JP2005211704A - Continuous air cleaning apparatus - Google Patents

Continuous air cleaning apparatus Download PDF

Info

Publication number
JP2005211704A
JP2005211704A JP2004018087A JP2004018087A JP2005211704A JP 2005211704 A JP2005211704 A JP 2005211704A JP 2004018087 A JP2004018087 A JP 2004018087A JP 2004018087 A JP2004018087 A JP 2004018087A JP 2005211704 A JP2005211704 A JP 2005211704A
Authority
JP
Japan
Prior art keywords
ultraviolet
drift prevention
decomposition
trichlorethylene
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004018087A
Other languages
Japanese (ja)
Inventor
Yoshiko Nakato
誉子 中藤
Tsunezo Nitta
恒造 新田
Takahiro Terajima
高宏 寺嶋
Kazushi Kimura
一志 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koken Co Ltd
Original Assignee
Koken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koken Co Ltd filed Critical Koken Co Ltd
Priority to JP2004018087A priority Critical patent/JP2005211704A/en
Publication of JP2005211704A publication Critical patent/JP2005211704A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Fire-Extinguishing Compositions (AREA)
  • Treating Waste Gases (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for efficiently performing continuous cleaning of air containing a volatile organic chlorine compound. <P>SOLUTION: This continuous air cleaning apparatus has an ultraviolet ray lamp therein, has a polluted air introduction part and a cleaned air discharge part on the front part and the rear part opposed to each other, respectively, and has a drift prevention plate between the polluted air introduction part and the ultraviolet ray lamp. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は連続空気浄化装置に関し、特に揮発性有機塩素化合物を含有する空気を連続的に供給して紫外線照射により該有機塩素化合物を分解処理する連続空気浄化装置に関する。   The present invention relates to a continuous air purification device, and more particularly to a continuous air purification device that continuously supplies air containing a volatile organic chlorine compound and decomposes the organic chlorine compound by ultraviolet irradiation.

近年、市街地再開発に伴う工場等の敷地や跡地で揮発性有機塩素化合物等の有害物質により汚染された土壌が発見される事例が急増しており、これらの浄化対策として掘削除去法、原位置浄化法など土壌を修復する様々の試みがなされている。   In recent years, there has been a rapid increase in the number of cases where soil contaminated with volatile organic chlorine compounds and other harmful substances has been discovered on the sites and ruins of factories associated with urban redevelopment. Various attempts have been made to restore soil, such as purification methods.

トリクロロエチレンをはじめとする揮発性有機塩素系化合物による土壌汚染浄化対策として、掘削除去技術では掘削後の汚染土壌には有機塩素化合物がそのまま残留しているため、汚染土壌ごと焼却し熱分解を行う、あるいは加熱処理により有機塩素化合物を揮発させ回収するなど後処理工程が必要であり、この後処理工程を行う施設数の少なさや、処理施設までの汚染土壌の輸送コスト等問題が多い。そのため原位置分解方法が必要とされ、揮発性有機塩素化合物の紫外線による分解処理技術が着目されたが、その分解機構より、従来知られた方法では低濃度揮発性有機塩素化合物の分解には高い分解効率を得ることができないといった欠点があった。   As countermeasures against soil contamination by volatile organochlorine compounds such as trichlorethylene, excavation and removal technology leaves organochlorine compounds intact in the contaminated soil after excavation. Alternatively, a post-treatment step such as volatilization and recovery of the organic chlorine compound by heat treatment is necessary, and there are many problems such as a small number of facilities for performing the post-treatment step and transportation cost of contaminated soil to the treatment facility. For this reason, an in-situ decomposition method is required, and attention has been focused on the decomposition treatment technology of volatile organic chlorine compounds by ultraviolet rays. There was a drawback that the decomposition efficiency could not be obtained.

この課題を解決するため、様々な技術が提案されている。たとえば、低波長と高波長紫外線照射工程を何段階かに分ける方法(特許文献1)、触媒接触手段を設ける方法(特許文献2、特許文献3、特許文献4)、ハロゲンラジカル発生源ガスを供給する方法(特許文献5)、水素源を付加させる方法(特許文献6)など、紫外線に付加要素が加味された方法である。   In order to solve this problem, various techniques have been proposed. For example, a method of dividing the low-wavelength and high-wavelength ultraviolet irradiation processes into several stages (Patent Document 1), a method of providing a catalyst contact means (Patent Document 2, Patent Document 3, and Patent Document 4), supplying a halogen radical generation source gas And the like (Patent Document 5) and the method of adding a hydrogen source (Patent Document 6).

特開2001−220358号公報JP 2001-220358 A 特開2001−232136号公報JP 2001-232136 A 特開平8−173765号公報JP-A-8-173765 特開平5−285342号公報JP-A-5-285342 特開2002−273173号公報JP 2002-273173 A 特開平7−155543号公報JP 7-155543 A

本発明の目的はトリクロロエチレン等の揮発性有機塩素化合物を汚染物質として含有する空気を紫外線照射により効率的に処理する連続空気浄化装置を提供することにある。   An object of the present invention is to provide a continuous air purifying apparatus for efficiently treating air containing a volatile organic chlorine compound such as trichlorethylene as a pollutant by ultraviolet irradiation.

本発明は、揮発性有機塩素化合物を含有する空気を連続的に供給して紫外線照射により該有機塩素化合物を分解処理する連続空気浄化装置において、内部に紫外線ランプをもち、対向する前部と後部に汚染空気導入部と浄化空気排気部をもつと共に、該汚染空気導入部と紫外線ランプの間に偏流防止板をもつことを特徴とする連続空気浄化装置である。   The present invention relates to a continuous air purifying apparatus that continuously supplies air containing a volatile organic chlorine compound and decomposes the organic chlorine compound by ultraviolet irradiation, and has an ultraviolet lamp inside, and opposed front and rear portions. The continuous air purifying apparatus is characterized in that it has a contaminated air introduction part and a purified air exhaust part, and also has a drift prevention plate between the contaminated air introduction part and the ultraviolet lamp.

本発明の装置を用いることにより、揮発性有機塩素化合物で汚染された空気を連続的に紫外線照射域に供給するだけで有機塩素化合物をより効率的に分解して浄化することが可能となる。   By using the apparatus of the present invention, it is possible to decompose and purify the organic chlorine compound more efficiently simply by continuously supplying air contaminated with the volatile organic chlorine compound to the ultraviolet irradiation region.

本発明の装置に供する汚染空気は揮発性有機塩素化合物を含有する空気であれば特段その種類や濃度には制限はない。揮発性有機塩素化合物としては、トリクロロエタン、テトラクロロエタン、塩素化エチレンその他の塩素化低級炭化水素が例示される。これらの汚染空気源としては、前記した汚染土壌や汚染地下水等があるが、さらに塗装工場やドライクリーニング工場の排ガスも適用しうる。汚染空気中の揮発性有機塩素化合物の濃度としては通常10〜1000ppm程度だが、勿論これには限定されない。   As long as the contaminated air supplied to the apparatus of the present invention is an air containing a volatile organic chlorine compound, the type and concentration thereof are not particularly limited. Examples of the volatile organic chlorine compound include trichloroethane, tetrachloroethane, chlorinated ethylene and other chlorinated lower hydrocarbons. Examples of these contaminated air sources include the above-mentioned contaminated soil and contaminated groundwater, and further, exhaust gas from a painting factory or dry cleaning factory can be applied. The concentration of the volatile organic chlorine compound in the contaminated air is usually about 10 to 1000 ppm, but it is not limited to this.

本発明の連続空気浄化装置は、図1に示すように、内部に紫外線ランプ3をもち、前部に汚染空気導入部1をもち、後部に浄化空気排気部4をもつと共に、汚染空気導入部1と紫外線ランプ3の間に偏流防止板2をもつことを特徴としている。   As shown in FIG. 1, the continuous air purification apparatus of the present invention has an ultraviolet lamp 3 inside, a contaminated air introduction part 1 in the front part, a purified air exhaust part 4 in the rear part, and a contaminated air introduction part. 1 and the ultraviolet lamp 3 have a drift prevention plate 2.

本発明の装置は紫外線照射域が通常箱型形状をしており、前部壁に汚染空気導入部1をまた後部壁に浄化空気排気部4をもっている。勿論形状は箱型形状に限らず、円筒状等適宜の形状をとりうる。   In the apparatus of the present invention, the ultraviolet irradiation region is generally box-shaped, and has a contaminated air introduction part 1 on the front wall and a purified air exhaust part 4 on the rear wall. Of course, the shape is not limited to a box shape, and may be an appropriate shape such as a cylindrical shape.

偏流防止板2は、導入された汚染空気が最初の紫外線ランプ近傍に至る前に汚染空気の速度分布をできるだけ均一化し整流化する機能をもった板状物をいい、そのような機能をもつ板状物であればその種類には特に制限はないが、多孔板が特に好ましく用いられる。例えば孔径が0.1〜5mmの孔を孔間距離1〜10mm程度でもつ多孔板が好ましく用いられる。多孔板の材質としては耐蝕性金属やプラスチックが好ましく用いられる。これらは一板用いてもまた複数板用いてもよい。また必要に応じ後部その他にも配しうる。偏流防止板は通常紫外線照射領域の断面積に対応する大きさをもつことが好ましい。   The drift prevention plate 2 is a plate having a function of making the velocity distribution of the contaminated air uniform and rectifying as much as possible before the introduced contaminated air reaches the vicinity of the first ultraviolet lamp, and a plate having such a function. There are no particular restrictions on the type of the material as long as it is in the form of a sheet, but a porous plate is particularly preferably used. For example, a perforated plate having a hole diameter of 0.1 to 5 mm and a distance between holes of about 1 to 10 mm is preferably used. As a material for the perforated plate, a corrosion-resistant metal or plastic is preferably used. One plate may be used or a plurality of plates may be used. It can also be placed in the rear and other places as needed. It is preferable that the drift prevention plate usually has a size corresponding to the cross-sectional area of the ultraviolet irradiation region.

紫外線ランプは、揮発性有機塩素化合物を分解しうる機能をもつものであれば特に制限なく用いることができ、通常150〜280nm、より好ましくは185nmの波長の紫外線を照射しているものが用いられる。これらの紫外線ランプは複数用いることが好ましく、特に空気の通過面と垂直に複数の紫外線ランプを配することが好ましい。一例として、前方から後方に4〜20本の紫外線ランプを配する態様が例示される。   The ultraviolet lamp can be used without particular limitation as long as it has a function capable of decomposing volatile organic chlorine compounds, and a lamp that irradiates ultraviolet rays having a wavelength of usually 150 to 280 nm, more preferably 185 nm is used. . It is preferable to use a plurality of these ultraviolet lamps, and it is particularly preferable to arrange a plurality of ultraviolet lamps perpendicular to the air passage surface. As an example, the aspect which arrange | positions 4-20 ultraviolet lamps from the front to back is illustrated.

汚染空気は空気導入部1からたとえば0.1〜3m/秒の平均風速で紫外線照射域を通過するように導入する。   The contaminated air is introduced from the air introduction unit 1 so as to pass through the ultraviolet irradiation region at an average wind speed of, for example, 0.1 to 3 m / second.

次に実施例の形で、本発明をさらに具体的に説明する。   Next, the present invention will be described more specifically in the form of examples.

(実施例1)紫外線強度依存性と分解装置設計について
紫外線は空気中の酸素に吸収されるため、発生源からの距離に伴い強度は減衰する。図2−(a)、2−(b)に紫外線発生源からの紫外線強度値を示す。使用した紫外線発生ランプはミヤタエレバム(株)製OZU−320XSG−20(13W)、紫外線センサーには、浜松ホトニクス株式会社製 紫外線積算光量計 C8026を使用した。
(Example 1) Dependence on ultraviolet intensity and design of decomposition apparatus Since ultraviolet rays are absorbed by oxygen in the air, the intensity attenuates with distance from the source. 2- (a) and 2- (b) show the UV intensity values from the UV source. The ultraviolet ray generation lamp used was OZU-320XSG-20 (13W) manufactured by Miyata Elevam Co., Ltd., and the ultraviolet ray sensor C8026 manufactured by Hamamatsu Photonics Co., Ltd. was used as the ultraviolet sensor.

また、紫外線強度と揮発性有機塩素化合物の一つであるトリクロロエチレンの分解率には相関があり、光強度依存性が見られる。図3に紫外線強度値とトリクロロエチレン分解率を示す。この紫外線発生ランプの場合、図より十分な分解率を得るためには、窒素雰囲気下で450μW/cm以上の紫外線強度が必要であることがわかる。この分解に必要な紫外線強度は、空気中では350μW/cmとなり、図2−(b)よりこの値以上の紫外線強度を持った距離60mm以内が分解に有効な有効紫外線距離範囲となる。 In addition, there is a correlation between the ultraviolet intensity and the decomposition rate of trichlorethylene, which is one of the volatile organic chlorine compounds, and light intensity dependence is observed. FIG. 3 shows the ultraviolet intensity value and the trichlorethylene decomposition rate. In the case of this ultraviolet ray generating lamp, it can be seen from the figure that an ultraviolet intensity of 450 μW / cm 2 or more is necessary in a nitrogen atmosphere in order to obtain a sufficient decomposition rate. The ultraviolet intensity required for this decomposition is 350 μW / cm 2 in the air, and the effective ultraviolet distance range effective for decomposition is within 60 mm with an ultraviolet intensity higher than this value from FIG.

そのため、紫外線発生源よりこの範囲以内を汚染空気が通過するよう、分解装置を設計することが望まれる。紫外線発生源と分解装置壁面間との距離を変化させることにより、有効紫外線距離と分解率との関係の確認を行った。   Therefore, it is desirable to design the decomposition apparatus so that the contaminated air passes within this range from the ultraviolet ray generation source. The relationship between the effective ultraviolet ray distance and the decomposition rate was confirmed by changing the distance between the ultraviolet ray source and the wall of the decomposition device.

使用した分解装置は高さ350mm、長さ720mm、幅が80〜240mm間で変化させた箱型形状のものを使用した(図1概略図参照)。紫外線発生ランプは上記に記したランプ7本を、汚染ガス通気面に垂直になるように分解装置上部より差し込み設置する形状である。擬似汚染ガスにはトリクロロエチレンをバブリングし発生させた上流濃度30ppmのガス、これを300L/minで処理を行い、分解装置の断面積変化とトリクロロエチレン分解率の関係から、有効紫外線距離の確認を行った。   The decomposition apparatus used was a box-shaped one having a height of 350 mm, a length of 720 mm, and a width varied between 80 and 240 mm (see schematic diagram in FIG. 1). The ultraviolet ray generating lamp has a shape in which the seven lamps described above are inserted and installed from the upper part of the decomposition apparatus so as to be perpendicular to the pollutant gas ventilation surface. The pseudo-polluted gas was a 30ppm upstream gas generated by bubbling trichlorethylene, which was treated at 300L / min, and the effective ultraviolet distance was confirmed from the relationship between the cross-sectional area change of the decomposition apparatus and the trichlorethylene decomposition rate. .

図4に断面積変動による下流トリクロロエチレン濃度と分解率を示す。図4より幅120mmで分解率は最大値を示し、下流濃度も最小値を示していることが確認できる。これは、紫外線発生ランプから装置内両壁面間距離が60mm以内となり、図2−(b)、図3と一致した結果となっている。   FIG. 4 shows downstream trichlorethylene concentration and decomposition rate due to cross-sectional area fluctuation. From FIG. 4, it can be confirmed that the decomposition rate shows the maximum value at a width of 120 mm, and the downstream concentration also shows the minimum value. This is because the distance between both wall surfaces in the apparatus from the ultraviolet ray generating lamp is within 60 mm, which is the same as FIG. 2B and FIG.

以上のことから、紫外線発生ランプの有効紫外線強度範囲を知ることにより、分解効率のよい分解装置の設計が可能となった。   From the above, knowing the effective ultraviolet intensity range of the ultraviolet ray generating lamp makes it possible to design a decomposition apparatus with high decomposition efficiency.

(実施例2)分解装置の比較
実施例に使用した汚染ガス分解装置を図5に示す。実施例1に基づいた設計より、幅120(mm)、高さ350(mm)、長さ720(mm)の箱型形状(SUS304製)とし、これのガス導入面及びガス排気面にそれぞれ47φの導入口、排気口をつけ、ガス導入口、排気口よりそれぞれ60mmの位置に50meshのSUS製の金網を両面に設けた10mm幅の横120(mm)、高さ350(mm)の偏流防止板を備え付けた形状となっている。紫外線発生ランプは、汚染ガス通気面に垂直になるように分解装置上部より差し込み設置する形状である。この形状の分解装置2個を直列に接続し、実施を行った。
(Example 2) Comparison of decomposition apparatus FIG. 5 shows the pollutant gas decomposition apparatus used in the example. Based on the design based on the first embodiment, a box shape (made of SUS304) having a width of 120 (mm), a height of 350 (mm), and a length of 720 (mm) is formed on each of the gas introduction surface and the gas exhaust surface by 47φ. A 10mm wide 120 (mm) wide and 350 (mm) wide drift prevention with a 50 mesh SUS wire mesh provided at both sides of the gas inlet and exhaust ports at 60 mm positions. It has a shape with a plate. The ultraviolet ray generation lamp has a shape that is inserted from the upper part of the decomposition apparatus so as to be perpendicular to the pollutant gas ventilation surface. Two decomposition apparatuses of this shape were connected in series and performed.

紫外線発生ランプにはミヤタエレバム(株)製OZU−320XSG−20(13W)を7本ずつ、計14本使用した。また、汚染ガス処理量は300L/minである。汚染ガスとしてトリクロロエチレンガスを2〜60ppmまで調整した擬似汚染ガスを用い、分解装置導入口部を上流濃度、排気口部を下流濃度とし、分解効率から評価を行っている。比較として円筒形分解装置(図6)との分解率比較を図7に示す。図中の数値は下流側残留トリクロロエチレン濃度を示す。従来の円筒型分解装置では上流トリクロロエチレン濃度2ppm時点で分解率75%であったが、本発明の装置を用いることにより分解率96%へ向上させることに成功した。また、上流トリクロロエチレン濃度30ppm時点の残留トリクロロエチレン濃度が2ppmから約10分の1の0.26ppmまで低下させることに成功した。なお、上流トリクロロエチレン濃度60ppm時点では分解率99.9%を得ることができ、揮発性有機塩素化合物の紫外線分解機構からも高濃度になるにつれ高分解率が得られることから、60ppm以上の高濃度範囲に渡っては問題なく分解処理を行うことができる。実際、上流トリクロロエチレン濃度100pm時点では、下流側残留トリクロロエチレンは検出限界値以下となり検出されなかった。   For the ultraviolet ray generation lamp, 14 pieces of OZU-320XSG-20 (13W) manufactured by Miyata Elevum Co., Ltd. were used in total. Moreover, the amount of contaminated gas processing is 300 L / min. Pseudo-polluted gas prepared by adjusting trichlorethylene gas to 2 to 60 ppm is used as the pollutant gas, and the decomposition apparatus introduction port portion is set to the upstream concentration and the exhaust port portion is set to the downstream concentration. As a comparison, FIG. 7 shows a comparison of the decomposition rate with the cylindrical decomposition apparatus (FIG. 6). The numerical value in the figure indicates the downstream residual trichlorethylene concentration. In the conventional cylindrical cracking apparatus, the decomposition rate was 75% at the upstream trichlorethylene concentration of 2 ppm, but by using the apparatus of the present invention, the decomposition rate was successfully improved to 96%. Furthermore, the residual trichlorethylene concentration at the upstream trichlorethylene concentration of 30 ppm was successfully reduced from 2 ppm to 0.26 ppm, which is about 1/10. In addition, since the decomposition rate of 99.9% can be obtained when the upstream trichlorethylene concentration is 60 ppm, and the high decomposition rate is obtained as the concentration becomes higher from the ultraviolet decomposition mechanism of the volatile organic chlorine compound, a high concentration of 60 ppm or more. The decomposition process can be performed without problems over the range. Actually, at the time when the upstream trichlorethylene concentration was 100 pm, the downstream residual trichlorethylene was below the detection limit value and was not detected.

(実施例3)偏流防止板有無による分解率への影響
実施例2に使用した汚染ガス分解装置内に設置した偏流防止板の効果を確認するため、偏流防止板の有無による分解率の比較を図8に示す。上流トリクロロエチレン濃度が60ppm程度では、偏流防止板の有無による分解率の差は見られていないが、30ppm以下になると偏流防止板の有無による差が大きくなり、低濃度トリクロロエチレンを分解するためには偏流防止板が効果的であることがわかった。
(Embodiment 3) Effect on presence / absence of drift prevention plate on decomposition rate In order to confirm the effect of the drift prevention plate installed in the pollutant gas decomposition apparatus used in Example 2, the comparison of the degradation rate with and without the drift prevention plate was performed. As shown in FIG. When the upstream trichlorethylene concentration is about 60 ppm, there is no difference in the decomposition rate due to the presence or absence of the drift prevention plate. However, when the concentration is less than 30 ppm, the difference due to the presence or absence of the drift prevention plate increases. It was found that the prevention plate is effective.

このことから、分解装置内で生じる不均一な速度分布の状態が、汚染ガスと紫外線との接触分解、特に低濃度の汚染ガスにおける接触分解に悪影響をもたらす事が判明し、分解装置内で速度分布を均一化させることが、高分解率を得るための必要な条件であることがわかった。図9に分解装置内の速度分布シミュレーションを示す。図より、はっきりと偏流防止板の有無による速度分布の違いが確認できた。   From this, it was found that the state of non-uniform velocity distribution generated in the cracking device has an adverse effect on the catalytic cracking of pollutant gas and ultraviolet light, especially in the case of low concentration pollutant gas. It was found that uniform distribution is a necessary condition for obtaining a high decomposition rate. FIG. 9 shows a velocity distribution simulation in the decomposition apparatus. The figure clearly shows the difference in velocity distribution with and without the drift prevention plate.

(実施例4)偏流防止板の選択
実施例2では市販の金網を偏流防止板として使用したが、トリクロロエチレンのような揮発性有機塩素化合物類は塩素を含むため、分解すると塩化水素等の腐食性ガスが発生する。そのため、腐食による金網の効果が期待できなくなる恐れがあることから、耐紫外線、耐食性多孔板における同様の効果が得られるか検討を行った。
(Example 4) Selection of drift prevention plate In Example 2, a commercially available wire mesh was used as the drift prevention plate. However, since volatile organochlorine compounds such as trichlorethylene contain chlorine, if decomposed, corrosiveness such as hydrogen chloride. Gas is generated. For this reason, there is a possibility that the effect of the wire mesh due to corrosion may not be expected, so an examination was made as to whether the same effect can be obtained in the ultraviolet and corrosion resistant porous plates.

偏流防止板には、耐紫外線、耐食性材質として0.5mm厚テフロンパンチングシートの0.75φ1.0ピッチ(孔径0.75mmの孔を1.0mm間隔でもつ、以下同)、1.0φ1.5ピッチ、1.5φ3.0ピッチ、2.0φ3.5ピッチの4種類を用い、上記実施例2に使用した汚染ガス分解装置内に設置した。擬似汚染ガスには、トリクロロエチレンよりも分解しづらいテトラクロロエチレンガス10ppmを用いて、偏流防止板の種類による分解率の違いを検討することとした。   The anti-current plate has an ultraviolet and corrosion resistant material of 0.5 mm thick Teflon punching sheet, 0.75φ1.0 pitch (holes with a hole diameter of 0.75 mm at intervals of 1.0 mm, hereinafter the same), 1.0φ1.5 Four types of pitch, 1.5φ3.0 pitch, and 2.0φ3.5 pitch were used and installed in the pollutant gas decomposition apparatus used in Example 2 above. As the pseudo-polluting gas, tetrachloroethylene gas 10 ppm, which is harder to decompose than trichlorethylene, was used, and the difference in decomposition rate depending on the type of the drift prevention plate was examined.

これら4種類のテフロンパンチングシートとSUS50メッシュ金網を使用した場合の下流テトラクロロエチレン濃度と分解率の比較を図10に示す。図より、SUS製金網を使用するよりも、テフロンパンチングシートを用いることにより分解率が向上していることがわかる。さらにテフロンパンチングシートのなかでも1.5φ3.0ピッチを使用することにより、分解率がさらに向上し、より効果的であることがわかった。   FIG. 10 shows a comparison of downstream tetrachlorethylene concentration and decomposition rate when these four types of Teflon punching sheets and SUS50 mesh wire net are used. From the figure, it can be seen that the decomposition rate is improved by using a Teflon punching sheet rather than using a SUS wire mesh. Furthermore, it was found that the decomposition rate was further improved and more effective by using 1.5φ3.0 pitch among the Teflon punching sheets.

(実施例5)偏流防止板の設置条件
実施例4において効果が得られた1.5φ3.0ピッチのテフロンパンチングシートを用い、最も効果の得られる設置条件について検討を行った。
(Example 5) Installation condition of drift prevention plate Using a Teflon punching sheet having a pitch of 1.5φ3.0 pitch obtained in Example 4, installation conditions where the most effect was obtained were examined.

実施例として汚染ガス分解装置には幅350(mm)、高さ120(mm)、長さ1440(mm)の箱型形状(図11参照)のものを用い、紫外線発生ランプは実施例2同様のランプを10本使用している。分解装置内の偏流防止板設置位置は、ガス導入口、排気口からそれぞれ100(mm)の位置とし、導入口、排気口にそれぞれ1枚ずつ設置した場合、導入口のみ1枚設置した場合、排気口のみ1枚設置した場合の3種類とブランクとして偏流防止板無しとの比較を行った。擬似汚染ガスにはトリクロロエチレンを用い、300L/minにて処理を行っている。   As an embodiment, a pollutant gas decomposition apparatus having a box shape (see FIG. 11) having a width of 350 (mm), a height of 120 (mm) and a length of 1440 (mm) is used. 10 lamps are used. The position where the drift prevention plate is installed in the decomposition apparatus is 100 (mm) from the gas inlet and the exhaust port, and when one is installed at each of the inlet and the exhaust port, when only one inlet is installed, A comparison was made between three types when only one exhaust port was installed and no blank plate as a blank. Trichlorethylene is used as the pseudo-polluting gas, and processing is performed at 300 L / min.

偏流防止板設置条件による下流トリクロロエチレン濃度を図12に示す。図中、Blank(白丸印)と排気口に設置した場合(白三角印)では同程度の下流トリクロロエチレン濃度を示したのに対し、導入口、排気口にそれぞれ設置した場合(黒丸印)と、導入口に設置した場合(黒三角印)において、下流トリクロロエチレン濃度が低く検出された。このことから、ガス導入口側に偏流防止板を設置することが効果的であることがわかる。   FIG. 12 shows the downstream trichlorethylene concentration according to the drift prevention plate installation conditions. In the figure, when the Blank (white circle mark) is installed at the exhaust port (white triangle mark), the same level of downstream trichlorethylene concentration was shown, whereas when installed at the introduction port and exhaust port (black circle mark), When installed at the inlet (black triangle mark), the downstream trichlorethylene concentration was detected low. This shows that it is effective to install a drift prevention plate on the gas inlet side.

(実施例6)偏流防止板の設置枚数
ガス導入口に偏流防止板を設置することが効果的であることに加え、設置した偏流防止板の枚数に応じた擬似汚染ガス分解後下流残留濃度への検討を行った。実施例5と同様の擬似汚染ガス、汚染ガス分解装置を使用し、Blank、偏流防止板1枚〜4枚の5パターンにおいて検討を行った。偏流防止板設置位置は、導入口から100(mm)とした。
(Embodiment 6) Number of installed drift prevention plates In addition to being effective to install a drift prevention plate at the gas inlet, the pseudo-contaminated gas decomposes downstream residual concentration according to the number of installed drift prevention plates. Was examined. The same pseudo pollutant gas and pollutant gas decomposing apparatus as in Example 5 were used, and examination was performed in five patterns of Blank and 1 to 4 drift prevention plates. The drift prevention plate installation position was set to 100 (mm) from the inlet.

偏流防止板設置枚数による下流トリクロロエチレン残留濃度を図13に示す。図中、Blank(黒菱形印)と比較すると、偏流防止板を設置することで残留トリクロロエチレン濃度が減少する傾向であるが、偏流防止板枚数に応じた、残留トリクロロエチレン濃度の変化には傾向が見られなかった。偏流防止板を2枚(黒丸印)使用することで、最も残留トリクロロエチレン濃度が低くなったが、3枚(黒三角印)、4枚(黒四角印)と追加しても、1枚(白丸印)設置した場合とほとんど変化は無かった。この3枚以上の設置により、圧損が生じ、偏流が再度生じている可能性が見られた。   The downstream trichlorethylene residual density | concentration by the number of drift prevention board installation number is shown in FIG. In the figure, compared to Blank (black rhombus), there is a tendency for the residual trichlorethylene concentration to decrease by installing a drift prevention plate, but there is a trend in the change in the residual trichlorethylene concentration according to the number of drift prevention plates. I couldn't. The use of two anti-current plates (black circles) resulted in the lowest residual trichlorethylene concentration, but even with the addition of 3 (black triangles) and 4 (black squares), one (white circle) Mark) There was almost no change from the case of installation. There was a possibility that pressure loss occurred due to the installation of three or more sheets, and a drift occurred again.

(実施例7)偏流防止板による汚染ガス分解装置内風速の偏り
汚染ガス分解装置内に生じる偏流が汚染ガス分解率に関与することが考えられることより、偏流防止板設置枚数に伴った、汚染ガス分解装置内の風速の偏りについて調査を行った。
(Embodiment 7) Unbalanced wind speed in the pollutant gas decomposing apparatus due to the drift prevention plate It is considered that the drift generated in the pollutant gas decomposing apparatus is related to the pollutant gas decomposition rate. An investigation was made on the deviation of wind speed in the gas decomposition system.

実施例5と同形状となる塩ビ製の汚染ガス分解装置の模型を作成し、これに偏流防止板設置位置2より50mm間隔で9φの測定口を30カ所設けた。模型概略図を図14に示す。測定箇所は偏流防止板設置位置より50mm間隔の1つの面に対し、高さ方向に30mm間隔、壁面より50mm間隔の18箇所の60秒間平均風速の測定を行っている。なお、偏流防止板には実施例6と同様の1.5φ3.0ピッチ0.5mm厚のテフロン製パンチングシートを使用している。風速測定には、SIBATA製Wind Boy ISA−80 Thermal Anemometerを使用した。今回は風速測定のため、室内空気を300L/min汚染ガス分解装置内に導入し、各測定口より、風速測定を行っている。   A model of a pollutant gas decomposing apparatus made of PVC having the same shape as that of Example 5 was prepared, and 30 measurement ports of 9φ were provided at 50 mm intervals from the drift prevention plate installation position 2 in this. A schematic diagram of the model is shown in FIG. For the measurement location, the average wind speed is measured for 60 seconds with respect to one surface at an interval of 50 mm from the position where the drift prevention plate is installed, at an interval of 30 mm in the height direction and at an interval of 50 mm from the wall surface. As the drift prevention plate, a punching sheet made of Teflon having a thickness of 1.5φ3.0 pitch and 0.5 mm thickness similar to that in Example 6 is used. For wind speed measurement, Wind Boy ISA-80 Thermal Anemometer manufactured by SIBATA was used. This time, in order to measure the wind speed, indoor air was introduced into the 300 L / min pollutant gas decomposition apparatus, and the wind speed was measured from each measurement port.

汚染ガス分解装置に導入されるガスは、偏流防止板3を通過した後50mmの位置において紫外線発生ランプと接触することから、偏流防止板より50mm位置の面における、ランプと直接接触する位置を抽出し、平均風速及び、平均風速からのばらつきとして最大値と最小値の差を求めている。   Since the gas introduced into the pollutant gas decomposing apparatus contacts the ultraviolet ray generation lamp at a position of 50 mm after passing through the drift prevention plate 3, the position directly contacting the lamp is extracted from the drift prevention plate at a position of 50 mm. The difference between the maximum value and the minimum value is obtained as the average wind speed and the variation from the average wind speed.

表1に偏流防止板50mm位置における平均風速及びばらつきを示す。なお、参考にトリクロロエチレン上流30ppm、10ppm処理時の下流残留濃度も示した。   Table 1 shows the average wind speed and variation at the position of the drift prevention plate 50 mm. For reference, the residual concentration of trichloroethylene upstream 30 ppm and 10 ppm downstream during treatment was also shown.

Figure 2005211704
Figure 2005211704

表より、Blankと比較すると、偏流防止板設置により平均風速、ばらつきともに軽減されていることがわかる。ばらつきにおいては偏流防止板枚数に伴った傾向は見られないが、平均風速において、偏流防止板2枚で0.17m/sと最小値を示し、3枚、4枚と設置枚数が増えると圧損により、平均風速の上昇が見て取れる。   From the table, it can be seen that both the average wind speed and the variation are reduced by installing the drift prevention plate as compared with the blank. Although there is no trend in the variation with the number of drift prevention plates, the average wind speed shows a minimum value of 0.17 m / s for two drift prevention plates, and the pressure loss increases as the number of installations increases to three or four. As a result, an increase in average wind speed can be seen.

ここで、平均風速とトリクロロエチレン30ppm、10ppm処理時の下流残留濃度を図15に示す。図より、トリクロロエチレン30ppm処理時ではR=0.9518、10ppm処理時ではR=0.9816とどちらもよい相関を得られており、この関係から低濃度ガスを処理する際の平均風速の設計が可能となった。 Here, FIG. 15 shows the average wind speed and the downstream residual concentration during the treatment with 30 ppm and 10 ppm of trichlorethylene. From the figure, the time trichlorethylene 30ppm process of when R 2 = 0.9518,10ppm handling is obtained a correlation may be either the R 2 = 0.9816, the average wind speed when processing low density gas from the relationship Design became possible.

(実施例8)偏流防止板による整流効果
実施例7より、偏流防止板2枚使用することにより、偏流防止板設置位置より50mm面における平均風速の条件が得られたが、この平均風速における整流効果について確認を行った。
(Embodiment 8) Rectification effect by drift prevention plate From Example 7, the condition of the average wind speed in the 50 mm plane was obtained from the drift prevention plate installation position by using two drift prevention plates. The effect was confirmed.

ダクトなどの設計においては、ガス導入口から、断面積の相当直径の5倍の距離をとることにより、整流効果が得られることが知られている。これを利用し、ランプ1本による整流が得られる位置と偏流している位置におけるトリクロロエチレンガス処理について比較を行った。   In designing a duct or the like, it is known that a rectifying effect can be obtained by taking a distance of five times the equivalent diameter of the cross-sectional area from the gas inlet. Using this, the trichlorethylene gas treatment at the position where the rectification by one lamp was obtained and the position where current drifted was compared.

整流が得られる位置として、分解装置断面積相当直径の5倍の距離(5d)における位置は、実施例に使用した汚染ガス分解装置の断面積が420cmであることから5d=578mmであり、これ以上の1000mm位置とした。偏流が生じる位置として偏流防止板設置位置50mm、この2点において、ランプ1本を設置し、300L/minの処理を行っている。なお、処理する擬似汚染ガスにはトリクロロエチレンを使用し、上流濃度は下流残留濃度が最も高く検出される30ppmとしており、偏流防止板は最も効果的である2枚を使用している。表2に各位置における下流トリクロロエチレン残留濃度と分解率を示す。 As a position where rectification is obtained, a position at a distance (5d) which is five times the diameter equivalent to the cross-sectional area of the decomposition apparatus is 5d = 578 mm because the cross-sectional area of the pollutant gas decomposition apparatus used in the example is 420 cm 2 . More than 1000 mm position was set. As the position at which the drift occurs, the drift prevention plate is installed at a position of 50 mm. At these two points, one lamp is installed and a process of 300 L / min is performed. Trichlorethylene is used as the pseudo-polluting gas to be processed, the upstream concentration is set to 30 ppm at which the downstream residual concentration is detected to be the highest, and the two most effective drift prevention plates are used. Table 2 shows the downstream trichlorethylene residual concentration and decomposition rate at each position.

Figure 2005211704
Figure 2005211704

Blankにおける50mm位置のとき分解率は50%以下であり、残留濃度も19ppmであるのに対し、1000mm位置では分解率は50%以上となり、残留濃度も17.4ppmまで低下した。これに対し、偏流防止板2枚ではランプの位置の違いによる分解率、残留濃度値にほとんど差が見られず、Blankの1000mmとも同様の値を得られた。   At the position of 50 mm in Blank, the decomposition rate was 50% or less and the residual concentration was 19 ppm, whereas at the 1000 mm position, the decomposition rate was 50% or more and the residual concentration was reduced to 17.4 ppm. On the other hand, the two drift prevention plates showed almost no difference in the decomposition rate and residual density value due to the difference in lamp position, and the same value was obtained for the 1000 mm of Blank.

以上のことから、偏流防止板2枚使用することにより、整流効果が得られていることが確認できた。   From the above, it was confirmed that the rectifying effect was obtained by using two drift prevention plates.

本発明により触媒等必要とせずとも、低濃度から高濃度の広き範囲にわたり、紫外線のみによるトリクロロエチレン等揮発性有機塩素化合物含有ガスを効率よく分解処理を行うことが可能となった。   According to the present invention, it is possible to efficiently decompose a volatile organic chlorine compound-containing gas such as trichlorethylene using only ultraviolet rays over a wide range from a low concentration to a high concentration without requiring a catalyst or the like.

本発明の一実施態様に関わる揮発性有機塩素化合物含有ガス分解装置の概略図である。1 is a schematic view of a volatile organochlorine compound-containing gas decomposition apparatus according to an embodiment of the present invention. 実施例1における紫外線発生源からの紫外線強度値変化を示すグラフである。6 is a graph showing changes in ultraviolet intensity value from an ultraviolet ray generation source in Example 1. 実施例1における紫外線強度値とトリクロロエチレン分解率の関係を示すグラフである。It is a graph which shows the relationship between the ultraviolet-ray intensity value in Example 1, and a trichlorethylene decomposition rate. 実施例1における汚染ガス分解装置断面積変動による下流トリクロロエチレン濃度と分解率の関係を示すグラフである。It is a graph which shows the relationship between the downstream trichlorethylene density | concentration by the pollutant gas decomposition | disassembly apparatus cross-sectional area fluctuation | variation in Example 1, and a decomposition rate. 実施例2、3、4に使用した汚染ガス分解装置の概略図である。It is the schematic of the pollutant gas decomposition | disassembly apparatus used for Example 2, 3, and 4. FIG. 従来使用していた分解装置の概略図である。It is the schematic of the decomposition device used conventionally. 実施例2におけるトリクロロエチレン分解率及び下流残留トリクロロエチレン濃度の関係を示したグラフである。4 is a graph showing the relationship between the trichlorethylene decomposition rate and the downstream residual trichlorethylene concentration in Example 2. FIG. 実施例3における偏流防止板の有無による分解率の関係を示したグラフである。6 is a graph showing the relationship of the decomposition rate depending on the presence or absence of a drift prevention plate in Example 3. 実施例3における偏流防止板の有無による速度分布シミュレーションを示したグラフである。6 is a graph showing a speed distribution simulation based on the presence or absence of a drift prevention plate in Example 3. 実施例4における偏流防止板の違いによる下流テトラクロロエチレン濃度と分解率を示したグラフである。It is the graph which showed the downstream tetrachlorethylene density | concentration and decomposition rate by the difference in the drift prevention board in Example 4. FIG. 実施例5、6に使用した汚染ガス分解装置の概略図である。It is the schematic of the pollutant gas decomposition | disassembly apparatus used for Example 5, 6. FIG. 実施例5における偏流防止板設置条件による下流トリクロロエチレン濃度を示したグラフである。6 is a graph showing the downstream trichlorethylene concentration according to the drift prevention plate installation condition in Example 5. 実施例6における偏流防止板設置枚数による下流トリクロロエチレン濃度を示したグラフである。10 is a graph showing the downstream trichlorethylene concentration according to the number of installed drift prevention plates in Example 6. 実施例7に使用した汚染ガス分解装置模型の概略図である。It is the schematic of the pollutant gas decomposition | disassembly apparatus model used for Example 7. FIG. 実施例7における平均風速とトリクロロエチレン30、10ppm処理時残留濃度を示したグラフである。It is the graph which showed the average density | concentration in Example 7, and the residual density | concentration at the time of a trichlorethylene 30 and 10 ppm treatment.

符号の説明Explanation of symbols

1 汚染空気導入部
2 偏流防止板
3 紫外線発生ランプ
4 浄化空気排気部
5 風速測定口
DESCRIPTION OF SYMBOLS 1 Polluted air introduction part 2 Drift prevention board 3 Ultraviolet ray generation lamp 4 Purified air exhaust part 5 Wind speed measurement port

Claims (3)

揮発性有機塩素化合物を含有する空気を連続的に供給して紫外線照射により該有機塩素化合物を分解処理する連続空気浄化装置において、内部に紫外線ランプをもち、対向する前部と後部に汚染空気導入部と浄化空気排気部をもつと共に、該汚染空気導入部と紫外線ランプの間に偏流防止板をもつことを特徴とする連続空気浄化装置。   In a continuous air purifier that continuously supplies air containing volatile organochlorine compounds and decomposes the organochlorine compounds by ultraviolet irradiation, it has ultraviolet lamps inside and introduces contaminated air to the front and rear facing each other. And a purified air exhaust unit, and a drift prevention plate between the contaminated air introduction unit and the ultraviolet lamp. 該偏流防止板が多孔板からなる請求項1記載の装置。   The apparatus according to claim 1, wherein the drift prevention plate is a perforated plate. 該紫外線ランプが該汚染空気の通過面と垂直に複数配されている請求項1又は2記載の装置。   The apparatus according to claim 1 or 2, wherein a plurality of the ultraviolet lamps are arranged perpendicular to a passing surface of the contaminated air.
JP2004018087A 2004-01-27 2004-01-27 Continuous air cleaning apparatus Pending JP2005211704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004018087A JP2005211704A (en) 2004-01-27 2004-01-27 Continuous air cleaning apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004018087A JP2005211704A (en) 2004-01-27 2004-01-27 Continuous air cleaning apparatus

Publications (1)

Publication Number Publication Date
JP2005211704A true JP2005211704A (en) 2005-08-11

Family

ID=34902696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004018087A Pending JP2005211704A (en) 2004-01-27 2004-01-27 Continuous air cleaning apparatus

Country Status (1)

Country Link
JP (1) JP2005211704A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032613A (en) * 2009-08-04 2011-02-17 Gunze Ltd Method for producing ultrafine fiber nonwoven fabric, and ultrafine fiber nonwoven fabric

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049844U (en) * 1983-09-12 1985-04-08 株式会社 日東エアテック gas sterilizer
JPS61200836A (en) * 1985-03-01 1986-09-05 Ebara Infilco Co Ltd Treatment of exhaust gas
JPS647933A (en) * 1987-06-30 1989-01-11 Tokai Kogyo Co Ltd Ozonolysis device
JPH0455353U (en) * 1990-09-21 1992-05-12
JPH0470126U (en) * 1990-10-24 1992-06-22
JPH07155543A (en) * 1993-12-02 1995-06-20 Ebara Res Co Ltd Treatment for volatile organic chlorine compound and device therefor
JPH11159034A (en) * 1997-11-27 1999-06-15 Daikin Ind Ltd Partition panel with air cleaning function
JP2000254439A (en) * 1999-03-09 2000-09-19 Toshiba Corp Harmful gas decomposition device
JP2000325745A (en) * 1999-05-24 2000-11-28 Kawasaki Heavy Ind Ltd Exhaust gas cleaning apparatus
JP2001029738A (en) * 1999-07-26 2001-02-06 Ebara Corp Gas decomposing apparatus utilizing ultraviolet rays
JP2001149755A (en) * 1999-11-30 2001-06-05 Japan Organo Co Ltd Device and method for treating waste gas containing volatile organic material
JP2002066235A (en) * 2000-08-25 2002-03-05 Dainippon Screen Mfg Co Ltd Fan filter unit
JP2002191964A (en) * 2000-12-12 2002-07-10 Korea Mach Res Inst Catalyst reactor for treating harmful gas using low temperature plasma and dielectric heat and treatment method for harmful gas
JP2003220123A (en) * 2001-11-08 2003-08-05 Okaya Electric Ind Co Ltd Air cleaner
JP2003290622A (en) * 2002-04-01 2003-10-14 Koken Ltd Decomposition apparatus for gaseous organic compound

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6049844U (en) * 1983-09-12 1985-04-08 株式会社 日東エアテック gas sterilizer
JPS61200836A (en) * 1985-03-01 1986-09-05 Ebara Infilco Co Ltd Treatment of exhaust gas
JPS647933A (en) * 1987-06-30 1989-01-11 Tokai Kogyo Co Ltd Ozonolysis device
JPH0455353U (en) * 1990-09-21 1992-05-12
JPH0470126U (en) * 1990-10-24 1992-06-22
JPH07155543A (en) * 1993-12-02 1995-06-20 Ebara Res Co Ltd Treatment for volatile organic chlorine compound and device therefor
JPH11159034A (en) * 1997-11-27 1999-06-15 Daikin Ind Ltd Partition panel with air cleaning function
JP2000254439A (en) * 1999-03-09 2000-09-19 Toshiba Corp Harmful gas decomposition device
JP2000325745A (en) * 1999-05-24 2000-11-28 Kawasaki Heavy Ind Ltd Exhaust gas cleaning apparatus
JP2001029738A (en) * 1999-07-26 2001-02-06 Ebara Corp Gas decomposing apparatus utilizing ultraviolet rays
JP2001149755A (en) * 1999-11-30 2001-06-05 Japan Organo Co Ltd Device and method for treating waste gas containing volatile organic material
JP2002066235A (en) * 2000-08-25 2002-03-05 Dainippon Screen Mfg Co Ltd Fan filter unit
JP2002191964A (en) * 2000-12-12 2002-07-10 Korea Mach Res Inst Catalyst reactor for treating harmful gas using low temperature plasma and dielectric heat and treatment method for harmful gas
JP2003220123A (en) * 2001-11-08 2003-08-05 Okaya Electric Ind Co Ltd Air cleaner
JP2003290622A (en) * 2002-04-01 2003-10-14 Koken Ltd Decomposition apparatus for gaseous organic compound

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032613A (en) * 2009-08-04 2011-02-17 Gunze Ltd Method for producing ultrafine fiber nonwoven fabric, and ultrafine fiber nonwoven fabric

Similar Documents

Publication Publication Date Title
US7156959B2 (en) Plasma based trace metal removal apparatus and method
EP0659297B1 (en) Toxic remediation system and method
KR20100118643A (en) Gas furifying system
KR20090012284A (en) Apparatus for decomposing harmful substance
JP2005211704A (en) Continuous air cleaning apparatus
JP4923435B2 (en) Hazardous substance treatment equipment
KR100502946B1 (en) Method of treating substance to be degraded and its apparatus
US20040071589A1 (en) Odor control through air-facilitated injection of hydroxyl radicals
JP2005074409A (en) Method for treating 1, 4-dioxane
KR100509400B1 (en) System for decomposing organic compound
JP3699055B2 (en) Equipment for decomposing gaseous organic compounds
JP2021504076A (en) Air treatment system and how to use the air treatment system
KR20180129490A (en) High-voltage pulsed power, Plasma reactor, apparatus and method for removing contamination air
JP2002316021A (en) Contaminated gas treating device and purifying device using the same
JP4903323B2 (en) Hazardous substance treatment equipment and wastewater treatment system
JP2020185517A (en) Gas treatment device, ventilation device, and fume hood
KR20030034590A (en) Method and apparatus for eliminating the stench and volatile organic compounds in the polluted air
JP2005304807A (en) Method and device for controlling air current of air cleaning device using photocatalyst
JP4845657B2 (en) Organic substance decomposition and removal equipment
JP2003053359A (en) Method for cleaning liquid polluted with pcb
KR102496342B1 (en) Multi-layered Tubular Plasma Generator
RU2494794C2 (en) Method of cleaning airflows from chemical contaminants and device to this end
JP2007136321A (en) Air cleaner and cleaning method
JP2003181448A (en) Method and apparatus for treating water polluted with voc
JP2001321763A (en) Method and device for treating dioxins in wastewater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101012