JP2005216518A - High-dielectric-constant dielectric material and antenna using the dielectric material - Google Patents

High-dielectric-constant dielectric material and antenna using the dielectric material Download PDF

Info

Publication number
JP2005216518A
JP2005216518A JP2004018372A JP2004018372A JP2005216518A JP 2005216518 A JP2005216518 A JP 2005216518A JP 2004018372 A JP2004018372 A JP 2004018372A JP 2004018372 A JP2004018372 A JP 2004018372A JP 2005216518 A JP2005216518 A JP 2005216518A
Authority
JP
Japan
Prior art keywords
dielectric
antenna
resin
powder
ceramic powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004018372A
Other languages
Japanese (ja)
Inventor
Takanori Endo
貴則 遠藤
Tomohiro Mori
智広 森
Seiro Hachiman
誠朗 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2004018372A priority Critical patent/JP2005216518A/en
Priority to PCT/JP2005/000982 priority patent/WO2005071697A1/en
Publication of JP2005216518A publication Critical patent/JP2005216518A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2216Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in interrogator/reader equipment
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/077Constructional details, e.g. mounting of circuits in the carrier
    • G06K19/07749Constructional details, e.g. mounting of circuits in the carrier the record carrier being capable of non-contact communication, e.g. constructional details of the antenna of a non-contact smart card
    • G06K19/07773Antenna details
    • G06K19/07786Antenna details the antenna being of the HF type, such as a dipole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2208Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems
    • H01Q1/2225Supports; Mounting means by structural association with other equipment or articles associated with components used in interrogation type services, i.e. in systems for information exchange between an interrogator/reader and a tag/transponder, e.g. in Radio Frequency Identification [RFID] systems used in active tags, i.e. provided with its own power source or in passive tags, i.e. deriving power from RF signal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/40Radiating elements coated with or embedded in protective material

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Details Of Aerials (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dielectric material with a high dielectric constant and with high dimensional accuracy allowing easy manufacture, processing and handling, and to provide an antenna using the dielectric material for an RFID tag or reader/writer which operates in an UHF or SHF band. <P>SOLUTION: Titanium oxide, strontium carbonate, etc. are mixed, granulated and roasted. The resulting material is crushed by using a hammer mill, a roller mill or the like, and then ground by using a ball mill, a vibrating mill, an attritor or the like, or ground by using an organic solvent to obtain a ferromagnetic ceramic powder having a predetermined particle diameter. The ferromagnetic ceramic powder is then mixed with a plastic, e.g., a thermoplastic resin such as nylon, polyethylene, polypropylene, polycarbonate, vinyl chloride resin, methacrylic resin, polystylene, ABS resin, acetal resin and fluororesin, or a thermosetting resin such as phenolic resin, urea resin and alkyd resin, or rubber at a predetermined ratio, and the resulting material is molded by a method such as extrusion, rolling, injection molding, and compression molding. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は高誘電率誘電体に関し、特に、UHFまたはSHF帯で作動するRFIDタグ又はRFIDリーダ/ライタのアンテナに用いて好適な高誘電率誘電体及び該誘電体を使用したアンテナに関する。   The present invention relates to a high dielectric constant dielectric, and more particularly to a high dielectric constant dielectric suitable for use in an RFID tag or RFID reader / writer antenna operating in the UHF or SHF band, and an antenna using the dielectric.

近年、ICチップを備えたタグとリーダ、ライタ又はリーダ/ライタ(以下、総称してリーダ/ライタと呼ぶ。)との間でデータの交信を行うRFIDシステムが普及している。このRFIDシステムは、タグ及びリーダ/ライタの各々に備えたアンテナを用いてデータの交信を行うため、タグをリーダ/ライタから離しても通信可能であり、また、汚れなどに強いという長所から、工場の生産管理、物流の管理、入退室管理等の様々な用途に利用されるようになってきている。   In recent years, RFID systems that perform data communication between a tag including an IC chip and a reader, writer, or reader / writer (hereinafter collectively referred to as a reader / writer) have become widespread. Since this RFID system communicates data using the antennas provided to each of the tag and the reader / writer, it can communicate even when the tag is separated from the reader / writer, and it is resistant to dirt, etc. It has come to be used for various purposes such as factory production management, logistics management, and entrance / exit management.

RFIDシステムでは、使用する周波数帯に応じて通信可能な距離が異なる。例えば、13.56MHz程度の短波帯では通信距離は数cmから数十cmであり、このシステムを入退室管理などの用途に用いる場合はタグをリーダ/ライタに近接して使用するため、この程度の通信距離で実用上問題はないが、物流管理などの用途では通信距離が長い方が有利である。そこでこのような用途ではUHF帯やSHF帯などのより周波数の高い帯域が用いられる。   In the RFID system, the communicable distance differs depending on the frequency band to be used. For example, in the short wave band of about 13.56 MHz, the communication distance is several centimeters to several tens of centimeters. When this system is used for entrance / exit management or the like, the tag is used close to the reader / writer. However, a longer communication distance is more advantageous for applications such as logistics management. Therefore, in such an application, a higher frequency band such as a UHF band or an SHF band is used.

タグ用アンテナとして、短波帯では通常ループ状のアンテナが用いられるが、UHF帯やSHF帯などの周波数帯では、ダイポールアンテナ(例えば、特開2003−249820号公報など)や、基板の一方の面にマイクロストリップ導体を形成し、物品側の面に裏面接地導体を形成したマイクロストリップ線路型のアンテナなどが用いられる。   As a tag antenna, a loop antenna is usually used in a short wave band, but in a frequency band such as a UHF band or an SHF band, a dipole antenna (for example, JP-A-2003-249820) or one surface of a substrate is used. A microstrip line type antenna or the like in which a microstrip conductor is formed on the surface and a back surface grounding conductor is formed on the surface on the article side is used.

特開2003−249820号公報(第4−8頁、第1図)JP 2003-249820 A (page 4-8, FIG. 1)

上記UHF帯やSHF帯などの周波数帯で使用するアンテナの寸法は、波長の偶数の整数分の1倍、例えば1/2倍の長さが必要である。また、誘電体の内部では電波の波長は誘電率の平方根に反比例する。このため、誘電率の高い材料を用いるとアンテナの寸法を小さくすることができる。   The size of the antenna used in the frequency band such as the UHF band or the SHF band needs to be 1 / integer of an even number of wavelengths, for example, 1/2 times the length. In addition, inside the dielectric, the wavelength of the radio wave is inversely proportional to the square root of the dielectric constant. For this reason, when a material having a high dielectric constant is used, the size of the antenna can be reduced.

ここで、誘電率の高い材料としては、酸化チタン、チタン酸カルシウム、チタン酸ストロンチウム、ジルコン酸ストロンチウム等のセラミックスの焼結体がある。これらのセラミックス材料は誘電特性は良好であるが、焼結体は寸法精度が悪く、寸法精度を上げるために研削を行うと誘電体の製造コストが上昇してしまい、低価格化が求められるRFIDシステムにおいては大きな欠点となる。また、RFIDシステムのタグやリーダ/ライタのアンテナは物品表面または電子回路の筐体表面に取り付けて使用されるために薄いことが好ましく、従って誘電体も薄くすることが求められるが、焼結体は脆いために薄くするとアンテナの組み立て工程や使用中に他の物品と接触して割れてしまう恐れがある。   Here, as a material having a high dielectric constant, there are sintered ceramics such as titanium oxide, calcium titanate, strontium titanate, and strontium zirconate. These ceramic materials have good dielectric properties, but sintered bodies have poor dimensional accuracy, and grinding to increase dimensional accuracy increases the manufacturing cost of the dielectric, which requires RFID to be reduced in price. This is a major drawback in the system. In addition, the RFID system tag and the reader / writer antenna are preferably thin because they are used by being attached to the surface of an article or the casing of an electronic circuit. Therefore, it is required that the dielectric is also thin. Since it is fragile, if it is made thin, it may come into contact with other articles during the assembly process or use of the antenna and crack.

一方、プラスチックも誘電体として使用することができ、プラスチックは射出等により高い寸法精度で製造することができ、また柔軟であるために薄くしても割れにくいという長所があるが、誘電率は低いために損失を抑制することができない。また、PVDF(ポリ弗化ビニリデン)やP(VDF/TrEE(弗化エチレン))、P(VDCN(シアン化ビニリデン)/Vac.(酢酸ビニール))などの有機強誘電体は薄くしても割れにくいという長所があるが、弗素、シアン基等を含むため、燃やすと有毒ガスが発生する問題があり、また誘電率もそれほど高くはない。   On the other hand, plastic can also be used as a dielectric, and plastic can be manufactured with high dimensional accuracy by injection or the like. Also, since it is flexible, it has the advantage of being hard to crack even if thin, but the dielectric constant is low Therefore, loss cannot be suppressed. Organic ferroelectrics such as PVDF (polyvinylidene fluoride), P (VDF / TrEE (ethylene fluoride)), and P (VDCN (vinylidene cyanide) / Vac. (Vinyl acetate)) are cracked even if they are thin. Although it has the advantage that it is difficult, since it contains fluorine, cyan group, etc., there is a problem that toxic gas is generated when it is burned, and the dielectric constant is not so high.

このような問題はRFIDタグやリーダ/ライタ用のアンテナに用いられる誘電体に限らず、他の高周波用アンテナに用いられる誘電体などに関しても同様に生じ、寸法精度が高く、製造や加工、取り扱いが容易な高誘電率誘電体が求められている。   Such problems are not limited to dielectrics used in RFID tags and reader / writer antennas, but also occur in dielectrics used in other high-frequency antennas, with high dimensional accuracy, manufacturing, processing, and handling. Therefore, there is a demand for a high dielectric constant dielectric material that can be easily processed.

本発明は、上記問題点に鑑みてなされたものであって、その主たる目的は、寸法精度が高く、製造、加工、取り扱いが容易であり、誘電率の高い誘電体、特に、UHF帯又はSHF帯で作動するRFIDのタグ又はリーダ/ライタのアンテナに用いて好適な高誘電率誘電体及び該誘電体を使用したアンテナを提供することにある。   The present invention has been made in view of the above problems, and its main object is to provide a high dielectric constant, particularly a UHF band or SHF, which has high dimensional accuracy and is easy to manufacture, process and handle. An object of the present invention is to provide a high dielectric constant dielectric suitable for use in an RFID tag or reader / writer antenna operating in a band, and an antenna using the dielectric.

上記目的を達成するため、本発明の誘電体は、少なくとも強誘電体セラミックス粉末とプラスチック又はゴムとを用いて形成された複合材よりなるものである。   In order to achieve the above object, the dielectric of the present invention comprises a composite material formed using at least a ferroelectric ceramic powder and plastic or rubber.

本発明においては、前記強誘電体セラミックス粉末の含有量が、体積比率で略70%以下であることが好ましい。   In the present invention, the content of the ferroelectric ceramic powder is preferably about 70% or less by volume ratio.

また、本発明においては、前記強誘電体セラミックス粉末は、乾式の粉砕により形成されたものであり、該粉末の最大粒径が略100μm以下、又は、有機溶媒を用いた湿式の粉砕により形成されたものであり、該粉末の粒径が略0.1μm乃至10μm、又は、化学的に生成されたTiOであり、該粉末の粒径が略0.1μm乃至10μmであることが好ましい。 In the present invention, the ferroelectric ceramic powder is formed by dry pulverization, and the maximum particle size of the powder is approximately 100 μm or less, or formed by wet pulverization using an organic solvent. Preferably, the particle size of the powder is approximately 0.1 μm to 10 μm or chemically generated TiO 2 , and the particle size of the powder is approximately 0.1 μm to 10 μm.

また、本発明のUHF帯またはSHF帯で作動可能なRFIDタグ用又はRFIDリーダ/ライタ用アンテナは、上記誘電体と、該誘電体表面に配設されるアンテナパターンとで構成されるものである。   The RFID tag or RFID reader / writer antenna operable in the UHF band or SHF band according to the present invention comprises the dielectric and an antenna pattern disposed on the dielectric surface. .

また、本発明のUHF帯またはSHF帯で作動可能なRFIDタグ用又はRFIDリーダ/ライタ用アンテナは、上記誘電体と、該誘電体表面に配設されるアンテナパターンと、前記誘電体表面の前記アンテナパターンに対向する位置に配設される導電体とで構成されるものである。   The RFID tag or RFID reader / writer antenna operable in the UHF band or the SHF band of the present invention includes the dielectric, an antenna pattern disposed on the dielectric surface, and the dielectric surface. It is comprised with the conductor arrange | positioned in the position facing an antenna pattern.

本発明においては、前記誘電体と前記導電体との間、又は、前記アンテナパターンと前記誘電体との間に、磁性体が挿入されている構成とすることができる。   In this invention, it can be set as the structure by which the magnetic body is inserted between the said dielectric material and the said conductor, or between the said antenna pattern and the said dielectric material.

また、本発明においては、前記誘電体上に、前記アンテナパターンを覆うように第2の誘電体が配設されている構成とすることもできる。   In the present invention, a second dielectric may be disposed on the dielectric so as to cover the antenna pattern.

このように、本発明では、少なくとも所定の粒径の強磁性セラミックス粉末とプラスチックとを所定の比率で混合した複合材を用いて誘電体を形成しているため、誘電体の誘電率を高くすることができると共に、寸法精度を高め、製造や加工を容易にすることができ、薄くしても破損しにくくすることができる。そして、該誘電体をRFIDのタグやリーダ/ライタのアンテナに用いることにより、所望の性能のアンテナを小さい寸法で製作することができる。   As described above, in the present invention, the dielectric is formed by using a composite material in which at least a ferromagnetic ceramic powder having a predetermined particle diameter and plastic are mixed at a predetermined ratio, so that the dielectric constant of the dielectric is increased. In addition, the dimensional accuracy can be increased, manufacturing and processing can be facilitated, and even if it is thinned, it is difficult to break. By using the dielectric for an RFID tag or a reader / writer antenna, an antenna having a desired performance can be manufactured with a small size.

以上説明したように、本発明の誘電体及び該誘電体を備えるアンテナによれば下記記載の効果を奏する。   As described above, the dielectric body of the present invention and the antenna including the dielectric body have the following effects.

本発明の第1の効果は、誘電体の誘電率を高くすることができると共に、寸法精度を高め、製造や加工を容易にすることができ、かつ、薄くしても破損しにくくすることができるということである。   The first effect of the present invention is that the dielectric constant of the dielectric can be increased, the dimensional accuracy can be increased, the manufacturing and processing can be facilitated, and even if it is thinned, it is difficult to break. It can be done.

その理由は、誘電体として、セラミックスの焼結体やプラスチック、有機強誘電体料を用いるのではなく、少なくとも、乾式又は湿式で形成した所定の粒径の強磁性セラミックス粉末とプラスチック又はゴムとを所定の比率で混合して形成した複合材を用いているからである。   The reason is that a ceramic sintered body, plastic, or organic ferroelectric material is not used as the dielectric, but at least a ferromagnetic ceramic powder having a predetermined particle diameter formed by dry or wet and plastic or rubber. This is because a composite material formed by mixing at a predetermined ratio is used.

また、本発明の第2の効果は、UHF帯やSHF帯で作動するRFIDタグやリーダ/ライタのアンテナの寸法を小さくすることができるということである。   The second effect of the present invention is that the size of the antenna of the RFID tag or reader / writer operating in the UHF band or the SHF band can be reduced.

その理由は、上記複合材をRFIDシステムのタグやリーダ、リーダ/ライタ用アンテナの基板として用いることにより、損失を低減することができるからである。   The reason is that loss can be reduced by using the composite material as a substrate for an RFID system tag, reader, or reader / writer antenna.

従来技術で示したように、強誘電体材料としてセラミックスの焼結体があるが、セラミックスは寸法精度が悪く、寸法精度を上げるために研削で加工するとコストが上昇してしまう。また、誘電体をRFIDシステムのタグやリーダ/ライタのアンテナに利用する場合は薄くすることが求められるが、セラミックスは脆いために薄くすると組み立て中や使用中に破損しやすいという問題もある。また、プラスチックは寸法精度が高く、柔軟性に富むため破損しにくいが誘電率を高くすることができない。更に、有機強誘電体料は薄くしても割れにくいが、燃やすと有毒ガスを発生し、又、誘電率もそれほど高くすることができないという問題がある。   As shown in the prior art, there is a ceramic sintered body as a ferroelectric material. However, ceramics have poor dimensional accuracy, and the cost increases when processed by grinding to increase the dimensional accuracy. In addition, when a dielectric is used for an RFID system tag or a reader / writer antenna, it is required to be thin. However, since ceramics are brittle, there is a problem that thinning tends to cause damage during assembly and use. In addition, plastic has high dimensional accuracy and high flexibility, so it is difficult to break, but the dielectric constant cannot be increased. Further, the organic ferroelectric material is difficult to crack even if it is thin, but there is a problem that when it is burned, a toxic gas is generated and the dielectric constant cannot be increased so much.

そこで本発明では、上記従来の誘電体の欠点を解消すべく、強磁性セラミックス粉末とプラスチック又はゴムの複合材を用いる。即ち、セラミックス粉末とプラスチック又はゴムを混練、押出し、圧延、射出成形、圧縮成形、塗布等により成形する。このような材料を用いることにより、誘電率を高くすることができると共に、寸法精度を高め製造、加工を容易にすることができ、薄くしても破損しにくくすることができる。   Therefore, in the present invention, a composite material of ferromagnetic ceramic powder and plastic or rubber is used in order to eliminate the disadvantages of the conventional dielectric. That is, the ceramic powder and plastic or rubber are kneaded, extruded, rolled, injection molded, compression molded, applied, etc. By using such a material, the dielectric constant can be increased, the dimensional accuracy can be increased, and the manufacturing and processing can be facilitated.

上記複合材において、セラミックス粉末の含有量が高いほど誘電率は大きくなるが、70v%を超えると可塑性がなくなり、混練、押出し、圧延、射出成形等が不可能になり、流動性がなくなるため塗布はできなくなる。また、圧縮成形の場合も、70v%を超えた材料を圧縮成形すると空孔が残留し、セラミックは空孔を含めた体積の70v%を超える材料は得られない。このことから、セラミックス粉末の含有量は70v%以下、好ましくは工程のバラツキ等を考慮して60v%〜65v%が適当である。なお、セラミックスは含有量が多くなると可撓性が悪くなるため、曲げて使用する場合などでは適宜セラミックスの含有量を減じるようにする。また、   In the above composite material, the higher the ceramic powder content, the greater the dielectric constant. However, when the content exceeds 70%, plasticity is lost, and kneading, extrusion, rolling, injection molding, etc. become impossible, and the fluidity is lost. Can not. Also in the case of compression molding, if a material exceeding 70 v% is compression molded, voids remain, and ceramic cannot obtain a material exceeding 70 v% of the volume including the voids. Therefore, the content of the ceramic powder is 70 v% or less, preferably 60 v% to 65 v% in consideration of process variation. In addition, since the flexibility deteriorates when the content of ceramics increases, the content of ceramics is appropriately reduced in the case of bending and using. Also,

このセラミックス粉末は、酸化チタンと炭酸ストロンチウム等を混合、造粒後焙焼した材料をハンマーミル、ローラーミル等を用いて粗砕し、更に、ボールミル、振動ミル、アトライター等を用いて乾式粉砕して製造することができる。このセラミックスの粒径が大きいと、混練、押出し等の治具を磨耗させ、また、誘電体が薄い場合には特性が不均一になるため、最大粒径は100μm以下であることを望まれる。   This ceramic powder is made by mixing titanium oxide and strontium carbonate, etc., granulating and roasting the material using a hammer mill, roller mill, etc., and then dry pulverizing using a ball mill, vibration mill, attritor, etc. Can be manufactured. When the ceramic particle size is large, jigs such as kneading and extruding are worn, and when the dielectric is thin, the characteristics become non-uniform. Therefore, the maximum particle size is desired to be 100 μm or less.

更に微細な粉末を得るためには、液体中で粉砕する湿式粉砕を用いることもできる。湿式粉砕では、通常、液体としては安価で毒性、発火の危険のない水が用いられるが、誘電特性が良好なアルカリ土類金属を含む材料を用いた場合、アルカリ土類金属イオンの一部が水中に溶け出す。ここで、通常のセラミックス強誘電体の製造方法では、水に縣濁したセラミックス粉末を加熱乾燥するが、乾燥した粉末には水に溶け出したアルカリ土類金属も含まれ、その後の焼結により再結合されるため指し支えはない。しかしながら、この状態の粉末を複合材の原料とすると、アルカリ土類金属の一部が分離しているために特性は良くない。これを防止するためには、液体としてアルカリ土類金属イオンを溶解しない有機溶媒を用いて粉砕することが好ましい。この有機溶媒としてはアルコール、アセトン、ベンゼン、液体パラフィン、フロン等を使用することができ、粉砕後有機溶媒を加熱により蒸発させて除去することにより微細な粉末を得ることができる。   In order to obtain a finer powder, wet pulverization in a liquid can be used. In wet pulverization, water that is inexpensive, toxic, and does not pose a risk of ignition is usually used as a liquid. However, when a material containing alkaline earth metal with good dielectric properties is used, some of the alkaline earth metal ions are used. Dissolve in water. Here, in a normal method for manufacturing a ceramic ferroelectric, ceramic powder suspended in water is heated and dried, but the dried powder contains alkaline earth metal dissolved in water. Because it is recombined, there is no support. However, when the powder in this state is used as a raw material for the composite material, the characteristics are not good because a part of the alkaline earth metal is separated. In order to prevent this, it is preferable to grind using an organic solvent that does not dissolve alkaline earth metal ions as a liquid. As this organic solvent, alcohol, acetone, benzene, liquid paraffin, chlorofluorocarbon, etc. can be used, and fine powder can be obtained by evaporating and removing the organic solvent by heating after pulverization.

また、TiOは化学的に生成した微細な粉末が得られるため、これをセラミック粉末としてそのまま使用しても良い。上記TiOを化学的に生成する方法としては、硫酸塩を加水分解して得た水酸化物を加熱し脱水する方法やTiClを加熱分解する方法などがある。 In addition, since TiO 2 is a fine powder produced chemically, it may be used as it is as a ceramic powder. As a method of chemically generating TiO 2 , there are a method of heating and dehydrating a hydroxide obtained by hydrolyzing sulfate, a method of thermally decomposing TiCl 4 and the like.

一方、プラスチックとしてはナイロン、ポリエチレン、ポリプロビレン、ポリカーボネート、塩化ビニール樹脂、メタアクリル樹脂、ポリスチレン、ABS樹脂、アセタール樹脂、弗素樹脂等の熱可塑性樹脂、フェノール樹脂、尿素樹脂、アルキッド樹脂等の熱硬化性樹脂などを使用することができる。誘電率の高い樹脂を用いるほど複合材の誘電率も高くなるが、加工性、温度等の使用する環境、必要な機械的特性等を考慮して使用するプラスチックを設定すればよい。   On the other hand, as thermoplastics, thermosetting such as nylon, polyethylene, polypropylene, polycarbonate, vinyl chloride resin, methacrylic resin, polystyrene, ABS resin, acetal resin, fluorine resin, phenol resin, urea resin, alkyd resin, etc. Resin or the like can be used. The higher the dielectric constant resin is used, the higher the dielectric constant of the composite material. However, the plastic to be used may be set in consideration of the working environment such as workability and temperature, and necessary mechanical characteristics.

上記プラスチックとセラミックス粉末の混合は、加熱しニーダー等で混練しペレットとしてもよいし、プラスチックまたはそのモノマーを溶媒に溶解しセラミック粉末を浸した後、攪拌しながら乾燥する方法でも良い。また、粉砕を有機溶媒中で行う場合は粉砕中または粉砕後有機溶媒にプラスチックを溶融させ、その後乾燥させても良い。そして、セラミック粉末とプラスチックとを混合した材料は押出し、射出、圧延、圧縮、鋳込み等、通常のプラスチックの成形法により成形する。塗布の場合はプラスチックを溶解した有機溶媒にセラミックス粉末を懸濁させたペイントを作成する。このペイントを金属体に接して配置する導電材に塗布、乾燥させる。又は、アンテナエレメントをプラスチックフィルムに接着した銅箔をエッチングして形成し、このプラスチックフィルムに塗布、乾燥させる。   The plastic and ceramic powder may be mixed by heating and kneading with a kneader to form pellets, or by dissolving plastic or its monomer in a solvent and immersing the ceramic powder, followed by drying with stirring. When pulverization is performed in an organic solvent, the plastic may be melted in the organic solvent during or after pulverization and then dried. And the material which mixed ceramic powder and the plastic is shape | molded by the normal plastic shaping | molding methods, such as extrusion, injection, rolling, compression, and casting. In the case of coating, a paint is prepared by suspending ceramic powder in an organic solvent in which plastic is dissolved. This paint is applied to a conductive material placed in contact with a metal body and dried. Alternatively, a copper foil in which an antenna element is bonded to a plastic film is formed by etching, and the plastic film is applied and dried.

このようにして製造された誘電体は、誘電率が高く柔軟で薄い部材とすることが可能であるため、この誘電体を用いれば、UHF帯又はSHF帯で作動し、かつ、金属製の物品に密着して使用可能な薄いRFIDのタグまたはリーダ/ライタ用のアンテナを製作することができる。なお、上記した材料、製造方法は例示であり、所望の誘電率を有する誘電体を製造できる限りにおいて、他の材料や製造方法を用いることもできる。   The dielectric manufactured in this way can be a flexible and thin member having a high dielectric constant. Therefore, when this dielectric is used, it operates in the UHF band or the SHF band, and is a metal article. A thin RFID tag or reader / writer antenna that can be used in close contact with the antenna can be manufactured. The materials and manufacturing methods described above are examples, and other materials and manufacturing methods can be used as long as a dielectric having a desired dielectric constant can be manufactured.

上記した本発明の実施の形態についてさらに詳細に説明すべく、本発明の一実施例に係る高誘電率誘電体及び該誘電体を用いたアンテナについて、図1乃至図10を参照して説明する。図1は、RFIDシステムの一般的な構成を模式的に示す図であり、図2乃至図9は本実施例のアンテナの構成を模式的に示す図である。また、図10は、本実施例の効果を説明するために製作したアンテナの構造を示す図である。なお、以下では、本発明の誘電体をタグ用アンテナに適用する場合について示すが、本発明は以下の実施例に限定されるものではなく、本発明の誘電体をリーダ/ライタ用アンテナに適用してもよい。   In order to describe the above-described embodiment of the present invention in more detail, a high dielectric constant dielectric and an antenna using the dielectric according to an embodiment of the present invention will be described with reference to FIGS. . FIG. 1 is a diagram schematically illustrating a general configuration of an RFID system, and FIGS. 2 to 9 are diagrams schematically illustrating a configuration of an antenna according to the present embodiment. FIG. 10 is a diagram showing the structure of an antenna manufactured for explaining the effect of the present embodiment. In the following description, the dielectric of the present invention is applied to a tag antenna. However, the present invention is not limited to the following embodiments, and the dielectric of the present invention is applied to a reader / writer antenna. May be.

図1に示すように、本実施例のRFIDシステム1は、UHF帯又はSHF帯等の周波数帯を用いてデータの交信を行うタグ2とリーダ/ライタ(又はリーダ)6とからなり、タグ2は、共振回路を構成するアンテナ3及びコンデンサ4(ICチップ5に容量が内蔵されている場合は必ずしも必要ではない。)と情報を記憶するICチップ5とを備え、リーダ/ライタ(又はリーダ)6は、タグ2のアンテナ3と交信するリーダ/ライタ用アンテナ7と、送受信信号を変換するための通信回路8aや送受信信号をデコードするための演算処理回路8b等の制御部8とを備え、タグ2は内蔵する電源又はリーダ/ライタ6から供給される電源を用いて駆動される。そして、タグ2及びリーダ/ライタ用アンテナ7の共振周波数をキャリア周波数に合わせることにより、データの交信が行われる。   As shown in FIG. 1, the RFID system 1 according to the present embodiment includes a tag 2 and a reader / writer (or reader) 6 that perform data communication using a frequency band such as a UHF band or an SHF band. Includes an antenna 3 and a capacitor 4 (which are not necessarily required when the IC chip 5 has a built-in capacitor) and an IC chip 5 for storing information, and a reader / writer (or reader). 6 includes a reader / writer antenna 7 that communicates with the antenna 3 of the tag 2, and a control unit 8 such as a communication circuit 8a for converting a transmission / reception signal and an arithmetic processing circuit 8b for decoding the transmission / reception signal. The tag 2 is driven using a built-in power source or a power source supplied from the reader / writer 6. Data communication is performed by matching the resonance frequency of the tag 2 and the reader / writer antenna 7 with the carrier frequency.

このRFIDシステム1のアンテナ(ここではタグ2用のアンテナ3)は、図2に示すように、本発明の特徴である高誘電率の複合材からなる誘電体10上に所定のアンテナパターンが形成されたアンテナエレメント9が配置されて構成され、このアンテナが物品や筐体の表面、特に、金属材料を含む物品や筐体(金属体11)上に設置される。   As shown in FIG. 2, the antenna of the RFID system 1 (here, the antenna 3 for the tag 2) has a predetermined antenna pattern formed on a dielectric 10 made of a high dielectric constant composite material, which is a feature of the present invention. The antenna element 9 is arranged, and this antenna is installed on the surface of the article or the case, particularly on the article or case (metal body 11) containing a metal material.

図2は、誘電体10の一方の面に導電体(アンテナエレメント9)が形成される構成であり、金属体11がアルミニウム、マグネシウム、銅合金等の非磁性材料からなる場合は金属体11上に直接アンテナを配置することができるが、金属体11が鉄板の場合は損失が大きくなる。その場合は、図3に示すように、誘電体10の一方の面にアンテナエレメント9を配置し、他方の面(金属体11側)に裏面接地導体となる導電体12を配置する構成(マイクロストリップ経路など)としてもよく、このような構成にすることにより、金属体11を構成する金属材料の種類にかかわらず、アンテナを安定して作動させることができる。   FIG. 2 shows a configuration in which a conductor (antenna element 9) is formed on one surface of the dielectric 10, and when the metal 11 is made of a nonmagnetic material such as aluminum, magnesium, copper alloy, etc. However, when the metal body 11 is an iron plate, the loss increases. In this case, as shown in FIG. 3, the antenna element 9 is disposed on one surface of the dielectric 10, and the conductor 12 serving as the back ground conductor is disposed on the other surface (the metal body 11 side) (micro A strip path or the like may be used. With such a configuration, the antenna can be stably operated regardless of the type of the metal material constituting the metal body 11.

なお、アンテナはUHF帯やSHF帯などの周波数帯を用いてデータの交信が可能な構成であればよく、アンテナエレメント9の形状、厚さ、材質、固定方法等は特に限定されない。また、誘電体10は、上述したように、酸化チタンと炭酸ストロンチウム等を混合、造粒後、焙焼した材料をハンマーミル、ローラーミル等を用いて粗砕し、更に、ボールミル、振動ミル、アトライター等を用いて粉砕、又は有機溶媒を用いて粉砕して製造、又は化学的に生成された所定の粒径の強磁性セラミックス粉末と、ナイロン、ポリエチレン、ポリプロビレン、ポリカーボネート、塩化ビニール樹脂、メタアクリル樹脂、ポリスチレン、ABS樹脂、アセタール樹脂、弗素樹脂等の熱可塑性樹脂、フェノール樹脂、尿素樹脂、アルキッド樹脂等の熱硬化性樹脂などのプラスチックやゴムとを、セラミックス粉末の含有量が70v%以下、好ましくは60v%〜65v%となるように混練して、押出し、圧延、射出成形、圧縮成形等により成形したものを用いることができる。また、導電体12の形状、膜厚、材料、誘電体10との固定方法等も限定されない。   The antenna may be configured to be able to communicate data using a frequency band such as the UHF band and the SHF band, and the shape, thickness, material, fixing method, and the like of the antenna element 9 are not particularly limited. In addition, as described above, the dielectric 10 is made by mixing titanium oxide and strontium carbonate, granulating, and then crushing the roasted material using a hammer mill, a roller mill or the like, and further, a ball mill, a vibration mill, Ferromagnetic ceramics powder with a specified particle size that is manufactured by pulverization using an attritor or the like, or pulverization using an organic solvent, or chemically, nylon, polyethylene, polypropylene, polycarbonate, vinyl chloride resin, meta Plastic powder and rubber such as thermoplastic resin such as acrylic resin, polystyrene, ABS resin, acetal resin, fluorine resin, thermosetting resin such as phenol resin, urea resin, alkyd resin, etc. The content of ceramic powder is 70v% or less , Preferably kneaded so as to be 60 to 65 v% for extrusion, rolling, injection molding, compression molding, etc. Ri can be used molded. Further, the shape, film thickness, material, method of fixing the dielectric 12 and the like are not limited.

また、図2及び図3では、アンテナエレメント9の下層(物品側)のみに誘電体10を配設したが、図4に示すように、アンテナエレメント9の上層にも誘電体10を配設して、アンテナエレメント9を誘電体10で包囲するようにしてもよい。このような構成とすることにより、アンテナエレメント9上部に近接する部材に起因するアンテナ特性の変動を抑制することができ、また、アンテナエレメント9を保護することができる。この構造においても、金属体11の材料によってアンテナの特性が変化しないように、金属体11と誘電体10との間に導電体12を配設する構成としてもよい。   2 and 3, the dielectric 10 is disposed only on the lower layer (article side) of the antenna element 9, but the dielectric 10 is disposed on the upper layer of the antenna element 9 as shown in FIG. Thus, the antenna element 9 may be surrounded by the dielectric 10. By setting it as such a structure, the fluctuation | variation of the antenna characteristic resulting from the member which adjoins the antenna element 9 upper part can be suppressed, and the antenna element 9 can be protected. Also in this structure, the conductor 12 may be disposed between the metal body 11 and the dielectric 10 so that the antenna characteristics are not changed by the material of the metal body 11.

また、図2乃至図5では、アンテナエレメント9と誘電体10と必要に応じて導電体12とでアンテナを構成したが、金属体11の影響を更に抑制し、かつ、アンテナの特性を向上させるために磁性体13を設けることもできる。その場合、図6に示すように、誘電体10と導電体12との間に磁性体13を配設してもよいし、図7に示すように、アンテナエレメント9と誘電体10との間に磁性体13を配設してもよい。このような構造においても、アンテナエレメント9を保護し、かつ上面に配置される部材による影響を抑制するために、図8及び図9に示すようにアンテナエレメント9の上部にも誘電体10を配設してアンテナエレメント9を誘電体10で包囲する構成とすることもできる。   In FIGS. 2 to 5, the antenna is composed of the antenna element 9, the dielectric 10, and the conductor 12 as necessary. However, the influence of the metal 11 is further suppressed and the characteristics of the antenna are improved. Therefore, the magnetic body 13 can be provided. In that case, as shown in FIG. 6, a magnetic body 13 may be disposed between the dielectric 10 and the conductor 12, or between the antenna element 9 and the dielectric 10 as shown in FIG. The magnetic body 13 may be disposed on the surface. Even in such a structure, in order to protect the antenna element 9 and to suppress the influence of the member disposed on the upper surface, the dielectric 10 is also arranged on the upper portion of the antenna element 9 as shown in FIGS. The antenna element 9 may be provided and surrounded by the dielectric 10.

上記磁性体13の材料や製造方法も特に限定されないが、アモルファス合金、パーマロイ、電磁鋼、珪素鋼、センダスト合金、Fe−Al合金又は軟磁性フェライトの急冷凝固材、鋳造材,圧延材,鍛造材又は焼結材や、アモルファス箔やアモルファス箔の積層材、金属粉、カーボニル鉄粉、還元鉄粉、アトマイズ粉(純鉄、Si、Cr、Al等を含む鉄、パーマロイ、Co−Fe等の粉末)、アモルファス(B、P、Si等を含む鉄、コバルト、ニッケル合金を水アトマイズまたはガスアトマイズした粉末)等の粒状の粉体若しくはフレークとプラスチック、ゴム等の有機物との複合材、又は上記粉体若しくはフレークを含む塗料の塗膜等により形成することができる。なお、本発明の用途としては、柔軟で割れにくく、高周波でも損失の少ない複合材が好ましい。   The material and manufacturing method of the magnetic body 13 are not particularly limited, but are rapidly solidified material of amorphous alloy, permalloy, electromagnetic steel, silicon steel, sendust alloy, Fe-Al alloy or soft magnetic ferrite, cast material, rolled material, forged material. Or sintered material, amorphous foil or laminated material of amorphous foil, metal powder, carbonyl iron powder, reduced iron powder, atomized powder (pure such as iron containing pure iron, Si, Cr, Al, permalloy, Co-Fe, etc. ), Amorphous (a powder obtained by water atomizing or gas atomizing iron, cobalt, nickel alloy containing B, P, Si, etc.) or a composite material of flakes and organic matter such as plastic, rubber, or the above powder Or it can form by the coating film etc. of the coating material containing a flake. In addition, as a use of the present invention, a composite material that is flexible and hardly cracked and has little loss even at a high frequency is preferable.

次に、本実施例の効果を確認するために、下記に示す粉末A〜Fを用いて誘電体10を製造して実施例1〜29、比較例1〜6の実験を行った。その実験内容及び結果について説明する。   Next, in order to confirm the effect of this example, dielectric 10 was manufactured using powders A to F shown below, and experiments of Examples 1 to 29 and Comparative Examples 1 to 6 were performed. The contents and results of the experiment will be described.

粉末A:セラミック誘電体(チタン酸ストロンチュウム焼結体、誘電率255)をハンマーミルで粗砕後、ボールミルを用いて粉砕(最大粒径:約200μm)、
粉末B:Aをボールミルで更に粉砕(最大粒径:約100μm)、
粉末C:Bを水を用いてアトライターで粉砕し加熱乾燥(粒径:約0.1μm〜10μm)、
粉末D:Bをアセトンを用いてアストライターで粉砕し減圧加熱して乾燥(粒径:約0.1μm〜10μm)、
粉末E:市販の化学的に生成したルチル形酸化チタン(平均粒径:0.5μm)、
粉末F:市販の化学的に生成したアナターゼ形酸化チタン(平均粒径:0.5μm)。
Powder A: Ceramic dielectric (strontium titanate sintered body, dielectric constant 255) was roughly crushed with a hammer mill and then pulverized with a ball mill (maximum particle size: about 200 μm).
Powder B: A is further pulverized with a ball mill (maximum particle size: about 100 μm),
Powder C: B was pulverized with an attritor using water and dried by heating (particle size: about 0.1 μm to 10 μm),
Powder D: B was pulverized with acetone using acetone, heated under reduced pressure and dried (particle size: about 0.1 μm to 10 μm),
Powder E: commercially available chemically produced rutile titanium oxide (average particle size: 0.5 μm),
Powder F: Commercially produced chemically produced anatase titanium oxide (average particle size: 0.5 μm).

まず、粉末A:85w%(50v%)とナイロン:15w%(50v%)を混練して圧延し、厚さ0.5mmの板とした試料(比較例1)では、目視でセラミック粒子が判別可能であり分布も不均一であるため使用できないと判断した。一方、粉末B:85w%(50v%)とナイロン:15w%(50v%)を混練して圧延し、厚さ0.5mmの板とした試料(実施例1)では、圧延ロールに若干の傷が見られたが目視は均一で良好であった。また、900MHzにおける誘電率を測定したところ82であり、ナイロンの誘電率(3.3)より大幅に向上していることが判明した。以上の結果から、乾式粉砕の場合はセラミック粉末の粒径を小さく(略100μm以下)することによりアンテナ用基板として使用可能な誘電体を製作できることが分かった。   First, in a sample (Comparative Example 1) in which powder A: 85 w% (50 v%) and nylon: 15 w% (50 v%) were kneaded and rolled to form a plate having a thickness of 0.5 mm, the ceramic particles were visually discriminated. Since it was possible and the distribution was uneven, it was judged that it could not be used. On the other hand, in a sample (Example 1) in which powder B: 85 w% (50 v%) and nylon: 15 w% (50 v%) were kneaded and rolled to form a plate having a thickness of 0.5 mm, the roll was slightly damaged. However, the visual observation was uniform and good. The dielectric constant measured at 900 MHz was 82, which was found to be significantly higher than the dielectric constant of nylon (3.3). From the above results, it was found that in the case of dry pulverization, a dielectric that can be used as an antenna substrate can be manufactured by reducing the particle size of the ceramic powder (approximately 100 μm or less).

また、粉末C:85w%(50v%)とナイロン:15w%(50v%)を混練して圧延し、厚さ0.5mmの板とした試料(比較例2)では、900MHzにおける誘電率を測定したところ6.2であり、実施例1の試料に比べて大幅に劣化していることが判明した。これに対して、粉末D:85w%(50v%)とナイロン:15w%(50v%)を混練して圧延し、厚さ0.5mmの板とした試料(実施例2)では、圧延ロールに傷は見られず目視は均一で良好であり、また、900MHzにおける誘電率を測定したところ35であり、ナイロンの誘電率(3.3)より大幅に向上していることが判明した。以上の結果から、湿式粉砕の場合は同じ粒径でも水中で粉砕するよりも有機溶媒中で粉砕した方が高誘電率の誘電体10を製作できることが分かった。   In addition, a dielectric constant at 900 MHz was measured for a sample (Comparative Example 2) in which powder C: 85 w% (50 v%) and nylon: 15 w% (50 v%) were kneaded and rolled to form a 0.5 mm thick plate. As a result, it was 6.2, which was found to be significantly deteriorated as compared with the sample of Example 1. On the other hand, in the sample (Example 2) which knead | mixed and rolled powder D: 85w% (50v%) and nylon: 15w% (50v%) and was made into the plate of thickness 0.5mm, it is a rolling roll. No flaws were observed, and the visual observation was uniform and good, and the dielectric constant at 900 MHz was measured to be 35, which was found to be significantly improved from the dielectric constant of nylon (3.3). From the above results, it was found that in the case of wet pulverization, the dielectric 10 having a higher dielectric constant can be produced by pulverizing in an organic solvent than by pulverizing in water even with the same particle size.

次に、粉末E:85w%(50v%)とナイロン:15w%(50v%)を混練して圧延し、厚さ0.5mmの板とした試料(実施例3−1)では、圧延ロールに傷は見られず目視は均一で良好であり、また、900MHzにおける誘電率を測定したところ22であり、ナイロンの誘電率3.3より大幅に向上していることが判明した。以上の結果から、化学的に生成されたルチル形酸化チタンを用いても高誘電率の誘電体を製作できることが分かった。   Next, powder E: 85 w% (50 v%) and nylon: 15 w% (50 v%) were kneaded and rolled to obtain a 0.5 mm thick plate (Example 3-1). No flaws were observed, the visual observation was uniform and good, and the dielectric constant at 900 MHz was measured to be 22, which was found to be significantly higher than the dielectric constant 3.3 of nylon. From the above results, it was found that a dielectric having a high dielectric constant can be produced even using chemically generated rutile titanium oxide.

同様に、粉末F:85w%(50v%)とナイロン15w%(50v%)を混練して圧延し、厚さ0.5mmの板とした試料(実施例3−2)では、圧延ロールに傷は見られず目視は均一で良好であり、また、900MHzで誘電率を測定したところ21であり、ナイロンの誘電率3.3より大幅に向上していることが判明した。これにより、化学的に生成されたアナターゼ酸化チタンを用いても高誘電率の誘電体を製作できることが分かった。   Similarly, powder F: 85 w% (50 v%) and nylon 15 w% (50 v%) were kneaded and rolled to obtain a 0.5 mm thick plate (Example 3-2). No visual observation was observed, the visual observation was uniform and good, and the dielectric constant measured at 900 MHz was 21, which was found to be significantly higher than that of nylon 3.3. As a result, it was found that a dielectric having a high dielectric constant can be produced even using chemically generated anatase titanium oxide.

次に、粉末Dとナイロンを混合比を5v%〜75v%の範囲で変えて厚さ0.5mmの板とした試料(実施例4〜実施例15、比較例3)を作成し、誘電率を測定した。その結果を表1に示す。   Next, samples (Examples 4 to 15 and Comparative Example 3) having a thickness of 0.5 mm were prepared by changing the mixing ratio of powder D and nylon in the range of 5 v% to 75 v%, and the dielectric constant. Was measured. The results are shown in Table 1.

Figure 2005216518
Figure 2005216518

表1より、粉末Dの混合比が5v%〜70v%の範囲では健全な材料が得られたが、75v%は混練装置に材料が詰まり、試料の製作ができなかった。また、セラミックスの含有量が増すほど材料は硬く可撓性が減少した。   According to Table 1, a sound material was obtained when the mixing ratio of the powder D was in the range of 5 v% to 70 v%. In addition, the higher the ceramic content, the harder the material and the less flexible.

同様に粉末Eとナイロンの混合比を5v%〜75v%の範囲で変えて厚さ0.5mmの板とした試料(実施例16〜実施例27、比較例4)を作成し、誘電率を測定した。その結果を表2に示す。   Similarly, a sample (Example 16 to Example 27, Comparative Example 4) having a thickness of 0.5 mm was prepared by changing the mixing ratio of powder E and nylon in the range of 5 v% to 75 v%, and the dielectric constant was changed. It was measured. The results are shown in Table 2.

Figure 2005216518
Figure 2005216518

表2より、粉末Eの混合比が5v%〜70v%では健全な材料が得られたが、75v%は混練装置に材料が詰まり試料の製作ができなかった。また、セラミックスの含有量が増すほど材料は硬く可撓性が減少し、70v%では材料は硬く可撓性はほとんどなかった。また、セラミックスの含有量は5v%でも誘電率はナイロンより高くなり含有率が増すほど誘電率は高くなった。   From Table 2, a sound material was obtained when the mixing ratio of the powder E was 5 v% to 70 v%. However, when the mixing ratio was 75 v%, the kneading apparatus was clogged with the material, and a sample could not be manufactured. Further, as the ceramic content increased, the material became harder and the flexibility decreased. At 70%, the material was harder and almost not flexible. Further, even when the ceramic content was 5 v%, the dielectric constant was higher than that of nylon, and the dielectric constant increased as the content increased.

また、上記粉末Dを用いた複合材(実施例4〜15)と粉末Eを用いた複合材(実施例16〜27)とを比較すると、粉末Dを用いた複合材は粉末Eを用いた同じ含有量の複合材に比べて誘電率は高いが、粉末Eを用いた複合材の方が同じ含有量の粉末Dを用いた複合材に比べ可撓性の点では優れていた。以上の結果から、セラミックスの含有量は70V%以下、工程のばらつき等を考慮すると60v%〜65v%が適当であり、更に、可撓性を考慮して混合比や粉末の種類を適宜設定すればよいことが分かった。   Moreover, when the composite material using the powder D (Examples 4 to 15) and the composite material using the powder E (Examples 16 to 27) were compared, the composite material using the powder D used the powder E. Although the dielectric constant is higher than that of the composite material having the same content, the composite material using the powder E is superior in flexibility to the composite material using the powder D having the same content. From the above results, the content of ceramics is 70V% or less, and considering the process variation, etc., 60v% to 65v% is appropriate. Furthermore, considering the flexibility, the mixing ratio and powder type should be set appropriately. I knew it would be good.

次に、図10に示すように、上部側の銅箔14にマイクロストリップアンテナを形成し(アンテナエレメント9に相当)、誘電体10を挟んで下部側にも銅箔15(導電体12又は金属体11に相当)を形成したアンテナを製作し、その共振周波数を測定した。   Next, as shown in FIG. 10, a microstrip antenna is formed on the upper copper foil 14 (corresponding to the antenna element 9), and the copper foil 15 (conductor 12 or metal) is also formed on the lower side with the dielectric 10 interposed therebetween. An antenna having a structure corresponding to the body 11 was fabricated, and its resonance frequency was measured.

具体的には、両面に銅箔14、15を持つ厚さ0.5mmのガラスエポキシ(誘電率4.2)を100mm角に切断し、上面の銅箔14の寸法(図中のA)を変えて正方形に切断し、共振周波数を測定した(比較例5)。また、厚さ0.5mm、100mm角のナイロン6−6(誘電率3.3)の両面に厚さ35μmの銅箔14、15を接着し、上面の銅箔14の寸法を変えて正方形に切断し、共振周波数を測定した(比較例6)。   Specifically, a glass epoxy (dielectric constant 4.2) having a thickness of 0.5 mm having copper foils 14 and 15 on both sides is cut into a 100 mm square, and the dimensions of the copper foil 14 on the upper surface (A in the figure) are determined. The square was cut into a square and the resonance frequency was measured (Comparative Example 5). In addition, copper foils 14 and 15 having a thickness of 35 μm are bonded to both sides of nylon 6-6 (dielectric constant 3.3) having a thickness of 0.5 mm and 100 mm square, and the dimensions of the copper foil 14 on the upper surface are changed to form a square. After cutting, the resonance frequency was measured (Comparative Example 6).

一方、粉末Dを65v%含むナイロン(誘電率27)の50mm角、厚さ0.5mmの圧延材の両面に、厚さ35μmの銅箔14、15を接着し、上面の銅箔14の寸法を変えて正方形に切断し、共振周波数を測定した(実施例28)。また、粉末Eを65v%含むナイロン(誘電率25.4)の50mm角、厚さ0.5mmの圧延材の両面に、厚さ35μmの銅箔14、15を接着し、上面の銅箔14の寸法を変えて正方形に切断し、共振周波数を測定した。その結果を表3に示す。   On the other hand, copper foils 14 and 15 having a thickness of 35 μm are bonded to both sides of a 50 mm square and 0.5 mm thick rolled material of nylon (dielectric constant 27) containing 65% by weight of powder D, and the dimensions of the upper surface copper foil 14 are measured. Were cut into squares, and the resonance frequency was measured (Example 28). Also, copper foils 14 and 15 having a thickness of 35 μm are bonded to both sides of a 50 mm square and 0.5 mm thick rolled material of nylon (dielectric constant 25.4) containing 65% of powder E, and the upper copper foil 14 The dimensions were changed to squares, and the resonance frequency was measured. The results are shown in Table 3.

Figure 2005216518
Figure 2005216518

表3より、ほぼ同じ共振周波数となる寸法は、比較例5では81mm角、比較例6では92mm角であるのに対して、実施例28では32mm角、実施例29では33mm角と小さく、本発明の誘電体10を用いることにより、アンテナ自体のサイズを小さくできることが分かった。   From Table 3, the dimensions that give substantially the same resonance frequency are 81 mm square in Comparative Example 5 and 92 mm square in Comparative Example 6, whereas 32 mm square in Example 28 and 33 mm square in Example 29 are small. It has been found that the size of the antenna itself can be reduced by using the dielectric 10 of the invention.

このように、上記方法で形成された誘電体10を用いることにより、誘電率を高くすることができると共に、高い寸法精度で容易に製造可能であり、かつ、薄くしても破損しにくくすることができる。そして、この誘電体10をUHF帯やSHF帯で作動するアンテナに用いることにより、損失が少ない小型のアンテナを形成することができる。   Thus, by using the dielectric 10 formed by the above method, the dielectric constant can be increased, and it can be easily manufactured with high dimensional accuracy, and even if it is thinned, it is difficult to be damaged. Can do. By using this dielectric 10 for an antenna operating in the UHF band or the SHF band, a small antenna with little loss can be formed.

本発明の誘電体はRFIDシステムのアンテナ用途のみならず、高周波用アンテナ等、誘電率の高い誘電体を利用可能な任意の用途に用いることができる。   The dielectric of the present invention can be used not only for antenna applications in RFID systems but also for any application that can use a dielectric having a high dielectric constant, such as a high-frequency antenna.

RFIDシステムの一般的な構成を模式的に示す図である。1 is a diagram schematically illustrating a general configuration of an RFID system. 本発明の一実施例に係るタグ用アンテナの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the antenna for tags concerning one Example of this invention. 本発明の一実施例に係るタグ用アンテナの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the antenna for tags concerning one Example of this invention. 本発明の一実施例に係るタグ用アンテナの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the antenna for tags concerning one Example of this invention. 本発明の一実施例に係るタグ用アンテナの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the antenna for tags concerning one Example of this invention. 本発明の一実施例に係るタグ用アンテナの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the antenna for tags concerning one Example of this invention. 本発明の一実施例に係るタグ用アンテナの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the antenna for tags concerning one Example of this invention. 本発明の一実施例に係るタグ用アンテナの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the antenna for tags concerning one Example of this invention. 本発明の一実施例に係るタグ用アンテナの構造を模式的に示す断面図である。It is sectional drawing which shows typically the structure of the antenna for tags concerning one Example of this invention. 本発明の効果を説明するためのタグ用アンテナの構造を示す図である。It is a figure which shows the structure of the antenna for tags for demonstrating the effect of this invention.

符号の説明Explanation of symbols

1 RFIDシステム
2 タグ
3 アンテナ
4 コンデンサ
5 ICチップ
6 リーダ/ライタ
7 リーダ/ライタ用アンテナ
8 制御部
8a 通信回路
8b 演算処理回路
9 アンテナエレメント
10 誘電体
11 金属体
12 導電体
13 磁性体
14、15 銅箔
DESCRIPTION OF SYMBOLS 1 RFID system 2 Tag 3 Antenna 4 Capacitor 5 IC chip 6 Reader / writer 7 Reader / writer antenna 8 Control unit 8a Communication circuit 8b Arithmetic processing circuit 9 Antenna element 10 Dielectric 11 Metal body 12 Conductor 13 Magnetic body 14, 15 Copper foil

Claims (10)

少なくとも強誘電体セラミックス粉末とプラスチック又はゴムとを用いて形成された複合材よりなることを特徴とする誘電体。   A dielectric comprising at least a composite material formed using a ferroelectric ceramic powder and plastic or rubber. 前記強誘電体セラミックス粉末の含有量が、体積比率で略70%以下であることを特徴とする請求項1記載の誘電体。   The dielectric according to claim 1, wherein the content of the ferroelectric ceramic powder is approximately 70% or less by volume ratio. 前記強誘電体セラミックス粉末は、乾式の粉砕により形成されたものであり、該粉末の最大粒径が略100μm以下であることを特徴とする請求項1又は2に記載の誘電体。   3. The dielectric according to claim 1, wherein the ferroelectric ceramic powder is formed by dry pulverization, and the maximum particle size of the powder is approximately 100 μm or less. 前記強誘電体セラミックス粉末は、有機溶媒を用いた湿式の粉砕により形成されたものであり、該粉末の粒径が略0.1μm乃至10μmであることを特徴とする請求項1又は2に記載の誘電体。   3. The ferroelectric ceramic powder is formed by wet pulverization using an organic solvent, and the particle size of the powder is approximately 0.1 μm to 10 μm. Dielectric. 前記強誘電体セラミックス粉末は、アルカリ土類金属を含むことを特徴とする請求項4記載の誘電体。   5. The dielectric according to claim 4, wherein the ferroelectric ceramic powder includes an alkaline earth metal. 前記強誘電体セラミックス粉末は、化学的に生成されたTiOであり、該粉末の粒径が略0.1μm乃至10μmであることを特徴とする請求項1又は2に記載の誘電体。 3. The dielectric according to claim 1, wherein the ferroelectric ceramic powder is chemically generated TiO 2 , and the particle size of the powder is approximately 0.1 μm to 10 μm. 請求項1乃至6のいずれか一に記載の誘電体と、該誘電体表面に配設されるアンテナパターンとで構成される、UHF帯またはSHF帯で作動可能なRFIDタグ用又はRFIDリーダ/ライタ用アンテナ。   An RFID tag or RFID reader / writer that is operable in the UHF band or SHF band, comprising the dielectric according to any one of claims 1 to 6 and an antenna pattern disposed on the surface of the dielectric. Antenna. 請求項1乃至6のいずれか一に記載の誘電体と、該誘電体表面に配設されるアンテナパターンと、前記誘電体表面の前記アンテナパターンに対向する位置に配設される導電体とで構成される、UHF帯またはSHF帯で作動可能なRFIDタグ用又はRFIDリーダ/ライタ用アンテナ。   A dielectric according to any one of claims 1 to 6, an antenna pattern disposed on the surface of the dielectric, and a conductor disposed at a position facing the antenna pattern on the surface of the dielectric. An RFID tag or RFID reader / writer antenna operable in the UHF band or SHF band. 前記誘電体と前記導電体との間、又は、前記アンテナパターンと前記誘電体との間に、磁性体が挿入されていることを特徴とする請求項7又は8に記載のRFIDタグ用又はRFIDリーダ/ライタ用アンテナ。   9. The RFID tag or RFID according to claim 7, wherein a magnetic material is inserted between the dielectric and the conductor, or between the antenna pattern and the dielectric. Reader / writer antenna. 前記誘電体上に、前記アンテナパターンを覆うように第2の誘電体が配設されていることを特徴とする請求項7乃至9のいずれか一に記載のRFIDタグ用又はRFIDリーダ/ライタ用アンテナ。   10. The RFID tag or the RFID reader / writer according to claim 7, wherein a second dielectric is disposed on the dielectric so as to cover the antenna pattern. antenna.
JP2004018372A 2004-01-27 2004-01-27 High-dielectric-constant dielectric material and antenna using the dielectric material Pending JP2005216518A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004018372A JP2005216518A (en) 2004-01-27 2004-01-27 High-dielectric-constant dielectric material and antenna using the dielectric material
PCT/JP2005/000982 WO2005071697A1 (en) 2004-01-27 2005-01-26 Dielectric article having high dielectric constant and antenna using said dielectric article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018372A JP2005216518A (en) 2004-01-27 2004-01-27 High-dielectric-constant dielectric material and antenna using the dielectric material

Publications (1)

Publication Number Publication Date
JP2005216518A true JP2005216518A (en) 2005-08-11

Family

ID=34805564

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018372A Pending JP2005216518A (en) 2004-01-27 2004-01-27 High-dielectric-constant dielectric material and antenna using the dielectric material

Country Status (2)

Country Link
JP (1) JP2005216518A (en)
WO (1) WO2005071697A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251441A (en) * 2006-03-14 2007-09-27 Matsushita Electric Ind Co Ltd Antenna unit and receiver
JP2010016531A (en) * 2008-07-02 2010-01-21 Ngk Insulators Ltd Antenna apparatus and method of manufacturing antenna apparatus
WO2012124577A1 (en) * 2011-03-16 2012-09-20 ニッタ株式会社 Communication improvement sheet body and information storage medium
JP2015027029A (en) * 2013-07-29 2015-02-05 日本バルカー工業株式会社 Planar antenna

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105875431B (en) * 2016-04-19 2019-03-08 福州市佳璞电子商务有限公司 RFID transceiver, the small-sized livestock and poultry based on RFID transceiver flock together alarm system and alarm method

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650117A (en) * 1979-10-01 1981-05-07 Fuji Electric Co Ltd Manufacture of fine titanium oxide sphere
JPS623772A (en) * 1985-07-01 1987-01-09 Chisso Corp Weld sealing of hollow screen rod
JPH05311010A (en) * 1992-05-07 1993-11-22 Hitachi Chem Co Ltd High-permittivity composite substrate
JP3361838B2 (en) * 1992-10-22 2003-01-07 日本電信電話株式会社 Microstrip antenna for portable radio
JPH0936650A (en) * 1995-07-19 1997-02-07 Pioneer Electron Corp Microstrip antenna
JPH11345518A (en) * 1998-06-01 1999-12-14 Murata Mfg Co Ltd Composite dielectric material and dielectric antenna using the same
JP2000256450A (en) * 1999-03-08 2000-09-19 Toray Ind Inc Manufacture of polyester
JP2001257110A (en) * 2000-03-09 2001-09-21 Hitachi Maxell Ltd Magnetic material and magnetic recording medium formed by use thereof
JP2002129011A (en) * 2000-10-26 2002-05-09 Toray Ind Inc Titanium oxide-containing polyamide and method for producing the same
JP3559252B2 (en) * 2001-05-02 2004-08-25 日本特殊陶業株式会社 Spark plug manufacturing method
JP4196554B2 (en) * 2001-09-28 2008-12-17 三菱マテリアル株式会社 Tag antenna coil and RFID tag using the same
US6669089B2 (en) * 2001-11-12 2003-12-30 3M Innovative Properties Co Radio frequency identification systems for asset tracking
JP3874091B2 (en) * 2001-12-17 2007-01-31 三菱マテリアル株式会社 RFID tag, resonance frequency adjustment method, and resonance frequency adjustment device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007251441A (en) * 2006-03-14 2007-09-27 Matsushita Electric Ind Co Ltd Antenna unit and receiver
JP4709667B2 (en) * 2006-03-14 2011-06-22 パナソニック株式会社 Antenna device and receiving device
JP2010016531A (en) * 2008-07-02 2010-01-21 Ngk Insulators Ltd Antenna apparatus and method of manufacturing antenna apparatus
WO2012124577A1 (en) * 2011-03-16 2012-09-20 ニッタ株式会社 Communication improvement sheet body and information storage medium
JPWO2012124577A1 (en) * 2011-03-16 2014-07-24 ニッタ株式会社 Communication improving sheet body and information storage medium
JP5897546B2 (en) * 2011-03-16 2016-03-30 ニッタ株式会社 Communication improving sheet body and information storage medium
TWI556505B (en) * 2011-03-16 2016-11-01 Nitta Corp Improve the communication chip and information memory media
JP2015027029A (en) * 2013-07-29 2015-02-05 日本バルカー工業株式会社 Planar antenna

Also Published As

Publication number Publication date
WO2005071697A1 (en) 2005-08-04

Similar Documents

Publication Publication Date Title
JP2005309811A (en) Rfid tag and rfid system
EP2146357B1 (en) Magnetic material for high frequency wave, and method for production thereof
JP5332185B2 (en) Magnetic powder manufacturing method, magnetic sheet manufacturing method, and antenna module manufacturing method
EP1640893B1 (en) Antenna for RFID tag
KR101939653B1 (en) Magnetic shielding unit and multi-function complex module comprising the same
US20080003457A1 (en) High-frequency magnetic core material, its manufacturing method, and antenna including the magnetic core material
WO2005071697A1 (en) Dielectric article having high dielectric constant and antenna using said dielectric article
CN108370085A (en) Magnetic isolation device, its production method and the device for including the Magnetic isolation device
JP2008263098A (en) Compound magnetic body, circuit substrate using the same, and electronic equipment using the same
CN208889828U (en) Magnetic isolation device and electronic device including the Magnetic isolation device
KR101909649B1 (en) Magnetic shielding unit and multi-function complex module comprising the same
KR20190085941A (en) Composite coil module and magnetic sheet
US10364511B1 (en) Magneto dielectric composite materials and microwave applications thereof
JP2019504482A (en) Magnetic shielding material, method for producing the same, and device including the same
JP2008194865A (en) Sheetlike molded body and its manufacturing method
Raj et al. Cobalt–polymer nanocomposite dielectrics for miniaturized antennas
Gan et al. Ga ions-tailored magnetic-dielectric properties of Mg–Cd composites for high-frequency, miniature and wideband antennas
JP2003046321A (en) Magnetic core member and rfid use tag using the same
KR101939654B1 (en) Magnetic shielding unit and multi-function complex module comprising the same
KR20170062415A (en) Magnetic shielding unit and multi-function complex module comprising the same
Lin et al. A wideband CPW-fed patch antenna with defective ground plane
Lu et al. Design of 2.45 GHz planar meander dipole antenna
JP2004038552A (en) Case for electronic equipment and electronic equipment provided with the case
Parsons et al. Miniaturization of an additively manufactured microstrip patch antenna using magnetodielectrics
US20240025143A1 (en) Advanced dielectric methods and applications

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091002