JP2005213899A - Structure repairing and reinforcing method - Google Patents

Structure repairing and reinforcing method Download PDF

Info

Publication number
JP2005213899A
JP2005213899A JP2004022862A JP2004022862A JP2005213899A JP 2005213899 A JP2005213899 A JP 2005213899A JP 2004022862 A JP2004022862 A JP 2004022862A JP 2004022862 A JP2004022862 A JP 2004022862A JP 2005213899 A JP2005213899 A JP 2005213899A
Authority
JP
Japan
Prior art keywords
fiber
resin
room temperature
airtight film
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004022862A
Other languages
Japanese (ja)
Other versions
JP3862700B2 (en
Inventor
Seiji Fujima
誠司 藤間
Toshihiro Ando
敏弘 安東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004022862A priority Critical patent/JP3862700B2/en
Publication of JP2005213899A publication Critical patent/JP2005213899A/en
Application granted granted Critical
Publication of JP3862700B2 publication Critical patent/JP3862700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure repairing and reinforcing method which is implemented by applying a fiber bonding method for bonding fiber sheets or the like to a structure to repair and reinforce the same, wherein setting of a resin surface layer of a cold setting resin is accelerated, dripping of the cold setting resin under polymerization curing procedure, or a bad smell occurring due to volatilization of volatile components in the resin, are prevented, and complicated work for implementing the method is eliminated. <P>SOLUTION: The structure repairing and reinforcing method is implemented by using a fiber substrate formed by sticking an airtight film to one surface of a sheet, a fabric, or a mesh material which is obtained by drawing fiber filaments in a single or two or more orientations, in one body. Then the fiber substrate is bonded to the structure formed of concrete, bricks, or steel, in a surface on which the airtight film is not arranged using the cold setting resin, and after setting of the cold setting resin, the airtight film is separated from the fiber substrate. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、繊維シート等をコンクリート構造物、レンガ構造物または鋼構造物に接着する構造物補強または構造物片剥落防止等の繊維接着による補修補強方法(以下繊維接着工法と呼ぶ)に関する。 The present invention relates to a repair / reinforcement method (hereinafter referred to as a fiber bonding method) by fiber bonding such as reinforcing a structure for bonding a fiber sheet or the like to a concrete structure, a brick structure, or a steel structure, or preventing a structure piece from peeling off.

土木構造物の補強や構造物片剥落防止等の方法のひとつとして、コンクリート等の表面に繊維シート等を常温硬化性樹脂で接着するいわゆる繊維接着工法がある。繊維接着工法で使用される繊維シート等の材質としてはとしては炭素繊維、アラミド繊維、ガラス繊維、ポリビニルアルコール繊維が一般的に挙げられ、常温硬化性樹脂としてはエポキシ樹脂、(メタ)アクリル系樹脂を代表とするラジカル重合性樹脂が一般的に挙げられる。 As one method for reinforcing civil engineering structures and preventing peeling of structure pieces, there is a so-called fiber bonding method in which a fiber sheet or the like is bonded to the surface of concrete or the like with a room temperature curable resin. Examples of the material for the fiber sheet used in the fiber bonding method generally include carbon fiber, aramid fiber, glass fiber, and polyvinyl alcohol fiber, and room temperature curable resins include epoxy resins and (meth) acrylic resins. Generally, radically polymerizable resins represented by

エポキシ樹脂を使用した場合、実際の繊維接着工法では繊維シート等の接着後、エポキシ樹脂が流動性を失うまでの重合硬化には6時間程度、冬場等の低温時には12時間程度かかるため、重合硬化中のエポキシ樹脂のたれ落ちが起こり、周辺を汚染したり、空気中の二酸化炭素を吸収してエポキシ樹脂が白化して硬化不良を引き起こすため所望のFRP強度を発現できないと行った欠点があった。重合硬化中の常温硬化性樹脂のたれ落ちは、硬化速度の速い(メタ)アクリル系樹脂を代表とするラジカル重合性樹脂でも皆無ではなかった。 When epoxy resin is used, the actual fiber bonding method requires about 6 hours for polymerization and hardening until the epoxy resin loses fluidity after bonding of fiber sheets, etc., and about 12 hours at low temperatures such as in winter. There was a defect that the epoxy resin in the inside would fall down, contaminated the surroundings, absorbed carbon dioxide in the air and whitened the epoxy resin and caused curing failure, so that the desired FRP strength could not be expressed . The freezing of the room temperature curable resin during polymerization and curing was not a problem even with radically polymerizable resins typified by (meth) acrylic resins having a high curing rate.

(メタ)アクリル系樹脂を代表とするラジカル重合性樹脂使用した場合の繊維接着工法ではシート等の接着後、ラジカル重合性樹脂の特徴として空気中の酸素により硬化遅延を起こす性質があるため、特に空気と接触したラジカル重合性樹脂表面層の重合硬化が遅く、保護塗装等の後工程に入るまでかなりの時間を要するといった欠点があった。 In the fiber bonding method using a radically polymerizable resin typified by a (meth) acrylic resin, since the property of the radically polymerizable resin is the property of causing a delay in curing after adhesion of a sheet or the like, in particular, The surface curing of the radical polymerizable resin surface layer in contact with air is slow, and there is a drawback that it takes a considerable time to enter a subsequent process such as protective coating.

また、繊維接着工法に使用される常温硬化性樹脂に共通して、充分に重合硬化するまでに含有する揮発性成分の揮散により、周囲に揮発性成分由来の臭気を拡散させてしまい、特に市街地等では悪臭等の問題を引き起こす欠点があった。 In addition, in common with room temperature curable resins used in fiber bonding methods, volatile components derived by volatilization of the volatile components contained until fully cured by polymerization can diffuse odors derived from volatile components, especially in urban areas. Etc. have the disadvantage of causing problems such as bad odor.

上記の繊維接着工法における重合硬化中の常温硬化性樹脂のたれ落ちや、含有揮発性成分の揮散による悪臭を解決する方法が特許文献1に開示されており、そこでは、構造物面に、常温硬化性樹脂が含浸されてなる繊維シート等を貼り、その後、常温硬化性樹脂が未硬化の状態で繊維シート等の外表面を気密性フィルムで被覆する方法が提案されている。しかしながらこの方法では、繊維シート等の接着作業と気密性フィルムの被覆作業をそれぞれ1回ずつ分けて行う必要があり、作業が繁雑であるといった欠点があった。
特開平9−296615号公報。
Patent Document 1 discloses a method for solving a bad odor caused by dripping of a room temperature curable resin during polymerization and curing and volatilization of contained volatile components in the fiber bonding method described above. A method has been proposed in which a fiber sheet or the like impregnated with a curable resin is pasted, and then the outer surface of the fiber sheet or the like is covered with an airtight film while the room temperature curable resin is uncured. However, this method has the disadvantage that the work of bonding the fiber sheet or the like and the work of covering the airtight film need to be performed separately once, and the work is complicated.
JP-A-9-296615.

