the heating unit 162 holding the workpiece 1. As shown in the drawing, the slit (opening 112) length L (length in the direction perpendicular to the scanning direction of the workpiece) is set to be equal to or larger than the maximum width of the workpiece. For example, when a 300 mm square workpiece (substrate) is processed, the slit length L is set to 300 mm or more. Further, the opening area of the opening surface is set smaller than the cross-sectional areas of the introduction pipe 111 and the discharge pipe 121 so that ozone gas is uniformly distributed on the opening surface of the opening 112. For example, when the upstream side of the opening 112 and the downstream side of the opening 122 are connected by a pipe (introduction pipe 111, discharge pipe 121) having an inner diameter of 20 mm (opening area 314 mm 2 ), the slit opening area of the opening 112 is 314 mm. For example, when the surface of a 300 mm square workpiece is subjected to ozone treatment so that it is 2 or less, the slit width d is set to 1 mm or less. Thereby, main pressure loss occurs in the slit portion, and the gas is uniformly ejected in the slit length direction. The ozone gas exhaust side (opening 122) is not limited in shape, but in order to achieve a uniform ozone gas flow (thin arrow) as shown in FIG. It is desirable to have Therefore, the ozone gas supply part 11, the ozone gas discharge part 12, and the top board part 13 are good to employ | adopt a prismatic thing.

次に、オゾンガスフロー部での天板部13と被処理物1と間隔は、その距離をできるだけ短くすることにより、オゾンガスの流速を大きくできる。図3に示したオゾン濃度(分圧)の位置分布特性図から明らかなように、オゾンガスの流速が大きいほど、高温表面上を層流状態で走行後のオゾン濃度減衰速度が低下することが実験的に確認されている。つまり、オゾンガスの流速が大きい程、排気側のスリット(開口部122)近傍でも高いオゾン分圧が維持され、結果的に長い時間高濃度のオゾン処理が実現できる。発明者らの実験においては、被処理物にシリコン基板を用い、この基板温度を600℃にした場合、オゾンガス流速100cm/sを満たすと、スリット長さL=15mm走行後の開口部122でのオゾン分圧は開口部112のオゾン分圧から10%の低下であることが確認されている。この流速を実現するには、スリット長Lが300mmの場合、天板部13と被処理物1と間隔が5mmであればよいことになる。さらに、この間隔を狭くすることにより、開口部122側でのオゾン濃度低下をさらに小さくでき、高効率処理に有利である。   Next, the distance between the top plate 13 and the object 1 to be processed in the ozone gas flow unit can be increased by reducing the distance as much as possible. As is clear from the position distribution characteristic diagram of the ozone concentration (partial pressure) shown in FIG. 3, the ozone concentration decay rate after running in a laminar flow state on the high temperature surface decreases as the flow rate of ozone gas increases. Has been confirmed. That is, the higher the ozone gas flow rate, the higher the ozone partial pressure is maintained in the vicinity of the exhaust-side slit (opening 122), and as a result, high concentration ozone treatment can be realized for a long time. In the experiments by the inventors, when a silicon substrate is used as an object to be processed and the substrate temperature is set to 600 ° C., when the ozone gas flow rate is 100 cm / s, the slit length L = 15 mm at the opening 122 after traveling. It has been confirmed that the ozone partial pressure is 10% lower than the ozone partial pressure in the opening 112. In order to realize this flow velocity, when the slit length L is 300 mm, the distance between the top plate 13 and the workpiece 1 may be 5 mm. Furthermore, by narrowing this interval, the decrease in ozone concentration on the opening 122 side can be further reduced, which is advantageous for high-efficiency processing.

また、処理室10内の圧力は大気圧でもよく、オゾンガス排出部12にスクロールポンプ等のドライポンプを接続して処理室10内を減圧環境としてもよい。ちなみに減圧環境にした場合の方が、天板部13と被処理物1との間を流れるオゾンガスの流速を大きく設定できるガス層流条件(レイノルズ数を計算することにより前記間隙を流れるガスが乱流になるか層流になるか予測できる)を満たしやすく点で有利である。   Further, the pressure in the processing chamber 10 may be atmospheric pressure, and a dry pump such as a scroll pump may be connected to the ozone gas discharge unit 12 so that the processing chamber 10 has a reduced pressure environment. Incidentally, in the case of the reduced pressure environment, the gas laminar flow condition (the Reynolds number is calculated to calculate the Reynolds number is more turbulent) that can set the flow velocity of the ozone gas flowing between the top plate 13 and the workpiece 1 larger. It can be predicted whether it will be a flow or a laminar flow).

開口部112と開口部122の間隔は、特に制約はないが、被処理物サイズに比べて小さくなるようにするのが望ましい。また、加熱部162の移動速度は、被処理物の酸化反応速度及びスループットを考慮して決定する。移動速度が早いほうが、スループットの面で有利であるが、オゾンガスに暴露されている時間が短くなる。図4に示した被処理物上の任意の位置でのオゾンガス分圧及び温度変化のように、移動開始(被処理物の最先端部が開口部112の真下にある)から終了(被処理物の最後部が開口部122の真下を通過する)間で被処理物上の任意な点のオゾンガス積算暴露量(オゾン分圧の時間積分)は同じになる。また、開口部112真下の部分はガス導入により局所的に被処理物温度が低下する恐れがある。万が一図4のように開口部112真下にて被処理物温度低下が起きた場合でも、被処理物上での全ての点でのオゾン熱処理条件(被処理物温度×オゾン分圧の時間積分)は同じなので、被処理物内の任意の点で均一に処理が進む。ちなみにシリコンからなる被処理物1の熱酸化において、オゾンガス分圧および被処理物温度を時間の関数として変動させた場合、変動条件が同じ場合には、一定時間後には、常に均一の膜厚のシリコン酸化膜が形成されることが確認されている。   The distance between the opening 112 and the opening 122 is not particularly limited, but it is desirable that the distance be smaller than the size of the object to be processed. Further, the moving speed of the heating unit 162 is determined in consideration of the oxidation reaction speed and throughput of the object to be processed. A faster moving speed is advantageous in terms of throughput, but the time of exposure to ozone gas is shortened. As shown in the ozone gas partial pressure and temperature change at an arbitrary position on the object to be processed shown in FIG. 4, the movement starts (the foremost part of the object to be processed is directly below the opening 112) and ends (the object to be processed). The ozone gas integrated exposure amount (time integration of ozone partial pressure) at an arbitrary point on the object to be processed is the same between the last portion of each of the objects to be processed). In addition, there is a possibility that the temperature of the object to be processed is locally lowered in the portion immediately below the opening 112 due to gas introduction. Even if the temperature of the workpiece is lowered just below the opening 112 as shown in FIG. 4, the ozone heat treatment conditions at all points on the workpiece (time of temperature of the workpiece x ozone partial pressure) Since they are the same, the process proceeds uniformly at an arbitrary point in the workpiece. Incidentally, in the thermal oxidation of the object to be processed 1 made of silicon, when the ozone gas partial pressure and the object temperature are changed as a function of time, when the changing conditions are the same, the film thickness is always uniform after a certain time. It has been confirmed that a silicon oxide film is formed.

つまり、従来の方式で問題となっていた被処理物温度むら、オゾン分圧の空間分布変化による処理の不均一の発生が、本実施形態における被処理物移動方式を用いることによりこの問題が解消される。   In other words, the uneven temperature of the workpiece, which is a problem with the conventional method, and the non-uniform treatment due to the change in the spatial distribution of the ozone partial pressure can be solved by using the workpiece moving method in this embodiment. Is done.

ちなみに、装置構成上、処理炉10内の微小な間隙、スリット幅を実現する(オゾンの局所供給を実現する)部分(開口部112,122)は加熱部162からの熱輻射の影響を受けやすい。この部分が200℃以上に温まるとオゾンの寿命の低下を引き起こすので、この部分の材質は特に熱輻射に対する反射率が高く、自身が温まらない材質、例えば、電界研磨グレードのアルミニウム、あるいは表面に微細な気泡を含ませて不透明(熱反射)処理を施した石英等がよい。   Incidentally, due to the apparatus configuration, the portions (opening portions 112 and 122) that realize a minute gap and slit width in the processing furnace 10 (realize the local supply of ozone) are easily affected by thermal radiation from the heating unit 162. . When this part is heated to 200 ° C or more, the lifetime of ozone is reduced, so the material of this part is particularly highly reflective to heat radiation and does not heat itself, for example, electropolished grade aluminum or fine on the surface Quartz or the like that has been subjected to an opaque (heat reflection) process with various bubbles included is preferable.

また、開口部112と開口部122と加熱部162の間隔は特に制約はない。ただ、処理温度が高い場合など、処理室10に定常的に存在するオゾンガスが、加熱部162からの熱輻射により熱分解を起こし、その結果、酸素分子が発生する(2O3→3O2)。この際、分子数の増大を伴う。これにより、局所的に圧力が上昇することによる新しいガスフローが発生し、オゾン流量が少ない場合などは、開口部112から開口部122までにおける層流状態が乱される可能性がある。このような場合、開口部112及び開口部122と加熱部162との間隔を狭め、この部分のコンダクタンスを悪くすることにより、処理室10内にオゾンガスが流れ込みにくい構造にする必要がある。したがって、被処理物1を保持しているステージ161を任意に上下移動できるように移動手段16を設計するとよい。 In addition, there are no particular restrictions on the intervals between the opening 112, the opening 122, and the heating unit 162. However, when the processing temperature is high, ozone gas constantly present in the processing chamber 10 undergoes thermal decomposition due to thermal radiation from the heating unit 162, and as a result, oxygen molecules are generated (2O 3 → 3O 2 ). This is accompanied by an increase in the number of molecules. As a result, a new gas flow is generated due to a local increase in pressure, and the laminar flow state from the opening 112 to the opening 122 may be disturbed when the ozone flow rate is small. In such a case, it is necessary to make the structure in which the ozone gas does not easily flow into the processing chamber 10 by narrowing the interval between the opening 112 and the opening 122 and the heating unit 162 and reducing the conductance of this part. Therefore, the moving means 16 may be designed so that the stage 161 holding the workpiece 1 can be arbitrarily moved up and down.

尚、被処理物1のサイズが特に大きい場合でスリット長さが大きく、スリット長さ方向にオゾンガスを均一に噴出すことが困難な場合、あるいは前記スリット幅の設計を有するスリットの製作が困難な場合、これまで述べてきた1次元移動機構を2次元に拡張すればよい。すなわち、被処理物1を保持しているステージ161をスリット長さ方向にも任意に移動できるように移動手段16を設計するとよい。   In addition, when the size of the workpiece 1 is particularly large, the slit length is large, and it is difficult to uniformly eject ozone gas in the slit length direction, or it is difficult to manufacture a slit having the slit width design. In this case, the one-dimensional movement mechanism described so far may be extended to two dimensions. That is, the moving means 16 may be designed so that the stage 161 holding the workpiece 1 can be arbitrarily moved in the slit length direction.

このように、従来、処理室10においてオゾンガスを400℃以上に加熱された表面に平行な方向に流した場合、オゾンガスの寿命が短いことから、オゾン濃度空間分布が生じていた結果、処理速度にもむらが生じていたが、本実施形態のガス処理装置によれば、被処理物1上の全ての位置で、被処理物1移動開始から終了の間に供給されるオゾン分圧の時間積量が一定になる。   Thus, conventionally, when ozone gas is flowed in a direction parallel to the surface heated to 400 ° C. or higher in the processing chamber 10, the ozone gas has a short lifetime, and as a result, the ozone concentration spatial distribution has occurred. However, according to the gas processing apparatus of the present embodiment, the time product of the partial pressure of ozone supplied from the start to the end of the movement of the workpiece 1 at all positions on the workpiece 1. The amount becomes constant.

また、ガスの噴出し口近傍では、ヒータユニットからの輻射で均一に温まっていた処理基板表面の温度が、ガスが持ち込む熱により局所的に低下し、結果噴出し口周囲と噴出し口からは慣れた場所で基板表面温度が異なることが問題となっていたが、本実施形態のガス処理装置によれば、被処理物1表面上の任意の点が開口部112付近に来たときに温度低下を受けた場合でも、移動の開始から終了の間に受ける温度の経時的変化が一定となる。これにより、前記各位置でのオゾン分圧の変化も一定であることを考慮すると、被処理物1の面内では処理速度は一定になる。すなわち、オゾン分圧、処理基板温度の空間分布の歪が問題でなくなる。   Also, in the vicinity of the gas outlet, the temperature of the processing substrate surface that was uniformly heated by the radiation from the heater unit is locally reduced by the heat brought in by the gas. However, according to the gas processing apparatus of this embodiment, the temperature when an arbitrary point on the surface of the workpiece 1 comes near the opening 112 has been a problem. Even when it is lowered, the change with time of the temperature received from the start to the end of the movement is constant. Thereby, considering that the change in the ozone partial pressure at each position is constant, the processing speed is constant within the surface of the workpiece 1. That is, the distortion of the spatial distribution of ozone partial pressure and processing substrate temperature is not a problem.

(実施形態2)
図5は本発明の実施形態2に係るオゾン処理装置の横断面を示した概略図である。本実施形態のオゾン処理装置は、加熱手段としてハロゲンランプに例示される赤外線光源5を備えている。赤外線光源5は処理室10外から同処理室内の天板部13を照射する形態となるように具備される。
(Embodiment 2)
FIG. 5 is a schematic view showing a cross section of an ozone treatment apparatus according to Embodiment 2 of the present invention. The ozone treatment apparatus of this embodiment includes an infrared light source 5 exemplified by a halogen lamp as a heating means. The infrared light source 5 is provided so as to irradiate the top plate portion 13 in the processing chamber from the outside of the processing chamber 10.

処理室10における赤外線導入部17は、ハロゲンランプ等が発する近赤外領域の光の吸収効率がきわめて低い石英ガラス等に例示される材質が採用される。加熱源として光源を用いる場合、被処理物の物性(特に熱伝導率、赤外光吸収効率)に応じ、それぞれ最適な装置構成を選択できる。例えば、被処理物の赤外光吸収効率が高い場合、線状に輝線が発せられる赤外光を直接被処理物に照射することで加熱する。   The infrared introducing portion 17 in the processing chamber 10 is made of a material exemplified by quartz glass having a very low absorption efficiency of light in the near infrared region emitted by a halogen lamp or the like. When a light source is used as a heating source, an optimum apparatus configuration can be selected in accordance with the physical properties of the object to be processed (particularly thermal conductivity and infrared light absorption efficiency). For example, when the infrared light absorption efficiency of the object to be processed is high, heating is performed by directly irradiating the object to be processed with infrared light that emits bright lines.

赤外線光源5は、図9に示したオゾン処理装置の実施形態例のように、実施形態例1のような移動機構を備えたステージ161に複数配置するのもよいが、被処理物の熱伝導率が高い(>100W/K/cm)場合、あるいは熱伝導率は高くないが基板内に多少の温度むらが生じても被処理物の特性を劣化させない(例えば熱処理中の熱歪等が問題にならない)場合、オゾンガス層流供給領域(開口部112から開口部122までの距離×スリット(開口部112及び開口部122)長さL)の間に対応する位置にのみ均一な照射面内分布を確保できるように赤外光を照射するとよい(図6)。これにより、赤外線光源5を移動する機構も必要でなくなり、前記光源の設置数が最小限に抑え、生産及び維持コストの低減が可能となる。このとき被処理物1の温度は、特に熱伝導率が低いとき、赤外線光源5が線状に照射されている部分のみ他の部分に比べ高くなる。しかし、図6に示した被処理物上の任意の位置でのオゾンガス分圧及び温度変化の特性図のように、一定速度で被処理物1を移動させることにより、移動開始から終了までの時間内での被処理物1上の任意の点での熱負荷は一定になる。実施形態例1の酸化剤供給負荷が一定となることと合わせると、被処理物面内で均一な処理が実現できる。   A plurality of infrared light sources 5 may be arranged on a stage 161 having a moving mechanism as in Embodiment 1 as in the embodiment of the ozone treatment apparatus shown in FIG. When the rate is high (> 100 W / K / cm), or the thermal conductivity is not high, even if some temperature unevenness occurs in the substrate, the characteristics of the workpiece are not deteriorated (for example, thermal strain during heat treatment is a problem) In the case where the ozone gas laminar flow supply region (distance from the opening 112 to the opening 122 x length of the slit (opening 112 and opening 122) L) is uniform only in the irradiation plane. It is preferable to irradiate with infrared light so as to ensure (FIG. 6). As a result, a mechanism for moving the infrared light source 5 is not required, the number of light sources installed is minimized, and production and maintenance costs can be reduced. At this time, when the thermal conductivity is low, the temperature of the workpiece 1 is higher only in the portion where the infrared light source 5 is linearly irradiated than in other portions. However, as shown in the characteristic diagram of the ozone gas partial pressure and temperature change at an arbitrary position on the object to be processed shown in FIG. 6, the time from the start to the end of the movement by moving the object 1 at a constant speed. The heat load at an arbitrary point on the workpiece 1 is constant. When combined with the constant supply of oxidant in Embodiment 1, uniform processing can be realized within the surface of the workpiece.

このような局所的加熱を用いた場合、特に400℃以上の高温処理を伴う場合にオゾンガス流通部(オゾンガス層流供給領域)以外に処理室10内に定常的に存在するオゾンガスの熱分解を減少させることができる。その結果、処理室19内でのオゾンガスの熱分解反応(203→302)よる分子数増大による酸素分子ガス流量の湧き出しが減少し、前記オゾンガスフロー部のオゾンガスの層流供給状態が乱されにくいという効果を奏する。 When such local heating is used, especially when high-temperature processing at 400 ° C. or higher is involved, thermal decomposition of ozone gas constantly present in the processing chamber 10 other than the ozone gas circulation part (ozone gas laminar flow supply region) is reduced. Can be made. As a result, the outflow of the oxygen molecular gas flow due to the increase in the number of molecules due to the thermal decomposition reaction (20 3 → 30 2 ) of the ozone gas in the processing chamber 19 is reduced, and the laminar flow supply state of the ozone gas in the ozone gas flow section is disturbed. The effect that it is hard to be done is produced.

また、被処理物1の赤外光吸収効率が低い場合、図7に示したオゾン処理装置の実施形態例のように、熱吸収効率が高く高輻射特性を有する均熱体164を用い、この上に被処理物1を配置して輻射で加熱するとよい。   In addition, when the infrared light absorption efficiency of the workpiece 1 is low, the heat equalizing body 164 having high heat absorption efficiency and high radiation characteristics is used as in the embodiment of the ozone treatment apparatus shown in FIG. It is good to arrange the to-be-processed object 1 on and heat by radiation.

均熱体164の材質としては、オゾンに対し不活性である石英あるいはSiC等の半導体材料を採用するとよい。高熱伝導度の均熱体164を用いることにより、図7に示すような赤外線光の部分照射でも、被処理物1全体を均一に加熱することが可能となる。逆に、熱伝導率を悪くした均熱体を用いた場合でも、オゾンフロー部に対応する表面のみの部分的な加熱が可能となる。これにより前述のように、処理温度が高温の場合に処理炉10内に滞在する雰囲気オゾンガスの熱分解よる酸素分子流量の発生及びこれによるオゾンガスフロー部の層流状態の乱れが起きにくいという効果を奏する。   As the material of the heat equalizing body 164, a semiconductor material such as quartz or SiC that is inert to ozone may be used. By using the heat equalizing body 164 with high thermal conductivity, it is possible to uniformly heat the entire workpiece 1 even by partial irradiation with infrared light as shown in FIG. On the other hand, even when a soaking body having a poor thermal conductivity is used, only the surface corresponding to the ozone flow portion can be partially heated. As a result, as described above, when the processing temperature is high, the generation of the oxygen molecular flow rate due to the thermal decomposition of the atmospheric ozone gas staying in the processing furnace 10 and the resulting disturbance of the laminar flow state of the ozone gas flow portion are less likely to occur. Play.

以上のように、本実施形態のガス処理装置によれば、オゾンガスを層流供給する部分にのみ線状に赤外光を照射し被処理物1を加熱するが、被処理物1の熱伝導率が悪いまたは良い場合であっても、熱伝導率を落とした灼熱体164の上に被処理物1を置くことにより、オゾン層流供給部分のみ被処理物1の温度が他の被処理物1部分より高くできる。そのため、熱歪が生じても問題にならない被処理物1のオゾン処理の場合、オゾン処理部以外の場所を相対的に低温にしておくことにより、装置内に滞在しているオゾンガスの不必要な分解を避けることができる。その結果、オゾン分解で発生する酸素分子ガスの定常的な湧き出しによる余分なガスの流れが発生せず、オゾンガスフロー領域(開口部112から開口部122までの領域)で、オゾンガスの層流供給がより実現しやすくなる。このことは、被処理物1表面の均一処理に有利である。   As described above, according to the gas processing apparatus of the present embodiment, the object 1 is heated by linearly irradiating infrared light only to the portion where the ozone gas is supplied in a laminar flow. Even if the rate is poor or good, by placing the workpiece 1 on the heating element 164 having a reduced thermal conductivity, the temperature of the workpiece 1 is changed only to the ozone laminar flow supply part. Can be higher than one part. Therefore, in the case of the ozone treatment of the workpiece 1 that does not cause a problem even if thermal distortion occurs, the ozone gas staying in the apparatus is unnecessary by keeping the place other than the ozone treatment portion at a relatively low temperature. Decomposition can be avoided. As a result, an excessive gas flow due to steady outflow of molecular oxygen gas generated by ozone decomposition does not occur, and the laminar flow of ozone gas is supplied in the ozone gas flow region (region from the opening 112 to the opening 122). Is easier to implement. This is advantageous for uniform treatment of the surface of the workpiece 1.

逆に、基板へ熱歪が入ることが許されない材料の場合、高熱伝導率の均熱体を用いることができる。例えば熱伝導率100W/m/K以上を有するものを用いることにより、天板部13のみに線状に赤外線光を照射した場合でも、プロセス時間に比べ十分短い時間で、被処理物1全体の温度を一定にできる。被処理物に熱歪が入らないだけの温度むらにさえできれば、実施形態例1で述べたように、被処理物を移動するための手段を用いることにより、均一な処理が実現できる。   Conversely, in the case of a material that does not allow thermal strain to enter the substrate, a soaking body with high thermal conductivity can be used. For example, by using a material having a thermal conductivity of 100 W / m / K or more, even when only the top plate 13 is irradiated with infrared light in a linear manner, the entire workpiece 1 can be processed in a sufficiently short time compared to the process time. The temperature can be kept constant. As long as the temperature unevenness enough to prevent thermal strain from entering the workpiece, uniform processing can be realized by using the means for moving the workpiece as described in the first embodiment.

本実施形態例では、線状の赤外線光源7を最小限、オゾン供給エリア(開口部112から開口部122までの領域)のみにおいて均一に照射できればよく、大面積基板処理の場合等、面内均一に照射するための赤外線光源7の配置を工夫する必要なく、装置構成も単純で、コストの面でも有利となる。また、エネルギー環境負荷の面からも望ましい。さらに、赤外線光を加熱源として用いているので、オゾン雰囲気内ヘヒーター等の加熱手段を入れる必要がない点で、よりクリーンなプロセスが実現できる。   In the present embodiment, it is sufficient that the linear infrared light source 7 can be uniformly irradiated only in the ozone supply area (region from the opening 112 to the opening 122), and the in-plane uniformity can be obtained in the case of large area substrate processing. It is not necessary to devise the arrangement of the infrared light source 7 for irradiating the light, the apparatus configuration is simple, and the cost is advantageous. It is also desirable in terms of energy and environmental impact. Furthermore, since infrared light is used as a heating source, a cleaner process can be realized in that heating means such as a heater in an ozone atmosphere is not required.

(実施形態3)
図8は本発明の実施形態3に係るオゾン処理装置の横断面を示した概略図である。また、図9は本実施形態に係るオゾン処理装置の詳細を示したスケルトン図である。尚、図9においては、オゾンガスを排出するための排出部12及び天板部13が図示省略されている。
(Embodiment 3)
FIG. 8 is a schematic view showing a cross section of an ozone treatment apparatus according to Embodiment 3 of the present invention. FIG. 9 is a skeleton diagram showing details of the ozone treatment apparatus according to this embodiment. In addition, in FIG. 9, the discharge part 12 and the top-plate part 13 for discharging | emitting ozone gas are abbreviate | omitting illustration.

本実施形態例は、特に200℃以下の低温処理が要求される場合に適用可能なオゾン処理装置の形態例である。図8及び図9に示されたように、このオゾン処理装置は、実施形態例1に係るオゾン処理装置の外部に紫外光光源8を具備し、紫外線光を、窓部80(図9)及び天板部13を介して、オゾン供給空間であるオゾンガス層流供給領域(開口部112から開口部122までの距離×スリット(開口部112,122)長さL)に照射する形態となっている。窓部80及び天板部13は石英等に例示される紫外線光を透過する材質からなる。   The present embodiment is an embodiment of an ozone treatment apparatus that can be applied particularly when a low temperature treatment of 200 ° C. or less is required. As shown in FIGS. 8 and 9, the ozone treatment apparatus includes an ultraviolet light source 8 outside the ozone treatment apparatus according to Embodiment 1, and transmits ultraviolet light to the window 80 (FIG. 9) and The ozone gas laminar flow supply region (distance from the opening 112 to the opening 122 x slit (opening 112, 122) length L) is irradiated through the top plate 13 as an ozone supply space. . The window portion 80 and the top plate portion 13 are made of a material that transmits ultraviolet light, such as quartz.

この場合、前記オゾン供給空間に紫外線光が均一な空間強度分布を有するように必要に応じて、石英製のミラーやレンズ等を用いるとよい。用いる紫外光の波長はオゾンの最大の吸収帯であるHartley帯(200mm〜300mm)と一致する必要があり、特に吸収強度が最大となる250mm前後の光、例えばKrFエキシマレーザー光等を用いるとよい。このレーザー光の強度に関しては、制約はないが、強度は強ければ強いほどよい。連続光でもパルス光であってもよいが、十分な成膜速度となるためには、最大輝度の波長範囲において、前者では出力10mW以上、後者では繰り返し周波数10Hzにおいて出力10mJ/パルス以上が必要である。   In this case, a quartz mirror or lens may be used as necessary so that the ultraviolet light has a uniform spatial intensity distribution in the ozone supply space. The wavelength of the ultraviolet light to be used needs to coincide with the Hartley band (200 mm to 300 mm), which is the maximum absorption band of ozone. . There is no restriction on the intensity of the laser beam, but the stronger the intensity, the better. Continuous light or pulsed light may be used, but in order to achieve a sufficient film formation rate, the former requires an output of 10 mW or more in the wavelength range of maximum luminance, and the latter requires an output of 10 mJ / pulse or more at a repetition frequency of 10 Hz. is there.

基板の加熱に関しては、実施形態例2で説明した赤外線光源5が用いられる。ここでは複数の赤外線光源5がステージ161の裏面側に設けられている。   For heating the substrate, the infrared light source 5 described in the second embodiment is used. Here, a plurality of infrared light sources 5 are provided on the back side of the stage 161.

天板部13と被処理物1と間隔(以下、間隙)に関しては、処理室10内のオゾンガス分圧を考慮し、被処理物1に光が元の10%以上届く条件となる方が望ましい。例えば、前記オゾン供給空間のオゾン分圧が0.01気圧の場合と波長248nmの光(例えばKrFエキシマレーザ光)に対しては、報告されているオゾンの吸収係数から、前記間隙は8mm以下とする必要がある。   With respect to the distance between the top plate 13 and the workpiece 1 (hereinafter referred to as a gap), it is preferable that the ozone gas partial pressure in the processing chamber 10 is taken into consideration so that the light reaches the workpiece 1 at least 10% of the original. . For example, when the ozone partial pressure in the ozone supply space is 0.01 atm and for light having a wavelength of 248 nm (for example, KrF excimer laser light), the gap is 8 mm or less from the reported absorption coefficient of ozone. There is a need to.

紫外光が届く条件で膜にダメージを与えないかを評価するため、KrFエキシマパルスレーザ(パワー100mJ/cm2、パルス時間:10ns)を用い、オゾン分圧0.01気圧、基板温度200℃、パルス繰り返し周波数30Hz,20分、シリコン(被処理物)の酸化処理を行い、XPS(X線光電子分光)法、AES(オージェ電子分光)法にてシリコンの信号を測定した。その結果、通常のオゾンガスによる熱酸化で計測されるプロファイルとの変化は見られなかった。すなわち、250nmの光が有する5eV程度のエネルギーが被処理物であるシリコンに当ることにより、シリコン絶縁膜の特性を劣化することは起きていないことが確認された。 In order to evaluate whether or not the film is damaged under the condition that ultraviolet light reaches, a KrF excimer pulse laser (power 100 mJ / cm 2 , pulse time: 10 ns) is used, an ozone partial pressure of 0.01 atm, a substrate temperature of 200 ° C., Silicon (oxidized material) was oxidized at a pulse repetition frequency of 30 Hz for 20 minutes, and a silicon signal was measured by XPS (X-ray photoelectron spectroscopy) method and AES (Auger electron spectroscopy) method. As a result, no change from the profile measured by thermal oxidation with ordinary ozone gas was observed. In other words, it was confirmed that the characteristics of the silicon insulating film were not deteriorated by the energy of about 5 eV included in the light of 250 nm hitting the silicon to be processed.

以上のように本実施形態のオゾン処理装置によれば、アッシング等のオゾンを用いた200℃以下の低温での基板(被処理物1)処理が要求される場合、オゾンに対し高い吸収係数を有する紫外光を照射することにより、特に表面まで光が届く条件にすることにより、確実に被処理物1表面にオゾンの光分解反応で生じた原子状酸素を供給できる。また、248mm前後の光が有するエネルギーは5eV程度であり、プラズマ雰囲気中で電子、中性活性種が有する運動エネルギーよる小さく、オゾンが有するダメーシレスと言う特徴を保持したまま、オゾンの酸化カの強化が実現できる。   As described above, according to the ozone treatment apparatus of this embodiment, when substrate (treatment object 1) treatment at a low temperature of 200 ° C. or less using ozone such as ashing is required, a high absorption coefficient is obtained for ozone. By irradiating the ultraviolet light, it is possible to reliably supply atomic oxygen generated by the photodecomposition reaction of ozone to the surface of the object to be processed 1, particularly by setting the light to reach the surface. In addition, the energy of light around 248 mm is about 5 eV, which is smaller than the kinetic energy of electrons and neutral active species in the plasma atmosphere. Can be realized.

さらに、大型基板の処理の場合など、大口径全面に均一に紫外光を照射しようとすると、レシズ、ミラー等光学系材料の複雑な配置が必要となるが、本実施形態においては、オゾンガスフロー部のみに均一に紫外光が照射できればよいという観点で、光学系のセットアップが容易になり、コストも低減できる。   Furthermore, in the case of processing a large substrate, when trying to irradiate ultraviolet light uniformly over the entire large aperture, a complicated arrangement of optical system materials such as a resin and a mirror is required. In this embodiment, the ozone gas flow unit From the viewpoint that it is only necessary to uniformly irradiate ultraviolet light only, the setup of the optical system becomes easy and the cost can be reduced.

尚、上記実施形態の説明では本発明のオゾン処理装置に用いるオゾンガスを発生する手段としては高濃度オゾン発生装置も含まれると述べたが、この高濃度オゾンガス発生装置としては、例えば、特許第1791865号に基づくオゾンガス発生装置で、オソナイザーで発生したオゾン混合ガスをオゾンと酸素の低温での蒸気圧の差を用いてオゾンのみ液体に凝縮させて、高純度(99.9%以上)のオゾンガスを得るものがある。   In the description of the above embodiment, it has been described that the means for generating ozone gas used in the ozone treatment apparatus of the present invention includes a high-concentration ozone generator, but as this high-concentration ozone gas generator, for example, Japanese Patent No. 1791865 The ozone gas generator based on No. 1 is used to condense the ozone mixed gas generated by the Ozoneizer into a liquid of only ozone using the difference in vapor pressure between ozone and oxygen at a low temperature to produce high purity (99.9% or more) ozone gas. There is something to get.

本発明の実施形態1に係るオゾン処理装置の横断面を示した概略図。Schematic which showed the cross section of the ozone treatment apparatus which concerns on Embodiment 1 of this invention. オゾン処理領域幅と開口部112及び開口部122の長さとの関係を示した概略説明図。Schematic explanatory drawing which showed the relationship between the ozone treatment area | region width and the length of the opening part 112 and the opening part 122. FIG. オゾン濃度(分圧)の位置分布を示した特性図。The characteristic figure which showed the position distribution of ozone concentration (partial pressure). 被処理物上の任意の位置でのオゾン分圧及び温度変化を示した図。The figure which showed the ozone partial pressure and temperature change in the arbitrary positions on a to-be-processed object. 本発明の実施形態2に係るオゾン処理装置の横断面を示した概略図。Schematic which showed the cross section of the ozone treatment apparatus which concerns on Embodiment 2 of this invention. 赤外線光による局所加熱を用いた場合の被処理物上の2点の温度オゾン分圧の経時的変化を示した特性図。The characteristic view which showed the time-dependent change of the temperature ozone partial pressure of two points on the to-be-processed object at the time of using the local heating by infrared light. 実施形態2に係るもう一つのオゾン処理装置の横断面を示した概略図。Schematic which showed the cross section of another ozone processing apparatus which concerns on Embodiment 2. FIG. 本発明の実施形態3に係るオゾン処理装置の横断面を示した概略図。Schematic which showed the cross section of the ozone treatment apparatus which concerns on Embodiment 3 of this invention. 本実施形態に係るオゾン処理装置の詳細を示したスケルトン図。The skeleton figure which showed the detail of the ozone treatment apparatus which concerns on this embodiment.

符号の説明Explanation of symbols

1…被処理物
10…処理室、11…オゾンガス供給部、111…導入管、112…開口部、12…オゾンガス排出部、121…排出管、122…開口部、13…天板部、14,15…隙間、16…移動手段、161…ステージ、162…加熱部、163…指示部、164…均熱体
5…赤外線光源
8…紫外線光源
DESCRIPTION OF SYMBOLS 1 ... To-be-processed object 10 ... Processing chamber, 11 ... Ozone gas supply part, 111 ... Introduction pipe, 112 ... Opening part, 12 ... Ozone gas discharge part, 121 ... Exhaust pipe, 122 ... Opening part, 13 ... Top plate part, 14, DESCRIPTION OF SYMBOLS 15 ... Gap, 16 ... Moving means, 161 ... Stage, 162 ... Heating part, 163 ... Instruction part, 164 ... Soaking body 5 ... Infrared light source 8 ... Ultraviolet light source

Claims (11)

オゾンガスによって処理される被処理物を格納する処理室を設け、
この処理室内にオゾンガス供給部及びオゾンガス排出部を対向配置してオゾンガスを流通させるオゾン流通部を形成し、
前記処理室内において前記被処理物を支持し、且つ前記被処理物の処理表面が前記オゾンガス流通部に曝された状態で前記被処理物をオゾンガスの流通と平行に移動させる移動手段を設け、
前記被処理物を加熱する加熱部を設け、
前記移動手段の動作によって前記被処理物の表面を順次オゾンガス流通部に曝して前記被処理物表面全体をオゾン処理すること
を特徴とするオゾン処理装置。
A processing chamber for storing an object to be processed by ozone gas is provided,
In this processing chamber, an ozone gas supply part and an ozone gas discharge part are arranged to face each other to form an ozone circulation part that circulates ozone gas,
A moving means for supporting the object to be processed in the processing chamber and moving the object to be processed in parallel with the circulation of ozone gas in a state where the treatment surface of the object to be treated is exposed to the ozone gas circulation part;
A heating unit for heating the workpiece is provided,
An ozone treatment apparatus characterized in that the entire surface of the object to be treated is subjected to ozone treatment by sequentially exposing the surface of the object to be treated to an ozone gas circulation section by the operation of the moving means.
前記オゾンガス供給部及びオゾンガス排出部は各々スリット状の開口部を有し、各開口部のスリット長さを前記被処理物のオゾンガス処理面の最大幅よりも大きく設定したこと
を特徴とする請求項1記載のオゾン処理装置。
The ozone gas supply unit and the ozone gas discharge unit each have a slit-like opening, and the slit length of each opening is set larger than the maximum width of the ozone gas processing surface of the workpiece. 1. The ozone treatment apparatus according to 1.
前記移動手段は、前記オゾン供給部とオゾンガス前記排出部との間を流れるオゾンガスの流れと同方向、逆方向、直交方向、若しくは前記同方向又は前記逆方向と前記直交方向を組み合わせてジグザグに移動自在に構成されていること
を特徴とする請求項1又は2に記載のオゾン処理装置。
The moving means moves in a zigzag manner in the same direction, reverse direction, orthogonal direction, or the same direction or a combination of the reverse direction and the orthogonal direction as the flow of ozone gas flowing between the ozone supply unit and the ozone gas discharge unit. The ozone treatment apparatus according to claim 1, wherein the ozone treatment apparatus is configured freely.
前記処理室天井部の前記オゾンガス流通部には凸状の天板部が設けられていること
を特徴とする請求項1から3のいずれか1項に記載のオゾン処理装置。
The ozone treatment apparatus according to any one of claims 1 to 3, wherein a convex top plate portion is provided in the ozone gas circulation portion of the treatment chamber ceiling portion.
前記移動手段は、オゾンガスが流通する前記処理室の天井面と前記オゾンガス処理面との間隔を調節できるよう高さ調節可能に構成されていること
を特徴とする請求項1から4のいずれか1項に記載のオゾン処理装置。
The height of the moving means is adjustable so that the distance between the ceiling surface of the processing chamber through which ozone gas flows and the ozone gas processing surface can be adjusted. The ozone treatment apparatus according to item.
前記加熱部は、前記処理物を支持する移動手段に設けられていること
を特徴とする請求項1から5のいずれか1項に記載のオゾン処理装置。
The ozone processing apparatus according to claim 1, wherein the heating unit is provided in a moving unit that supports the processed object.
前記加熱部は、電気源または赤外線熱の輻射体からなること
を特徴とする請求項1から6のいずれか1項に記載のオゾン処理装置。
The ozone processing apparatus according to claim 1, wherein the heating unit is made of an electric source or an infrared heat radiator.
前記加熱部が前記赤外線の輻射体からなる場合、赤外線を発する光源は、前記移動手段の反被処理物支持側面に均一に照射すること
を特徴とする請求項7記載のオゾン処理装置。
8. The ozone treatment apparatus according to claim 7, wherein when the heating unit is made of the infrared radiator, the light source that emits infrared rays uniformly irradiates the side of the moving unit that supports the object to be processed.
前記オゾンガス流通部において前記被処理物表面に紫外光を照射すること
を特徴とする請求項1から8のいずれか1項に記載のオゾン処理装置。
The ozone treatment apparatus according to any one of claims 1 to 8, wherein the ozone gas circulation unit irradiates the surface of the workpiece with ultraviolet light.
前記処理室の天井部又は前記処理室の天井部及び天板部は、紫外光を透過する部材により形成し、前記紫外線を前記処理室外より照射するよう構成したこと
を特徴とする請求項9記載のオゾン処理装置。
The ceiling part of the processing chamber or the ceiling part and the top plate part of the processing chamber are formed of a member that transmits ultraviolet light, and the ultraviolet light is irradiated from outside the processing chamber. Ozone treatment equipment.
オゾンの紫外光吸収係数に基づき算出される紫外光の10%以上の光が前記被処理物表面に到達するように、前記オゾンガス流通部の間隔を調整すること
を特徴とする9又は10に記載のオゾン処理装置。
The interval of the ozone gas circulation part is adjusted so that 10% or more of the ultraviolet light calculated based on the ultraviolet light absorption coefficient of ozone reaches the surface of the object to be processed. Ozone treatment equipment.
JP2004022682A 2004-01-30 2004-01-30 Ozone treatment equipment Expired - Fee Related JP4286158B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022682A JP4286158B2 (en) 2004-01-30 2004-01-30 Ozone treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022682A JP4286158B2 (en) 2004-01-30 2004-01-30 Ozone treatment equipment

Publications (2)

Publication Number Publication Date
JP2005217232A true JP2005217232A (en) 2005-08-11
JP4286158B2 JP4286158B2 (en) 2009-06-24

Family

ID=34905952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022682A Expired - Fee Related JP4286158B2 (en) 2004-01-30 2004-01-30 Ozone treatment equipment

Country Status (1)

Country Link
JP (1) JP4286158B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123849A (en) * 2007-11-13 2009-06-04 Meidensha Corp Oxide film forming method, and device therefor
JP2009188282A (en) * 2008-02-08 2009-08-20 National Institute Of Advanced Industrial & Technology Manufacturing method of high-density silicon oxide film, and silicon substrate and semiconductor device with high-density silicon oxide film manufactured by the same
JP2014086711A (en) * 2012-10-29 2014-05-12 Meidensha Corp Semiconductor device manufacturing method and semiconductor device
JP2015032757A (en) * 2013-08-05 2015-02-16 東京エレクトロン株式会社 Ultraviolet irradiation device, and substrate processing method
WO2016186096A1 (en) * 2015-05-21 2016-11-24 株式会社明電舎 Method and device for modifying resin
US10253148B2 (en) 2015-03-12 2019-04-09 Meidensha Corporation Method and device for modifying resin
JP2022128468A (en) * 2017-09-15 2022-09-01 株式会社Screenホールディングス Resist removing method and resist removing device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009123849A (en) * 2007-11-13 2009-06-04 Meidensha Corp Oxide film forming method, and device therefor
JP2009188282A (en) * 2008-02-08 2009-08-20 National Institute Of Advanced Industrial & Technology Manufacturing method of high-density silicon oxide film, and silicon substrate and semiconductor device with high-density silicon oxide film manufactured by the same
JP2014086711A (en) * 2012-10-29 2014-05-12 Meidensha Corp Semiconductor device manufacturing method and semiconductor device
JP2015032757A (en) * 2013-08-05 2015-02-16 東京エレクトロン株式会社 Ultraviolet irradiation device, and substrate processing method
US10253148B2 (en) 2015-03-12 2019-04-09 Meidensha Corporation Method and device for modifying resin
WO2016186096A1 (en) * 2015-05-21 2016-11-24 株式会社明電舎 Method and device for modifying resin
JP6057030B1 (en) * 2015-05-21 2017-01-11 株式会社明電舎 Resin modification method
CN107614580A (en) * 2015-05-21 2018-01-19 株式会社明电舍 Method and apparatus for modified resin
US10053548B2 (en) * 2015-05-21 2018-08-21 Meidensha Corporation Method and device for modifying resin
JP2022128468A (en) * 2017-09-15 2022-09-01 株式会社Screenホールディングス Resist removing method and resist removing device
JP7236583B2 (en) 2017-09-15 2023-03-09 株式会社Screenホールディングス Resist removing method and resist removing apparatus

Also Published As

Publication number Publication date
JP4286158B2 (en) 2009-06-24

Similar Documents

Publication Publication Date Title
JP5921448B2 (en) Apparatus and method for periodic oxidation and etching
JP5922041B2 (en) Apparatus and method for periodic oxidation and etching
US6325857B1 (en) CVD apparatus
TW201943016A (en) Substrate processing apparatus and method
KR100623570B1 (en) Method and device for forming oxide film
JP2013522882A (en) Apparatus and method for periodic oxidation and etching
JP2000223425A (en) Substrate-processing device, gas-feeding method, and laser beam feeding method
JP6328882B2 (en) Plasma annealing method and apparatus
US20080296258A1 (en) Plenum reactor system
JP4286158B2 (en) Ozone treatment equipment
JP6473889B2 (en) Plasma processing apparatus and method, and electronic device manufacturing method
JP6043968B2 (en) Plasma processing method and electronic device manufacturing method
JP2009234815A (en) Method and apparatus for processing graphene sheet-based material
KR20120086303A (en) Method and device for crystallizing an amorphous semiconductor layer with a laser beam
JP2008053562A (en) Method for forming gate insulating film, and method and device for manufacturing semiconductor device
JP5193488B2 (en) Method and apparatus for forming oxide film
JP4783895B2 (en) Film nitriding method, film forming substrate and nitriding apparatus
JPH09162138A (en) Laser annealing method and laser annealer
JP2010135645A (en) Film forming method and film forming apparatus
JP5510522B2 (en) Method for processing graphene sheet material
JP4785497B2 (en) Oxide film forming method and apparatus
JP5130589B2 (en) Semiconductor device manufacturing method and oxidation treatment apparatus
JP2016119313A (en) Plasma processing apparatus
JP2010118516A (en) Method of forming thin film and thin film formation apparatus
JP2016219656A (en) Optical processing apparatus and optical processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090216

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4286158

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees