JP2005213368A - Latent heat storage material, catalyst type latent heat storage material using the same, latent heat storage composite material and latent heat storage system - Google Patents

Latent heat storage material, catalyst type latent heat storage material using the same, latent heat storage composite material and latent heat storage system Download PDF

Info

Publication number
JP2005213368A
JP2005213368A JP2004021811A JP2004021811A JP2005213368A JP 2005213368 A JP2005213368 A JP 2005213368A JP 2004021811 A JP2004021811 A JP 2004021811A JP 2004021811 A JP2004021811 A JP 2004021811A JP 2005213368 A JP2005213368 A JP 2005213368A
Authority
JP
Japan
Prior art keywords
latent heat
heat storage
transformation
storage material
bcc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004021811A
Other languages
Japanese (ja)
Inventor
Kiyohito Ishida
清仁 石田
Tomohiro Akiyama
友宏 秋山
Ryosuke Kainuma
亮介 貝沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004021811A priority Critical patent/JP2005213368A/en
Publication of JP2005213368A publication Critical patent/JP2005213368A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a latent heat storage material capable of storing latent heat with nonparticipation of a liquid phase, a catalyst type latent heat storage material using the same, a latent heat storage composite material, and a latent heat storage system. <P>SOLUTION: The latent heat storage material causes one or two of a magnetic transformation, an order-disorder transformation and a crystal structure phase transformation as a solid-phase transformation, and to generate latent heat of the solid-phase transformation and stores heat at a high temperature of ≥300°C. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、熱エネルギーを蓄える材料(いわゆる蓄熱材料)に関し、特に金属材料の特性変化を伴う固相変態によって生じる潜熱を蓄える材料(以下、潜熱蓄熱材料という)と、それを応用する技術に関するものである。   TECHNICAL FIELD The present invention relates to a material that stores thermal energy (so-called heat storage material), and more particularly to a material that stores latent heat generated by solid phase transformation accompanied by a change in properties of a metal material (hereinafter referred to as latent heat storage material) and a technology that applies the material. It is.

近年、大規模な生産設備を有する工場のみならず一般の家庭においても、資源やエネルギーを有効に活用するために、省資源,省エネルギーを達成する必要性が高まっている。そこで省エネルギーの観点から熱エネルギーの有効活用を図るために、各種設備や機械から発生する廃熱等の様々な熱エネルギーを再生利用するための試みがなされている。廃熱を再生利用するためには、熱エネルギーを蓄える(以下、蓄熱という)だけでなく、需要に応じて、適宜、熱エネルギーを円滑に供給する必要がある。つまり廃熱を蓄熱するためには、廃熱を容易に回収し、高密度で蓄え、容易に輸送できる形態で蓄熱することが可能な蓄熱材料を使用する必要がある。   In recent years, not only in factories having large-scale production facilities but also in general households, there is an increasing need to achieve resource and energy savings in order to effectively use resources and energy. Therefore, in order to effectively use thermal energy from the viewpoint of energy saving, attempts have been made to recycle various thermal energy such as waste heat generated from various facilities and machines. In order to recycle waste heat, it is necessary not only to store thermal energy (hereinafter referred to as heat storage), but also to smoothly supply thermal energy appropriately according to demand. That is, in order to store waste heat, it is necessary to use a heat storage material that can easily collect waste heat, store it at a high density, and store it in a form that can be easily transported.

従来から使用されている蓄熱材料は、顕熱を蓄熱する蓄熱材料,化学反応で発生する反応熱を蓄熱する蓄熱材料,材料の変態によって生じる潜熱を蓄熱する蓄熱材料に大別される(非特許文献1参照)。これらの蓄熱材料のうち、顕熱を蓄熱する蓄熱材料は、使用環境の温度差を利用して熱エネルギーの蓄熱と供給を行なうもの(たとえば非特許文献2参照)であり、使用環境の温度が一定である場合には、多量の熱エネルギーの蓄熱と供給を円滑に行なうのは困難である。化学反応の反応熱を蓄熱する蓄熱材料は、可逆的な化学反応を利用して熱エネルギーの蓄熱と供給を行なうもの(たとえば非特許文献3参照)であり、使用環境の温度が 300℃以上では、効率的に進行する可逆反応が存在しないので、熱エネルギーの蓄熱と供給を円滑に行なうのは困難である。   Conventional heat storage materials are roughly classified into heat storage materials that store sensible heat, heat storage materials that store reaction heat generated by chemical reactions, and heat storage materials that store latent heat generated by material transformation (non-patented). Reference 1). Among these heat storage materials, the heat storage material that stores sensible heat is a material that stores and supplies thermal energy using the temperature difference of the usage environment (see, for example, Non-Patent Document 2). When it is constant, it is difficult to smoothly store and supply a large amount of heat energy. A heat storage material that stores the reaction heat of a chemical reaction is one that stores and supplies thermal energy using a reversible chemical reaction (see Non-Patent Document 3, for example). Since there is no reversible reaction that proceeds efficiently, it is difficult to smoothly store and supply thermal energy.

一方、潜熱を蓄熱する蓄熱材料(すなわち潜熱蓄熱材料)は、固液反応を利用して熱エネルギーを蓄熱し、需要に応じて適宜供給するもの(たとえば溶融塩,Al−Si合金)が実用化に向けて検討されている(たとえば特許文献1参照)。ところが、これらの従来から知られている潜熱蓄熱材料は、潜熱を発生させるにあたって液相が関与するので、下記のような問題点がある。   On the other hand, heat storage materials that store latent heat (that is, latent heat storage materials) have been put into practical use (for example, molten salts and Al-Si alloys) that store heat energy using solid-liquid reactions and supply it as needed. (For example, refer to Patent Document 1). However, these conventionally known latent heat storage materials have the following problems because the liquid phase is involved in generating latent heat.

(a) 液相の潜熱蓄熱材料を密封する容器(たとえばカプセル)が不可欠である。   (a) Containers (eg capsules) that seal liquid phase latent heat storage materials are essential.

(b) 潜熱蓄熱材料の固液相変態に伴う体積変化が大きいので、変態歪を緩和する必要がある。   (b) Since the volume change accompanying the solid-liquid phase transformation of the latent heat storage material is large, it is necessary to mitigate transformation strain.

(c) 潜熱蓄熱材料の相変化物質(いわゆるPCM)の溶解に伴う拡散や腐食に起因して、カプセル等の容器の耐用性が低下する。そのため、容器を高温で繰り返し使用するのが困難である。このことは、容器内に密封された潜熱蓄熱材料が、高温で使用できないことを意味する。   (c) The durability of containers such as capsules decreases due to diffusion and corrosion associated with the dissolution of the phase change material (so-called PCM) of the latent heat storage material. Therefore, it is difficult to repeatedly use the container at a high temperature. This means that the latent heat storage material sealed in the container cannot be used at high temperatures.

(d) 潜熱蓄熱材料の固液相変態に伴う体積膨張を緩和するために容器の厚さを大きくしたり、あるいは容器内に真空の空間を設ける必要があり、容器の材質,寸法、形状が種々の制約を受ける。   (d) In order to mitigate the volume expansion associated with the solid-liquid phase transformation of the latent heat storage material, it is necessary to increase the thickness of the container or provide a vacuum space in the container. Subject to various restrictions.

(e) 潜熱蓄熱材料の熱伝導性が、その固相の凝固収縮に起因して低下する場合があり、熱エネルギーの迅速な蓄熱と供給に支障をきたす。   (e) The thermal conductivity of the latent heat storage material may decrease due to solidification shrinkage of the solid phase, which hinders rapid heat storage and supply of thermal energy.

(f) カプセル等の容器は熱エネルギーの蓄熱に寄与しないので、全体積中の蓄熱に寄与する体積(すなわち単位体積あたりの蓄熱量)が低下する。   (f) Since containers such as capsules do not contribute to heat energy storage, the volume contributing to heat storage in the entire volume (that is, the amount of heat stored per unit volume) decreases.

(g) 溶融塩やAl−Si合金等の潜熱蓄熱材料は高価である。しかも潜熱蓄熱材料に応じて容器の材質や形状を選択する必要があり、容器も高価なものを使用せざるを得ない。
米国特許第 4657067号公報 「蓄熱・増熱技術」蓄熱・増熱技術編集委員会編,アイピーシー,p1(1985) 「太陽エネルギーの基礎と応用」日本太陽エネルギー学会編,オーム社,p113 (1979) 「蓄熱・増熱技術」日本太陽エネルギー学会編,オーム社,p241 (1985)
(g) Latent heat storage materials such as molten salts and Al-Si alloys are expensive. Moreover, it is necessary to select the material and shape of the container according to the latent heat storage material, and an expensive container must be used.
US Patent No. 4657067 “Heat Storage / Heat Enhancement Technology”, Heat Storage / Heat Enhancement Technology Editorial Committee, IPC, p1 (1985) "Basics and Applications of Solar Energy", Japan Solar Energy Society, Ohmsha, p113 (1979) "Heat storage and heat increase technology", Japan Solar Energy Society, Ohmsha, p241 (1985)

本発明は上記のような問題を解消し、液相を関与させずに潜熱を蓄熱できる潜熱蓄熱材料、およびそれを用いた触媒型潜熱蓄熱材料,潜熱蓄熱複合材料,潜熱蓄熱システムを提供することを目的とする。   The present invention solves the above problems, and provides a latent heat storage material capable of storing latent heat without involving a liquid phase, and a catalytic latent heat storage material, a latent heat storage composite material, and a latent heat storage system using the latent heat storage material. With the goal.

本発明は、固相変態として磁気変態、規則−不規則変態および結晶構造相変態のうちの1種または2種以上を生起し、固相変態の潜熱を発生しかつ 300℃以上の高温で蓄熱する潜熱蓄熱材料である。   In the present invention, one or more of magnetic transformation, order-disorder transformation, and crystal structure phase transformation occur as solid phase transformations, generate latent heat of solid phase transformation, and store heat at a high temperature of 300 ° C. or higher. It is a latent heat storage material.

本発明の潜熱蓄熱材料では、固相変態が共析変態であることが好ましい。また固相変態が非磁性高温相/強磁性低温相間の磁気変態および構造相変態であることが好ましい。   In the latent heat storage material of the present invention, the solid phase transformation is preferably a eutectoid transformation. The solid phase transformation is preferably a magnetic transformation between a nonmagnetic high temperature phase / a ferromagnetic low temperature phase and a structural phase transformation.

また、本発明の潜熱蓄熱材料では、固相変態が、不可避的不純物を含有するFe、もしくは単独または合計で 5.0質量%以下のC,N、および単独または合計で20質量%以下のAl,Si,Ni,Coを含有し、残部Feからなる合金のフェライト内の磁気変態、オーステナイト/フェライトの結晶構造相変態またはオーステナイト/フェライト+金属間化合物の共析変態であることが好ましい。なお、ここでフェライトとはbcc構造の結晶格子を有するFe合金、オーステナイトとはfcc構造の結晶格子を有するFe合金を指す。   In the latent heat storage material of the present invention, the solid phase transformation is inevitable with Fe containing unavoidable impurities, or C or N alone or a total of 5.0% by mass or less, and alone or a total of 20% or less Al, Si , Ni, Co, and a magnetic transformation in the ferrite of the alloy composed of the balance Fe, an austenite / ferrite crystal structure phase transformation, or an austenite / ferrite + intermetallic compound eutectoid transformation. Here, ferrite refers to an Fe alloy having a bcc crystal lattice, and austenite refers to an Fe alloy having an fcc crystal lattice.

また固相変態が、不可避的不純物を含有するCo、もしくは単独または合計で20質量%以下のAl,Si,Ni、および単独または合計で80質量%以下のNi,Feを含有し、残部Coからなる合金のfcc相またはbcc相内の磁気変態、bcc相内のA2/B2規則−不規則変態またはfcc/bcc結晶構造相変態であることが好ましい。   In addition, the solid phase transformation contains Co containing inevitable impurities, or alone or a total of 20 mass% or less of Al, Si, Ni, and alone or a total of 80 mass% or less of Ni or Fe, and the balance Co The alloy is preferably a magnetic transformation in the fcc phase or the bcc phase, an A2 / B2 order-disorder transformation in the bcc phase, or an fcc / bcc crystal structure phase transformation.

あるいは固相変態が、不可避的不純物を含有するTi、もしくは単独または合計で30質量%以下のAl,Zr,Hf,Cr、Mn,Fe,Co,Ni,Cu,Mo,Wを含有し、残部Tiからなる合金のfcc/bcc結晶構造相変態またはbcc/hcp+金属間化合物の共析変態であることが好ましい。   Alternatively, the solid phase transformation contains Ti containing inevitable impurities, or alone or a total of 30% by mass or less of Al, Zr, Hf, Cr, Mn, Fe, Co, Ni, Cu, Mo, W, and the balance The fcc / bcc crystal structure phase transformation of an alloy made of Ti or the eutectoid transformation of bcc / hcp + intermetallic compound is preferable.

さらに本発明は、上記の潜熱蓄熱材料を多孔質体,発泡金属化,粒子化等の表面積が大きく取れる形態として使用するのが好ましい。またオーバーレイコーティング,プラズマコーティング,めっき処理等の表面コーティングを施して、高温耐酸化性および耐食性を附与して使用するのが好ましい。   Furthermore, in the present invention, it is preferable to use the latent heat storage material described above in a form that allows a large surface area such as a porous body, foam metallization, and particle formation. Further, it is preferable to use a surface coating such as an overlay coating, a plasma coating, or a plating treatment to provide high temperature oxidation resistance and corrosion resistance.

また本発明は、上記の潜熱蓄熱材料を触媒または触媒の担持体として使用する触媒型潜熱蓄熱材料あるいは触媒型潜熱蓄熱システムである。また本発明は、上記の潜熱蓄熱材料を2種以上使用し、変態温度の順に各潜熱蓄熱材料を多段に積層もしくは各潜熱蓄熱材料粒子を多層的に充填した上で、高温ガスおよび低温ガスを反対側から交互に向流式に導入し、温度勾配に即して効率的に潜熱を蓄熱するカスケード利用が可能な潜熱蓄熱複合材料あるいは潜熱蓄熱システムである。   Further, the present invention is a catalytic latent heat storage material or a catalytic latent heat storage system that uses the above-described latent heat storage material as a catalyst or a catalyst carrier. In addition, the present invention uses two or more of the above-mentioned latent heat storage materials, stacks each latent heat storage material in multiple stages in order of transformation temperature, or fills each latent heat storage material particle in multiple layers, and then adds a high temperature gas and a low temperature gas. It is a latent heat storage composite material or latent heat storage system that can be used in cascade to alternately introduce countercurrent from the opposite side and efficiently store latent heat according to the temperature gradient.

本発明によれば、液相を関与させず、磁気変態,規則−不規則変態,結晶構造相変態等の固相変態を利用して潜熱を発生させて蓄熱できる。その結果、下記のような効果が得られる。   According to the present invention, it is possible to store heat by generating latent heat by utilizing a solid phase transformation such as a magnetic transformation, an order-disorder transformation, a crystal structure phase transformation or the like without involving a liquid phase. As a result, the following effects can be obtained.

(1) 潜熱蓄熱材料を密封する容器を使用する必要がない。   (1) There is no need to use a container that seals the latent heat storage material.

(2) 潜熱蓄熱材料の変態に伴う体積変化が著しく減少するので、変態歪を緩和する必要がない。   (2) Since the volume change accompanying the transformation of the latent heat storage material is remarkably reduced, it is not necessary to alleviate the transformation strain.

(3) 容器を使用しないので、その腐食や耐用性を考慮する必要がない。したがって高温(ただし潜熱蓄熱材料が劣化しない範囲)で使用することが可能である。   (3) Since the container is not used, it is not necessary to consider its corrosion and durability. Therefore, it can be used at a high temperature (however, the latent heat storage material does not deteriorate).

(4) 容器を使用しないので、その形状を考慮する必要がない。したがって潜熱蓄熱材料の形状は、使用する場所や用途に応じて適宜設定できる。   (4) Since the container is not used, it is not necessary to consider its shape. Therefore, the shape of the latent heat storage material can be appropriately set according to the place of use and application.

(5) 潜熱蓄熱材料は金属であるから、熱伝導性が優れており、熱エネルギーの迅速な蓄熱と供給が可能である。   (5) Since the latent heat storage material is a metal, it has excellent thermal conductivity and can quickly store and supply thermal energy.

(6) 容器を使用しないので、単位体積あたりの蓄熱量が増加する。   (6) Since no container is used, the amount of heat stored per unit volume increases.

(7) 潜熱蓄熱材料は安価な金属を使用できる。   (7) Latent heat storage materials can use inexpensive metals.

(8) 潜熱蓄熱材料の変態(すなわち結晶構造の変化)を利用して潜熱を発生させるので、安定して繰り返し使用でき、しかも発熱量等の特性は半永久的に劣化しない。   (8) Since latent heat is generated by utilizing the transformation of the latent heat storage material (that is, change in crystal structure), it can be used stably and repeatedly, and the characteristics such as the calorific value do not deteriorate semipermanently.

本発明の潜熱蓄熱材料は、磁気変態,規則−不規則変態,結晶構造相変態等の固相変態を利用して潜熱を発生させて蓄熱する。これらの磁気変態,規則−不規則変態,結晶構造相変態等は、潜熱蓄熱材料の材質に応じて、それぞれ単独の固相変態として生じたり、あるいは2種以上の固相変態が複合して生じる。いずれの場合も、固相変態に伴って発生した潜熱を蓄熱し、さらに熱エネルギーを消費するときには円滑に供給する。   The latent heat storage material of the present invention generates latent heat using a solid phase transformation such as a magnetic transformation, an order-disorder transformation, a crystal structure phase transformation, and stores heat. These magnetic transformations, order-disorder transformations, crystal structure phase transformations, etc. occur as single solid phase transformations or a combination of two or more solid phase transformations depending on the material of the latent heat storage material. . In either case, the latent heat generated by the solid phase transformation is stored, and when the heat energy is consumed, it is supplied smoothly.

本発明では、固相変態として共析変態を生起させ、その共析変態の潜熱を蓄熱するのが好ましい。その理由は、共析変態は、共析温度における不変系反応なので、ごく狭い温度区間(理想的には、ある一定の温度)で蓄熱することができるからである。あるいは固相変態として非磁性高温相/強磁性低温相間の磁気変態および構造相変態を生起させ、その磁気変態や構造相変態の潜熱を蓄熱するのが好ましい。その理由は、磁気変化を伴う変態は、多くの場合、非磁性高温相/非磁性低温相の構造相変態に比して、より大きな蓄熱量が期待されるからである。   In the present invention, it is preferable to cause a eutectoid transformation as a solid phase transformation and store the latent heat of the eutectoid transformation. This is because the eutectoid transformation is an invariant reaction at the eutectoid temperature, so that heat can be stored in a very narrow temperature range (ideally, a certain temperature). Alternatively, it is preferable to cause a magnetic transformation and a structural phase transformation between the nonmagnetic high-temperature phase and the ferromagnetic low-temperature phase as solid phase transformation, and to store latent heat of the magnetic transformation and structural phase transformation. The reason is that, in many cases, the transformation accompanied by the magnetic change is expected to have a larger amount of heat storage than the structural phase transformation of the nonmagnetic high temperature phase / nonmagnetic low temperature phase.

また、潜熱蓄熱材料として純鉄,純Co,純NiまたはFe−Co−Ni合金を使用し、そのフェライト内の磁気変態,オーステナイト/フェライトの結晶構造相変態,オーステナイト/フェライト+金属間化合物の共析変態を生起させ、その磁気変態や構造相変態の潜熱を蓄熱するのが好ましい。その理由は、鉄合金におけるこれらの変態は、すべて潜熱の大きな磁気変態を伴うからである。   Also, pure iron, pure Co, pure Ni or Fe-Co-Ni alloy is used as the latent heat storage material, and the magnetic transformation in the ferrite, the crystal structure phase transformation of austenite / ferrite, and the austenite / ferrite + intermetallic compound It is preferable to cause the eutectic transformation and store the latent heat of the magnetic transformation or structural phase transformation. The reason is that all these transformations in the iron alloy are accompanied by a magnetic transformation with a large latent heat.

なお、ここで純鉄とは、不可避的不純物を含み純度99.999〜99.0質量%の鉄を指す。またFe−Co−Ni合金とは、Feを主成分とし、C,N,Al,Si,Ni,Coを含有する合金を指す。その鉄合金では、CまたはNをそれぞれ単独で 0.5質量%以下含有するか、あるいはCおよびNを合計 0.5質量%以下含有するのが好ましい。C,Nの含有量が 0.5質量%を超えると、共通組成を超えた過共析変態となり、磁気変態を引き起こすαFeの含有量が低下すると同時に、2相共存温度区間が広がってしまう。またAl,Si,V,CrまたはMnをそれぞれ単独で20質量%以下含有するか、あるいは2種以上を合計20質量%以下含有するのが好ましい。Al,Si,V,Cr,Mnの含有量が20質量%を超えると、磁気変態温度および磁気変態による潜熱量が低下するため好ましくない。   Here, pure iron refers to iron containing inevitable impurities and having a purity of 99.999 to 99.0 mass%. The Fe—Co—Ni alloy refers to an alloy containing Fe as a main component and containing C, N, Al, Si, Ni, and Co. The iron alloy preferably contains 0.5% by mass or less of C or N alone or contains 0.5% by mass or less of C and N in total. When the content of C and N exceeds 0.5% by mass, hypereutectoid transformation exceeding the common composition occurs, and the content of αFe that causes magnetic transformation decreases, and at the same time, the two-phase coexistence temperature interval widens. Further, it is preferable that Al, Si, V, Cr, or Mn is contained alone by 20% by mass or less, or two or more kinds are contained in total by 20% by mass or less. If the content of Al, Si, V, Cr, or Mn exceeds 20% by mass, the magnetic transformation temperature and the amount of latent heat due to the magnetic transformation decrease, which is not preferable.

また、潜熱蓄熱材料として純CoまたはCo合金を使用し、そのfcc相またはbcc相の磁気変態,bcc相のA2/B2規則−不規則変態,fcc/bcc結晶構造変態を生起させ、その磁気変態,規則−不規則変態や構造相変態の潜熱を蓄熱するのが好ましい。その理由は、Co合金におけるこれらの変態は、すべて潜熱の大きな磁気変態を伴うからである。   Further, pure Co or Co alloy is used as a latent heat storage material, and its fcc phase or bcc phase magnetic transformation, bcc phase A2 / B2 order-disorder transformation, fcc / bcc crystal structure transformation is caused, and its magnetic transformation , It is preferable to store latent heat of the order-disorder transformation or structural phase transformation. The reason is that all these transformations in the Co alloy are accompanied by a magnetic transformation with a large latent heat.

なお、ここで純Coとは、不可避的不純物を含み純度99.999〜99.0質量%のCoを指す。またCo合金とは、Coを主成分とし、Al,Si,Ni,Feを含有する合金を指す。そのCo合金では、Al,SiまたはNiをそれぞれ単独で20質量%以下含有するか、あるいはAl,Si,Niの2種以上を合計20質量%以下含有するのが好ましい。Al,Siの含有量が20質量%を超えると、磁気変態温度と磁気変態による潜熱が低下するため好ましくない。   Here, pure Co refers to Co containing unavoidable impurities and having a purity of 99.999 to 99.0 mass%. The Co alloy refers to an alloy containing Co as a main component and containing Al, Si, Ni, and Fe. The Co alloy preferably contains 20% by mass or less of Al, Si, or Ni alone, or contains a total of 20% by mass of two or more of Al, Si, and Ni. When the content of Al or Si exceeds 20% by mass, the magnetic transformation temperature and the latent heat due to the magnetic transformation are lowered, which is not preferable.

また、潜熱蓄熱材料として純TiまたはTi合金を使用し、そのbcc/hcp結晶構造相変態,bcc/hcp+金属間化合物の共析変態を生起させ、その構造相変態,共析変態の潜熱を蓄熱するのが好ましい。その理由は、TiおよびTi合金におけるfcc/bcc変態は、変態の潜熱が大きく、bcc/hcp+金属間化合物の共析変態は、さらに潜熱が大きいからである。   Also, pure Ti or Ti alloy is used as the latent heat storage material, and its bcc / hcp crystal structure phase transformation and eutectoid transformation of bcc / hcp + intermetallic compound occur, and the latent heat of the structural phase transformation and eutectoid transformation is stored as heat. It is preferable to do this. This is because the fcc / bcc transformation in Ti and Ti alloys has a large latent heat of transformation, and the eutectoid transformation of bcc / hcp + intermetallic compound has a larger latent heat.

なお、ここで純Tiとは、不可避的不純物を含み純度99.999〜99.0質量%のTiを指す。またTi合金とは、Tiを主成分とし、Al,Zr,Hf,Cr,Mn,Fe,Co,Ni,Cu,Mo,Wを含有する合金を指す。そのTi合金では、Al,Zr,Hf,Cr,Mn,Fe,Co,Ni,Cu,MoまたはWをそれぞれ単独で30質量%以下含有するか、あるいはAl,Zr,Hf,Cr,Mn,Fe,Co,Ni,Cu,Mo,Wの2種以上を合計30質量%以下含有するのが好ましい。Zr,Hf,Cr,Mn,Fe,Co,Ni,Cu,Mo,Wの含有量が30質量%を超えると、共析組成を超えた過共析変態となり、bcc/hcpの変態量が低下するため潜熱が低下する。また、Alの含有量が30質量%を超えると、bcc,hcpともに不安定となり、存在できなくなるため、変態が生じなくなる。   Here, pure Ti refers to Ti containing unavoidable impurities and having a purity of 99.999 to 99.0 mass%. The Ti alloy refers to an alloy containing Ti as a main component and containing Al, Zr, Hf, Cr, Mn, Fe, Co, Ni, Cu, Mo, and W. In the Ti alloy, Al, Zr, Hf, Cr, Mn, Fe, Co, Ni, Cu, Mo, or W is contained alone by 30% by mass or less, or Al, Zr, Hf, Cr, Mn, Fe , Co, Ni, Cu, Mo, W are preferably contained in a total amount of 30% by mass or less. When the content of Zr, Hf, Cr, Mn, Fe, Co, Ni, Cu, Mo, and W exceeds 30% by mass, the hypereutectoid transformation exceeds the eutectoid composition, and the bcc / hcp transformation amount decreases. Therefore, latent heat is reduced. On the other hand, if the Al content exceeds 30% by mass, both bcc and hcp become unstable and cannot exist, so that no transformation occurs.

上記した本発明の潜熱蓄熱材料は、多孔質体,発泡金属化,粒子化等の表面積を大きく取れる形態にすることにより、効率的な熱交換が可能となる。また、それらを触媒として利用することによって、触媒型潜熱蓄熱材料として使用できる。   The above-described latent heat storage material of the present invention enables efficient heat exchange by adopting a form that can take a large surface area such as a porous body, foam metallization, and particle formation. Moreover, by using them as a catalyst, it can be used as a catalyst-type latent heat storage material.

また本発明の潜熱蓄熱材料を異なる成分で2種以上作成し、その変態温度の順に各潜熱蓄熱材料を多段に積層させることによって、温度勾配に即して効率的に潜熱を蓄熱もしくは放熱する潜熱蓄熱複合材料として使用できる。あるいは、変態温度の順に各潜熱蓄熱材料粒子を多層的に充填することによって温度勾配に即して効率的に潜熱を蓄熱もしくは放熱する潜熱蓄熱システムとして使用できる。   In addition, two or more types of latent heat storage materials of the present invention are prepared with different components, and each latent heat storage material is laminated in multiple stages in the order of its transformation temperature, thereby latent heat that efficiently stores or dissipates latent heat according to the temperature gradient. It can be used as a heat storage composite material. Alternatively, it can be used as a latent heat storage system that efficiently stores or dissipates latent heat according to the temperature gradient by filling each latent heat storage material particle in multiple layers in the order of the transformation temperature.

また本発明の潜熱蓄熱材料の耐酸化性および耐食性を向上させる目的で、オーバーレイコーティング,プラズマコーティング,めっき処理等を行なうことが有効である。   In order to improve the oxidation resistance and corrosion resistance of the latent heat storage material of the present invention, it is effective to perform overlay coating, plasma coating, plating treatment, and the like.

[実施例1]
高周波誘導溶解炉を用いて鉄基,Co基およびNi基潜熱蓄熱合金を作製した。合計して約 500gの純金属を溶解した後、鉄製の鋳型に鋳込み、直径20mm,長さ100mm の鋳塊を得た。その後、約1000℃で5mm厚まで熱間圧延し、そこから1辺5mmの立方体を切り出し、示差走査熱量計(DSC)にて、固相変態温度および変態潜熱を測定した。加熱冷却速度は5℃/分とした。その結果を表1に示す。
[Example 1]
Iron-base, Co-base and Ni-base latent heat storage alloys were prepared using a high-frequency induction melting furnace. A total of about 500 g of pure metal was dissolved and cast into an iron mold to obtain an ingot having a diameter of 20 mm and a length of 100 mm. Then, it hot-rolled to about 5 mm thickness at about 1000 degreeC, the cube of 1 mm 5mm was cut out from there, and the solid-phase transformation temperature and transformation latent heat were measured with the differential scanning calorimeter (DSC). The heating / cooling rate was 5 ° C./min. The results are shown in Table 1.

Figure 2005213368
Figure 2005213368

表1は、鉄基潜熱蓄熱合金の実施例を示している。磁気変態のみでも大きな潜熱が得られるが、共析変態と磁気変態を同時に用いる場合に、より大きな潜熱が得られる。しかし、必要以上の多量添加元素を加えると、比較例1-1や1-2に示すように変態が明確に現われず、蓄熱合金として適さない。   Table 1 shows examples of iron-based latent heat storage alloys. A large latent heat can be obtained only by the magnetic transformation, but a larger latent heat can be obtained when the eutectoid transformation and the magnetic transformation are used simultaneously. However, when a larger amount of additive element is added than necessary, the transformation does not appear clearly as shown in Comparative Examples 1-1 and 1-2, which is not suitable as a heat storage alloy.

Figure 2005213368
Figure 2005213368

表2は、Co基およびNi基潜熱蓄熱合金の実施例を示している。この場合にも、磁気変態単独よりも磁気変態+規則変態もしくは磁気変態+構造変態において、より大きな潜熱が得られる。   Table 2 shows examples of Co-based and Ni-based latent heat storage alloys. Also in this case, greater latent heat can be obtained in the magnetic transformation + order transformation or magnetic transformation + structure transformation than in the magnetic transformation alone.

次に、Ti基潜熱蓄熱合金の実施例について説明する。アーク溶解炉で約 100gの純金属材料を溶解した後、銅製水冷バース上で冷却し、鋳塊を得た。その後、約1200℃で3日間の均質化を行ない、そこから1辺5mmの立方体を切り出し、DSCによる測定を行なった。その結果を表3に示す。   Next, examples of the Ti-based latent heat storage alloy will be described. About 100 g of pure metal material was melted in an arc melting furnace and then cooled on a copper water-cooled berth to obtain an ingot. Thereafter, homogenization was carried out at about 1200 ° C. for 3 days, and a cube with a side of 5 mm was cut out from it and measured by DSC. The results are shown in Table 3.

Figure 2005213368
Figure 2005213368

Ti基合金では、構造変態単独でも大きな潜熱が得られるが、共析変態もしくは構造変態+規則変態を利用することで、より大きな潜熱が得られる。ただし、比較例3-1に示すように、必要以上に多量の元素を添加すると、共析変態や構造変態が生じにくくなり、潜熱の蓄熱が困難になる。   In Ti-based alloys, a large latent heat can be obtained even with a structural transformation alone, but a larger latent heat can be obtained by using a eutectoid transformation or a structural transformation plus an ordered transformation. However, as shown in Comparative Example 3-1, when an unnecessarily large amount of element is added, eutectoid transformation and structural transformation are difficult to occur, and it is difficult to store latent heat.

[実施例2]
各一定温度に加熱したニッケル粒子(粒径2〜3mm)の充填層(内径20mm,高さ30mm)にコークス炉ガス(水素58体積%,メタン30体積%)を流速1000Ncm3 /min で流入させ、その時の出口ガス組成をガスクロマトグラフィにより分析した。その結果は図1に示す通りであり、温度上昇とともに水素転換率が上昇し、1083℃において平衡ガス組成と完全に一致した。
[Example 2]
Coke oven gas (58% by volume hydrogen, 30% by volume methane) is flowed at a flow rate of 1000 Ncm 3 / min into a packed bed (inner diameter 20 mm, height 30 mm) of nickel particles (particle size 2 to 3 mm) heated to a certain temperature. The outlet gas composition at that time was analyzed by gas chromatography. The results are as shown in FIG. 1, and the hydrogen conversion increased with increasing temperature, and completely matched the equilibrium gas composition at 1083 ° C.

このことは、この温度域では、ニッケルがメタンの水蒸気改質反応(CH4 +H2 O=CO+3H2 )の優れた触媒性を有することを明確に示している。したがってニッケル基固相変態型PCM、あるいは他の固相変態型PCM粒子の表面にニッケルを被覆することにより、潜熱蓄熱のみならず天然ガス水蒸気改質の触媒機能を付加できる。 This clearly shows that nickel has an excellent catalytic property for the steam reforming reaction of methane (CH 4 + H 2 O═CO + 3H 2 ) in this temperature range. Therefore, by coating nickel on the surface of the nickel-based solid phase transformation type PCM or other solid phase transformation type PCM particles, not only latent heat storage but also a natural gas steam reforming catalytic function can be added.

このように潜熱蓄熱と触媒を組み合わせる際に、最も効率良く、あるいは安価な触媒が機能するPCM融点を選択することによって、目的とする反応を効率良く生じさせることが可能である。   Thus, when combining latent heat storage and a catalyst, the target reaction can be efficiently generated by selecting the PCM melting point at which the most efficient or inexpensive catalyst functions.

[実施例3]
変態温度がそれぞれ約 490℃のNi−10質量%Co合金(発明例2-7),約 650℃のCo−25質量%Ni合金(発明例2-3),約 820℃のNi−30質量%Fe−20質量%Co合金(発明例2-8)の粒径2〜3mmの粒子を図2に示すように3層構造に充填したフィルターを作製した。約 900℃の排ガスを下部から上部へ流し、十分にフィルターが加熱されたのを見はからって、逆に上部から室温冷ガスを吹き込んだところ、 800℃以上に加熱された熱風を下部から取り出すことができた。この動作を10分おきに繰り返し、フィルター下部にて温度測定した結果が図3である。
[Example 3]
Ni-10 mass% Co alloy (Invention Example 2-7) with transformation temperature of about 490 ° C, Co-25 mass% Ni alloy (Invention Example 2-3) at about 650 ° C, Ni-30 mass at about 820 ° C A filter was prepared by filling particles having a particle diameter of 2 to 3 mm of a% Fe-20 mass% Co alloy (Invention Example 2-8) into a three-layer structure as shown in FIG. Flowing about 900 ° C exhaust gas from the bottom to the top and observing that the filter was heated sufficiently, conversely, when room temperature cold gas was blown from the top, hot air heated to over 800 ° C was blown from the bottom. I was able to take it out. This operation is repeated every 10 minutes, and the temperature measured at the bottom of the filter is shown in FIG.

比較例としてCo−25質量%Ni合金のみを同じ体積だけ充填したフィルターについて、同様の測定を行なった結果を図3に示す。3層構造は、単層構造に比べて効率的に蓄熱でき、より大きな熱量を取り出せることが分かる。   As a comparative example, FIG. 3 shows the result of the same measurement performed on a filter filled with only the Co-25 mass% Ni alloy in the same volume. It can be seen that the three-layer structure can store heat more efficiently than the single-layer structure and can extract a larger amount of heat.

水蒸気改質反応の推移を示すグラフである。It is a graph which shows transition of steam reforming reaction. 本発明の潜熱蓄熱複合材料の例を模式的に示す説明図である。It is explanatory drawing which shows typically the example of the latent heat storage composite material of this invention. 下部温度の推移を示すグラフである。It is a graph which shows transition of lower temperature.

Claims (11)

固相変態として磁気変態、規則−不規則変態および結晶構造相変態のうちの1種または2種以上を生起し、前記固相変態の潜熱を発生しかつ 300℃以上の高温で蓄熱することを特徴とする潜熱蓄熱材料。   One or more of magnetic transformations, order-disorder transformations and crystalline structural phase transformations as solid phase transformations, generating latent heat of the solid phase transformations and storing heat at a high temperature of 300 ° C or higher Characteristic latent heat storage material. 前記固相変態が共析変態であることを特徴とする請求項1に記載の潜熱蓄熱材料。   The latent heat storage material according to claim 1, wherein the solid phase transformation is a eutectoid transformation. 前記固相変態が非磁性高温相/強磁性低温相間の磁気変態および構造相変態であることを特徴とする請求項1に記載の潜熱蓄熱材料。   The latent heat storage material according to claim 1, wherein the solid phase transformation is a magnetic transformation and a structural phase transformation between a non-magnetic high temperature phase / a ferromagnetic low temperature phase. 前記固相変態が、不可避的不純物を含有するFe、CoまたはNi、もしくは単独または合計で 5.0質量%以下のC、N、および単独または合計で20質量%以下のAl、Si、Cr、Mn、Vを含有し、残部Fe、CoおよびNiからなる合金のfcc相またはbcc相内の磁気変態、fcc/bccの結晶構造相変態、bcc相内のA2/B2規則−不規則変態、またはfcc/bcc+金属間化合物の共析変態であることを特徴とする請求項1、2または3に記載の潜熱蓄熱材料。   The solid phase transformation is Fe, Co or Ni containing inevitable impurities, alone or in total 5.0% by mass or less of C, N, and alone or in total of 20% by mass or less of Al, Si, Cr, Mn, Magnetic transformation in the fcc or bcc phase, fcc / bcc crystal structure phase transformation, A2 / B2 order-disorder transformation in the bcc phase, or fcc / bcc in the alloy containing V and the balance Fe, Co and Ni The latent heat storage material according to claim 1, wherein the latent heat storage material is a eutectoid transformation of bcc + intermetallic compound. 前記固相変態が、不可避的不純物を含有するTi、もしくは単独または合計で30質量%以下のAl、Zr、Hf、Cr、Mn、Fe、Co、Ni、Cu、Mo、Wを含有し、残部Tiからなる合金のbcc/hcp結晶構造相変態またはbcc/hcp+金属間化合物の共析変態であることを特徴とする請求項1または2に記載の潜熱蓄熱材料。   The solid phase transformation contains Ti containing inevitable impurities, or alone or a total of 30% by mass or less of Al, Zr, Hf, Cr, Mn, Fe, Co, Ni, Cu, Mo, W, and the balance 3. The latent heat storage material according to claim 1, wherein the latent heat storage material is a bcc / hcp crystal structure phase transformation of an alloy made of Ti or a eutectoid transformation of bcc / hcp + intermetallic compound. 4. 前記潜熱蓄熱材料を多孔質体、発泡金属化、粒子化等の表面積が大きくとれる形態として使用することを特徴とする請求項1、2、3、4または5に記載の潜熱蓄熱材料。   6. The latent heat storage material according to claim 1, 2, 3, 4, or 5, wherein the latent heat storage material is used in a form in which a surface area such as a porous material, foam metallization, or particle formation can be increased. 請求項6に記載の潜熱蓄熱材料を触媒または触媒の担持体として使用することを特徴とする触媒型潜熱蓄熱材料。   A catalyst-type latent heat storage material, wherein the latent heat storage material according to claim 6 is used as a catalyst or a catalyst carrier. 請求項6に記載の潜熱蓄熱材料を触媒または触媒の担持体として使用することを特徴とする触媒型潜熱蓄熱システム。   A catalytic latent heat storage system using the latent heat storage material according to claim 6 as a catalyst or a catalyst carrier. 請求項1、2、3、4、5または6に記載の潜熱蓄熱材料を2種以上使用し、変態温度の順に各潜熱蓄熱材料を多段に積層もしくは各潜熱蓄熱材料粒子を多層的に充填した上で、高温ガスおよび低温ガスを反対側から交互に向流式に導入し、温度勾配に即して効率的に潜熱を蓄熱および放熱することを特徴とする潜熱蓄熱複合材料。   Two or more types of latent heat storage materials according to claim 1, 2, 3, 4, 5 or 6 are used, and each latent heat storage material is laminated in multiple stages in order of transformation temperature, or each latent heat storage material particle is filled in multiple layers. A latent heat storage composite material characterized in that hot gas and low temperature gas are alternately introduced from the opposite side in a countercurrent manner, and latent heat is efficiently stored and dissipated in accordance with a temperature gradient. 請求項1、2、3、4、5または6に記載の潜熱蓄熱材料を2種以上使用し、変態温度の順に各潜熱蓄熱材料を多段に積層もしくは各潜熱蓄熱材料粒子を多層的に充填した上で、高温ガスおよび低温ガスを反対側から交互に向流式に導入し、温度勾配に即して効率的に潜熱を蓄熱および放熱することを特徴とする潜熱蓄熱システム。   Two or more types of latent heat storage materials according to claim 1, 2, 3, 4, 5 or 6 are used, and each latent heat storage material is laminated in multiple stages in order of transformation temperature, or each latent heat storage material particle is filled in multiple layers. A latent heat storage system characterized in that hot gas and cold gas are alternately introduced from the opposite side in a counter-current manner, and latent heat is efficiently stored and dissipated in accordance with a temperature gradient. 請求項1、2、3、4、5または6に記載の潜熱蓄熱材料に、オーバーレイコーティング、プラズマコーティングまたはめっき処理等の表面コーティング処理を施すことにより、高温耐酸化性および耐食性を附与することを特徴とする潜熱蓄熱複合材料。
The high-temperature oxidation resistance and corrosion resistance are imparted to the latent heat storage material according to claim 1, 2 by applying a surface coating treatment such as overlay coating, plasma coating or plating treatment. A latent heat storage composite material.
JP2004021811A 2004-01-29 2004-01-29 Latent heat storage material, catalyst type latent heat storage material using the same, latent heat storage composite material and latent heat storage system Pending JP2005213368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004021811A JP2005213368A (en) 2004-01-29 2004-01-29 Latent heat storage material, catalyst type latent heat storage material using the same, latent heat storage composite material and latent heat storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004021811A JP2005213368A (en) 2004-01-29 2004-01-29 Latent heat storage material, catalyst type latent heat storage material using the same, latent heat storage composite material and latent heat storage system

Publications (1)

Publication Number Publication Date
JP2005213368A true JP2005213368A (en) 2005-08-11

Family

ID=34905331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004021811A Pending JP2005213368A (en) 2004-01-29 2004-01-29 Latent heat storage material, catalyst type latent heat storage material using the same, latent heat storage composite material and latent heat storage system

Country Status (1)

Country Link
JP (1) JP2005213368A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010163510A (en) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research Heat storage material
CN102277138A (en) * 2011-06-27 2011-12-14 南京大学 Composite phase change heat storage material for photovoltaic cell and preparation method thereof
US8334524B2 (en) 1998-12-07 2012-12-18 Meridian Research And Development Radiation detectable and protective articles
CN104313382A (en) * 2014-10-13 2015-01-28 上海大学 Device for preparing foam metal in alternating magnetic field
JP2015071795A (en) * 2015-01-21 2015-04-16 独立行政法人理化学研究所 Heat storage material
WO2015177977A1 (en) * 2014-05-23 2015-11-26 株式会社デンソー Heat exchanger
WO2016017084A1 (en) * 2014-07-29 2016-02-04 株式会社デンソー Heat storage system
WO2016056185A1 (en) * 2014-10-08 2016-04-14 株式会社デンソー Heat storing system
WO2016063479A1 (en) * 2014-10-22 2016-04-28 株式会社デンソー Laminated heat storage material
JP2016069393A (en) * 2014-09-26 2016-05-09 株式会社デンソー Heat storage material, catalyst unit, and heat storage system
JP2016069392A (en) * 2014-09-26 2016-05-09 株式会社デンソー Heat storage material, catalyst unit, and heat storage system
CN106140165A (en) * 2016-06-23 2016-11-23 华南理工大学 Porous charcoal carries twin crystal phase Co based Fischer-Tropsch synthesis catalyst and preparation method and application
JP2017040415A (en) * 2015-08-19 2017-02-23 株式会社デンソー Heat storage system
CN109280811A (en) * 2018-09-28 2019-01-29 湘潭大学 Ni-based electrolysis liberation of hydrogen porous cathode material of one kind and preparation method thereof
CN109742060A (en) * 2019-01-18 2019-05-10 天津城建大学 A kind of phase change radiator structure combining low-melting alloy
CN110487825A (en) * 2019-08-01 2019-11-22 中国科学院金属研究所 The composed diffraction method of FCC-Zr phase optimum orientation in a kind of determining tem observation zircaloy
CN113025278A (en) * 2021-03-11 2021-06-25 西华大学 High-temperature phase-change heat storage material and preparation method thereof
CN114855055A (en) * 2022-05-31 2022-08-05 广东工业大学 Low-crack-sensitivity high-entropy alloy powder material and preparation method and application thereof

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8334524B2 (en) 1998-12-07 2012-12-18 Meridian Research And Development Radiation detectable and protective articles
JP2010163510A (en) * 2009-01-14 2010-07-29 Institute Of Physical & Chemical Research Heat storage material
CN102277138A (en) * 2011-06-27 2011-12-14 南京大学 Composite phase change heat storage material for photovoltaic cell and preparation method thereof
CN106255861A (en) * 2014-05-23 2016-12-21 株式会社电装 Heat exchanger
CN106255861B (en) * 2014-05-23 2018-01-09 株式会社电装 Heat exchanger
WO2015177977A1 (en) * 2014-05-23 2015-11-26 株式会社デンソー Heat exchanger
JP2015222150A (en) * 2014-05-23 2015-12-10 株式会社デンソー Heat exchanger
CN106662410A (en) * 2014-07-29 2017-05-10 株式会社电装 Heat storage system
WO2016017084A1 (en) * 2014-07-29 2016-02-04 株式会社デンソー Heat storage system
JP2016031187A (en) * 2014-07-29 2016-03-07 株式会社デンソー Heat storage system
US10502117B2 (en) 2014-07-29 2019-12-10 Denso Corporation Heat storage system
JP2016069392A (en) * 2014-09-26 2016-05-09 株式会社デンソー Heat storage material, catalyst unit, and heat storage system
JP2016069393A (en) * 2014-09-26 2016-05-09 株式会社デンソー Heat storage material, catalyst unit, and heat storage system
JP2016075442A (en) * 2014-10-08 2016-05-12 株式会社デンソー Heat accumulation system
WO2016056185A1 (en) * 2014-10-08 2016-04-14 株式会社デンソー Heat storing system
DE112015004646B4 (en) * 2014-10-08 2021-03-04 Denso Corporation Heat storage system
CN104313382A (en) * 2014-10-13 2015-01-28 上海大学 Device for preparing foam metal in alternating magnetic field
JP2016079352A (en) * 2014-10-22 2016-05-16 株式会社デンソー Laminated heat-storing material
WO2016063479A1 (en) * 2014-10-22 2016-04-28 株式会社デンソー Laminated heat storage material
JP2015071795A (en) * 2015-01-21 2015-04-16 独立行政法人理化学研究所 Heat storage material
WO2017029942A1 (en) * 2015-08-19 2017-02-23 株式会社デンソー Heat storage system
JP2017040415A (en) * 2015-08-19 2017-02-23 株式会社デンソー Heat storage system
CN106140165A (en) * 2016-06-23 2016-11-23 华南理工大学 Porous charcoal carries twin crystal phase Co based Fischer-Tropsch synthesis catalyst and preparation method and application
CN106140165B (en) * 2016-06-23 2019-01-18 华南理工大学 Porous charcoal carries twin crystal phase Co based Fischer-Tropsch synthesis catalyst and the preparation method and application thereof
CN109280811A (en) * 2018-09-28 2019-01-29 湘潭大学 Ni-based electrolysis liberation of hydrogen porous cathode material of one kind and preparation method thereof
CN109742060A (en) * 2019-01-18 2019-05-10 天津城建大学 A kind of phase change radiator structure combining low-melting alloy
CN110487825A (en) * 2019-08-01 2019-11-22 中国科学院金属研究所 The composed diffraction method of FCC-Zr phase optimum orientation in a kind of determining tem observation zircaloy
CN113025278A (en) * 2021-03-11 2021-06-25 西华大学 High-temperature phase-change heat storage material and preparation method thereof
CN114855055A (en) * 2022-05-31 2022-08-05 广东工业大学 Low-crack-sensitivity high-entropy alloy powder material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP2005213368A (en) Latent heat storage material, catalyst type latent heat storage material using the same, latent heat storage composite material and latent heat storage system
Fernandez et al. Considerations for the use of metal alloys as phase change materials for high temperature applications
Fukahori et al. Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials
Risueño et al. Zinc-rich eutectic alloys for high energy density latent heat storage applications
Nakamura et al. Single-phase interdiffusion in the B2 type intermetallic compounds NiAl, CoAl and FeAl
Rabinkin Brazing with (NiCoCr)–B–Si amorphous brazing filler metals: alloys, processing, joint structure, properties, applications
Chikumba et al. High entropy alloys: development and applications
CN104120325A (en) Low thermal expansion coefficient NaMxAlySiz high entropy alloy and preparation method thereof
Xue et al. Alloying effects on heat-treated microstructure in Co-Al-W-base superalloys at 1300 C and 900 C
Reed et al. High temperature thermal storage materials with high energy density and conductivity
US9540714B2 (en) High strength alloys for high temperature service in liquid-salt cooled energy systems
Fang et al. Preparation, microstructure and thermal properties of MgBi alloys as phase change materials for thermal energy storage
JPWO2013061978A1 (en) Thermal storage
Ghobrial et al. Solid state amorphization in the Ni-Nb-Y system by mechanical alloying
Zhu et al. Phase equilibria of Mg-La-Zr system and thermal conductivity of selected alloys
Sato et al. Experimental verification of magnetically induced phase separation in αCo phase and thermodynamic calculations of phase equilibria in the Co–W system
Tiwari et al. SWOT analyses of high-temperature phase change materials for thermal energy storage
Ohnuma et al. Phase Diagrams as tools for advanced materials design: Applications to non-ferrous alloys
Qiu et al. Microstructure and properties of Mg–Ca–Zn alloy for thermal energy storage
Walnsch et al. A third generation CalPhaD assessment of the Fe–Mn–Ti system part I: the binary subsystems Fe–Mn, Fe–Ti and Mn–Ti
Xu et al. Pore formation mechanism and oxidation resistance of porous CoAl3 intermetallic prepared by rapid thermal explosion
Pisarek The crystallization of the aluminium bronze with additions of Si, Cr, Mo and/or W
Yu et al. Thermodynamics and liquid phase separation in the Cu–Co–Nb ternary alloys
Das et al. A review of the Ti-Al-Ta (titanium-aluminum-tantalum) system
Gawel et al. The influence of water vapour on high-temperature oxidation of Al, Co, Cr, Ni-containing high entropy alloys under thermal shock conditions