本発明が解決しようとする課題は、繊維接着工法において、第1に(メタ)アクリル系樹脂を代表とするラジカル重合性樹脂を初めとする常温硬化性樹脂を使用した場合に、空気と接触した常温硬化性樹脂表面層の硬化が遅い点、第2に重合硬化中の常温硬化性樹脂のたれ落ちや含有揮発性成分の揮散による悪臭を防止するために従来公知の方法では繊維シート等の接着作業と気密性フィルムの被覆作業をそれぞれ1回ずつ分けて行うといった作業の繁雑な点である。 The problem to be solved by the present invention is that in the fiber bonding method, first, when a room temperature curable resin such as a radical polymerizable resin typified by a (meth) acrylic resin is used, it comes into contact with air. The point of slow curing of the room temperature curable resin surface layer, and secondly the adhesion of fiber sheets etc. in the conventionally known method in order to prevent the bad odor due to dripping of the room temperature curable resin during polymerization curing and volatilization of contained volatile components This is a complicated point in that the work and the coating operation of the airtight film are performed separately once.

本発明は、繊維フィラメントを1方向又は2方向以上に引き揃えてなるシート、織物又はメッシュ状物の片面側に気密性フィルムを付着させ一体化してなる繊維製基材を、常温硬化性樹脂を用いて、前記繊維製基材の前記気密性フィルムを設けていない面で、コンクリート、レンガ又は鋼からなる構造物に接着し、前記常温硬化性樹脂が硬化した後に、前記気密性フィルムを剥離することを特徴とする構造物の補修補強方法であり、好ましくは、繊維製基材が、繊維フィラメントを1方向に引き揃え、1平方メートル当たりの繊維重量が30〜310gの構造を有し、しかも片側面に気密性フィルムを付着させ一体化した構造であることを特徴とする前記の構造物の補修補強方法であり、繊維製基材が、複数の繊維フィラメントからなる繊維フィラメント束を1方向または2方向以上に配列してなり、1平方メートル当たりの繊維重量が30〜310gの構造を有し、しかも片側面に気密性フィルムを付着させ一体化した構造であることを特徴とする前記の構造物の補修補強方法であり、又は、繊維製基材が、複数の繊維フィラメントからなる繊維フィラメント束を2方向または3方向に配列してなり、1平方メートル当たりの繊維重量が50〜100gのポリビニルアルコール繊維メッシュ状物であり、しかも片側面に気密性フィルムを付着させ一体化した構造であることを特徴とする前記の構造物の補修補強方法であり、更に好ましくは、常温硬化性樹脂が、ラジカル重合性樹脂であることを特徴とする前記の構造物の補修補強方法である。 In the present invention, a fiber base material formed by adhering an airtight film on one side of a sheet, woven fabric or mesh-like material in which fiber filaments are aligned in one direction or two or more directions, and a room temperature curable resin is used. Use the surface of the fiber base material that is not provided with the airtight film, adhere to a structure made of concrete, brick, or steel, and peel off the airtight film after the room temperature curable resin is cured. Preferably, the fiber base material has a structure in which the fiber filaments are aligned in one direction and the fiber weight per square meter is 30 to 310 g, and A method for repairing and reinforcing the above-mentioned structure, characterized in that an airtight film is attached to the side surface and integrated, wherein the fiber base material is a fiber comprising a plurality of fiber filaments The filament bundle is arranged in one direction or two or more directions, has a structure in which the fiber weight per square meter is 30 to 310 g, and has a structure in which an airtight film is attached to one side and integrated. Or a fiber base material in which fiber filament bundles composed of a plurality of fiber filaments are arranged in two or three directions, and the fiber weight per square meter is 50. A method for repairing and reinforcing the above-mentioned structure, characterized in that the structure is a 100 g polyvinyl alcohol fiber mesh-like material, and an airtight film is attached to one side and integrated, more preferably room temperature curing The method for repairing and reinforcing the structure is characterized in that the functional resin is a radical polymerizable resin.

繊維接着工法において、本発明の補修補強方法を採用することで、重合硬化中の常温硬化性樹脂のたれ落ちや含有揮発性成分の揮散による悪臭を防止できる効果があり、また、繊維シート等の接着作業と気密性フィルムの被覆作業をそれぞれ1回ずつ分けて行うといった従来公知の方法における作業が繁雑な点が解消出来る効果があるし、加えて、(メタ)アクリル系樹脂を代表とするラジカル重合性樹脂を初めとする常温硬化性樹脂を使用した場合に、空気と接触した常温硬化性樹脂の表面層の硬化を早めることが可能で、後工程に短時間で入れるといった効果もある。 By adopting the repair and reinforcement method of the present invention in the fiber bonding method, there is an effect of preventing the bad odor caused by dripping of the room temperature curable resin during polymerization curing and volatilization of the contained volatile components, and the fiber sheet etc. It has the effect of eliminating the complicated work of the conventionally known method of performing the bonding operation and the coating operation of the airtight film once each, and in addition, radicals represented by (meth) acrylic resins When a room temperature curable resin such as a polymerizable resin is used, it is possible to accelerate the curing of the surface layer of the room temperature curable resin in contact with air, and there is an effect that it can be put in a subsequent process in a short time.

繊維接着工法において使用される繊維製基材については、いろいろなものが知られているが、本発明では、繊維フィラメントを1方向又は2方向以上に引き揃えてなるシート、織物又はメッシュ状物の片面側に気密性フィルムを付着させ一体化してなる繊維製基材が選択され、特に、繊維フィラメントを1方向に引き揃え、1平方メートル当たりの繊維重量が30〜310gの構造を有し、しかも片側面に気密性フィルムを付着させ一体化した構造であるのもの、複数の繊維フィラメントからなる繊維フィラメント束を1方向または2方向以上に配列してなり、1平方メートル当たりの繊維重量が30〜310gの構造を有し、しかも片側面に気密性フィルムを付着させ一体化した構造であるもの、又は、複数の繊維フィラメントからなる繊維フィラメント束を2方向または3方向に配列してなり、1平方メートル当たりの繊維重量が50〜100gのポリビニルアルコール繊維メッシュ状物であり、しかも片側面に気密性フィルムを付着させ一体化した構造であるものが好ましく選択される。 Various types of fiber base materials used in the fiber bonding method are known. In the present invention, a sheet, a woven fabric, or a mesh-like material in which fiber filaments are aligned in one direction or two or more directions is known. A fiber base material formed by adhering an airtight film on one side and integrating is selected. In particular, fiber filaments are drawn in one direction, and the fiber weight per square meter is 30 to 310 g. A structure in which an airtight film is attached to the side and integrated, and a fiber filament bundle composed of a plurality of fiber filaments is arranged in one direction or two or more directions, and the fiber weight per square meter is 30 to 310 g. It has a structure and an integrated structure with an airtight film attached to one side, or a fiber comprising a plurality of fiber filaments. A filament bundle is arranged in two or three directions, and is a polyvinyl alcohol fiber mesh-like material having a fiber weight per square meter of 50 to 100 g, and an airtight film is attached to one side and integrated. Those are preferably selected.

本発明おいて使用される繊維製基材とは、繊維フィラメントを1方向又は2方向以上に引き揃えてなるシート、織物又はメッシュ状物(以下これらを「繊維製シート状物」と総称する)の片面側に気密性フィルムを付着させ一体化してなる構造のものである。このような構造の繊維製基材を選択することで、前記本発明の効果が確実に達成出来る。尚、 繊維製基材の構成要素のひとつである繊維製シート状物の材質としては、炭素繊維、アラミド繊維、ガラス繊維、ポリビニルアルコール繊維等の有機繊維または無機繊維があげられ、本発明ではいずれをも用いることができる。繊維の材質は補強や構造物片の剥落防止等の目的に適合したものが選ばれ、かつ補強や構造物片の剥落防止等の目的に適合した形状が選択される。 The fiber base material used in the present invention is a sheet, woven fabric or mesh-like material in which fiber filaments are aligned in one direction or two or more directions (hereinafter collectively referred to as “fiber sheet-like material”). This is a structure in which an airtight film is attached to and integrated with one side. By selecting a fiber substrate having such a structure, the effects of the present invention can be reliably achieved. Examples of the material of the fiber sheet material that is one of the constituent elements of the fiber substrate include organic fibers or inorganic fibers such as carbon fibers, aramid fibers, glass fibers, and polyvinyl alcohol fibers. Can also be used. As the material of the fiber, a material suitable for the purpose of reinforcement or prevention of peeling off of the structural piece is selected, and a shape suitable for the purpose of reinforcement or prevention of peeling off of the structural piece is selected.

本発明の繊維製基材の構成要素である繊維製シート状物としては常温硬化性樹脂が充分に含浸する点で1平方メートル当たりの繊維重量は30〜310gが好ましい。1平方メートル当たりの繊維重量が30g未満の場合には、繊維接着工法へ適用した場合に補強補修効果が小さくなる可能性があり、繊維重量が1平方メートル当たり310gを越えると常温硬化性樹脂の繊維製シート状物への含浸が不充分となり施工不良となる可能性がある。 As the fiber sheet which is a component of the fiber base material of the present invention, the fiber weight per square meter is preferably 30 to 310 g in that the room temperature curable resin is sufficiently impregnated. If the fiber weight per square meter is less than 30g, the reinforcement repair effect may be reduced when applied to the fiber bonding method. If the fiber weight exceeds 310g per square meter, There is a possibility that the impregnation of the sheet-like material is insufficient, resulting in poor construction.

本発明の繊維製基材の構成要素である繊維製シート状物の材質としては、経済性の点でポリビニルアルコール繊維が好ましく、ポリビニルアルコール繊維製の繊維製シート状物の形状としては1層の繊維製基材の接着で多方向の補強・補修効果が得られる点で2方向以上のメッシュ状物が好ましい。 As a material of the fiber sheet material which is a constituent element of the fiber base material of the present invention, polyvinyl alcohol fiber is preferable in terms of economy, and the shape of the fiber sheet material made of polyvinyl alcohol fiber is one layer. A mesh-like material having two or more directions is preferable in that a multi-directional reinforcement / repair effect can be obtained by bonding the fiber base material.

繊維製基材の構成要素のもう一方である気密性フィルムの材質としてはポリエチレンやポリエステル等の高分子化合物が挙げられる。これらの中では安価な点、柔軟性を有する点、比重が小さい点、常温構成樹脂硬化後の易剥離性の点で、ポリエチレン製フィルムが好ましく、又、気密性フィルムの厚さとしては繊維製基材を構成した場合の柔軟性が得られる点、軽量化できる点や繊維製基材を容易にロール状の巻きものとすることが可能な点で10〜100μmの範囲とすることが好ましい。また、気密性フィルムの気密度合いに関しては、(メタ)アクリル系樹脂を代表とするラジカル重合性樹脂を初めとする常温硬化性樹脂の硬化促進する程の気密性を有していれば良い。 Examples of the material of the airtight film which is the other component of the fiber base material include polymer compounds such as polyethylene and polyester. Among these, a polyethylene film is preferable in terms of low cost, flexibility, low specific gravity, and easy release after curing at room temperature, and the thickness of the airtight film is preferably made of fiber. It is preferable to make it into the range of 10-100 micrometers from the point that the softness | flexibility at the time of comprising a base material is obtained, the point which can be reduced in weight, and the point which can make a fiber-made base material roll-shaped easily. Moreover, regarding the airtightness of the airtight film, the airtightness of the room temperature curable resin including a radical polymerizable resin typified by a (meth) acrylic resin may be sufficient.

繊維製基材の構成要素である繊維製シート状物と気密性フィルムを付着させ一体化させる方法としては、例えば炭素繊維製の繊維製シート状物の場合、繊維フィラメントの結束剤として一般的に用いられているエポキシ樹脂の粘着性をそのまま利用できる。炭素繊維以外の繊維製シート状物の場合には粘着性を有する結束剤があらかじめ用いられていない場合が多く、これらの繊維製シート状物と気密性フィルムを付着させ一体化させるために炭素繊維シート状物の結束剤として用いられるエポキシ樹脂や柔軟性や強い粘着性を有する熱可塑性の共重合体等を繊維フィラメントの結束剤として使用することができる。 As a method for adhering and integrating a fibrous sheet-like material that is a constituent element of a fiber base material and an airtight film, for example, in the case of a carbon fiber-made fiber sheet-like material, it is generally used as a fiber filament binding agent. The adhesiveness of the epoxy resin used can be used as it is. In the case of a fiber sheet-like material other than carbon fiber, there are many cases where an adhesive binding agent is not used in advance, and in order to attach and integrate these fiber sheet-like material and an airtight film, carbon fiber An epoxy resin used as a binding agent for a sheet-like material, a thermoplastic copolymer having flexibility and strong adhesiveness, or the like can be used as a binding agent for fiber filaments.

本発明の繊維接着工法に使用される常温硬化性樹脂としては、常温硬化型のエポキシ樹脂や常温硬化型の(メタ)アクリル樹脂を代表とするラジカル重合性樹脂が挙げられる。常温とは地球の気候環境で一般的に考えられる−30℃〜50℃の温度範囲を意味し、この温度範囲で所定の計量混合を行うことによって重合硬化する材料のことを常温硬化性樹脂と呼ぶ。エポキシ樹脂の代表例としては主剤および硬化剤の2液混合硬化型のものが挙げられ、主剤はビスフェノールA型やビスフェノールF型のエポキシ化合物を主成分であり、硬化剤はポリアミン化合物やポリチオール化合物を主成分としている。 Examples of the room temperature curable resin used in the fiber bonding method of the present invention include a room temperature curable epoxy resin and a room temperature curable (meth) acrylic resin. Normal temperature means a temperature range of −30 ° C. to 50 ° C. that is generally considered in the global climatic environment, and a material that is polymerized and cured by performing predetermined metering and mixing within this temperature range is called a normal temperature curable resin. Call. Typical examples of the epoxy resin include a two-component mixed curing type of a main agent and a curing agent. The main agent is a bisphenol A type or bisphenol F type epoxy compound as a main component, and the curing agent is a polyamine compound or a polythiol compound. The main component.

(メタ)アクリル樹脂を代表とするラジカル重合性樹脂としては、不飽和ポリエステル樹脂、ビニルエステル樹脂、2液主剤型の(メタ)アクリル樹脂が挙げられる。不飽和ポリエステル樹脂およびビニルエステル樹脂は、これらにラジカル発生源となる化合物とラジカル発生源を分解する作用を有する硬化促進剤を添加混合すると常温で重合硬化する特徴を有する。 Examples of the radical polymerizable resin typified by a (meth) acrylic resin include unsaturated polyester resins, vinyl ester resins, and two-pack main component type (meth) acrylic resins. Unsaturated polyester resins and vinyl ester resins are characterized by being polymerized and cured at room temperature when a compound serving as a radical generating source and a curing accelerator having an action of decomposing the radical generating source are added and mixed with them.

不飽和ポリエステル樹脂およびビニルエステル樹脂を硬化させるために添加混合するラジカル発生源となる化合物の代表例としては有機過酸化物が挙げられる。有機過酸化物の具体的な例としてはジベンゾイルパーオキサイド、メチルエチルケトンパーオキサイド、クメンハードロパーオキサイド等があり、これらの1種類または2種類以上を用いることができる。 Organic peroxide is a typical example of a compound that is a radical generation source added and mixed to cure the unsaturated polyester resin and vinyl ester resin. Specific examples of the organic peroxide include dibenzoyl peroxide, methyl ethyl ketone peroxide, cumene hardroperoxide, and the like, and one or more of these can be used.

不飽和ポリエステル樹脂およびビニルエステル樹脂を硬化させるために添加混合するラジカル発生源となる化合物を分解する作用を有する硬化促進剤の代表例としてはアミン化合物や金属せっけん化合物等が挙げられる。アミン化合物の具体的な例としてはN,N−ジメチルアニリン、N,N−ジメチル−p−トルイジン等が挙げられる。また金属せっけんの例としてはコバルト、マンガン、鉄、銅、スズ、ニッケル等遷移金属のそれぞれオクチル酸塩やナフテン酸塩等が挙げられる。硬化促進剤であるアミン化合物や金属せっけん化合物等はこれらの中から1種または2種類以上を用いることができる。 Typical examples of the curing accelerator having an action of decomposing a compound which is a radical generation source added and mixed for curing the unsaturated polyester resin and the vinyl ester resin include an amine compound and a metal soap compound. Specific examples of the amine compound include N, N-dimethylaniline and N, N-dimethyl-p-toluidine. Examples of metal soaps include octylates and naphthenates of transition metals such as cobalt, manganese, iron, copper, tin, and nickel. One or more kinds of amine compounds and metal soap compounds, which are curing accelerators, can be used.

2液主剤型の(メタ)アクリル樹脂とは、例えばラジカル重合性の単量体や多量体の混合物をA剤およびB剤の2つの液剤に分け、A剤にラジカル発生源となる化合物を添加混合し、B剤にラジカル発生源となる化合物を分解する作用を有する硬化促進剤を添加混合した形態のラジカル重合性樹脂である。使用時にはA剤とB剤とをそれぞれ計量混合して重合硬化させる。 The two-component main component type (meth) acrylic resin is, for example, a mixture of radical polymerizable monomers and multimers is divided into two liquid agents, agent A and agent B, and a compound that generates radicals is added to agent A. It is a radical polymerizable resin in a form in which a curing accelerator having an action of decomposing a compound that is a radical generation source is added to and mixed with the B agent. At the time of use, the A agent and the B agent are weighed and mixed to be polymerized and cured.

2液主剤型の(メタ)アクリル樹脂に使用するラジカル発生源となる化合物および硬化促進剤は不飽和ポリエステル樹脂およびビニルエステル樹脂で使用するものと同様のもの等を使用することができる。2液主剤型の(メタ)アクリル樹脂の具体的な例としては電気化学工業社製デンカハードロックIIDK550−04、デンカハードロックIIAFレジンクリア等が挙げられる。 As a compound and a curing accelerator used as a radical generating source for the two-component main component type (meth) acrylic resin, those similar to those used for the unsaturated polyester resin and vinyl ester resin can be used. Specific examples of the two-component main component type (meth) acrylic resin include Denka Hard Rock IIDK550-04, Denka Hard Rock IIAF Resin Clear manufactured by Denki Kagaku Kogyo Kabushiki Kaisha.

本発明の繊維製基材および常温硬化性樹脂を使用する構造物の補修補強方法の手順は以下の通りである。
(1)構造物表面処理:繊維製基材を接着する構造物表面を清掃する目的で、サンドペーパー処理、ブラスト処理、高圧水洗浄処理等する。
(2)プライマー処理:繊維製基材の構造物への接着性向上のためにそれぞれの常温硬化性樹脂に適したプライマー材を施工する。
(3)断面修復・不陸調整:繊維製基材を接着するために必要な構造物表面の平滑性を得るために欠損部にはポリマーセメントモルタルや樹脂モルタルを充填し、段差等があればパテ状の樹脂材料で平滑にする。
(4)繊維製基材接着:常温硬化性樹脂を計量混合しローラー、刷毛、コテ等で構造物表面に塗布し繊維製基材を繊維製シート状物が構造物表面と接するようにゴムローラーやコテ、ヘラを用いて空気を追い出しながら貼り付ける。
(5)気密性フィルム剥離:常温硬化性樹脂が硬化した後に繊維製基材から気密性フィルムを剥がす。
(6)後工程:繊維製基材の接着後に必要に応じて塗装等を施工する。
The procedure for repairing and reinforcing a structure using the fiber base material and the room temperature curable resin of the present invention is as follows.
(1) Structure surface treatment: Sandpaper treatment, blast treatment, high-pressure water washing treatment or the like is performed for the purpose of cleaning the structure surface to which the fiber base material is bonded.
(2) Primer treatment: A primer material suitable for each room temperature curable resin is applied to improve the adhesion of the fiber base material to the structure.
(3) Cross-section repair and unevenness adjustment: To obtain the smoothness of the surface of the structure necessary for bonding the fiber base material, if the defective part is filled with polymer cement mortar or resin mortar and there is a step, etc. Smooth with putty-like resin material.
(4) Fiber base material adhesion: A rubber roller so that a room temperature curable resin is measured and mixed and applied to the surface of the structure with a roller, brush, iron, etc., and the fiber base material is in contact with the surface of the structure. Paste while expelling air with a trowel or a spatula.
(5) Airtight film peeling: After the room temperature curable resin is cured, the airtight film is peeled off from the fiber substrate.
(6) Post-process: After the fiber base material is bonded, painting or the like is performed as necessary.

上記が本発明を実行する手順の一例であるが、本発明の繊維製基材および常温硬化性樹脂を使用する構造物の補修補強方法に支障がない限り、(1)、(2)、(3)及び(6)の手順のすべてまたは少なくともひとつは省略することが可能である。 The above is an example of the procedure for carrying out the present invention. However, as long as there is no problem in the repair and reinforcement method of the structure using the fiber base material and the room temperature curable resin of the present invention, (1), (2), ( All or at least one of the procedures of 3) and (6) can be omitted.

表1に、本発明の構造物の補修補強方法の解決課題のひとつである重合硬化中の常温硬化性樹脂のたれ落ちを防ぐ効果を示すために、市販のスレート板を高さ1.9mの位置に水平に設置し、その下面に本発明の繊維製基材と繊維シート状物そのものを接着し、重合硬化中の常温硬化性樹脂のたれ落ちを比較した結果を示す。実施例のとおり繊維接着工法に本発明の繊維製基材を使用した場合、常温硬化性樹脂の重合硬化中のたれ落ちを防ぐ効果がある。 Table 1 shows a commercial slate plate with a height of 1.9 m in order to show the effect of preventing dripping of the room temperature curable resin during polymerization curing, which is one of the problems to be solved in the method of repairing and reinforcing the structure of the present invention. The result is shown in which the fiber base material of the present invention and the fiber sheet itself are adhered to the lower surface thereof, and the drop of the room temperature curable resin during polymerization curing is compared. When the fiber base material of the present invention is used in the fiber bonding method as in the examples, there is an effect of preventing dripping during polymerization curing of the room temperature curable resin.

Figure 2005213899
Figure 2005213899

表2に本発明の構造物の補修補強方法の解決課題のひとつである重合硬化中の常温硬化性樹脂の含有揮発性成分の揮散による悪臭を低減する効果を示すために、容積22立方メートルの室内で、室内の中央に市販のスレート板を高さ1.9mの位置に水平に設置し、その下面に本発明の繊維製基材と繊維シート状物そのものを接着し、重合硬化中の常温硬化性樹脂の揮発性成分であるメタクリル酸メチルの濃度を、室内中央、高さ1mの位置においてメタクリル酸メチルガス検知管(ガステック社製ガス採取器:GV−100Sおよびガステック社製ガス検知管:149メタクリル酸メチル)で測定した結果を示す。実施例のとおり繊維接着工法に本発明の繊維製基材を使用した場合、常温硬化性樹脂の含有揮発成分の揮散による悪臭を低減できる効果がある。 In order to show the effect of reducing bad odor due to volatilization of the volatile components contained in the room temperature curable resin during polymerization curing, which is one of the problems to be solved in the method of repairing and reinforcing the structure of the present invention, Table 2 shows a room with a volume of 22 cubic meters. In the center of the room, a commercially available slate plate is installed horizontally at a height of 1.9 m, the fiber base material of the present invention and the fiber sheet itself are bonded to the lower surface, and curing at room temperature during polymerization curing. The concentration of methyl methacrylate, which is a volatile component of the conductive resin, is measured at the center of the room at a height of 1 m with a methyl methacrylate gas detector tube (Gastec gas sampling device: GV-100S and Gastech gas detector tube: 149 methyl methacrylate). When the fiber base material of the present invention is used for the fiber bonding method as in the examples, there is an effect of reducing malodor caused by volatilization of the volatile components contained in the room temperature curable resin.

Figure 2005213899
Figure 2005213899

表3に本発明の構造物の補修補強方法の解決課題のひとつである(メタ)アクリル系樹脂を代表とするラジカル重合性樹脂使用した場合に空気と接触したラジカル重合性樹脂の表面層の硬化を早める効果を示すために市販のスレート板を高さ1.9mの位置に水平に設置し、その下面に本発明の繊維製基材と繊維シート状物そのものを接着し、30分ごとにラジカル重合性樹脂表面層の硬化状態を指触で評価した結果を示す。評価は、○:表面層にべとつきなし、△:表面層にべとつきあり、×:全体が未硬化、の3段階で行った。本発明の繊維製基材を接着した場合には、30分ごとに気密性フィルムを剥離して、常温硬化性樹脂表面層の硬化状態を指触で評価した。実施例のとおり繊維接着工法に本発明の繊維製基材を使用した場合、常温硬化性樹脂として(メタ)アクリル系樹脂を代表とするラジカル重合性樹脂使用した場合に空気と接触したラジカル重合性樹脂表面層の硬化を早める効果がある。 Table 3 Curing of the surface layer of a radical polymerizable resin in contact with air when a radical polymerizable resin typified by a (meth) acrylic resin, which is one of the problems to be solved in the method of repairing and reinforcing the structure of the present invention, is used. In order to show the effect of speeding up, a commercially available slate plate is installed horizontally at a height of 1.9 m, the fiber substrate of the present invention and the fiber sheet itself are adhered to the lower surface thereof, and radicals are generated every 30 minutes. The result of having evaluated the hardening state of the polymeric resin surface layer by finger touch is shown. The evaluation was performed in three stages: ○: no stickiness on the surface layer, Δ: stickiness on the surface layer, and x: the whole was uncured. When the fiber base material of the present invention was adhered, the airtight film was peeled off every 30 minutes, and the cured state of the room temperature curable resin surface layer was evaluated by touch. When the fiber base material of the present invention is used in the fiber bonding method as in the examples, the radical polymerizable resin in contact with air is used when the radical polymerizable resin typified by (meth) acrylic resin is used as the room temperature curable resin. This has the effect of accelerating the curing of the resin surface layer.

Figure 2005213899
Figure 2005213899

表4に本発明の構造物の補修補強方法の解決課題のひとつである繊維シート状物と気密性フィルムとを別々に施工した場合の煩雑さを解決する効果を示すために市販のスレート板を高さ1.9mの位置に水平に設置し、その下面に本発明の繊維製基材を接着した場合と、繊維シート状物を常温硬化性樹脂で接着し、次いで気密性フィルムを貼り付けた場合の作業時間を比較した結果を示す。実施例のとおり繊維接着工法に本発明の繊維製基材を使用した場合、繊維シート状物と気密性フィルムとを別々に施工した場合と比較して短時間で接着作業を実施することが可能である。 In order to show the effect which solves the complexity at the time of constructing separately the fiber sheet-like thing and the airtight film which are one of the solutions of the repair and reinforcement method of the structure of this invention in Table 4, a commercially available slate board is shown. When the fiber base material of the present invention was adhered to the lower surface of the fiber base material, the fiber sheet-like material was adhered with a room temperature curable resin, and then an airtight film was attached. The result which compared the working time in case is shown. When the fiber base material of the present invention is used for the fiber bonding method as in the examples, it is possible to perform the bonding work in a shorter time than when the fiber sheet and the airtight film are separately constructed. It is.

Figure 2005213899
Figure 2005213899

表5に本発明の繊維製基材の構成要素である繊維製シート状物の材質および繊維重量を変えて常温硬化性樹脂で接着した場合の常温硬化性樹脂の含浸性を比較するために、市販スレート板を高さ1.9mの位置に水平に設置し、その下面に本発明の繊維製基材を接着し、常温硬化性樹脂の硬化養生24時間後に繊維製基材から気密性フィルムを剥離し、繊維製シート状物への常温硬化性樹脂の含浸状態を指触で比較した結果および日本道路公団試験研究所規格「連続繊維シート接着の押抜き試験方法」に基づく試験を実施し、最大荷重を繊維製シート状物耐荷重性能として表した結果を示す。
繊維製シート状物への常温硬化性樹脂の含浸状態の評価は、
◎:繊維製シート状物全体に充分に常温硬化性樹脂が含浸し硬化している。
○:繊維製シート状物の面積の90%以上には充分に常温硬化性樹脂が含浸し硬化している。
×:繊維製シート状物への常温硬化性樹脂が含浸が繊維製シート状物面積の90%未満である、
の3段階とし、評価×は実用に適さないと判断した。実施例のとおり繊維接着工法に1平方メートル当たりの繊維重量が30〜310gである繊維製シート状物を用いた本発明の繊維製基材を使用すると常温硬化性樹脂の充分な含浸硬化性を得られる効果がある。
In order to compare the impregnation property of the room temperature curable resin when changing the material and fiber weight of the fiber sheet material that is a component of the fiber base material of the present invention in Table 5 and bonding with the room temperature curable resin, A commercially available slate plate was installed horizontally at a height of 1.9 m, the fiber base material of the present invention was adhered to the lower surface, and an airtight film was applied from the fiber base material after 24 hours of curing curing of the room temperature curable resin. The result of peeling and comparing the impregnation state of the room temperature curable resin into the fiber sheet material with the touch and the test based on the Japan Road Agency Test Laboratory standard `` Punching test method of continuous fiber sheet adhesion '', The result of expressing the maximum load as the load resistance performance of the fiber sheet is shown.
The evaluation of the impregnation state of the room temperature curable resin into the fiber sheet is as follows:
A: The entire fiber sheet is sufficiently impregnated with the room temperature curable resin and cured.
○: 90% or more of the area of the fiber sheet is sufficiently impregnated with the room temperature curable resin and cured.
×: The room temperature curable resin impregnated into the fiber sheet is less than 90% of the area of the fiber sheet,
The evaluation x was judged to be unsuitable for practical use. When the fiber base material of the present invention using the fiber sheet material having a fiber weight per square meter of 30 to 310 g is used for the fiber bonding method as in the examples, sufficient impregnation curability of the room temperature curable resin is obtained. There is an effect.

Figure 2005213899
Figure 2005213899

表6に繊維製基材の構成要素である繊維製シート状物が繊維重量として1平方メートル当たり90gのポリビニルアルコール繊維製の2方向メッシュ状物および3方向メッシュ状物を使用し、気密性フィルムの材質と厚さを変えた場合の接着作業のしやすさを評価するために、市販スレート板を高さ1.9mの位置に水平に設置し、その下面に本発明の繊維製基材の10mを直径150mmの紙筒に巻き付け、30日経過後のものを接着した時の作業のしやすさ、接着状況の観察結果を示す。
接着作業のしやすさの評価は、○:良好、×:不適、の2段階で、接着状況の観察結果は、○:良好、×:不良、の2段階で示した。実施例のとおり繊維接着工法に気密性フィルムとして20〜100μmポリエチレンを用いた繊維製基材を使用すると接着作業がしやすいという効果がある。
Table 6 shows a fiber sheet material, which is a component of a fiber base material, using a two-way mesh material and a three-way mesh material made of polyvinyl alcohol fiber having a fiber weight of 90 g per square meter. In order to evaluate the ease of bonding work when changing the material and thickness, a commercially available slate plate was installed horizontally at a height of 1.9 m, and 10 m of the fiber base material of the present invention was placed on the lower surface. Is wrapped around a paper tube having a diameter of 150 mm, and the results of observation of the ease of work and the state of adhesion when 30 days after bonding are adhered are shown.
The evaluation of the easiness of the bonding work was made in two stages: ○: good, x: unsuitable, and the observation result of the bonding state was shown in two stages: ○: good, x: poor. If the fiber base material using 20-100 micrometers polyethylene as an airtight film is used for a fiber bonding construction method as an Example, there exists an effect that an adhesion | attachment operation | work is easy.

Figure 2005213899
Figure 2005213899

本発明の構造物の補修補強工法は種々の材質、繊維重量、形状の繊維製シート状物に適用でき、かつ種々の常温硬化性樹脂に適用できるので、コンクリート構造物の補修補強、レンガ構造物の補修補強、鋼管等の鋼構造物の補修補強に適用できる。 Since the repair and reinforcement method of the structure of the present invention can be applied to fiber sheets of various materials, fiber weights and shapes, and can be applied to various room temperature curable resins, repair and reinforcement of concrete structures, brick structures It can be applied to repair and reinforcement of steel structures such as steel pipes.

本発明に用いる繊維製基材の代表的な構成を示す図。The figure which shows the typical structure of the fiber base material used for this invention. 本発明に用いる繊維製基材として好ましい、繊維製シート状物として2方向のポリビニルアルコール繊維メッシュ状物と、気密性フィルムとして厚さ10〜100μmのポリエチレン製フィルムとを付着させ一体化した構造を示す図。Preferred as a fiber base material used in the present invention, a structure in which a bi-directional polyvinyl alcohol fiber mesh material as a fiber sheet material and a polyethylene film having a thickness of 10 to 100 μm as an airtight film are attached and integrated. FIG. 本発明に用いる繊維製基材として好ましい、繊維製シート状物として3方向のポリビニルアルコール繊維メッシュ状物と、気密性フィルムとして厚さ10〜100μmのポリエチレン製フィルムとを付着させ一体化した構造を示す図。Preferred as a fiber base material for use in the present invention, a structure in which a three-way polyvinyl alcohol fiber mesh is attached as a fiber sheet and a polyethylene film having a thickness of 10 to 100 μm is adhered and integrated as an airtight film. FIG.

符号の説明Explanation of symbols

1 繊維製シート状物
1a 2方向のポリビニルアルコール繊維メッシュ状物
1b 3方向のポリビニルアルコール繊維メッシュ状物
2 気密性フィルム
2a 厚さ10〜100μmのポリエチレン製フィルム
1 Fiber sheet 1a Polyvinyl alcohol fiber mesh in two directions 1b Polyvinyl alcohol fiber mesh in three directions 2 Airtight film 2a Polyethylene film having a thickness of 10 to 100 μm

Claims (5)

繊維フィラメントを1方向又は2方向以上に引き揃えてなるシート、織物又はメッシュ状物の片面側に気密性フィルムを付着させ一体化してなる繊維製基材を、常温硬化性樹脂を用いて、前記繊維製基材の前記気密性フィルムを設けていない面で、コンクリート、レンガ又は鋼からなる構造物に接着し、前記常温硬化性樹脂が硬化した後に、前記気密性フィルムを剥離することを特徴とする構造物の補修補強方法。 A sheet made by aligning fiber filaments in one direction or two or more directions, a fiber substrate formed by attaching and integrating an airtight film on one side of a woven fabric or mesh-like material, using a room temperature curable resin, Adhering to a structure made of concrete, brick or steel on the surface of the fiber base material where the airtight film is not provided, and after the room temperature curable resin is cured, the airtight film is peeled off. To repair and reinforce structures. 繊維製基材が、繊維フィラメントを1方向に引き揃え、1平方メートル当たりの繊維重量が30〜310gの構造を有し、しかも片側面に気密性フィルムを付着させ一体化した構造であることを特徴とする請求項1記載の構造物の補修補強方法。 The fiber base material has a structure in which fiber filaments are aligned in one direction and the fiber weight per square meter is 30 to 310 g, and an airtight film is attached to one side and integrated. The method of repairing and reinforcing a structure according to claim 1. 繊維製基材が、複数の繊維フィラメントからなる繊維フィラメント束を1方向または2方向以上に配列してなり、1平方メートル当たりの繊維重量が30〜310gの構造を有し、しかも片側面に気密性フィルムを付着させ一体化した構造であることを特徴とする請求項1記載の構造物の補修補強方法。 The fiber substrate has a structure in which fiber filament bundles composed of a plurality of fiber filaments are arranged in one direction or two or more directions, and has a fiber weight per square meter of 30 to 310 g, and is airtight on one side. 2. The method for repairing and reinforcing a structure according to claim 1, wherein the structure has a structure in which a film is adhered and integrated. 繊維製基材が、複数の繊維フィラメントからなる繊維フィラメント束を2方向または3方向に配列してなり、1平方メートル当たりの繊維重量が50〜100gのポリビニルアルコール繊維メッシュ状物であり、しかも片側面に気密性フィルムを付着させ一体化した構造であることを特徴とする請求項1記載の構造物の補修補強方法。 The fiber base material is a polyvinyl alcohol fiber mesh-like material having a fiber weight per square meter of 50 to 100 g, in which fiber filament bundles composed of a plurality of fiber filaments are arranged in two or three directions, and on one side 2. The method for repairing and reinforcing a structure according to claim 1, wherein the structure has an integrated structure in which an airtight film is attached to the structure. 常温硬化性樹脂が、ラジカル重合性樹脂であることを特徴とする請求項1、請求項2、請求項3又は請求項4記載の構造物の補修補強方法。 The method for repairing and reinforcing a structure according to claim 1, wherein the room temperature curable resin is a radical polymerizable resin.
JP2004022862A 2004-01-30 2004-01-30 How to repair and reinforce structures Expired - Fee Related JP3862700B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004022862A JP3862700B2 (en) 2004-01-30 2004-01-30 How to repair and reinforce structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004022862A JP3862700B2 (en) 2004-01-30 2004-01-30 How to repair and reinforce structures

Publications (2)

Publication Number Publication Date
JP2005213899A true JP2005213899A (en) 2005-08-11
JP3862700B2 JP3862700B2 (en) 2006-12-27

Family

ID=34906072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004022862A Expired - Fee Related JP3862700B2 (en) 2004-01-30 2004-01-30 How to repair and reinforce structures

Country Status (1)

Country Link
JP (1) JP3862700B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007154573A (en) * 2005-12-07 2007-06-21 Iida Sangyo:Kk Reinforcement body for building
JP2007198093A (en) * 2006-01-30 2007-08-09 Denki Kagaku Kogyo Kk Method of repairing and reinforcing structure
JP2008057147A (en) * 2006-08-30 2008-03-13 Taiheiyo Material Kk Construction method for preventing flaking of concrete
JP2008057146A (en) * 2006-08-30 2008-03-13 Taiheiyo Material Kk Construction method for preventing flaking of concrete
WO2008029794A1 (en) * 2006-09-05 2008-03-13 Nippon Oil Corporation Method of reinforcing existing structure with carbon fiber
WO2008029795A1 (en) * 2006-09-05 2008-03-13 Nippon Oil Corporation Method of reinforcing existing structure with carbon fiber
JP2020125602A (en) * 2019-02-01 2020-08-20 日鉄ケミカル&マテリアル株式会社 Repair method of steel structure
WO2022145395A1 (en) * 2020-12-28 2022-07-07 日鉄ケミカル&マテリアル株式会社 Release sheet, method for applying coating agent, fiber sheet, and method for constructing fiber sheet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101177501B1 (en) 2009-12-07 2012-08-28 이엑스티 주식회사 Repairing and reinforcing method and for steel structure

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605561B2 (en) * 2005-12-07 2011-01-05 株式会社飯田産業 Reinforcing body for building
JP2007154573A (en) * 2005-12-07 2007-06-21 Iida Sangyo:Kk Reinforcement body for building
JP2007198093A (en) * 2006-01-30 2007-08-09 Denki Kagaku Kogyo Kk Method of repairing and reinforcing structure
JP2008057147A (en) * 2006-08-30 2008-03-13 Taiheiyo Material Kk Construction method for preventing flaking of concrete
JP2008057146A (en) * 2006-08-30 2008-03-13 Taiheiyo Material Kk Construction method for preventing flaking of concrete
JP4667327B2 (en) * 2006-08-30 2011-04-13 太平洋マテリアル株式会社 Concrete peeling prevention method
JP4667328B2 (en) * 2006-08-30 2011-04-13 太平洋マテリアル株式会社 Concrete peeling prevention method
WO2008029794A1 (en) * 2006-09-05 2008-03-13 Nippon Oil Corporation Method of reinforcing existing structure with carbon fiber
JP2008063744A (en) * 2006-09-05 2008-03-21 Nippon Oil Corp Method for reinforcing existing structure with carbon fiber
JP4638850B2 (en) * 2006-09-05 2011-02-23 Jx日鉱日石エネルギー株式会社 Method for reinforcing existing structures with carbon fiber
JP2008063745A (en) * 2006-09-05 2008-03-21 Nippon Oil Corp Method for reinforcing existing structure with carbon fiber
WO2008029795A1 (en) * 2006-09-05 2008-03-13 Nippon Oil Corporation Method of reinforcing existing structure with carbon fiber
CN101512083B (en) * 2006-09-05 2012-07-18 新日本石油株式会社 Method of reinforcing existing structure with carbon fiber
TWI413724B (en) * 2006-09-05 2013-11-01 Nippon Oil Corp Method of reinforcing existing structures using carbon fiber
JP2020125602A (en) * 2019-02-01 2020-08-20 日鉄ケミカル&マテリアル株式会社 Repair method of steel structure
JP7201464B2 (en) 2019-02-01 2023-01-10 日鉄ケミカル&マテリアル株式会社 Steel structure repair method
WO2022145395A1 (en) * 2020-12-28 2022-07-07 日鉄ケミカル&マテリアル株式会社 Release sheet, method for applying coating agent, fiber sheet, and method for constructing fiber sheet
JP7153995B1 (en) * 2020-12-28 2022-10-17 日鉄ケミカル&マテリアル株式会社 Coating agent application method, fiber sheet, and fiber sheet construction method

Also Published As

Publication number Publication date
JP3862700B2 (en) 2006-12-27

Similar Documents

Publication Publication Date Title
JP6150023B1 (en) Adhesive sheet set and article manufacturing method
JP3862700B2 (en) How to repair and reinforce structures
JP2009263893A (en) Concrete repair layer structure
JP7173193B2 (en) Article manufacturing method and stacking device
JP2004060359A (en) Concrete surface structure and its construction method
WO1999061725A1 (en) Method for repairing and reinforcing existing concrete structure and resin
JP2003342314A (en) Acrylic curable composition with blended short fiber
JP2019166815A (en) Anticorrosive sheet and method for protecting concrete structure
JP3767873B2 (en) Structure reinforcement method
JP2018177957A (en) Adhesive sheet set and manufacturing method for article
JP3939404B2 (en) Tunnel reinforcing wall and its construction method
JP7461179B2 (en) Method of repairing or reinforcing the object
JP4088716B2 (en) Method of pouring and reinforcing curable liquid
JP2018177961A (en) Adhesive sheet set and method for manufacturing article
JP2018177958A (en) Adhesive agent set and manufacturing method for article
WO2023008097A1 (en) Structure protection sheet, and method for manufacturing reinforced structure
JP2009263424A (en) Adhesive composition for placing joint and concrete repair method
JP3602713B2 (en) Reinforcement method for concrete structures
JPH10299262A (en) Composite body and repair method
JPH11270147A (en) Method for reinforcing structure
JP2000073691A (en) Tunnel repairing method
JP2021191631A (en) Method for reinforcing or repairing metal structure
JP2003080606A (en) Reinforcing material for concrete structure and method for reinforcing concrete structure using the same
JP5881101B2 (en) Cement-based thickener primer and thickening method
JPH09221919A (en) Repairing and reinforcing method for existing structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

R150 Certificate of patent or registration of utility model

Ref document number: 3862700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees